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Abstract—It is widely assumed that certain network char-
acteristics cause end-user irritation with network performance.
These assumptions then drive the selection of quality of service
parameters or the goals of adaptive systems. We have developed
a methodology and toolchain, SoylentLogger, that employs user
studies to empirically investigate such assumptions. SoylentLog-
ger collects client-centric network measurement data that is
labeled by the end-user as being associated with irritation at
perceived network performance (or not). The data collection
and labeling occurs in real-time as the user normally uses the
network. We conducted a user study that produced the equivalent
of two years of labeled data, and then used that data to test
various assumptions about network sources of user irritation
that are commonly made. A number of these assumptions were
found wanting.

I. INTRODUCTION

End-users increasingly experience changes in application
or service performance due to fluctuations in the underlying
network characteristics. This is due to popularity of interactive
network applications and services, the expansion of connectiv-
ity, and the increasing complexity of the Internet. To maintain
a high level of end-user satisfaction, significant research has
been done into network control systems, such as quality of
service systems and adaptive systems [17], [19], [12], [8], and
on modeling user reaction to and satisfaction with specific
applications (e.g, VoIP [13]). Broadly speaking, such systems
attempt to enforce network characteristics within a range such
that the user is not irritated by the network.

This raises the natural question: What network characteris-
tics lead to irritation? There is surprisingly little empirical
work that addresses this question, though recent work [7]
has suggested that user irritation is frequent and pervasive.
One approach is to find application-level metrics desirable
for avoiding irritation and then transform these metrics to
desirable network characteristics that can be demanded of a
network control system. However, in many cases, application-
level empirical data is also rare, and, in others, the transfor-
mation may be quite difficult. Finally per-flow or per-flow
class control is generally unavailable. A second approach is
essentially based on assumptions, rules of thumb for what
network characteristics lead to irritation. These assumptions
can then be built into network control systems. In this paper,
we empirically study several such rules of thumb; more
generally, we consider the correlation of user irritation and
network characteristics.

Our approach was to conduct a careful user study “in the
wild.” The study produced client-centric network measurement
data that was labeled as being irritating or not. These labels
were applied in real-time by the participants in our study
while they used the network as they normally would. Each
participant in our study ran our SoylentLogger software on
their Windows computer for at least three weeks. As described
in more detail in Section II, SoylentLogger periodically probed
network conditions. The participant could at any time express
irritation with (perceived) network performance by pressing a
labeled button. This form of feedback, and its analysis, was
pioneered by us to study user irritation with restrictions on
the availability of computer resources such as CPU bandwidth,
physical memory pages, and disk bandwidth [4], and has more
recently employed to understand the consequences of power
management decisions that lower processor frequency [11]. In
the networking domain, a related approach to inexpensively
measure mean opinion scores for audio and video QoS metrics
has recently been described [1]. We describe the design of
SoylentLogger and of our user study in detail in Section III.

The labeled network data allows us to test whether the
assumptions or rules of thumb hold. For a given assumption,
we can create a hypothesis and conduct a hypothesis test via
a query over the assembled labeled data. For example, we can
find cases that exhibit network conditions corresponding to
an assumption and then test if there is any difference in the
probability of irritation for those cases and others. Conversely,
we can separate the network data that is labeled as being
irritating from that which is not and then search for network
characteristics that actually differ between the two groups.
Section IV tests a variety of assumptions/rules of thumb based
on this approach.

The contributions of this paper are the following.

• We advocate the study of the effects of network charac-
teristics on measured end-user irritation.

• We describe a methodology and a toolchain for carrying
out such studies.

• We collect what we believe is the first set of network
data labeled with end-user irritation information. We will
make this data available in an anonymized form for others
to use.

• We tested a range of assumptions or rules of thumb about
how network characteristics affect user irritation.



It is important to point out that the assumptions we test in this
paper are a selection of what may be possible given the data we
have collected. Nonetheless, the results are often surprising, as
described below.

1) End-users are generally quite good at correctly attribut-
ing bad application performance to network conditions,
when that is the case.

2) It is widely believed that the performance of small
connections is most critical to the end-user experience.
We found that the median size of connections asso-
ciated with irritation was 2.8 times larger than those
not associated with irritation, while the median duration
was 34.6 times higher. Lethargic mice seem responsible
for a significant fraction of end-user irritation with the
network.

3) Both applications and services vary considerably in the
level of irritation that their users see per byte transferred,
or connection made. For example, the three ASes with
the highest irritation rates represent < 5.1% of observed
traffic, but 48.9% of all traffic associated with irritation.

4) User irritation is stateful. Once a user has become
irritated, that irritation is likely to persist.

