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ABSTRACT
IEEE floating point arithmetic and its implementations can be con-
fusing, making developer understanding critical for correctness
combined with performance. Our earlier work studied developer
understanding of floating point through a survey instrument, target-
ing a closed, anonymous scientific developer population. It found
evidence of a lack of understanding of IEEE floating point, with
average performance of the group being slightly better than chance.
In this work, we apply the same (open) survey instrument to an
open, anonymous software developer population. We analyze the
results of this survey using the same tools as our previous work,
and compare the two populations. We find that the software de-
velopers have a better understanding of the gotchas in the IEEE
floating point standard and a much better grasp of several imple-
mentation details. However, within the software developer group,
demographic factors have limited power in explaining differences.

CCS CONCEPTS
• Software and its engineering → Correctness; Software

reliability; Operational analysis; • Mathematics of comput-
ing → Numerical analysis; Arbitrary-precision arithmetic.
KEYWORDS

Floating point arithmetic, User studies

1 INTRODUCTION
Floating point arithmetic via the IEEE standard is ubiquitous in
scientific computing and increasingly so in many other domains,
such as machine learning. There is indeed increasing interest in
alternative arithmetic systems such as posits, and unums, fixed
point arithmetic, arbitrary precision arithmetic, as well as reduced
precision and other limited versions of the IEEE standard. However,
all current hardware implements the IEEE standard and all current
compilers target these implementations and optimize for them—a
number in a program that looks like real number is almost always
an IEEE floating point number.

Unfortunately, IEEE floating point arithmetic is not real num-
ber arithmetic, and the similarity can be deceiving for developers.
Common expectations of real number arithmetic simply do not
hold true in IEEE floating point arithmetic and, consequently, pro-
grams can implement numeric algorithms incorrectly. Furthermore,
even for correctly written source code, the plethora of optimization
choices in a modern compiler can lead to differing results, and even
usurp programmer intent. Hardware itself is increasingly loose
in its adherence to the standard, leading to yet another possible
source of error. Finally, while the standard provides hardware-level

This project was supported by the United States National Science Foundation via
grants CCF-1533560 and CNS-1763743, and CCF-2028851.

reporting mechanisms, the programmer must actually use these
and understand their implications.

Recently, we published a first-of-its-kind study of developer un-
derstanding of IEEE floating point arithmetic [7]. Using a range
of mechanisms, the study targeted 199 scientific developers from
academia, national labs, and industry, while maintaining their
anonymity. The results of the study, which we summarize in Sec-
tion 2.3, were rather surprising. As a whole, these scientific devel-
opers did only slightly better than chance in correctly identifying
key unusual behaviors of the IEEE floating point standard, poorly
understood which compiler and architectural optimizations were
non-standard, and were arguably less suspicious than they ought
to have been when presented with hardware-level reporting about
computations. For the optimizations, the participants were aware
of their limitations, which could mean that optimizations are very
conservatively applied.

In the present work, we applied precisely the same survey in-
strument to a separate, anonymous population of 352 individuals,
drawn from an open call, who represent a broader set of developers,
software developers. As Section 3 describes, we used a marketing
methodology that commenced shortly after the prior work was
presented in order to make our survey broadly available and visible.
It is anonymous participants after the presentation date that are
included in the software developers group that we analyze here.

We repeat the analysis of our previous work on the new software
developers data set, present the results, and compare and contrast
the results with those of the previous scientific developers data set.
Do software developers understand the core properties of floating
point arithmetic? Do they grasp which optimizations might result
in non-compliance with the IEEE standard? How suspicious are
they of a program’s results in light of the various exceptions in
the standard? What factors in a developer’s background lead to
better understanding and appropriate suspicion of results? How
different are the answers to these questions from those of scientific
developers? What are the implications? We address these ques-
tions through a study of software developers, and a comparison
with the same study design applied to scientific developers. Our
contributions are:

• An anonymous survey taken by 352 software developers,
recruited on an open basis immediately after the results
of an anonymous study of 199 scientific developers were
presented.
• An analysis of the data from the survey that evaluates the
software developer group with regard to the above questions,
and compares their performance with that of the earlier
scientific developer group.
• The surprising finding that the software developers group
does considerably better than the scientific developer group
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in terms of their understanding of the core aspects of the
standard, and its optimizations.
• The surprising finding that the two groups do not differ in
their (arguably insufficient) suspicion of potentially prob-
lematic floating point events.
• A finding that different factors are significant for the soft-
ware developer group compared to the scientific developer
group.

Related work. Correct and resilient computation using floating point
arithmetic has, of course, been a long-standing topic of interest
within the numerical methods, scientific computing, and software
engineering communities. Finding floating point misbehavior in
applications is a current hot topic, with a range of work that tries
to find such issues, and then identify their root cause in the soft-
ware, or ameliorate themmore directly. Particular examples include
Milroy et al [16], Herbgrind [18], and Flit [2, 19]. Milroy et al and
Flit use variant compilation to induce output variation, and then
localize the source of this variation to a root cause in the source.
Herbgrind also attempts to find the root cause, although here the
starting point can be instructions that have high rounding error.
FPSpy [6] uses hardware to detect problematic floating point events
in unmodified binaries. Programming language and compiler tech-
niques for improving floating point behavior in applications is also
a current hot topic (e.g. [1, 3, 5, 11, 12, 17]). A provocative recent
proposal recommends creating an API for the real numbers [4].

