

Computer Science Department

Technical Report
NWU-CS-02-12

September 26, 2002

An Implementation of Diffusion in the Linux Kernel

Brian Cornell Jack Lange Peter Dinda

Abstract

Packet headers and trailers exhibit considerable coding redundancy from both a
theoretical and a practical standpoint. Diffusion exploits this redundancy to create an
additional communication channel between hosts as a by-product of normal packet
transfers. This channel is zero cost: the number and size of packets transferred do not
change. Information is piggybacked on existing packets by overwriting unused fields in
their headers and trailers. Dissemination of dynamic resource information is a natural use
of such a channel.

This paper describes the interface, implementation, and performance of Diffusion on the
Linux operating system. In addition, it describes two tools, SpyTalk and LoadBanner,
which have been built on top of this implementation. It is also a user manual for those
who wish to try Diffusion.

Effort sponsored by the National Science Foundation under Grants ANI-0093221, ACI-
0112891, and EIA-0130869, including a Research Experience For Undergraduates
(REU) Supplement. Any opinions, findings and conclusions or recommendations
expressed in this material are those of the authors and do not necessarily reflect the
views of the National Science Foundation (NSF).

Keywords: information dissemination, resource monitoring, networks

An Implementation of Diffusion in the Linux Kernel

Technical Report NWU-CS-02-12

Brian Cornell Jack Lange Peter Dinda
cornell, jrl829, pdinda@cs.northwestern.edu

Department of Computer Science
Northwestern University

September 26, 2002

Abstract

Packet headers and trailers exhibit considerable coding redundancy from both a theoretical and a
practical standpoint. Diffusion exploits this redundancy to create an additional communication channel
between hosts as a by-product of normal packet transfers. This channel is zero cost: the number and size
of packets transfered does not change. Information is piggybacked on existing packets by overwriting
unused fields in their headers and trailers. Dissemination of dynamic resource information is a natural
use of such a channel.

This paper describes the interface, implementation, and performance of Diffusion on the Linux op-
erating system. In addition, it describes two tools, SpyTalk and LoadBanner which have been built on
top of this implementation. It is also a user manual for those who wish to try Diffusion.

keywords: information dissemination, resource monitoring, networks

1 Introduction

Resource monitoring and prediction systems such as Remos [3], NWS [5], RPS [2], and GMA-based sys-
tems [4] collect information about resource behavior on the behalf of applications, users, and other mid-
dleware. An important challenge in these systems is disseminating the information they collect to these
interested parties as efficiently as possible, making minimal use of network resources.

In an earlier paper [1], we considered the extremes of this challenge: could we communicate resource
information with no use of network resources, exploiting existing packet transfers? The paper demonstrated
that the prospects for doing so are quite good. We found that existing packets exhibit considerable re-
dundancy from an information-theoretic perspective. We further identified a number of mechanisms that
could be practically applied to exploit this redundancy while still keeping packets compatible with existing
networks. We collectively refer to the use of these mechanisms to disseminate information as Diffusion.

Our mechanisms are essentially based on overwriting unused fields within packet headers and trailers
with the data that we want to convey. For example, if an outgoing TCP packet does not have its URG flag
set, its 2 byte urgent pointer field is unused. We would overwrite it with two bytes of data that we want to

Effort sponsored by the National Science Foundation under Grants ANI-0093221, ACI-0112891, and EIA-0130869, including
a Research Experience For Undergraduates (REU) Supplement. Any opinions, findings and conclusions or recommendations
expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation
(NSF).

1

App

Transport

Network

Data Link

Physical

App

Transport

Network

Data Link

Physical

Sensor

Header
Editing

Consumer

Data
Extraction

Figure 1: A high-level view of Diffusion and where it sits in the network stack.

send to the host for which the packet is destined. Correspondingly, an incoming packet without the URG
flag set could be stripped of its urgent pointer if we are listening for messages from the source host. Figure 1
illustrates where our scheme fits in the network stack. Including the TCP urgent pointer, we identified 10
different mechanisms involving TCP and IP headers, and Ethernet padding.

Our earlier work relied on a proof-of-concept test using a user-level network stack. Since the prospects
seemed quite bright, we decided to implement Diffusion within a commonly used operating system. We
chose Linux because of its ubiquity in many of the domains in which resource monitoring systems are used,
our general familiarity with it, the ready availability of source code, and the convenient /proc file system
interface it provides.

The Linux implementation of Diffusion has essentially four parts. First, there are small modifications
to the existing kernel code that let us hook into incoming and outgoing packet processing. Second, there
are two kernel modules, one for sending data, one for receiving data. The source code for these modules is
separate from the main kernel sources, and the modules themselves can be inserted into the running kernel
when they are needed. The modules export a simple, but powerful send and receive interface via the /proc
file system. The interface allows applications to define and install send-side and receive-side filters that are
similar to routing table entries. They can then queue Diffusion data to be sent when packets matching those
rules are sent. On the receive side, incoming packets which match the rules have their attached Diffusion
data queued for delivery to applications via files in /proc. Applications can read and write the /proc
interface directly, but we also provide a C interface, which forms the third part of the implementation.
Finally, our implementation includes two example applications: SpyTalk, a version of the Unix talk program
that communicates surreptitiously using Diffusion; and LoadBanner, which uses Diffusion to keep clients
apprised of the load situation of hosts on the LAN.

Linux Diffusion does not implement all the mechanisms described in the earlier paper. It implements:
using the IP identifier field for packets with the don’t fragment flag set, using the reserved IP flag, using
the TCP urgent pointer when the urgent flag is not set, using the TCP reserved flags, and using Ethernet
minimum length padding. In addition, it provides a convenient interface for adding information to broadcast
ARP request packets.

In the following, we first describe how to install Diffusion on a Linux machine. Next, we give an
example of using the system. This is followed by a detailed discussion of its components, starting with
the kernel modules, then covering the /proc interface, and finally the C interface. We follow this with a
description of the SpyTalk and LoadBanner applications. Finally, we present measurements of the overhead
involved in Diffusion, finding that it has a negligible effect on performance provided the number of filters
installed by applications is moderate.

2

2 Installing Diffusion

This section describes what is needed to run Diffusion, where to get it, and how to build and install it.

2.1 Requirements

Diffusion requires a relatively current kernel version with source. It has been tested on kernel versions 2.4.18
and 2.4.19. To get a new version of the Linux kernel, visit http://kernel.org. Diffusion also requires that the
kernel is built with IPv4 networking support, and module support. You will also need a recent version of
gcc, gnu make, and Perl 5.

Our specific environment is:

gcc version 2.96 20000731 (Red Hat Linux 7.1 2.96-98)
GNU Make version 3.79.1, by Richard Stallman and Roland McGrath.
Built for i386-redhat-linux-gnu

Red Hat Linux release 7.2 (Enigma)
Linux parakeet 2.4.19 #1 SMP Thu Aug 15 17:31:49 CDT 2002 i686 unknown
This is perl, v5.6.0 built for i386-linux
patch 2.5.4

2.2 Getting and unpacking Diffusion

Diffusion is provided with no warranties or guarantees of any kind and we can not provide support
for it at this time. Please understand that Diffusion is a piece of research code that involves modifying your
kernel and the normal data path of your network stack. Bugs or unfortunate interactions with other software
could lead to kernel panics, crashes, and data loss. Furthermore, Diffusion will inject modified packets
into your network. While we believe that these packets will cause no problems, we can not guarantee this.
Running Diffusion could cause network problems. If your computer explodes and your network catches on
fire, please don’t come running to us.