5) Neither the Windows-based “Signal Quality” metric, nor
the wireless NIC-based RSSI metric are good predictors
of user irritation, although the former is slightly better.

6) On wireless networks, the rate of irritation depends
strongly on the choice of access point.

Our empirical results suggest that a large fraction of user
irritation is associated with a small fraction of the possible
sources. This implies that end-users, given a low-overhead
feedback mechanism, could focus the maintenance of network
components, for example access points and CDNs, on those
that would provide the maximum user-perceived benefit per
dollar spent.

II. SOYLENTLOGGER

In order to collect data which can be used to test networking
assumptions and rules of thumb, we developed SoylentLogger,
a tool allowing end-users to indicate when they are dissatisfied
with their network service. The tool simultaneously performs a
set of network and local measurements at regular intervals and
in response to user irritation events. SoylentLogger gives us
a rare look into the experiences of the end-user in real-world
environments without degrading that user’s performance.

A. Design

We developed SoylentLogger for Windows XP and Vista
on the .NET 2.0 platform to maximize the number of partic-
ipants eligible for our study. While we tested SoylentLogger
extensively both within our research group and with a larger
group of “beta” users, we still needed a mechanism to allow us
to correct undesirable application behavior or implement and
quickly deploy changes to the data collection methodology.
Requiring user intervention would needlessly delay or prevent
necessary changes to the instrumentation, reducing the already
limited time we have with each user. Thus, SoylentLogger

consists of two components: a bare minimum framework and
an assembly that can be easily updated.

The framework runs as Windows service responsible for
monitoring the status of the dynamically-loaded assembly and
initiating an upgrade when the new version becomes available.
The service component of SoylentLogger periodically checks
for new updates at a pre-specified web location, downloading
and loading a new assembly once a newer version is available.
This provides us the control to automatically update the
SoylentLogger application at participants’ machines if we need
to improve our logic at later point of time.

SoylentLogger periodically uploads data when the size
of the local log reaches a fixed size, a size small enough
such that data is uploaded every few minutes. This gives us
immediate feedback that is critical for adjusting the software
and collection methodology while the study is active. As we
will show in Section III, the overhead of this communication
is small.

We also provide the participants with the ability to stop and
restart the service at any point of time. SoylentLogger creates
a “system tray” icon using which the users can easily control
the SoylentLogger application. In practice, however, we found
that users rarely disabled the application.

B. Irritation

SoylentLogger allows users to express their irritation using
a globally mapped key (F8) or a “system tray” menu item. We
refer to a user’s expression of irritation as an “irritation event.”
When an irritation event occurs, SoylentLogger immediately
collects data that would otherwise be collected periodically.
This allows us to capture some transient events that might go
undetected by the periodic monitoring.

C. Metrics

The data collected by SoylentLogger consists of two compo-
nents: 1) Local software and hardware factors and 2) network
factors collected from the end-host’s vantage point. While the
latter is used to understand the network dynamics encountered
by the end-user (in the context of user-reported irritation and
otherwise), the software and hardware diagnostics are used to
determine any factors that the user attributes to the network
state that are not related to this root cause. We describe all of
these factors in Figure 1.

All logged data is written to a text file that is periodically
compressed and uploaded to a secure server.

Hardware and software factors: We instrumented Soy-
lentLogger to measure a number of factors unrelated to the
network to help characterize the rate at which users falsely
attribute machine-local factors to the network. Furthermore,
we also collect information about the user’s current “task” and
attentiveness to help guide our exploration of network factors.
Each factor is collected at a fixed rate and many are collected
in response to user irritation.

To accurately compare conditions when the user expresses
irritation and when the user is physically present but not



Factor Collection Period Details
CPU Utilization 1 second Aggregate system load.
Process Statistics 30 seconds Per-process performance and resource utilization data including cumulative time in

execution, working memory size, and number of page faults.
Application Focus 10 seconds The name and title of the current window in focus.
User Activity 30 seconds Total mouse movement, button clicks, and keystrokes in the last interval.
Offered Throughput 5 seconds The average offered throughput of each netflow during the collection period.
Application RTT Continuous The elapsed time between the transmission of a TCP packet and the arrival of the

acknowledging packet.
Receiver Signaling Continuous TCP packets for which the receiver window is set to zero, potentially indicating

load on a remote server.
Duplicate Packets Continuous TCP packets repeated by either the sender or receiver.
Web Traffic Continuous The URL and method of each HTTP request.
Link 5 seconds The properties of the current network interface being used, such as IP and link speed.
Wireless Interface 5 seconds Additional information on the wireless link including base station MAC address

and signal strength.