Others have studied scientific software developers (e.g. [8–10, 13–
15, 20, 21]), but as far as we are aware, this paper is only the second
study of software developer understanding of floating point, hence
there is no directly related work beyond our prior work whose
survey instrument and analysis methodology we leverage [7].

2 SUMMARY OF PREVIOUS PAPER
Our previously published work [7] designed and tested a survey
instrument that would allow anonymous participants to provide
a snapshot of their background, and then complete a quiz with
three components. We carefully targeted the survey instrument to
an audience that was arguably rich in scientific developers, and
analyzed the results. A more detailed description of the previous
instrument, recruitment scheme, analyses, and results can be found
in the previous paper, and is summarized here.

2.1 Survey instrument
The survey instrument, whichwe reuse in this workwithout changes,
consists of three components.

Background. The background questions capture demographic
information that may impact participants’ knowledge of floating
point. The survey first asks about background and training. It seeks
to learn current employment position (eg., software engineer, Ph.D.
student, or research scientists, etc.) and area of formal education
(e.g., CS, CE, EE, Physical Science, etc.). The survey also asks about
the amount of formal training the participant has received, specifi-
cally about floating point, as well as the types of informal training
about floating point the participant has used.

The survey also probes participants’ software development ex-
perience and use of floating point. To that end, it asks how the

participant describes their role in the software development pro-
cess (e.g., software engineer, developing software to support their
main role, etc.), what languages the participant has experience us-
ing floating point in and what arbitrary precision languages the
participant has used. Lastly, it asks the participants for the sizes of
the largest codebases they have contributed to/been involved with,
and the extent to which floating point was used in those codebases.
For codebases in which floating point was intrinsic, the survey
also captures whether correctness was the participant’s focus, their
team’s focus, or another team’s focus.

Core quiz. Next up are 15 questions in which the participant is
shown a snippet of C code and asked whether an assertion about
it is true, false, or if they do not know. The goal is to mimic the
process of writing code that uses floating point arithmetic and force
the participant to consider where floating point numbers do not
act like real numbers.

The Commutativity, Associativity, and Distributivity1 questions
evaluate how the participant understands these aspects of floating
point arithmetic, which behave differently than in real number
arithmetic. Misconceptions here are common sources of problems.

The Ordering question tests the understanding of the conse-
quences of rounding and saturating arithmetic on the order of
operations suggested by equalities such as ((a + b) − a) == b.

The Identity question asks if a == a for all floating point num-
bers, including NaNs, which are not ordered with respect to the
floating point numbers. This statement is surprisingly not true and
can be a source of error. Similarly, the Negative Zero question asks
if two values that are both zero are always equal. The existence of
“negative zero” in the standard suggests they may not be, but two
zeros are, in fact, always equal.

The Square question tests whether the participant is confusing
integer and floating point arithmetic, as the square of a real or float-
ing point number is always ≥ 0.0. This statement is not always true
for integers because integer arithmetic is modular, not saturating.
The related Overflow question determines whether participants
confuse integer and floating point overflow.

The Divide by Zero question asks whether a floating point num-
ber divided by zero is a non-NaN value. It is actually an infinity,
rather than an NaN. Does the participant expect such an operation
to become obvious by generating a NaN? Unlike a NaN, an infin-
ity may propagate to output as an ordinary value, disguising an
error. The survey also asks about the behavior of Zero Divide by
Zero, which does generate a NaN that can propagate to output and
generate suspicion.

The Saturation Plus and Minus questions ask if a + 1.0 == a or
a − 1.0 == a can ever be true. Because floating point arithmetic is
saturating, such behavior is possible if a is an infinity. Rounding
can also cause such behavior, if a has a very large magnitude.

The Denormal Precision question asks whether floating point
numbers very close to zero have less precision than those further
away. This question’s goal is to find out if the participant is aware
of gradual underflow behavior as applications relying on small
magnitude numbers must account for precision loss. Also, some
hardware can disable denormalized numbers for speed, which can
produce unexpected results.
1The labels provided here are for convenience and do not appear on the survey.
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The Operation Precision question asserts that the results of float-
ing point operations can have less precision than the operands. This
assertion is true because of rounding, which is an inherent part of
most floating point operations.

The Exception Signal question asks whether any floating point
operation that produces an exceptional result will inform the appli-
cation by default. This is not true. Participants may be additionally
confused because this statement partially holds for integer arith-
metic. Participants who believe that a signal-free execution means
no exceptional values were generated have a false sense of security.

Optimization quiz. Developers commonly seek to optimize their
code with various compiler optimizations and hardware features.
Correct code can become incorrect under certain optimizations
and when using certain hardware features. This component of the
survey tests participant knowledge of four optimizations (out of
hundreds that exist), asking whether they result in behavior that is
not in compliance with the IEEE standard.

The MADD question asks if the common MADD (fused multiply
add) instruction is part of the standard. MADD is included in the
newer version of the IEEE standard. MADD can return a different
value than separate multiplication and addition instructions.

The Flush to Zero question asks about the control bits (FTZ and
DAZ) on Intel processors that eliminate denormalized numbers and
gradual underflow to increase speed. In some cases, these bits are
active by default, which can lead to unexpected behavior with small
magnitude numbers. FTZ and DAZ are not part of the standard.