To get a copy of Diffusion, please visit http://www.cs.northwestern.edu/ � plab/Diffusion. That page will
describe how to get the Diffusion tarball, diffusion-version.tgz. Run

tar xvfz diffusion-version.tgz

to extract the tarball into the diffusion-version directory.
This implementation of Diffusion is copyright (c) 2002 by Brian Cornell, Jack Lange, and Peter Dinda.

Permission is given for non-commercial use. For commercial use, please contact us.

2.3 Compilation and installation

There are four simple steps to installing the Diffusion kernel modifications and modules. You will need to
be root to execute all but the third step.

First, you must install the provided kernel patch. This patch adds packet intercepting abilities needed by
Diffusion to the kernel. To install the patch, change into the directory where you’ve extracted Diffusion and
type

make patch

3

This will apply the patch to the currently running kernel version, assuming that your kernel source is in the
directory /usr/src/linux-kernelversion.

Second, you must make a new kernel. Your kernel should come with documentation concerning the con-
figuration and compilation of the kernel. You must be running this new kernel version before you continue
installing Diffusion.

Third, you must compile the Diffusion modules. To do this, change into the directory where Diffusion
was extracted and type

make

Finally, you should install the modules into the system’s module path. To do this, type

make install

This will copy the modules into /lib/modules/kernelversion, where insmod will look for them.

2.4 Loading the kernel modules into a running kernel

Loading the modules into a running kernel is easy after you have completed the above installation procedure.
Simply enter the following commands as root:

insmod ipdsend
insmod ipdrecv

Once loaded, the modules can also be removed easily. Again, type the following commands as root:

rmmod ipdsend
rmmod ipdrecv

To determine whether the modules are currently loaded into the kernel, issue the following command
(you need not be root this time, though you will have to specify the path (/sbin) if you’re not):

lsmod

3 Examples of using Diffusion

Before we go into detail about the inner workings of Diffusion, let’s first take a look at how the system
works using several examples. As an introduction and a test of the system, we’ll perform a couple of tasks
using SpyTalk. If you don’t have SpyTalk installed, change into the SpyTalk directory of the distribution
and type make followed by make install. For more details about SpyTalk, see Section 7.1. Following
the SpyTalk examples, we’ll give examples of using the /proc interface directly.

3.1 SpyTalk Examples

Example 1: Text Communication In the first example, we will open a text communication channel
between two SpyTalk sessions running on the same host. No data is actually communicated in Diffusion
unless there is existing network traffic on which to piggyback. In this example and the ones that follow,
we will create fake network traffic using repeated ICMP ping requests and responses. You will need three
terminals, two of which need root access, to complete this example.

To begin, on one of the terminals (this one does not need root access), type

4

ping -i .05 <ipaddr>

where <ipaddr> is the IP address of your own computer. This simply produces the ping request packets
and corresponding response packets on which we’ll piggyback. You can leave this terminal alone now, we
won’t be needing it.

Next, we’ll start listening for messages. To do this, type

SpyTalk -l <ipaddr>

on one of the terminals with root access. This terminal is where we should see our messages that we’re
about to send.

Now on the third terminal (also with root access), type

SpyTalk -t <ipaddr>

This will complete the communication channel. Type anything you want on this terminal now. You should
see it slowly transfer to the terminal running the listener. If you don’t, check your installation of Diffusion
and SpyTalk.

You may notice that the receiving end misses a character every once in a while. This is normal. The Dif-
fusion communication channel is unreliable: data can be lost, corrupted, or arrive out of order. SpyTalk takes
measures to increase the reliability of the channel Diffusion creates, but even here there are no guarantees
and some of these measures only work well in interactive mode.

When you are satisfied that Diffusion is working, close both the sending and receiving sessions of
SpyTalk by pressing ctrl-D in each. If you wish to try more examples, leave the ping running, otherwise
close it with ctrl-C.

You can extend this example (and the ones that follow) in obvious ways to communicate between two
different hosts equipped with Diffusion. The sending SpyTalk is simply given the IP address of the receiving
host, while the receiving SpyTalk is given the address of the sending host. In interactive mode, SpyTalk
combines two channels for two-way communication, giving the user an interface similar to the Unix talk
program.

Example 2: Sending a File This second example is similar to the first. You will need three terminals
again. Start the ping process on the first terminal as before. On a second terminal, run the SpyTalk listener
again just as above. On the third terminal we will do something slightly different.

First, create a small file with some text in it. There are many ways to do this: using your favorite editor
(vi, emacs, etc.), using echo redirected into a file, etc. Once you have created this file, type

SpyTalk -tf <filename> <ipaddr>

where <filename> is the text file you created, and <ipaddr> is your IP address. Now switch to the
terminal running the receiver, and you should see the file you wrote appear byte by byte. Again, there may
be gaps in the file every now and then. Again, this is normal given the unreliable communication channel.

When the file finishes sending, the sending side of SpyTalk will automatically close itself. When it does
so, go ahead and close the receiving end with ctrl-D. Leave the ping running if you plan to run any more
examples. Run SpyTalk --help for other SpyTalk options.

3.2 /proc Example

SpyTalk interacts with the kernel component of Diffusion via the /proc interface. In the following, we’ll
show how to use that interface directly. Before you start, you need to manually insert the modules. You
should also start a ping process or other data transfers between the hosts you plan to use.

5

Example 3: Queuing and Receiving In this example, we will queue data for sending using the /proc
interface, and create a listener to receive it. If it is not already running, start ping as described in Example 1.
You will need one terminal with root access to complete this example.

With ping running, first we need to create a listener to receive anything we might send. We’ll create two
such listeners, one for each protocol. To do this, type the following two lines:

echo "add <ipaddr>/32 IP_DFRAG ip N H" > /proc/ipd_ctrl
echo "add <ipaddr>/32 TCP_URGENT tcp N H" > /proc/ipd_ctrl

To ensure that the listeners have been created correctly, list the directory /proc/ipd/. You should see
two files: ip and tcp. The first command tells Diffusion to listen for packets coming from <ipaddr> (the
/32 is a subnet mask). When such an IP packet arrives and its don’t fragment bit is set, it will strip out the
packet identifier and reserved bit and treat them as data. The data will be queued for the application to read
within the file /proc/ipd/ip. The second command is similar, but it extracts data from the TCP header
and queues it to the file /proc/ipd/tcp. Section 5 describes the /proc receive interface in much more
detail.

Now let’s queue some data to be sent. We’ll use Diffusion to send “Ok” using both the TCP and IP layer
mechanisms. To do this, type

echo -e "\3\0\0\0\0\0\377\0Ok\31" > /proc/ipdsend

This will put “Ok” in the queue to be repeatedly sent to any target on the IP and TCP protocols. In essence,
this command is similar to the receive side commands, except represented in binary. To check that it worked
(and display the entry in text), type

cat /proc/ipdsend

to see what is in the send queue. For details on how to interpret this data see the section on the /proc
interface below. To see if the data is being received, type

cat /proc/ipd/*

or

head /proc/ipd/*

This will show the contents of the receive queues. You should see it filling up with entries.
Notice that the send interface to Diffusion is a binary interface, while the receive interface is text-based.

This is an artifact of the implementation. We intend at some point to provide both binary and text interfaces
for both send and receive.

Try some of the following commands and see what effects they have on the Diffusion system.

echo -e "\1\0\0\0\0\0\377\0IP\20" > /proc/ipdsend
echo -e "\2\0\0\0\0\0\377\0TC\12" > /proc/ipdsend
echo -e "\3\0\0\0\0\0\144\0:.\31" > /proc/ipdsend
echo -e "\203" > /proc/ipdsend
echo -e "\3\0\0\0\0\0\377\50!!\0" > /proc/ipdsend
echo " " > /proc/ipd/ip
echo "anything" > /proc/ipd/tcp
echo "del ip" > /proc/ipd_ctrl
echo "del tcp" > /proc/ipd_ctrl

For more details on how to use the send and receive sides of the /proc interface, see Section 5.

