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Abstract

WedescribeandevaluateWatchTower, asystemthatsim-
plifies the collection of Windows performancecounter
data,andArgus,a statisticalmethodologyfor evaluating
this dataandreducingthesheervolumeof it. This is es-
pecially importantwhenmonitoring the performanceof
clustersfor highperformancecomputing.

WatchTower’s overheadsare comparableto thoseof
Microsoft’s perfmontool, while, unlike perfmon, it sup-
ports higher sampleratesand is easily embeddedinto
othersoftware. Arguscanreducethebehavior of a large
numberof raw performancecountersinto afew composite
counters,or it canselecta subsetof theoriginal counters
thatarestatisticallyinteresting.Wearecurrentlyintegrat-
ing WatchTowerandArgusinto asinglesystemwhichwe
believewill beusefulin a numberof scenarios.

1 Introduction

Clustersarebecomingthestandardplatformfor highper-
formancecomputing.While mostclustersrunUNIX vari-
ants,PCsrunningvariantsof Microsoft Windows arebe-
comingincreasinglycommon.For example,Woodward’s
group at MinnesotausesWindows clustersfor its Pow-
erWall visualizationwork becauseof the lack of Linux
driversfor thewide rangeof graphicscardsneeded[44].

Windows clustershave madeseveral advancesin the
last few years. Very large Windows clustershave been
built [2], and basic tools for messagepassing[36, 12],
queuing[26] andresourcemanagement[18, 3] havebeen
ported. However, performancemonitoring, a basicser-
vice neededin high performancecomputing,is still in its

infancy comparedto UNIX.

We describeand evaluateWatchTower, a systemthat
simplifiesthecollectionof Windowsperformancecounter
data,andArgus, a statisticalmethodologyfor evaluating
this dataandreducingthesheervolumeof it. We arecur-
rently combiningthesetwo tools,andthis papersupports
thefeasibility of theapproach.

WatchTower provideseasyaccessto raw performance
counterswith comparableoverheadto Microsoft’s perf-
mon running in non-GUI mode. Furthermore,Watch-
Tower is designedto be easyto embedinto othermoni-
toringsystems.

Argus reducesthe behavior of a large number(cur-
rently about250,but potentiallyover a thousand)of raw
performancecountersto a few compositecounterswhich
nonethelessstill capturethe overall activity of the ma-
chineand its interactive user. It alsoselectsa subsetof
the original countersthat containsonly the mostsignifi-
cantuncorrelatedcounters.

Thesetools allow us to compareandstudyuseractiv-
ity acrossmachinesandover time. We envision a vari-
ety of usagescenariossuchas: platformandapplication
signatures [31, 40, 34], scheduling [33], adaptation[5]
resource management[27], user profiling, intrusion de-
tection[13], andtroubleshooting[11].

These scenarios motivate the combined Watch-
Tower/Argussystem.We arguethat thecombinationwill
befeasiblein termsof its overhead.Thesystemwill give
usersandothertools easyonline accessto both raw and
data-reducedWindowsperformanceinformation.There-
sultsof ourevaluationof WatchTowerandArgusarevery
promising.
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Figure1: Representative logsof interestingcountersduringwebbrowsing

2 WatchTower

WatchTower is an unobtrusive performancemonitoring
service for the Windows 2000 and NT operatingsys-
tems.By “unobtrusive” wemeanthattheuserremainsun-
awarethatthecomputerthey areusingis beingmonitored.
WatchTower usesfew resourcesandit canbeconfigured
to startandstopautomatically, requiringno userinterac-
tion and displayingno windows onceinstalled. Watch-
Towercanalsobeusedaslibrary.

2.1 Measuring Performance in a Windows
Environment

Windows containsa measurementinfrastructurethat is
madevisible to applicationsby meansof roughly one
thousandperformancecountersthat togetherreflect the
currentstateof thesystem.Theexactnumberof counters
variesdependingon the system’s configuration. Coun-
ters are arrangedin a simple two-level hierarchy. The
first level of the hierarchyis the physicalor systemper-
formanceobjectbeingmonitoredwhile thesecondis the
performancecounter, which is an attribute of the object.
Figure1 plotssomeof themoreinterestingcounterswhile
webbrowsingasanexample.