The Standard-compliant Optimization Level question asks the
highest possible typical compiler optimization level (ie., -O3) that
remains compliant with the IEEE standard. The highest level is
generally -O2, as -O3 allows MADDs.

The Fast-math question asks whether the --ffast-math com-
piler flag’s various optimizations can result in non-compliant be-
havior. They can.

Suspicion Quiz. Hardware tracks exceptions for every operation
using sticky condition codes. By default, these exceptions do not
appear in the application’s results. The survey presents a scenario
in which a program is wrapped to uncover exceptions (FPSpy [6]
does this). It asks the user how suspicious they would be of the
application’s results, given they uncover a particular exception, on
a five point scale.

The possible floating point exceptions include Invalid, which in-
dicates an operation involved a NaN. This is almost always a sign of
serious trouble. Overflow, which indicates the result of an operation
was an infinity, also usually indicates trouble. Underflow, which
indicates the result of an operation was a zero. Underflows are
usually not indicative of problems. The Denorm exception indicates
that gradual underflow occurred in some operation, or, equivalently,
that denormalized numbers near zero were used. A Precision ex-
ception indicates an operation required rounding and therefore a
loss of precision. Rounding is extremely common and is not usually
indicative of a problem if the numeric behavior of the application
has been designed correctly.

2.2 Demographics
The previous paper used a targeted closed recruitment process to
try to maximize the number of scientific developers in its sample
(n = 199). The demographics (which are also included for compari-
son in Section 3) reflect this goal, with a majority of participants
describing themselves as Ph.D. students or faculty. About 1/3 of
respondents were Ph.D. students and 1/4 faculty, with another
1/4 comprised of software engineers, research scientists and staff.
About 1/2 of participants were trained in computer science or com-
puter engineering. Because the previous survey targeted scientific
developers rather than software developers it is unsurprising that
nearly 2/3 develop software to support their main role, with only
1/4 developing software as their main role.

Over 3/4 of participants reported some formal training in floating
point, with slightly under 1/3 of participants reporting that train-
ings took the form of one of more lectures in a course. Nearly all
participants in the group reported some form of informal training
in floating point, with googling being the most common method.

The participants had used floating point in 55 languages, with
Python, C, C++, Matlab , and Java being reported by over 1/2 and
Fortran being reported by about 1/3. Over 2/3 had experience with
arbitrary precision libraries, with Mathematica being used by over
1/3 of participants and Maple being used by more than 1/8.

About 1/2 of participants contributed to codebases of over 10,000
lines and over 2/3 were involved in codebases containing 10,000
lines of code. Floating point was intrinsic to over 2/3 of contributed
codebases and over 1/2 of involved codebases. About 7.5% of re-
spondents reported codebases with no floating point use.

2.3 Main results
Participants generally believe that they know the answers to the
Core quiz questions. However, their average score is 8.5 out of 15,
which is only slightly better than the chance would indicate. Partici-
pants do better than chance on several key concepts (Associativity,
Overflow, and Exception Signals). However, fewer than 70% of par-
ticipants answered correctly on each of these questions. 6/15 core
questions were answered at chance levels and 2/15 were answered
incorrectly by most respondents. For the Optimization quiz, par-
ticipants answered “Don’t Know” 2/3 of the time, suggesting they
are likely to be conservative in their use of optimizations. Notably,
fewer than 10% of respondents correctly identified the optimization
level at which a compiler could produce non-compliant code. In the
Suspicion quiz, respondents were generally (and correctly) more
suspicious of Invalid and Overflow, but 1/3 of participants reported
a suspicion level less than the maximum for Invalid.

No background factor has an outsize impact on the Core quiz,
even though several are somewhat predictive. The most predictive
is Contributed Codebase Size, with the larger the code base, the
better floating point understanding. However, participants with the
largest codebases (>1M lines) still answered 4/15 questions incor-
rectly, on average. There is a slight gain of 2/15 questions when
comparing scores from people who focused on numeric correctness
in codebases and those who did not or where floating point was
not intrinsic. Participants from areas closer to the floating point
standards (CS, CE, EE), do slightly better (8.5/15 to 11/15). Partic-
ipants in areas that may write scientific applications, like "Other
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Physical Science Field" and "Other Engineering Field" perform at
the level of chance, which is alarming. Formal training had only a
small effect on performance.

The Software Development Role and Area factors have small
effects on Optimization quiz results. The non-existent effect of
Formal Training could be explained by participants’ training being
at the level of an introductory computer systems course, which does
not touch on optimizations. Suspicion results were also broadly like
those of a group of students (n = 52) in just such a course.

3 PARTICIPANTS
The previous paper, on the scientific developers group, was pre-
sented publicly on May 23, 2018. Immediately before the talk, we
made the paper available. We also created a new open instance of
the survey2 at this point, and then proceeded to advertise it in the
following manner:

• We advertised the new instance of the survey as part of our
talk for the previous paper.
• We emailed all of the 1st degree contacts from the previous
paper to make them aware of the new open survey. These
contacts were not the participants in the original survey,
but rather the individuals who selectively forwarded the au-
thors’ announcement to people who they felt were scientific
developers. We now told them to forward to anyone.
• Our lab, project, and personal websites were updated to
include pointers to the new open study.
• We created a post on Slashdot (http://slashdot.org), a vener-
able programming news aggregator, announcing the open
survey.
• We facilitated a news article on our work in our university’s
print+web publication, which is distributed to about 255,000
people. A link to the open survey was included.
• A Hacker News (https://news.ycombinator.com/) discussion
thread about the previous paper ensued. Hacker News is a
widely read news aggregator for software developers and
others.Wemade sure the URL for the open surveywas highly
visible in that discussion.
• A Reddit (https://reddit.com) thread also ensued, based on
the Hacker News thread.