6

4 Kernel implementation

This section describes our modifications to the Linux kernel and the kernel modules that implement Diffu-
sion.

4.1 Kernel modifications

The modifications to the kernel consist of two functions, exported for use by the Diffusion modules. The
functions are register_send_packet_interceptorand register_recv_packet_interceptor.
They each take a function as an argument. Whenever the kernel is about to send a packet, or has just re-
ceived a packet, it will call the corresponding registered “interceptor” function. The interceptor functions are
passed a pointer to the sk_buff struct pertaining to the packet. Only one send and one receive interceptor
function may be registered at a time. Registering a new function overwrites the old one. Registering NULL
causes the no interceptors to be run.

These modifications are implemented through the addition of code to net/core/dev.c, an integral
part of the kernel networking subsystem. In addition, the makefile containing dev.c is changed to allow the
functions to be exported. Our kernel patch installs these modifications.

4.2 Send module

The send module, ipdsend, uses register_send_packet_interceptor to register itself to in-
tercept all outgoing packets. It modifies each outgoing packet according to send requests that have been
queued to it from applications.

When loaded, the send module creates a /proc file, /proc/ipdsend, to use as an interface with
higher level programs, and registers an internal handler function as the interceptor. It also creates two empty
linked list structures to serve as queues, one for IP and TCP data, and the other for generic Ethernet data. In
addition, it creates a 60-byte static buffer for ARP data which is initially zeroed.

When a packet is sent out of the system while the send module is running, it goes through a series of
checks in the handler. First, the handler determines whether the sk_buf structure it is passed contains an
IP packet, and if so, whether it contains a TCP segment. It also detects whether the packet is an ARP request
packet. The packet is then passed to handlers for each of the protocols that match. After the appropriate
handlers (if any) are done with the packet, it is sent to the generic Ethernet handler which may pad its length
using queued Ethernet data. These steps are done with interrupts disabled and while under a spin lock.

IP Header editing When the IP packet handler receives a packet, it first checks to see if the Don’t Frag-
ment flag is set. If not, it leaves the packet alone. If it is, it then selects the next data item that should be sent
given the destination of the packet from the queue. As much as possible of the data is written into the ID
field and the reserved flag of the IP header. The handler then uses the ip_fast_csum function to fix the
checksum in the IP header.

TCP Header editing The TCP handler works similarly. It checks to see if the urgent flag is set, and
doesn’t touch the packet if it is. If not, it gets the next data item that should be sent given the destination
from the queue and writes as much as possible into the urgent pointer field and reserved flags of the TCP
header. The handler then uses the functions csum_tcpudp_magic and csum_partial to fix the TCP
and IP checksums.

7

Selecting the data item to send Both the IP and TCP handlers must select the most appropriate data item
to send from among all the data applications have queued. To do this, we search through the corresponding
queue (IP or TCP) of data looking for matches to the packet’s destination address and protocol. Queued
data contains a network address (IP address and netmask), protocol, repeat count, and priority. If there are
multiple matches, they are singled out to find the one with (in order of importance) the largest netmask (the
most specific to the destination), the highest priority, and the fewest number of times left to repeat. If there
are still multiple matching entries, the last one on the queue (the oldest) is selected. After a data item has
been selected, its repeat count is decreased by one (unless it is infinite), and it is returned to the handler to
be written into the packet. If an entry with a repeat count of zero is ever found in the process of searching,
it is removed from the queue. If no matching entries can be found, a default blank entry is returned.

ARP padding Since all ARP requests are sent to the broadcast Ethernet address, only a single data item
is ever available to be sent. The ARP handler simply tests the size of the packet to see if it’s less than 60
bytes (64 when actually sent). If the packet is small enough, it increases the size of the packet to 60 bytes
and fills the empty space with the beginning of the ARP data buffer (however much will fit). In addition,
it is possible to queue data on ARP requests in a similar way to IP and TCP by using the generic Ethernet
padding handler. Simply set the ARP mechanism to send zero length data and then queue one or more
generic Ethernet entries with a mask of 0 and protocol of 0x0806.

Generic Ethernet packet padding The generic Ethernet handler is similar to the IP and TCP handlers in
the method of obtaining data, but similar to ARP in the method of modifying the packet. This handler first
determines if the packet is small enough that it needs to be padded (like the ARP handler). If it is, then it
searches for the most appropriate data item to send. The search process is identical to that of IP and TCP
except that it matches on Ethernet addresses. If there is no matching data, it does not pad the packet.

Limitations In the current implementation, the send module traverses a linked list of outstanding data
items searching for the most appropriate. Because of this it is a good idea to try to keep the queue short. A
good rule would be to keep the queue under 500 messages in length. Applications built on top of Diffusion
should monitor this and control their rate accordingly. Note that this is a limitation of the current implemen-
tation. In essence, the search is a longest prefix match similar to that done in an IP router. There are well
known techniques for making this a logarithmic or even expected constant time operation.

The send module has an elaborate /proc interface for working with the queues. This interface is de-
scribed in detail below in Section 5.

4.3 Receive module

The receive module uses a function hook in the kernel network stack to intercept and examine all the inbound
network packets to the system.

Listeners The receive module operates by hosting a set of user-defined listeners. These listeners are
defined to look for certain packets sent from certain network addresses. Each listener can look for network
traffic from a single host or multiple hosts in the same network block. Each listener has its own queue
associated with it that holds all the messages that are received by the system. These queues are accessible
from /proc files defined by the user. Each queue has a set length and does not grow. This means that each
queue will only hold the last � messages received by the module, while the older messages are discarded.

8

Interface The module’s interface is implemented with a set of proc files that accept input and provide
output for the system. A control file is created in the top level of the /proc directory, while a subdirectory
is created to hold the output files for any listeners defined for the system. Listeners can be created and
deleted through the control file, and their output files are taken care of by the system.

The message queues are accessible by reading proc files. Each listener defines a filename (that must be
unique) when it is added to the system. This filename is manifested in the directory created by the receive
module. Whenever the file is read the current state of the queue is written to the output. The file itself has
several configuration flags that can be set when a listener is defined. The module can be configured to clear
out the message queue whenever the output file is read, or the queue can be left as is. If the latter is chosen
new messages are put onto the end of the queue, while the oldest messages are popped off the other end.
The output files also support two formats for outputting the queue. The first format is in human readable
form, meaning the values are converted to ASCII before they are written out. The second format is straight
binary that goes through no conversion, and is designed to be best suited for client programs making use
of the transmission medium. This format is used for the C API that has been written to interface into the
system from client programs.

The listener definitions can have duplicate hosts among them. Such that a listener defined for a single
host 1.2.3.4 and another listener defined for the subnet 1.2.3.0/24 will each have a copy of any message
sent from the host 1.2.3.4, assuming they are both defined for the same protocol. The support of different
protocols allows up to three simultaneous communication channels to be active at once. Expanding that
number would require another protocol layer to be written on top of the channel.

Supported protocols Currently the module supports 3 protocols as transmission mediums: IP, TCP, and
ARP. Any packet from one of these protocols is sent into the system for further processing. The module then
cycles through all of its listeners checking the source IP address of the packet against the addresses defined
by each listener. The search process is similar to that of the send module.If there is a match the module
then checks header flags (for IP and TCP) or byte ranges (for ARP) to determine if the packet does indeed
contain a message. If all three of those checks pass, the data is extracted from the header fields and put into
the message queues of the appropriate listeners.