Countersarestoredandupdatedin the Windows reg-
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Figure2: WindowsPerformanceMonitoring

istry, and can be accessedby a registry API. However,
working directly with the registry is complex, and thus
Microsoft also provides a more abstractAPI called the
PerformanceData Helper (PDH). This API handlesthe
accessingof the countersin the registry and convert-
ing their raw valuesinto numberswith appropriateunits.
PDH is thebasisfor bothperfmonandWatchTower. Fig-
ure2 showsanoverview of how thesepartsinteract.
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2.2 Perfmon

One application that usesPDH is Microsoft’s Perfor-
manceMonitor, alsoreferredto asperfmon[21, 22]. Perf-
moncanoperateentirely in thebackground,hiddenfrom
the interactive user. It is configuredthroughan HTML-
like script. However, perfmonhas several deficiencies
thatlimit its long-termloggingcapabilityandusefulness,
namely granularity, over-writing files, and adaptability.
This significantly affects its ability to provide adequate
logging for high performanceclustercomputingin this
environment.

The finest measurementgranularityperfmonsupports
is onesecond,which is inadequatefor many usesof win-
dows loggingdatain a high performancecomputingsys-
tem.In contrast,WatchTowersupportsagranularityof 10
ms(limited by theWindows timer granularity)anda cor-
respondingpeakrateof 100Hz. Perfmonalsooverwrites
thelastlog file afterevengracefulreboots.Thisdrawback
makesperfmonundesirablefor collectinglongtermtraces
of machinebehavior. WatchToweravoidsthisproblemby
startinga new log file every hour andafter systemstart
up. Finally, perfmonis difficult to incorporateinto other
systemsor extend with new functionality (for example,
datareductionusingArgus).WatchTower canbeusedas
simpleC++ library andthuscanbeembeddedinto other
programstrivially.

2.3 WatchTower Architecture

WatchTower is comprisedof two maincodecomponents:
service code and the WatchTower library, which uses
PDH. WatchTower is basedon thestandardWindows in-
frastructure(services,the registry, error handling, etc.)
andsuppliesprogrammaticaccessto thesetoolsthatnon-
Windowsdeveloperswill find familiar to UNIX systems.

WatchTower is a service,similar to a UNIX daemon,
that is run by the kernel without user interaction. It is
setto startautomaticallyuponsystemstartup. While the
codefor runningasa serviceis not complex, understand-
ing the timing issuesinvolved is. Certainsectionsof the
servicecodemuststartwithin strict time limits, otherwise
the servicemanagerof the kernelwill drop the process.
The codewe usedis basedon two sources [39, 38], in
additionto theexamplesin thePlatformSDK [20].

Themostinterestingpartof WatchTower is the library
that interactswith PDH. It is concernedwith opening
queriesand logs, addingcountersto the list to be sam-
pled, and retrieving thosecounters’valuesat a periodic
rate. As a library, this portion of the codecanbe easily
includedinto otherprojects. We basedthe WatchTower
library on codeandapplicationexamplesin thePlatform
SDK [20].

WatchTower canbe easilyembeddedinto any number
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Figure3: Overheadvs. countersat 1 Hz for Perfmonand
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Figure4: Overheadvs. ratewith 128 countersfor Perf-
monandWatchTower

of systemsor applicationsthatneeda performancemoni-
tor. For example,it canbeusedin stand-alonecommand-
line applicationto be run asneeded,aspart of a service
(asit is now) to insureuninterruptibleperformancemon-
itoring, to feedcustomGUIs thatpresentthedatain new
ways,to drivea closelycoupledanalysistool suchasAr-
gus,or to providesensorsfor systemssuchasRemos[19],
NWS[43], andRPS[6, 7].

2.4 Overhead

WatchTower’soverheadis similar to thatof perfmon. Fig-
ure 3 shows the overhead(as % of CPU time used)of
perfmonandWatchTower asa functionof thenumberof
countersandFigure4 asa function of the measurement
rate. With 128 counters,WatchTower can monitor at a
peakrateof 17 Hz on a 650 MHz PentiumIII machine.

3



Currently, bothtoolsusethedisk in exactly thesameway
(a function of PDH). However, the memoryfootprint of
WatchTower is 15%smallerthanperfmon.