We attracted n = 352 participants through this process fromMay
23, 2018 to August 17, 2020. To categorize them, despite anonymity,
we rely on their self-reported background just as in the previous
work (Section 2 formore information). Figures 1 through 11 describe
our participants’ backgrounds in detail.

The software developer group that this paper focuses on is de-
mographically quite different from the scientific developer group
considered in the previous paper. Most importantly, our recruitment
process seems to have done a good job of capturing individuals from
a more general software engineering background. Figure 1 shows
the breakdown of the reported positions of the participants. Our
participants are dominated by software engineers (53.7%), while the
participants in the previous study were dominated by academics
(61.3% were faculty or Ph.D. students).

2http://presciencelab.org/float

Position n % Old %
Software Engineer 189 53.7 11.6
Undergraduate Student 37 10.5 3.5
Research Scientist 28 8.0 5.6
Ph.D. Student 25 7.1 36.7
M.S. Student 21 6.0 4.0
Faculty 18 5.1 24.6
Research Staff 6 1.7 8.5
Manager 6 1.7 1.5
Other 10 2.8 2.5

Figure 1: Positions of participants (software developer
group). Old % is for the scientific developer group.

Area n % Old %
Computer Science 190 54.0 40.2
Computer Engineering 43 12.2 9.5
Other Physical Science Field 38 10.8 19.1
Other Engineering Field 17 4.8 13.1
Electrical Engineering 15 4.3 4.5
Mathematics 14 4.0 5.0
Unreported 11 3.1 0.5
Statistics 4 1.1 0.5
Other Non-Physical Science Field 4 1.1 1.1
Self-Taught/Autodidact 3 0.9 -
None/No Formal Training 2 0.6 -
Aerospace Engineering 1 0.3 -
CE and CS 1 0.3 1.1
Applied Mathematics and CS 1 0.3 1.1
Information Technology 1 0.3 -
Game Development 1 0.3 -
Computational Chemistry 1 0.3 -
Physics, EE, Math, and Economics 1 0.3 -
Engineering Physics 1 0.3 -

Figure 2: Positions of participants (software developer
group). Old % is for the scientific developer group.

Formal Training in Floating Point n % Old %
None 115 32.7 26.1

At least one lecture within a course 112 31.8 31.2
One or more weeks within a course 63 17.9 24.6

One or more courses 55 15.6 17.6
Unreported 7 2.0 0.5

Figure 3: Formal Training in floating point of participants
in the software developer group. Old % is for the scientific
developer group.

The two groups are more similar when it comes to their reported
areas, although computer science and engineering is more com-
mon in the software developer group. 2/3 of the software developer
group report being in these areas. There is also a much smaller rep-
resentation from other engineering fields or the physical sciences.
Figure 2 provides the details of the breakdown by area.

The software developer group is slightly more likely than the
scientific developer group to report having no formal training in
floating point, or to have spent less time in formal training. A
plurality of the software developers have no formal floating point
training, while a plurality of the scientific developers report having
one or more lectures of formal training in floating point. Figure 3
gives the breakdown. Note that from 1/4 to 1/3 of participants of
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Informal Training in Floating Point n % Old %
Read about it 272 77.3 68.3
Googled when necessary 212 60.2 69.4
Discussed with coworkers/manager-
s/friends 124 35.2 44.7

Watched video 48 13.6 11.1
Took tutorial 30 8.5 9.0
Unreported 27 7.7 11.0
Trained by advisor or mentor 25 7.1 19.1

Figure 4: Informal Training in floating point of participants
in the software developer group. Old % is for the scientific
developer group. (Top 7 shown).

Software Development Role n % Old %
My main role is as a software engineer 233 66.2 25.1
I develop software to support my main
role 79 22.4 59.8

Unreported 17 4.8 2.5
I manage others who develop software 14 4.0 9.5
to support my main role
My main role is to manage software en-
gineers 9 2.6 3.0

Figure 5: Software Development Roles of participants in the
software developer group. Old % is for the scientific devel-
oper group.

across the two groups received no formal training, which seems
problematic given how common the use of floating point is among
these developers, and more broadly.

Figure 4 breaks down both groups’ reported informal training
methods. Googling when necessary and reading about floating
point remain the two most prevalent methods, although they swap
between the two groups. Perhaps disturbingly, a software developer
participant is 3 times less likely to report being trained by an advisor
or mentor.

The software developers are 2.5 times more likely to report that
their main role in software development is as a software engineer.
These participant’s roles contrast with the scientific developers,
who are instead about 2.5 more likely to report that the develop
software in support of their main role. Figure 5 details these dif-
ferences and helps to support our claim that we have captured a
distinctly different participant group in this second study.