Notice that the receiving module does not currently support generic Ethernet padding. Unlike in the
sending module, the receiving module would have to parse the packet contents to determine the “real”
length of the data. The receiving module does include hooks whereby such a parser could be added.

5 /proc interface

There are two /proc interfaces for the Diffusion kernel modules, one for each kernel module. They control
all aspects of sending and receiving using Diffusion. The send interface, /proc/ipdsend, allows you
to queue data to be sent in outgoing packets, clear the buffers of unsent data, and retrieve the status of the
buffers. The receive interface, /proc/ipd_ctrl, allows you to create and delete listeners. Received
messages are also outputted into files located in /proc/ipd/.

5.1 Queuing data to be sent on IP and TCP headers

Because of their similarity, the IP and TCP protocols share a queue in the send module. Entries in this queue
indicate whether they are IP or TCP packets, or both. Entries may be added to this queue by writing to the
file /proc/ipdsend in the following 11-byte binary format:

9

Byte 1: Protocols
A (binary) value of 1 here will queue the data for IP. 2 will queue it for TCP. These values are not
exclusive; a value of 3 will queue the data for both IP and TCP.

Bytes 2-5: IP address
The destination IP address or network. Encoded in binary so that ”ABCD” would be the IP address
65.66.67.68.

Byte 6: Network mask
The number of bits of the IP address to pay attention to. This must be between 0 and 32. A value of 0
tells the module to ignore the IP address and send this data to anybody. A value of 32 tells it to only
send this data to the single IP address specified. Common values include 24 for a class C subnet, 16
for a class B subnet, and 8 for a class A subnet.

Byte 7: Repeat
This is a signed character telling the module how many times to send this data before deleting it
from the queue. A value of 0 will not send this data at all, a value between 1 and 127 will send it that
number of times, and a value of -1 (255) will send it forever until the buffer is cleared or new infinitely
repeating data replaces it. If there is already infinite data queued for this IP address and mask, it will
be removed from the queue.

Byte 8: Priority
This is a signed character telling the module what priority to attach to the data. Higher priority data
will be sent before lower priority data, even if the lower priority data was there first. The highest
priority is 127, and the lowest is -128.

Bytes 9-10: Data
This is the data that will be put in the two-byte area of the packet. For IP packets, this data will be put
in the ID field if the packet has the Don’t Fragment flag set. For TCP packets, this data will be put in
the Urgent Pointer if the packet does not have the urgent flag set.

Byte 11: Flags
This is the data that will be put in the reserved flags of the packet depending on the protocol. For TCP,
there are four reserved flags, so the lower four bits of this byte will be put in those flags. If the data is
put in the IP header, these four bits will be ignored. For IP, there is one reserved flag, so the next bit
of this byte (� Byte 11 � AND 0x10) will be put in that flag. This bit will be ignored if the data is put
in the TCP header.

Data to be sent is selected based on a series of rules. First, the send module looks for the data with the
longest prefix match to the outgoing destination address. In other words, the most specific match wins. If
there is a tie, the module chooses the data with the highest priority. If a tie remains, the data that has smallest
repeat count is chosen. If there is still a tie, the oldest data is chosen.

5.2 Queuing data to be sent via Ethernet padding

Data to be sent on generic Ethernet packets is queued in a manner similar to that of IP and TCP data. The for-
mat for enqueuing Ethernet consists of the following 13+ bytes, which are to be written to /proc/ipdsend:

Byte 1: Protocol
A (binary) value of 8 is needed to tell the module that this is Ethernet data.

10

Bytes 2-7: MAC address
The destination MAC address or network. Encoded in binary so that ”ABCDEF” would be the MAC
address 41:42:43:44:45:46.

Byte 8: Network mask
The number of bits of the MAC address to pay attention to. This must be between 0 and 48. A value
of 0 tells the module to ignore the MAC address and send this data to anybody. A value of 48 tells it
to only send this data to the single MAC address specified. Note that the Ethernet address space is not
hierarchical, so most data will probably be queued to specific addresses or to everyone, not ranges.
However, it may be useful to queue to a range of multicast addresses.

Byte 9: Repeat
This is a signed character telling the module how many times to send this data before deleting it from
the queue. A value of 0 will not send this data at all, a value between 1 and 127 will send it that
number of times, and a value of -1 (255) will send it forever until the buffer is cleared or new infinite
data replaces it. If there is already infinite data queued for this MAC address and mask, it will be
removed from the queue.

Byte 10: Priority
This is a signed character telling the module what priority to attach to the data. Higher priority data
will be sent before lower priority data, even if the lower priority data was there first. The highest
priority is 127, and the lowest is -128.

Bytes 11-12: Ethernet Protocol
These two bytes identify the Ethernet protocol to pad with the given data. The module will look at the
protocol of each packet and only use this data if it matches the protocol defined here.

Byte 13: Data size
This byte identifies how much data is being queued. It may range from 0 to 60, and identifies the size
of the data section (bytes 14+). It is not guaranteed that all of the data will be sent, however. The
module will only send the first � bytes, where � is the number of bytes that the packet needs to be
padded with to be valid.

Bytes 14+: Data
This is the data, copied in binary. There must be exactly as many bytes as the data size says there will
be, and it must not exceed 60.

Data will be selected from the queue based on essentially the same rules as for IP and TCP packets.

5.3 Queuing data to be sent via ARP request padding

Since ARP request packets are always broadcast, there is no need to define a destination. Therefore, ARP
does not have a queue in the send module, it only has a string. This string is always sent in any ARP packet
in the same way that other Ethernet padding data is sent. To set this string write to /proc/ipdsend/
using the following simple binary format:

Byte 1: Protocol
A (binary) value of 4 is needed to tell the module that this is ARP data.

11

Byte 2: Data size
This byte identifies how much data is being queued. It may range from 0 to 60, and identifies the
size of the data section (bytes 3+). It is not guaranteed that all of the data will be sent, however. The
module will only send the first � bytes, where � is the number of bytes that the packet needs to be
padded with to be valid.

Bytes 3+: Data
This is the data, copied in binary. There must be exactly as many bytes as the data size says there will
be, and it must not exceed 60.

5.4 Clearing send buffers

Send queue entries normally clear automatically with time. As repeat counts reach 0, the entries are re-
moved. The exception is infinitely repeating data. Because of this, there is a method for removing infinite
data. When data is queued that is identical to a currently queued infinite entry, but has a different repeat
count, the infinite data is removed. It must have the same destination, mask, priority, protocol, and data in
order to replace the infinite data.

Because queues can get quite large and full of unwanted data, there is also a method for clearing the
entire queue for a protocol. If a single byte is written to the /proc/ipdsend file, with the highest bit set,
the module clears the queues specified by the lower bits. If the lowest bit is set, all IP and TCP packets that
would be sent via IP are deleted. If the second to lowest bit is set, all IP and TCP packets that would be sent
via TCP are deleted. If the third lowest bit is set, the ARP message is reset to all zeros. If the fourth lowest
bit is set, the Ethernet queue is cleared. The other three bits are as of yet unused.

5.5 Getting send module status

The status of the send module and the contents of its queues can be retrieved by reading the /proc/ipdsend
file. The output of this file is a human readable list of all the data queued for transmission with the following
format:

IP/TCP Entries: <IPTCP> ETH Entries: <ETH>
<ipaddr> <prior> <data> x<rpt> <protos>
...
<macaddr> <prior> <proto> <rpt>x <len>:<ethdata>
...
<arpdata>

Where the bracketed elements have the following meanings:

<IPTCP>
The number of IP and TCP entries in the queue, listed in newest to oldest order directly below this
line.

<ETH>
The number of Ethernet entries in the queue, listed in newest to oldest order after the oldest IP or TCP
entry.

<ipaddr>
The destination IP address and mask for the data.