3 Argus

Thevolumeof WatchTower dataandthe rateat which it
accumulatesaredaunting.Loggingall counterson a typ-
ical machineat 1 Hz generatesabout86.4million values
in a singleday. And that is merelya singlemachine!Ar-
gus’s approachto makingsenseof this plethoraof data
is to treatit asa dimensionalityreduction(DR) problem,
whereeachcountercorrespondsto adimension.DR tech-
niques,of which many exist in thestatisticsandmachine
learningliterature[28], reducehigh-dimensionaldatainto
a smallernumberof dimensions,while retainingthema-
jority of theinformation.

Considera set of � performancecounters( ��� ) be-
ing logged every � seconds. A sample is the � -
tuple ���
	���
�������������������������� �!�"���#��������� ��$%���"�&�#'(�
)&�* ��+,���������-�.�/�0� * � +1�
23������� a vector that reflectsthe � -
elementstateof themachineattimestep� . Themachineis
alsoengagedin anactivity, which is a high level descrip-
tion of how it is beingused(e.g. web surfing,compute,
backup,etc.)Thesizeof a 4 secondlog is �54768� .

Given 
���9:��� 	 �������;' , the following DR problemsare
posedto Argus:

1 What subsetor function of the counterscapturesthe
interestingdynamicsof thestate?Suchasubsetcon-
sistsof subsetcounters, andsuchafunctionproduces
a compositecounter.

2 Whatis thehigh-level activity of themachine?

3 Whatis theappropriate� ?

Theseproblemsareinterdependent.Argusfocuseson the
first problem,andwe have somepreliminaryresultsthat
addressthesecondproblem.Thethird is futurework.

3.1 Data reduction techniques

To find compactstate representations,Argus currently
employs two DR techniques:principlecomponentsanal-
ysisandcorrelationelimination.

3.1.1 Principle Components Analysis (PCA)

Implicit in the original state representation(vector of
countervalues)is some � -dimensionalorthonormalba-
sis. Given this representationand samplesof the state,
PCA finds a new � -dimensionalorthonormalbasissuch
thatthevarianceof thesamplesis concentratedonthenew
dimensionssuchthatthefirst dimensioncapturesasmuch

varianceaspossible,the secondcapturesasmuchof the
restaspossible,andsoon. Thenew basisconsistsof the
eigenvectorsof thecovariancematrix of thedata.Several
methodsfor finding thebasisexist, rangingin complexity
from <��>=?�%@3AB�%C;�%@D� to <��>�%C!=E�F� [15]. Basis-findinghas
alsobeenparallelized[23]. Jainoffersaconcreteexample
of PCA from a performanceanalysisperspective [14, pp.
76–80].

Data reductionhappenswhen we chooseto useonly
the first � C of the new dimensions(our compositecoun-
ters)asour representation.Thevalue � C might bechosen
sothatthe � C dimensionsdescribeGIH(J�K of thevariance,
for example.Eachof the �%C new compositecounters(the
principle components)is a simple weightedsum of the
original counters—aprojectionontothenew dimensions.
Theweightsassociatedwith computinga principlecom-
ponentarereferredto asits loadings.

For example, our application of PCA might find
that \Processor(0)\Priveledged Time and
\Processor(0)\Interrupts/second are
correlated, while Processor(0)\User Time is
negatively correlatedwith the first two. PCA would
combinetheminto a singlecompositecounter, weighting
thefirst two counterspositively andthethird negatively.

3.1.2 Correlation Elimination

Thecorrelationelimination(CE)algorithmis ourmethod
for selectingsubsetcounters.Subsetcountersareprefer-
able to compositecounterswhen we must preserve the
meaningsof theoriginal counters.

CE first computesthe correlation matrix (correla-
tions betweenall pairs of variables); and then finds
the pair with the highest correlation, and throws
out one of them. The assumptionbeing that both
are capturing similar information. This elimination
of variables is repeateduntil a threshold correlation
is reached. Applied to the previous example, CE
might selectProcessor(0)\Priveledged Time
and\Processor(0)\%User Time asthe appropri-
atesubsetcounters.