Figure 6 breaks down the experience both groups report in lan-
guages that include floating point arithmetic. The three most com-
mon across both groups are C, C++ and Python, but the scientific
developer group is considerably more likely to have used floating
point in C, while the software developer group is more likely to
have used it in Python. As might be expected, traditional languages
for scientific computation are much less common in the software
developer group.

Understanding of floating point arithmetic might be affected
by the use of languages that provide arbitrary precision numer-
ics. Figure 7 breaks down the two groups by their reported use of
such languages and tools. Over 1/3 of both groups report no expe-
rience with such languages. The most common reported language
is Mathematica. The differences between the groups are minor in
this regard.

Floating Point Languages Experience n % Old %
C 283 80.4 69.9
C++ 251 71.3 68.3
Python 228 64.8 71.4
Java 181 51.4 50.3
Matlab 99 28.1 52.8
C# 76 21.6 13.1
Fortran 58 16.5 32.7
R 47 13.4 24.1
Perl 37 10.5 12.6
Haskell 29 8.2 6.0
Scheme/Racket 22 6.2 8.5
Javascript 14 4.0 3.0
Rust 11 3.1 2.0
ML 10 2.8 4.5
Unreported 10 2.8 0.5
Ruby 7 2.0 3.0

Figure 6: Floating Point Language Experience of partici-
pants in the software developer group. Old % is for the sci-
entific developer group. 53 languages were reported. These
had n ≥ 5.

Arb. Precision Language Experience n % Old %
Unreported 140 39.8 36.7
Mathematica 86 24.4 35.7
MPFR/GNU MultiPrecision Library 54 15.3 9.6
Other Language 46 13.1 10.0
Maple 40 11.4 14.6
Other Library 34 9.7 6.5
Scheme/Racket/LISP with BigNums 26 7.4 6.5
Haskell with arb. prec. and rationals 25 7.1 4.0
Matlab MultiPrecision Toolbox 14 4.0 5.0
Macsyma 7 2.0 2.5

Figure 7: Arbitrary Precision Language Experience of partic-
ipants in the software developer group. Old % is for the scien-
tific developer group. 32 languages/libraries were reported.
These had n ≥ 5.

Contributed Codebase Size n % Old %
10,001 to 100,000 lines of code 139 39.5 32.7
1,001 to 10,000 lines of code 116 33.0 39.7
100,001 to 1,000,000 lines of code 52 14.8 8.5
>1,000,000 lines of code 18 5.1 4.5
100 to 1,000 lines of code 15 4.3 13.6
Unreported 11 3.1 0.5
<100 lines of code 1 0.3 0.5

Figure 8: Contributed Codebase Sizes of participants in the
software developer group. Old % is for the scientific devel-
oper group.

We asked each participant to note the size of the largest codebase
to which they have contributed, and then the extent of floating
point usage in that codebase. Figures 8 and 9 detail the results. Not
surprisingly, the software developer participants are more likely to
have contributed to larger codebases. Additionally, they are slightly
more likely to report that either floating point was incidental to the
codebase, and slightly less likely to report that they or their team
was involved in numerical correctness.
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Contributed Codebase Floating Point Ex-
tent n % Old %

FP incidental 158 44.9 38.7
FP intrinsic 92 26.1 31.7
FP intrinsic, I did numerical correctness 39 11.1 14.6
No FP involved 25 7.1 4.5
FP intrinsic, other team did numerical
correctness 14 4.0 5.0

FP intrinsic, my team did numerical cor-
rectness 12 3.4 5.0

Unreported 12 3.4 0.5

Figure 9: Contributed Codebase Floating Point Extent of par-
ticipants in the software developer group (within the code-
base they built (Figure 8.) Old % is for the scientific developer
group.

Involved Codebase Sizes n % Old %
100,001 to 1,000,000 lines of code 105 29.8 18.1
>1,000,000 lines of code 97 27.6 18.1
10,001 to 100,000 lines of code 92 26.1 30.7
1,001 to 10,000 lines of code 38 10.8 26.6
Unreported 12 3.4 0.5
100 to 1,000 lines of code 6 1.7 4.0
<100 lines of code 2 0.6 1.0

Figure 10: Involved Codebase Sizes of participants in the
software developer group. Old % is for the scientific devel-
oper group.

Involved Codebase Floating Point Extent n % Old %
FP incidental 149 42.3 35.7
FP intrinsic 78 22.2 27.6
No FP involved 52 14.8 7.5
FP intrinsic, I did numerical correctness 22 6.2 11.6
FP intrinsic, other team did numerical
correctness 19 5.4 8.5

FP intrinsic, my team did numerical cor-
rectness 17 4.8 6.5

Unreported 15 4.3 2.5

Figure 11: Involved Codebase Floating Point Extent of par-
ticipants in the software developer group within the largest
codebase they were involved with (Figure 10). Old % is for
the scientific developer group.

Figures 10 and 11 present parallel questions to those just de-
scribed, but here, we ask the participants to consider the largest
codebase in which they have been involved in any capacity. Again,
not surprisingly, the software developer participants were much
more likely to be involved in very large codebases (almost 60% were
involved in codebases bigger than 100,000 lines, compared to about
36% for the scientific developer group). Interestingly, however, the
probability of floating point being intrinsic or incidental to those
codebases was similar between the two groups.

Note that 189 of our participants identify specifically as having
the position of software engineer (Figure 1). Because this is such a
large number, we can treat this software engineer subgroup sep-
arately to allow us to draw an even sharper distinction from the
scientific developer group of the initial study.