12

<prior>
The priority number of the data.

<data>
The two bytes of data that will be put in the ID or urgent pointer of the packet, followed by the one
bit that will be put in the reserved flag of an IP packet and the four bits that will be put in the reserved
flags of a TCP packet.

<rpt>
The number of times remaining that this data will be sent or Inf for an infinite packet.

<protos>
The letter I here means the data will be put in IP packets. The letter T means it will be put in TCP
packets.

<macaddr>
The destination MAC address with an IP style mask.

<proto>
The Ethernet protocol number to use this data for.

<len>
The length, in bytes, of the data being sent.

<ethdata>
The data to send displayed as a string.

<arpdata>
The data that will be broadcast in all outgoing ARP packets.

5.6 Creating a listener

Listeners are created by issuing a command into the control file /proc/ipd_ctrl.

add <ip address>/<netmask> <transport> <filename> <clear> <format>

<ip address>
The ip address to listen for in dotted notation. Combined with the netmask, this chooses which packets
to intercept from the system.

<netmask>
The netmask to apply to the given IP address. Must be an integer value between 0 and 32.

<transport>
The transport mechanism which the listener will look for. Can be one of three values (ARP,IP_DFRAG,
or TCP_URGENT).

<filename>
The file which the listener will report its results to. This must not include a path name as it will be
automatically created in /proc/ipd/.

13

<clear>
Either Y or N. A flag that tells the module whether to clear the queue when the file is read. Y will
clear, N will leave the queue intact.

<format>
Specifies the output format of the listener. Values can be either H or M. These correspond to Human
and Machine readable output. Human readable is printed out in ASCII, while Machine readable is
printed out in straight binary.

5.7 Deleting a listener

del <filename>

<filename>
The name of the output file used by the listener in /proc/ipd/, which is the same as the filename given
in the add command.

5.8 Getting the receive module status

Listeners: <# of listeners>
IP PROTO FILENAME BLANK_ON_READ FORMAT
<ip>/<netmask> <transport> <filename> <Y/N> <H/M>
...

<# of listeners>
The number of listeners currently active on the system.

<ip address>
The ip address that the listener is looking for.

<netmask>
The netmask that is applied to the given ip address to match incoming packets.

<transport>
The transport mechanism used by the listener. ARP, IP_DFRAG, or TCP_URGENT.

<filename>
The filename the listener is using to output the messages it receives. Located in /proc/ipd/.

<Y/N>
A flag displaying whether the listener will delete the queue whenever a read occurs on the output file.
Y will delete the queue, N will leave it in place.

<H/M>
A flag displaying the format of the output file. H is Human readable ASCII, and M is Machine
readable binary.

14

5.9 Reading message queues

5.9.1 Human readable

Each listener creates a /proc/ipd file in order to provide an output mechanism for the messages it inter-
cepts. The file has two available formats, the first one being human readable.

The format of received data in human readable form is:

TCP URGENT FORMAT:

Messages: #messages Transport: TCP_URGENT
<msg#> - <secs>.<usecs> - <src ip>:<port> - <dst ip>:<port> - <msg><flag>
...

<msg#>
Number of message as currently stored in the message queue.

<secs>
Timestamp in seconds of when the packet was received.

<usecs>
Timestamp in microseconds of when the packet was received.

<src ip>
The ip address of the machine that transmitted the packet.

<dst ip>
The ip address of the machine that the packet was intended for.

<port>
The port number of the packet. The source port and destination port are attached to the respective ip
addresses.

<msg>
The actual message itself. Displayed as 2 characters.

<flag>
A flag representing certain header flags of the packet.

IP DONT FRAGMENT FORMAT:

Messages: #messages Transport: ID_DFRAG
<msg#> - <secs>.<usecs> - <src ip> - <dst ip> - <msg><flag>
...

<msg#>
Number of message as currently stored in the message queue.

<secs>
Timestamp in seconds of when the packet was received.

<usecs>
Timestamp in microseconds of when the packet was received.

15

<src ip>
The ip address of the machine that transmitted the packet.

<dst ip>
The ip address of the machine that the packet was intended for.

<msg>
The actual message itself. Displayed as 2 characters.

<flag>
A flag representing certain header flags of the packet.

ARP PADDING FORMAT:

Messages: #messages Transport: ARP
<msg#> - <secs>.<usecs> - <src ip> - <dst ip> - <msg>
...

<msg#>
Number of message as currently stored in the message queue.

<secs>
Timestamp in seconds of when the packet was received.

<usecs>
Timestamp in microseconds of when the packet was received.

<src ip>
The ip address of the machine that transmitted the packet.

<dst ip>
The ip address of the machine that the packet was intended for.

<msg>
The actual message itself. Displayed as a string of characters. Stored in a 60 character array.

5.9.2 Machine reaadable

The format of the machine readable queues is:

TCP URGENT FORMAT:

HEADER:

char
Transport Mechanism: (2)

int
Number of messages

MESSAGES:

16

int
Message Number

long
Timestamp (secs)

long
Timestamp (usecs)

4 bytes
Source IP address

4 bytes
Destination IP address

char
Message[0]

char
Message[1]

int
flag

IP DONT FRAGMENT FORMAT:

HEADER:

char
Transport Mechanism: (1)

int
Number of messages

MESSAGES:

int
Message Number

long
Timestamp (secs)

long
Timestamp (usecs)

4 bytes
Source IP address

2 bytes
Source Port

4 bytes
Destination IP address

2 bytes
Destination Port

char
Message[0]

17

char
Message[1]

int
flag

ARP PADDING FORMAT:

HEADER:

char
Transport Mechanism: (0)

int
Number of messages

MESSAGES:

int
Message Number

long
Timestamp (secs)

long
Timestamp (usecs)

4 bytes
Source IP address

4 bytes
Destination IP address

char[60]
Message

5.10 Clearing a message queue

Clearing a message queue is done by writing to the listener’s output file. The filename is the one given when
the listener was created, /proc/ipd/<filename>

6 C interface

A pair of C interfaces, one for each module, have been provided for easy integration of the Diffusion system
into existing C and C++ programs. The interfaces take care of all /proc interaction and provide a more
usable layer of abstraction.

6.1 Installation

The C interfaces can be found in the lib/ directory of the Diffusion installation files. Each interface
consists of a C source file and a header file. To compile the libraries as well as test programs for the
libraries, change into the lib/ directory and type make. This will create a pair of .o files that can be linked
into your programs, as well as two executables which will test the corresponding systems when executed.
Make sure the modules are installed before using the interfaces or running the tests.

18

6.2 Send interface

The C interface for the send module provides the ability to add entries to the send queues, clear the queues,
and read the current contents of the queues. It also provides the ability to manipulate the ARP data that is
sent. These features are implemented through a set of functions and data structures. To use these functions
and structures in a program, include the provided header (ipdsend_ctrl.h) at the top of your source,
and link in the file ipdsend_ctrl.o.

6.2.1 Data Structures

The following data structures are defined in the send interface header and are typedefed to remove the need
for the struct keyword:

iptcpdata

typedef struct {
char message[2];
unsigned char flagip:1,

flagstcp:4,
unused:3;

} iptcpdata;

The iptcpdata structure provides a container for the data that can be sent over the IP or TCP channels
in each entry. The messagemember contains the two bytes that will be put in the ID field of IP packets or
the urgent pointer of TCP packets. The flagip and flagstcpmembers contain the data that will be put
in the reserved flags of their respective packet headers.

iptcpentry

typedef struct {
__u32 ipaddr;
unsigned char mask;
char repeat;
char priority;
iptcpdata data;
char useip:1,

usetcp:1,
unused:6;

} iptcpentry;

The iptcpentry structure provides a container for all the data put in the send queue for each IP/TCP
entry. The ipaddr member contains the IP address, converted to a binary format. The mask member
contains the mask for the IP address. The repeat and priority members are the repeat count and
priority number given to the send module. The data member is an iptcpdata structure containing the
data that will be sent for this entry. The useip and usetcp members are flags for whether this entry will
be sent on the IP and TCP protocols respectively.