3.2 Evaluation

Our evaluationof Argus is basedon applying the tech-
niquesdescribedabove to severallargelog files [24]. We
appliedPCA bothwithin performanceobjectsandacross
all performancecountersto determinehow many com-
positecounterswereneededto captureover 90% of the
variance.WeappliedCEwith eachperformanceobjectto
eliminateall correlationsstrongerthan0.85.
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Activity Numberof Counters

Idle 45
Websurf 101
Compute 138
Overall 108

Figure 5: Numberof counterswith L�� M"� NOGPJ3� J * . The
last row is computedfor the entire trace,irrespective of
activity.

3.2.1 Logs

Our evaluationis basedon log files capturedon four dif-
ferent machinesusing perfmon. This Perfmon data is
equivalent to that capturedby WatchTower. The reason
we are using the perfmondatais that WatchTower was
unavailablewhenwe beganthis study.

Thelogscapture244differentcounters.Wedid not log
transientperformanceobjectssuchasprocesses,threads,
and handles. We also ignored performancelike Print
Queue,Telephony, Indexing Service, Indexing Service
Filter, etcwhich we believe to benon-critical/inapplica-
ble or werenearlyconstant.Eachlog is aboutthreedays
longandis capturedata 1 Hz samplingrate.

We annotatedthelogswith theuseractivity beingper-
formedin eachinterval of time. The (a priori selected)
activities are idle (the userwas loggedbut no activity),
websurf(1-8windowsopen,andcasualweb-surfing),and
compute(Matlabcomputation,Perlpre-processingof log-
files (disk-intensive),andoccasionallyrunninga Lisp in-
terpreter). The annotationsprovide us with verification
data.Argusdoesnot usethemto do datareduction.

In thefollowing, we reporton oneof thetraces,which
was capturedon dual-processorPIII 933 MHz machine
with 512MB of RAM.

3.2.2 Preprocessing

For somereasonwedonotunderstand,countervaluesare
occasionallymissing(5–10per 100,000samples)in the
logs. Theseflaws appearto be randomlydistributedand
we donot considerthemin our analyses.

We eliminatedcounterswith coefficient of variation
( L�M�N ) lessthana minimumthreshold(0.01). Thesecoun-
tersdid not changesignificantlyduring the traceor were
constantparameters(suchas total network bandwidth).
Figure5 shows the numberof countersleft after apply-
ing the L�M�N thresholdfor datain theabovethreeannotated
activitiesaswell asfor all countersirrespectiveof activity.
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Figure6: First PCsof Disk performanceobject.Thebars
show the loadings,andthe thin line the cumulative vari-
anceexplained.
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Figure7: First PCsof Network performanceobject

3.2.3 PCA and CE within performance objects

To find out whetherall of the counterswithin a perfor-
manceobjectwereactuallyneeded,we performedPCA
and CE for eachperformanceobject. As would be ex-
pected,therewerelargecorrelationswithin countersfrom
the sameperformanceobjects,andthis wasobservedby
both methods. Figure 9 shows, for eachperformance
object,how many compositecounters(principle compo-
nents)areneededto represent90%of thevariancein our
log. The figure also shows the numberof subsetcoun-
terschosenby CE given that all correlationsGQJ1� R(S are
eliminated.
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Figure8: First PCsof Processorperformanceobject

Performance Total PCA CE
Object Ctrs. # Comps. # Ctrs.

Cache 27 6 2
Memory 29 6 7
Network 34 4 2
IP 17 2 2
Objects 6 2 1
Disk 84 8 4
Processor 30 5 8
System 17 3 3
Total 244 36 29

Figure9: Column2 is the total numberof performance
countersin eachobject,column3 is thenumberof com-
positecounters(principlecomponents)thatareableto ex-
plain morethan90%of thevariability in data,column4
is thenumberof subsetcountersremainingafterapplying
CE.

Figures6, 7, and8 show representativeresultsfor PCA
on thedisk,network, andprocessorperformanceobjects.
Eachbarrepresentsthecontributionof aprinciplecompo-
nent(compositecounter). In eachcase,only a few com-
positecountersareneededto describetheseobjects.