There are three takeaways from this discussion and data. First,
we have clearly recruited a participant group that is quite distinct

Core Quiz
# Correct
(∆ old)

# Incorrect # Don’t Know # No Answer # Chance

10.0 (+1.5) 3.4 1.2 0.42 7.5
Optimization Quiz

# Correct
(∆ old)

# Incorrect # Don’t Know # No Answer # Chance

1.0 (+0.4) 0.3 1.5 0.2 2.0

Figure 12: Average (expected) performance of participants in
the software developer group on the core and optimization
quizzes. ∆ old is the difference over the previous study of the
scientific developer group.

from the participant group of the previous study. Second, the new
participant group is arguably a good snapshot of software devel-
opers that we can compare with the previous study’s snapshot
of scientific developers. Finally, the software engineer subgroup
allows us an even more sharply contrasting snapshot.

4 ANALYSIS RESULTS
We applied the same analysis methodology used in our previous
study of scientific developer group to the software developer group
(and its software engineer subgroup). Our goal was to address the
same questions as in the previous work, namely:
• Do developers understand floating point arithmetic in terms
of how it differs from real arithmetic and computer integer
arithmetic?
• Do developers understand how optimizations at the hard-
ware and compiler level may affect the behavior of floating
point arithmetic within or beyond the standard?
• What are the common misunderstandings?
• What factors have an effect on understanding?
• What might make developers suspicious of a result?

We now summarize the main results of our analysis of the software
developers and how the groups differ.
It is important to note why our presentation is so rich in graphs
and numbers. Although n = 352 is a large population, once it is
partitioned for a typical factor, t-testing is not reasonable, as a t-test
for a small n assumes the inputs are from a normal distribution,
which is not an assumption that can be made here. Instead, we
describe our interpretation and provide the data, given space
constraints, so the reader can judge for themselves. In essence, we
are providing an exploratory data analysis [22].

4.1 General understanding
Figure 12 shows the average (i.e. expected) scores of the software
developers on the core and optimization quizzes, and shows the dif-
ference compared to the previous study of scientific developers. In
both cases, participants generally feel they can answer the core quiz
questions. However, the software developer group is considerably
better at answering the questions correctly. The software develop-
ers perform well above chance (10/15 versus 8.5/15 for the scientific
developers). The means of the scores of these two populations differ
with p < 0.01.

Digging deeper, Figure 13 shows histograms of the two groups’
scores on the core quiz. There is a subtlety here in that “Don’t
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Figure 13: Histogram of core quiz scores. There are 15 ques-
tions. Chance would put the mean at 7.5.

Know” was a possible response to a question. The incidence of this,
however, was < 15% for the core quiz in both studies. We can clearly
see that the quiz produces a close-to-normal distribution for both
groups, with the distribution shifted significantly toward better
scores for the software developers. Still, the main news is that both
groups are overconfident in their understanding of basic floating
point behavior (which they likely saw in their training (Figures 3
and 4 for the software developer group).

In contrast, in the optimization quiz, participants in both groups
generally recognize their ignorance, answering “Don’t Know” from
1/2 to 2/3 of the time. Here, the software developer group does better
aswell, however. They aremore likely to claim knowledge (although
this is still rare), and when they do so are more likely to be correct.
The reassuring point is that participants in both groups seem to
be appropriately wary about compiler and hardware optimizations
(perhaps these topics are less likely to be encountered in formal
and informal training).

Figure 14 is a question-by-question breakdown of the core quiz.
With two exceptions, Negative Zero and Square, the software de-
velopers outperform the scientific developers, in some cases quite
significantly. Given how close the two groups are on Commutativity
and Square, one possible interpretation is that these two questions
are problematic.

Figure 15 is a question-by-question breakdown of the optimiza-
tion quiz. While the participants in the scientific developer group
from the earlier study asserted they did not know the answer over
50% of the time for all questions, the software developers did so
only for the MADD and Flush to Zero questions. Their chance of
getting a question correct was also higher for all questions. Note
however, that in three of the four questions, the probability that the

Question % Cor-
rect

∆ old % In-
correct

%
Don’t
Know

%
Unan-
swered

Commutativity 56.8 +3.5 31.0 10.2 2.0
Associativity 85.8 +16.5 8.2 3.7 2.3
Distributivity 90.1 +8.2 2.0 5.1 2.8
Ordering 90.3 +9.9 4.5 2.8 2.3
Identity 44.0 +27.4 50.0 3.4 2.6
Negative Zero 49.4 -9.4 41.5 6.5 2.6
Square 42.9 -4.3 42.0 12.8 2.3
Overflow 69.0 +8.2 20.4 6.8 3.7
Divide by Zero 20.5 +8.9 67.6 8.5 3.4
Zero Divide By Zero 75.6 +5.2 6.2 14.8 3.4
Saturation Plus 73.3 +18.5 18.2 5.7 2.8
Saturation Minus 71.0 +17.7 19.0 6.8 3.1
Denormal Precision 73.9 +21.6 14.2 8.8 3.1
Operation Precision 79.8 +6.4 7.7 9.6 2.8
Exception Signal 73.9 +4.6 9.4 13.6 3.1

Figure 14: Performance of the software developergroup on
Core quiz questions. Boldfaced questions were answered
correctly at the level of chance. Italicized questions were an-
swered incorrectly or reported as unknownmore often than
answered correctly. ∆ old is the percentage point difference
compared to the scientific developer group.
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Figure 16: Effect of Position on core quiz scores.

software developer participant either did not know, or answered in-
correctly exceeds 2/3. The only question where answering correctly
was ≥ 50% probable is Fast-math.