19

iptcplistentry

typedef struct iptcplistentry {
iptcpentry* entry;
struct iptcplistentry* next;

} iptcplistentry;

The iptcplistentry structure provides a singly linked list wrapper for the iptcpentry structure.
This can be used to queue multiple entries, and is used in reading the queue. The entry member points to
an iptcpentry structure, and the next member points to the next entry in the list. A value of NULL in
the next pointer indicates the end of the list.

arpethdata

typedef struct {
char length;
char message[60];

} arpethdata;

The arpethdata structure provides a container for the actual data sent using the ARP and generic
Ethernet protocols. The length member indicates how many bytes of data there are, and the message
member is a buffer for the data. All data past length bytes of message is ignored.

ethentry

typedef struct {
char macaddr[6];
unsigned char mask;
char repeat;
char priority;
__u16 protocol;
arpethdata data;

} ethentry;

The ethentry structure provides a container for the data put in the queue for generic Ethernet entires.
It contains the destination MAC address represented as 6 bytes of binary data in the macaddr member,
and an IP style mask for the address in the mask member. The repeat, priority, and protocol
members correspond to the repeat count, priority number, and protocol number given to the send module.
The data member is an arpethdata structure containing the data to be sent for this entry.

ethlistentry

typedef struct ethlistentry {
ethentry* entry;
struct ethlistentry* next;

} ethlistentry;

The ethlistentry structure is a singly linked list structure identical to the iptcplistentry
structure, except that it points to generic Ethernet entries rather than IP/TCP entries.

20

6.2.2 IP/TCP Functions

These functions manipulate the IP/TCP send queue.

ipd create iptcp entry

iptcpentry* ipd_create_iptcp_entry(
char* ipaddr,
char mask
char repeat,
char priority,
iptcpdata data,
int useip,
int usetcp);

This function creates an iptcpentry structure from the given data and returns a pointer to it. The
ipaddr argument is interpreted as a dotted address (ie ”127.0.0.1”) and converted to the binary format. The
useip and usetcp arguments are interpreted to be true if non-zero, and are put in the corresponding flags
in the iptcpentry structure. The rest of the arguments are copied directly to the iptcpentry structure
after checking for validity. If ipd_create_iptcp_entry encounters an error, it returns NULL.

ipd enqueue iptcp

int ipd_enqueue_iptcp(
iptcpentry* entry);

This function adds a iptcpentry structure to the IP/TCP send queue. It returns zero on success,
non-zero on failure.

ipd enqueue iptcp list

int ipd_enqueue_iptcp_list(
iptcplistentry* head);

This function adds a list of IP/TCP entries to the queue. The argument head should point to the first
iptcplistentry structure in a list. The list should be terminated by a NULL pointer to the next element.
ipd_enqueue_iptcp_list returns zero on success, non-zero on failure.

ipd clear iptcp

int ipd_clear_iptcp();

This function clears the IP/TCP send queue of all entries. It returns zero on success, non-zero on failure.

ipd clear ip

int ipd_clear_ip();

This function clears the IP/TCP send queue of IP entries only. It returns zero on success, non-zero on
failure.

21

ipd clear tcp

int ipd_clear_tcp();

This function clears the IP/TCP send queue of TCP entries only. It returns zero on success, non-zero on
failure.

ipd iptcp queue length

int ipd_iptcp_queue_length();

This function returns the current number of entries in the IP/TCP send queue. It returns a negative
number on failure, otherwise it returns the length of the queue.

ipd iptcp read queue

iptcplistentry* ipd_iptcp_read_queue();

This function reads the current contents of the IP/TCP send queue and returns a pointer to the head of
a linked list containing the queue. The function returns NULL on failure or if there are no entries in the
queue.

ipd iptcp free list

void ipd_iptcp_free_list(iptcplistentry* head);

This function frees the memory used by a list of entries and all of the entries it points to. Only use
this if the structure was allocated with malloc (all structures created by the send interface are allocated with
malloc).

6.2.3 Generic Ethernet Functions

These functions manipulate the generic Ethernet send queue.

ipd create eth entry

ethentry* ipd_create_eth_entry(
char* macaddr,
char mask
char repeat,
char priority,
__u16 protocol,
arpethdata data);

This function creates an ethentry structure from the given data and returns a pointer to it. The
macaddr argument is interpreted as a colon separated hexadecimal MAC address (ie ”12:34:56:78:9A:BC”)
and converted to the binary format. The rest of the arguments are copied directly to the ethentry structure
after checking for validity. If ipd_create_eth_entry encounters an error, it returns NULL.

22

ipd enqueue eth

int ipd_enqueue_eth(
ethentry* entry);

This function adds a ethentry structure to the generic Ethernet send queue. It returns zero on success,
non-zero on failure.

ipd enqueue eth list

int ipd_enqueue_eth_list(
ethlistentry* head);

This function adds a list of generic Ethernet entries to the queue. The argument head should point to
the first ethlistentry structure in a list. The list should be terminated by a NULL pointer to the next
element. ipd_enqueue_eth_list returns zero on success, non-zero on failure.

ipd clear eth

int ipd_clear_eth();

This function clears the generic Ethernet send queue of all entries. It returns zero on success, non-zero
on failure.

ipd eth queue length

int ipd_eth_queue_length();

This function returns the current number of entries in the generic Ethernet send queue. It returns a
negative number on failure, otherwise it returns the length of the queue.

ipd eth read queue

ethlistentry* ipd_eth_read_queue();

This function reads the current contents of the generic Ethernet send queue and returns a pointer to the
head of a linked list containing the queue. The function returns NULL on failure or if there are no entries in
the queue.

ipd eth free list

void ipd_eth_free_list(ethlistentry* head);

This function frees the memory used by a list of entries and all of the entries it points to. Only use
this if the structure was allocated with malloc (all structures created by the send interface are allocated with
malloc).

6.2.4 ARP Functions

These functions manipulate the data that is broadcast in ARP packets.

23

ipd set arp send

int ipd_set_arp_send(
arpethdata data);

This function sets the broadcast ARP data to what is in the data argument. It returns zero on success,
non-zero on failure.

ipd clear arp

int ipd_clear_arp();

This function clears the arp data, reseting it to zero length. It returns zero on success, non-zero on
failure.

ipd read arp send

arpethdata* ipd_read_arp_send();

This function reads the current arp data and returns a pointer to an arpethdata structure. The function
returns NULL on failure.

6.3 Receive interface

The receive interface is a programmable interface into the receive module. The interface allows the creation
and deletion of listeners, as well as control over the message queue itself. Messages picked up by the system
can also be retrieved through the interface, and are returned in a message queue structure defined by the
library.