3.2.4 PCA across all counters

The moreinteresting,but lessa priori clear, correlations
arethosethatexist acrossperformanceobjects.We might
expectthat thesecorrelationswill dependupontheactiv-
ity.

In the first analysis,PCA wascarriedout over the du-
rationof theentiredataset,regardlessof theactivity. Fig-
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Figure10: Thefirst 22 principlecomponentsover theen-
tire dataset.

ure 10 shows the contributions of the first 22 principle
componentsof the entire datasetand how they capture
morethan90%of thevariability in thedata.

Figure11 plotsthefirst two componentsasthey evolve
over time. Thegraphis annotatedwith activities. We can
seeclearly that thevisualappearanceof theplots is quite
distinctin differentactivities. Ondatasetsfrom two addi-
tionalmachines,qualitativelysimilarplotswereobserved.

We alsodid all-counterPCAsfor eachof theactivities
individually to seeif therewasa lot of differencein the
numberof principlecomponentsrequiredto capturesim-
ilar amountsof variability during the differentactivities.
Thegeneralconclusion,over all the traces,is thatduring
any activity we considered,thefirst 25 principlecompo-
nents(i.e.,25compositecounters)explainmorethan90%
of variability in thedata.

Figure12 shows the weightsof the underlyingcoun-
ters that contribute to the countersof the first principle
componentfor eachof the differentactivities. Counters
with weightscloseto zerocould conceivably be ignored
in computingtheprinciplecomponent,makingthis com-
putationfarcheaper.

Theall-counterPCA (Figure10) describesthestateof
the machinein 50% fewer compositecounters(22 ver-
sus36) thanper-performance-objectPCAs(total row of
Figure9). The tradeoff is that computingthe singleall-
counterPCA is considerablymoreexpensive thancom-
putingPCAsfor eachof theperformanceobjectsbecause
the complexity of PCA grows at leastquadraticallywith
thenumberof original counters(5368coefficientsasop-
posedto 1391 with the per-performance-objectPCAs).
This resultalsoraisesan interestingpossibility: perhaps
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Figure11: Plotof thefirst andthesecondprinciplecomponentasthesystemgoesthroughthethreedifferentstatesof
idle, websurfandcompute.This is avisualargument,but thestatisticalproperties(likemeanandvariance)areclearly
quitedifferentallowing usto distinguishbetweendifferentstates

Figure12: Loadingsof theprinciplecomponentin differentstates
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Figure13: Integrationplanfor WatchTowerandArgus.

datareductiontechniquescouldbeusedto guidethecon-
structionof performanceobjectsthat have both a clear
meaningto theuserandhigh informationcontent.

3.3 Overhead

As wedonotyethaveanonlineimplementationof Argus,
we don’t know whetheronline datareductionwill feasi-
ble. However, thereis goodevidencethat it will be. The
PCA describedin theprevioussectionwasrun on 3 days
of 1 Hz datain about10 minutes,which amountsto less
than3 msof CPUtime persample.Thuswe believe that
doing thePCA online in a streamingfashionwill require
lessthan1% CPUutilization. TheCE wasevencheaper.
However, wearestill workingonhow appropriatelyto do
streamingPCA andCE. Computingcorrelationmatrices
incrementallyis clearlyeasy, andCE’s counterselection
stepis cheap,but computingeigenvectorsincrementally
may be expensive. It may be necessaryto do PCA only
occasionally.

4 Integration and future work

At this point, WatchTower andArgusareseparatetools.
WatchTowerprovidesasimple,embeddedinterfaceto the
Windows performancecounters. Argus is a methodol-
ogy for offline datareductionof Windows performance
counterdatathat is implementedusing interactive tools
suchasMatlabandS-Plus.

Our immediateplansareto build anonline implemen-
tation of Argus and to integrate it with WatchTower to
produceanembeddedcomponent,asshown in Figure13.
Givena list of countersanda samplingrate,WatchTower

will provide streamsof performancecountermeasure-
mentsto Argus. Givenoperatingparameters(percentage
of variation to capture,for example)Argus will reduce
this data to compositecountersusing PCA and subset
countersusingCE. We alsohopeto addreductionto an
activity. The WatchTower/Arguscombinationwill con-
tinueto beembeddedin othertools,suchasRPS.