4.2 Factor analysis for core quiz
We considered the effect of each of our background factors on the
participant score in the core quiz. Each factor was considered in
isolation, and we focus on the largest effects and contrasts with the
scientific developer group.

In contrast to previous study of the scientific developer group,
where code size, namely the size of the largest codebase the par-
ticipant had contributed to or been involved with, had the most
marked effect, we find hardly any effect in the software developer
group. Even if we focus on the software engineer subgroup, we see
virtually no effect. A possible explanation is that a software devel-
oper is more likely to have worked on more numerous codebases,
and thus, even if those codebases were small, they still may have
had the training benefit.
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Question % Correct ∆ old % Incorrect % Don’t Know % Unanswered
MADD 26.7 +11.1 16.8 50.8 5.7
Flush to Zero 20.7 +7.1 13.4 60.2 5.7
Standard-compliant Level 20.7 +12.2 29.0 44.6 5.7
Fast-math 56.5 +27.4 2.3 35.2 6.0

Figure 15: Performance of the software developer group on the Optimization quiz questions. The highlighted questions were
reported as unknown bymore than half of the participants. ∆ old is the percentage point difference compared to the scientific
developer group.
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Figure 17: Effect of Area on core quiz scores.

The most significant factor we find in the software developer
group’s performance is Position, which shows a variation of 4/15.
This variation is the same as the largest variation seen in the previ-
ous study of the scientific developer group (for the code size factor).
Figure 16 shows the breakdown.3

For the scientific developer group, the second most significant
factor was the Area of the participants. This remains the case for
the software developer group, with the variation being about 2/15,
which is markedly smaller than the 3.5/15 variation reported for the
scientific developers. Figure 17 shows the breakdown. Interestingly,
if we consider the software engineers only, this factor has much
less effect.

In the previous study, the third most significant factor we en-
countered was Software Development Role. In contrast, for the
software developer group, we find this to have no effect, except

3We use the same presentation format for this data as in the previous study to sup-
port straightforward comparisons between the two papers. For each value the factor
can take on, we provide a stacked bar that shows the average count of correctly an-
swered questions, incorrectly answered questions, questions answered “Don’t Know”,
and questions that went unanswered. The bars, and hence the values are sorted by
descending order of average number of correctly answered questions.
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Figure 18: Effect of Languages Used on core quiz scores of
the software engineer subgroup.
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Figure 19: Effect of Arbitrary Precision Languages Used on
core quiz scores of the software engineer subgroup.

when the participant did not specify their development role, in
which case the average correctness score drops by 4/15.

Similarly, while the previous study showed that Formal Training
(in floating point) had a small effect (2/15), the effect is much smaller
here (1/15), and shrinks even more when the software engineer
subgroup is considered. Sadly, formal training about floating point
behavior does not seem to be effective. A possible explanation is
that given when this is taught in a CS sequence (typically in an
introductory computer systems course in the sophomore year), the
participants are not really in a position to leverage what they learn
or to have it reinforced.

Interestingly, among the software engineer subgroup, Languages
Used, and Arbitrary Precision languages used seem to have a high
apparent effect. The effect variations are 3.5/15, and 3/15, respec-
tively. In contrast, for the previous study’s scientific developer
group, the effects were either minimal or ambiguous. Figures 18,
and 19 show the breakdown.
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Figure 20: Effect of Area on optimization quiz scores.
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Figure 21: Effect of Position on optimization quiz scores.

4.3 Factor analysis for optimization quiz
The main story about the optimization quiz for the software de-
veloper group compared to the scientific developer group is the
continued dominance of the response “Don’t Know” regardless of
how the data is sliced by the factors.

Unlike the previous scientific developer group, where Software
Development Role was the most significant factor, this factor has
very little effect within the software developer group. Indeed the
variation is almost zero except for responses where the participants
did not specify a role.

Area, which in the previous study had the second highest impact,
here has the highest. However, the variation we see here is reduced
to 0.5/3 which is a lower than the 0.7/3 we saw with the scientific
developer group. Figure 20 gives a breakdown.

Unlike the scientific developer group, Position plays a secondary
role with the software developer group, although the effect is tiny
as can be seen in Figure 21’s breakdown.

Quite unlike with the previous scientific developer group, the
effect of Formal Training (in floating point) is considerable in the
software developer group, and this effect is larger in the software
engineer subgroup. Figure 22 gives a breakdown. Overall, the ef-
fect’s strength is similar to that of Position, although it is stronger
for the subgroup.

Interestingly, among the software engineer subgroup, Informal
Training in Floating Point, and Arbitrary Precision languages used
seem to have a high apparent effect. The effect variations are 1.25/3
in both cases. In contrast, for the previous study’s scientific de-
veloper group, the effects were either minimal or ambiguous. Fig-
ures 23, and 24 show the breakdowns.
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Figure 22: Effect of Formal Training on optimization quiz
scores.
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Figure 23: Effect of Informal Training on optimization quiz
scores for the software engineer subgroup.