6.3.1 Creating and deleting listeners

Listeners are managed with two functions provided from the library:

int ipd_add_receiver(const char * address,
int netmask,
message_type type,
char * filename,
int clear);

int ipd_delete_receiver(char * filename);

ipd_add_receiver adds a listener with the given definition parameters into the system. address is
a string containing the ip address of the host or subnet that you wish to listen for in dotted notation. netmask
is an integer value between 0 and 32 representing the netmask to apply to the given address. e.g. An address
of 192.168.1.1 and a netmask of 24 creates a listener that accepts messages from the class C subnet of
192.168.1.*. type gives the transport mechanism that the listener will listen on. The available values are
IP_DFRAG, ARP, and TCP_URGENT. filename is the filename you wish the results to be reported to
in /proc/ipd/. If the filename is not unique to the system the call will fail, and return in error. clear is
a flag that accepts either 1 or 0. It controls whether or not the message queue is deleted every time a set of
messages is retrieved from the system. If set to 1 the queue will clear, if 0 it will not be affected.

ipd_delete_receiver deletes a listener from the system. filename, its only parameter, is the name
of the file in /proc/ipd/ that it outputs the messages to. This should be the same filename that was used
in ipd_add_receiver

Both functions return -1 on error and 0 on success

24

6.3.2 Control the queues

int ipd_delete_queue(char * filename);

ipd_delete_queue clears the queue of the specified listener. filename is the name of the file in
/proc/ipd/.

void ipd_free_queue(ipd_receiver_t * q);

ipd_free_queuedeletes an ipd receiver structure after it has been retrieved and used. The difference
between this function and the ipd_delete_queue function is that delete clears the queue in the module,
while free deletes the structure holding the retrieved messages.

6.3.3 Retrieving messages

ipd_receiver_t * retrieve_messages(char * filename);

retrieve_messages reads all the messages from a message queue and returns them in the form of a
predefined structure. filename is the name of the file in /proc/ipd. The layout of ipd_receiver_t is
included below. If the listener was created with the clear flag set to 1, then the system queue will be cleared
after the messages have been read in.

typedef struct ipd_receiver_t {
int num_msgs;
char * filename;

message_type type;
message_queue_t *msg_queue;
message_queue_t *msg_queue_tail;

} ipd_receiver_t;

The receiver structure contains the message queue as well as information about the listener. num_msgs
provides the number of messages contained in the queue. filename is the name of the file in /proc/ipd/
that the messages were read from. type is the transport mechanism that the listener is using. Its values will
either be ARP, IP_DFRAG, or TCP_UNIQUE. The message queue itself is kept in a doubly linked list
with pointers to the front and back given by msg_queue and msg_queue_tail respectively.

The message queue itself is just a doubly linked list where each element contains a pointer to a message
structure that represents one message that was received by the listener.

typedef struct message_queue_t {
message_t msg;
struct message_queue_t * next;
struct message_queue_t * prev;

} message_queue_t;

typedef union message_t {
tcp_message_t * tcp_msg;
ip_message_t * ip_msg;
arp_message_t * arp_msg;

} message_t;

25

The message structures returned by the interface have the following form:

typedef struct tcp_message_t {
__u32 saddr;
__u32 daddr;
int srcport;
int dstport;

int flag;
char message[2];
struct timeval timestamp;

} tcp_message_t;

typedef struct ip_message_t {
__u32 saddr;
__u32 daddr;

int flag;
char message[2];
struct timeval timestamp;

} ip_message_t;

typedef struct arp_message_t {
__u32 saddr;
__u32 daddr;

char message[60];
struct timeval timestamp;

} arp_message_t;

saddr is the ip address of the sender and daddr is the ip address of the destination host. timestamp
is the time when the message was received, in sec and usec. message is the actual message that was
received by the listener. flag tells whether packet header flags were set or not. srcport is the tcp port
used by the sending host and dstport is the tcp port used by the receiving host

7 Applications

This section describes the tools built on top of Diffusion.

7.1 SpyTalk

SpyTalk lets you communicate unidirectionally and bidirectionally using Diffusion. You can use it non-
interactively in a way similar to netcat (nc), and interactively in a way similar to talk.

26

7.1.1 Installation

To install SpyTalk you will need to have root access. The installation process has been automated for you.
There are only two steps you will need to perform. First, go into the directory where SpyTalk has been
unpacked (probably the SpyTalk subdirectory of where Diffusion was unpacked), and type make. This
will connect to CPAN, the Comprehensive Perl Archive Network, to make sure that you have the modules
needed by SpyTalk. You will need Internet access to complete this step. If you have never used the CPAN
module before, it will ask you if you want to configure it. In most cases you should be able to type ”no” and
have it autoconfigure. It will then check the versions of the modules needed by SpyTalk and upgrade them
if necessary.

The second step is to type make install. This is optional, and will simply put SpyTalk in the
/usr/local/bin directory and install a man page.

7.1.2 Synopsis

� SpyTalk -t
�
--talk [-q

�
--quiet][-s

�
--switch

�
--tcp][-f

�
--file file [-c

�
--continuous

�
--noautorate]

[-r
�
--rate rate]] [-p

�
--priority priority] ipaddr

� SpyTalk -l
�
--listen [-q

�
--quiet] [-s

�
--switch

�
--tcp] [-f

�
--file file] [-n

�
--timeout timeout]

[ipaddr[/mask]]

� SpyTalk [-i
�
--interactive] [-s

�
--switch

�
--tcp] [-q

�
--quiet]

7.1.3 Description

SpyTalk is a messaging front end to the Diffusion kernel modules. SpyTalk supports three modes of op-
eration: talk, listen, and interactive. If no mode is specified, SpyTalk defaults to the fullscreen interactive
mode. In talk mode, SpyTalk normally sends all input from STDIN to the computer specified by ipaddr,
until you type � D. In listen mode, SpyTalk normally listens for all input from any source and writes every-
thing it receives to STDOUT until it receives a � D on STDIN. However, if ipaddr is specified, SpyTalk will
listen only to that IP address, and if mask is specified, ipaddr will be treated as a network with the given
mask. Interactive mode is the most capable mode of SpyTalk. For a description of this mode and a list of
commands, see below.

7.1.4 Options

-i, --interactive
Put SpyTalk into interactive mode. This is the default. not necessary.

-l, --listen
Put SpyTalk into listen mode.

-t, --talk
Put SpyTalk into talk mode.

Talk mode options:

-c, --continuous, --noautorate
Do not automatically adapt the send rate to avoid large send buffers when sending files. Queue every-
thing as quickly as possible.

27

-f, --file file
Send the specified file over the channel and then quit, ignoring all keyboard input and � D’s.

-p, --priority priority
Uses the specified priority in sending the data rather than the default of 0. Range is � 128 to 127.

-q, --quiet
Quiet mode. Suppresses all messages from SpyTalk.

-r, --rate rate
Queue rate bytes per second when sending files. Use this option when you know how much traffic
will already be present on the network. Note that each byte of the file is sent five times, so it is
recommended that you set the rate to one fifth the rate at which you expect to be sending packets.

-s, --switch, --tcp
Uses TCP rather than IP to send messages.

Listen mode options:

-f, --file file
Writes all data received to the specified file rather than to STDOUT.

-n, --timeout timeout
Ignores all keyboard input and instead waits timeout seconds and then quits.

-q, --quiet
Quiet mode. Suppresses all messages from SpyTalk.

-s, --switch, --tcp
Listens for messages on TCP rather than IP.

Interactive mode options

-q, --quiet
Quiet mode. Suppresses introduction and all messages from SpyTalk.

-s, --switch, --tcp
Switches the protocols, using TCP for messages and IP for the load.

7.1.5 Interactive Mode

In interactive mode, you are presented with a screen with two panels, as you can see in Figure 2. The top
panel contains messages received from other computers, and messages from SpyTalk. The bottom panel
contains everything you type. In addition to transmitting messages, SpyTalk also sends the computer’s
current load in interactive mode. The current load for the local and remote computers are displayed above
their respective message panels.

Interactive mode is controlled by various commands. The commands are case insensitive. The following
commands are currently understood by SpyTalk:

talk host
Open a connection to the computer with the specified IP address or hostname. This opens a connection
for sending and receiving messages.