Weplanto expandourArgusstudyto alargerandmore
diversesetof traces.WatchTower is currentlyrunningin
our teachinglab, collecting tracesof machinebehavior.
We alsoplan to usethesetracesto studythedynamicre-
sourcedemandsof interactive applications.We will con-
sidermorecomplex datareductionalgorithmsasneeded.

5 Related Work

Performancemonitoringandpredictionsystemssuchas
Remos[19], NWS [43], andRPS[6, 7] have limited or
nonexistent Windows support. This is not becausethe
codeis difficult to port,but ratherbecauseof thecomplex
natureof sensorsonWindowsandthelackof theability to
embedperfmon-liketools.WatchTowerprovidesasimple
interfaceto Windows sensorsandcanbe embeddedinto
thesesystems.

SeveralWindows-specificmonitoringsystemsdoexist.
Closestto our work is HPVM’s monitor [32], which is
explicitly targetedat Windows clusters. Unlike Watch-
Tower, theHPVM monitorprovidesa completemonitor-
ing infrastructureincludingcommunicationandhighpre-
cision clocks. In contrast,WatchTower providesa sim-
ple sensorservicethatcanbeembeddedinto othertools.
WinInternalsSoftware[42] andits SysInternalsfreeware
website[35] provide interactive tools, suchas Filemon
andRegmon,thatarespecificfor particularperformance
counters. NSClient [30] exposesWindows NT perfor-
mancecountersto theNetSaintmonitoringsystem.None
of thesetoolsincludeArgus-likedatareductionto capture
theimportantdynamicsin thedata.

Data reduction is a large and complex field that is
an outgrowth of multivariatestatistics[4] andmultivari-
atedataanalysis[10]. Recently, significantprogresshas
beenmadein applyingnonlinearmethodsto datareduc-
tion [29, 37]. Suchmethodsmay be appropriatefor re-
ductionof Windows data. The datareductionwork that
is closestto thatin Argusis VetterandReed’sapplication
of dynamicstatisticalprojectionpursuitto theanalysisof
performancedatafrom networkedUnix systems[41].

Thebehavior of Windowssystemsandapplicationshas
begun to be studied. Chen,et al., comparedthe perfor-
manceof different flavors of Windows and NetBSD on
micro- and throughput-orientedapplicationbenchmarks
using hardware cycle counters[1]. They followed up
this work with a latency-orientedevaluationmore suit-
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able for interactive applications[9], and TIPME, a tool
andframework for addressinglatency problemsin inter-
active applications[8]. Bershad,et al., have character-
izedtheresourceusagepatternsof desktopandcommer-
cial applicationsrunning on Windows by instrumenting
applications[16, 17]. Perl andSitesstudiedthe perfor-
manceof databases,compilers,and scientific codeson
DECAlphamachinesrunningWindowsNT usinginstruc-
tion andmemoryreferencetraces[25]. WatchTower may
be helpful for studiessuchas these,providing a simple
way to producetraces.Conversely, studiessuchof these
caninform thedevelopmentof Argus’sdatareductional-
gorithms.

6 Conclusions

We have describedWatchTower, a systemthat simplifies
thecollectionof Windowsperformancecounterdata,and
Argus,a statisticalmethodologyfor makingsenseof this
dataand reducingthe sheervolume of it. We are cur-
rently integrating WatchTower and Argus into a single
embeddedcomponentthatwill provideeasyaccessto the
original performancecounters,selectstatisticallyimpor-
tantsubsetsof thecountersusingcorrelationelimination,
andprovidenew countersthatcomposeinformationfrom
multiple countersusingprinciplecomponentsanalysis.

We evaluated WatchTower and Argus with quite
promising results. WatchTower provides easy access
to raw performancecounterswith comparableoverhead
to perfmon running in non-GUI mode. Furthermore,
WatchTower is easyto embedwithin other monitoring
systems—wearecurrentlybuilding anRPSsensorbased
on it, for example. Arguscan reducethe behavior of a
large numberof raw performancecountersto few com-
positecounterswhile still makingit possibleto determine
the overall stateof the machineand its interactive user.
Arguscanalso trim the full setof raw countersto a re-
ducedset of any size that containsthe most significant
uncorrelatedcounters.
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