4.4 Suspicion analysis
As described earlier, some exceptional conditions that the hardware
can detect are more problematic than others. We would hope that
the developer is more suspicious of NaNs (Invalids) than of Infini-
ties (Overflows), and more suspicious of Infinities than of other
conditions such as Underflows, Denorms, and Precision (rounding).

Figure 25 shows the distribution of reported suspicion with (a)
the scientific developer group from the previous paper, (b) the stu-
dent group from the previous paper, and (c) the software developer
group of this paper. Note that all three groups are generally more
suspicious of Invalids and Overflows than of the other conditions.
Both the scientific developer and software developer groups find
Overflow more suspicious than the students. However, it is also the
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Figure 25: Distribution of suspicion for different exceptional conditions. (a) and (b) are quoted from [7].
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Figure 24: Effect of Arbitrary Precision Languages Used
on optimization quiz scores for the software engineer sub-
group.

Formal Training in Floating Point of Top
10% of Respondents n % Old %

None 12 34.3 30.0
One or more weeks within a course 9 25.7 25.0
At least one lecture within a course 9 25.7 25.0
One or more courses 5 14.3 20.0

Figure 26: Formal Training in floating point of the top 10%
of core quiz participants. Old % is for the scientific developer
group.

case that, across all three groups, about 1/3 of the participants do
not report the maximum possible suspicion of a computation that
somewhere encountered a NaN.

4.5 Commonalities among top scorers
We now consider just the top 10% of scorers in the core quiz from
both the scientific developer and software developer groups, 20
and 35 participants, respectively. As shown in Figure 26, there
seems to be little relationship to formal training. Indeed, about 1/3
reported none at all. Most top scoring participants report some
form of informal training, as indicated in Figure 27, but very few
top scorers took tutorials or were trained by a mentor, which is
surprising.

Experience in C or C++ seems to be a commonality for top scorers
as seen in Figure 28, although Python and other languages are
also represented. Experience with traditional scientific computing
languages like Fortran and Matlab is not that common, particularly
among the top-scoring software developers.

Informal Training in Floating Point of Top
10% of Respondents n % Old %

Read about it 31 88.6 75.0
Googled when necessary 22 62.8 55.0
Discussed with coworkers/manager-
s/friends 13 37.1 40.0

Watched video 5 14.3 15.0
Took tutorial 4 11.4 10.0
Unreported 2 5.7 10.0
Trained by advisor or mentor 2 5.7 25.0
Other 3 8.6 10.0

Figure 27: Informal Training in floating point of the top 10%
of core quiz participants. Old % is for the scientific developer
group. (Top 8 shown).

Floating Point Languages Experience of
Top 10% of Respondents n % Old %

C 29 82.9 90.0
C++ 27 77.1 95.0
Python 26 74.3 70.0
Java 20 57.1 60.0
Matlab 11 31.4 60.0
C# 7 20.0 20.0
Fortran 6 17.1 35.0

Figure 28: Floating Point Language Experience of the top
10% of core quiz participants. Old % is for the scientific de-
veloper group. 53 languages were reported. These had n ≥ 5.

Arb. Precision Language Experience of
Top 10% of Respondents n % Old %

Mathematica 15 42.8 55.0
Unreported 8 22.8 10.0
Other Language 8 22.8 15.0
Maple 8 22.8 20.0
MPFR/GNU MultiPrecision Library 6 17.1 15.0

Figure 29: Arbitrary Precision Language Experience of the
top 10% of core quiz participants. Old % is for scientific de-
veloper group.

The top scorers in both groups are more likely to have had
experience with an arbitrary precision language or library, as seen
in Figure 29. Mathematica, in particular, was used by almost half
of the top scorers in the software developer group and over half of
the top scorers in the scientific developer group.

Lastly, the top scorers in both the software developer and the
scientific developer groups tend to work on larger codebases, with
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well over half of participants in both groups having built codebases
with over ten thousand lines of code.

5 CONCLUSIONS
The study we reported in this paper suggests that software devel-
opers generally have a better understanding the vagaries of the
IEEE floating point standard and its implementations than scientific
developers. The two groups are similarly suspicious of exceptional
conditions, arguably insufficiently so. The software developer group
still has plenty of room for improvement, however, and the obser-
vations and suggested actions that conclude the previous work [7]
hold for them as well.

It is alarming that that a group (software developers) with less
formal training about floating point performs slightly better than a
group (scientific developers) with more. But the bigger picture issue
is that formal training seems to have only a small effect on under-
standing. This suggests that pedagogy in this area is an important
task that the HPC community or others should revive. Perhaps the
systems community has not yet found the correct training meth-
ods or the relevance of IEEE 754 vagaries is not being properly
demonstrated to students.

Furthermore, these results suggest that the systems and HPC
communities need to make further effort to impart proper suspicion
of floating point onto developers. Because more of the software
developer group reported no formal floating point training, per-
haps it would pay to modify commonly employed tools (compilers,
linters, etc.) to warn users of potentially problematic behavior. One
approach to doing this might be to integrate the increasing set
of tools for finding floating point issues, for example to produce
warnings during the ordinary compilation process.

Lastly, perhaps the data suggests that the community is in need
of a number system with fewer idiosyncrasies [4], or at least a
mechanism to allow the number system used to be selectable at
compile- or run-time.
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