28

Figure 2: Example of Spytalk running interactively.

set priority number
Set the sending priority for future messages to the specified number. Range is � 128 to 127.

close
Close the currently open connection

quit
Close any open connection and quit SpyTalk.

7.1.6 Notes

Because of the nature of Diffusion, SpyTalk does not actually create any network traffic. If you expect to be
sending and/or receiving messages but they are not going through, check to make sure there is other network
traffic between the source and destination.

7.2 LoadBanner

In LoadBanner, machines advertise their current load to the network using Diffusion. Clients can then read
the load using Diffusion. In this way, load information is communicated without consuming any network
bandwidth. If the Diffusion mechanism being used is ARP, then a server makes its load known to all the
clients on the LAN without consuming any bandwidth.

7.2.1 ldavgd

Ldavgd is a small program that continuously reads the load average from a machine and then queues it for
transport over the send module.

ldavgd [-i interval] [-t transport] [-q] [-l level] <ip address>

<ip address>
The ip address of the host that the measurements will be sent to.

29

-i interval
The time interval that the program will wait between taking load measurements, and queuing them
for transmission.

-t transport
Specifies the transport mechanism. Values can be ARP, IP_DFRAG, or TCP_URGENT. Default is
TCP_URGENT.

-q
Quiet mode. When supplied queuing notifications are not outputted to the screen.

-l level
The load average which you wish to transmit. Either 1, 5, or 15.

7.2.2 ldavgc

Ldavgc is the client program for LoadBanner. It displays the latest average from all the reporting computers
in a color terminal window.

ldavgc [-i interval] [-t transport]

-i interval
The time interval that the program will wait between retrieving measurements from the receive queue.

-t transport
The transport mechanism that the program will look for measurements on. Values can be ARP,
IP_DFRAG, or TCP_URGENT. The default is TCP_URGENT.

7.2.3 ldavgc interface

The LoadBanner client allows the user to monitor many different hosts simultaneously. Multiple hosts can
be monitored simultaneously by the program using any of the 3 supported protocols. Each of the host
definitions can include a subnet range, to monitor multiple hosts in the same network block, as well as a
protocol identifier to specify which communication channel the specific host will be transmitting on.

When ldavgc is executed it displays a blank screen and waits for the user to input a host definition.
Hosts are added with CTRL-A. A window appears and requires the user to supply an ip address and netmask
and potentially a protocol. Any host in that range that is sending data will then appear on the screen. Hosts
are deleted with CTRL-D, a list of active listeners is displayed and the user chooses the number of the
listener to delete. Color codes are used to express the value of the load average as well as the age of the
measurement. If the screen dimensions are too small to include all the hosts being received, the user can
cycle through the list with CTRL-N and CTRL-P. The client can be exited from at any time by pressing q.

8 Performance

The bandwidth and latency at which Diffusion can send data is dependent on the communication protocols
that it piggybacks on. It is difficult to determine at which point the Diffusion implementation itself constrains
these numbers. In practice, it appears that it never does.

We have carefully measured the overheads involved with using Diffusion: the degree to which it impacts
the performance of the system as a whole and the performance of the network stack. For the first, we timed

30

Description Performance Impact p-value of difference
Baseline 0% n.a.
Baseline + modules -0.9% 0.02
Baseline + receive module + one listener -1.1% �

���������

Baseline + send module + 500 send entries (one on) +4.1% �
���������

Figure 3: Impact of Diffusion on system performance.

Description Transfer Rate Impact p-value of difference
Baseline 0% n.a.
Baseline + modules +0.4% not significant
Baseline + receive module + one listener +1.9% not significant
Baseline + send module + 100 send entries (one on) -12.0% test run once
Baseline + send module + 500 send entries (one on) -25.0% �

���������

Figure 4: Impact of Diffusion on network performance.

the repeated compilation of the Linux kernel under various conditions. For the second, we measured the
bandwidth between two computers using Netperf (www.netperf.org) under various conditions. All tests
were run while ping flooding between two computers using the modules, to simulate an environment with
heavy network traffic.

Our measurements were done using Red Hat Linux 7.2 with a Linux 2.4.7 kernel. The test systems
have two Pentium III processors each running at 1 GHz, 1 GB of system RAM, and was using an Intel
EtherExpress 10/100 network card. The two systems were kept on an isolated network.

8.1 System overhead

The effect that Diffusion has on system performance is dependent on what the modules are doing. Because of
this, we have tested the performance of our system in four different configurations for comparison: without
the modules, with both modules but no listeners and an empty queue, with just the receive module and a
listener that is receiving data, and with just the send module and a 500 entry queue. Each configuration
was tested nine times to get a more accurate sample, and the testing rotated among the configurations at
each iteration so there would not be any chance of time biased data (computer slowing down with time or
whatnot). Our metric is the extent to which a kernel compilation was slowed down.

Figure 3 illustrates the results of our study. The modules themselves decrease performance by less than
1%. As more listeners or send queue entries are added, performance is impacted. However, at some point,
performance slowly increases again. With 500 outstanding send requests, there is a 4.1% performance in-
crease. over the baseline case. We speculate that this strange behavior might be explained by the significant
decrease in network performance in this scenario. If the system cannot send out packets as quickly, it may
have more processor time free for computation.

8.2 Network overhead

The effect of Diffusion on network performance was tested in the same way as system performance. In each
of the configurations, Netperf was asked to measure the available network bandwidth and the transit rate
that the two machines was able to sustain. Figure 4 illustrates this study. Essentially, loading the modules
or running a few listeners has negligible impact on network performance. On the other hand, having a large

31

number of data items queued for sending does impact performance significantly. This is almost certainly
due to the linear search algorithm that the implementation uses.

9 Conclusion

We have described in detail the interface and implementation of Diffusion within the Linux kernel and tools
built on top of it. We have demonstrated that it is feasible to implement this concept within a modern op-
erating system kernel and that it can have minimal overhead on the system provided that the number of
outstanding communications is kept reasonably low. Even that caveat is an artifact of the fact that our im-
plementation currently uses linear search to do longest prefix matching, which can be replaced with known
logarithmic time and expected constant time approaches. We also showed how applications can use the
communication channel provided by Diffusion to do surreptitious communication and to communicate re-
source information while consuming no additional network resource beyond those used for packet transfers
that otherwise occur. We are currently investigating the integration of Diffusion-based communication into
the RPS system.

References

[1] DINDA, P. A. Exploiting packet header redundancy for zero cost dissemination of dynamic resource
information. In Proceedings of the 6th Workshop on Languages, Compilers, and Run-time Systems for
Scalable Computer (LCR 2002) (May 2002). To Appear.

[2] DINDA, P. A., AND O’HALLARON, D. R. An extensible toolkit for resource prediction in distributed
systems. Tech. Rep. CMU-CS-99-138, School of Computer Science, Carnegie Mellon University, July
1999.

[3] LOWEKAMP, B., MILLER, N., SUTHERLAND, D., GROSS, T., STEENKISTE, P., AND SUBHLOK,
J. A resource monitoring system for network-aware applications. In Proceedings of the 7th IEEE
International Symposium on High Performance Distributed Computing (HPDC) (July 1998), IEEE,
pp. 189–196.

[4] TIERNEY, B., AYDT, R., GUNTER, D., SMITH, W., SWANY, M., TAYLOR, V., AND WOLSKI, R.
A grid monitoring architecture. Tech. Rep. GWD-GP-16-2, Global Grid Forum Performance Working
Group, March 2000.

[5] WOLSKI, R. Forecasting network performance to support dynamic scheduling using the network
weather service. In Proceedings of the 6th High-Performance Distributed Computing Conference
(HPDC97) (August 1997), pp. 316–325. extended version available as UCSD Technical Report TR-
CS96-494.

32