Fig. 1. The hardware, OS, network, and user metrics logged by SoylentLogger along with the logging period.

irritated, we need to determine when the user is actively en-
gaged with their computer. Without doing this, any potentially
disruptive network activity experienced while the user is away
from their computer would be falsely characterized as non-
disruptive. To determine the user’s presence, we periodically
collect the mouse movement, click rate, and typing rate. While
this simple methodology will sometimes lead us to consider
an actively engaged user as absent, such as while the user is
watching a long, full-screen video, we found it to be the best
approach to minimize both error and the involvement of the
user.

Network factors: SoylentLogger uses the WinPcap li-
brary [16] to capture all outgoing and incoming packets from
the user’s network interface. We gather the connection start
time, establishment time, and completion time in addition to
the number of bytes and packets traversed in both directions
and the four-tuple associated with each connection. We also
collect instantaneous round-trip-time, throughput, loss rate of
each connection. We further tag each TCP and UDP socket
with its parent application. In addition to the metrics described
in Figure 1, SoylentLogger periodically initiates ping and
traceroute probes to the 25 most frequently accessed IP
addresses to assess the end- and remote-host’s connectivity.

III. USER STUDY

To collect the data necessary to investigate network sources
of user irritation, we conducted a rigorous user study.1 32
users used the SoylentLogger software over a period of three
weeks, yielding 899 irritation events and 20.0 GB of data.
This amounts to roughly 2 years worth of irritation-annotated
trace data. Data gathered by SoylentLogger indicates that the
overhead of the software was sufficiently low that the presence
of the SoylentLogger did not add additional irritation events.

A. Design

We recruited 32 participants from a pool of students, staff,
and faculty at Northwestern University using a combination
of flier and email advertising. The study group, primarily

1The materials used during the study can be found at
http://empathicsystems.org/SoylentLogger

undergraduate students, received network connectivity via both
the university and a number of regional ISPs.

After signing up for our study, participants visited our lab
to have the software installed. After signing a consent form
for our study,2 each filled out a background questionnaire. We
found that our subjects use a variety of network services and
that few have academic experience in CS, CE, or EE.

Once the background questionnaire was completed, the
participants read an overview of the study that included the
following instructions: “We ask that you press (the irritation
button) when you are uncomfortable or dissatisfied with the
network service being provided to the applications you are
using.” The document also gave several examples of network
performance issues ranging from slow-loading web content to
interrupted video and audio streaming. Our documents stress
that the users are to signal irritation with the performance of
the network applications being used and not the content of
those applications.

Once the participant completed the forms and read the
study documents, the investigator installed the SoylentLogger
software. Installing the software in-lab allowed us to verify
that the software was correctly installed as well as answer any
questions participants had about the study.

While our study was limited to only three weeks, we needed
a mechanism to remind participants to indicate any network
dissatisfaction using the tool. Without such a reminder, the data
would be subject to a bias where irritation events would be
less frequent later in the study. We initially considered having
the software periodically issue a direct notification to the user.
This was deemed inappropriate as it is likely to bias the
participants towards generating irritation events shortly after
being prompted. We also considered the use of reminders sent
via e-mail or text message, though these mechanisms are likely
to have the same effect. Finally, we decided on placing a small
sticker on each participant’s laptop at a location visible during
normal usage. The sticker read “Press F8 when irritated with
the network” and remained on each participant’s computer for
the duration of the study.

2The study and related documents were approved by our Northwestern
University’s Institutional Review Board
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Fig. 3. Interarrival times of user irritation events. The interarrival time only
includes times that the user is actively using their computer. Times when the
user is absent are discarded.

After completing the study, each participant was paid $25
for his or her time.

B. SoylentLogger overhead

The study did not alter the network service that each
participant received and was merely intended to character-
ize how end-users perceive their network service. Because
SoylentLogger collects a substantial amount of data through
a variety of means, including deep packet inspection, it is
possible that the additional overhead of the tool may cause
users to report irritation. There is thus a tradeoff between the
resolution of data that we are able to collect and the risk
of interfering with the participants’ experiences. During our
testing of SoylentLogger, we tuned the activity of the tool to
keep resource utilization within a reasonable range.

In Figures 2(a–c) we report the network, memory, and
CPU utilization of SoylentLogger during our study. The 95th

percentile network overhead, which includes uploading study
data and checking for updates, is less than 10 kBps in both the
upstream and downstream directions. The memory overhead
is similarly insignificant as most participants have several
gigabytes of physical memory. While the CPU utilization of
our tool can, at times, be significant, as we will show in
Section IV, there is little correlation between CPU utilization
and user irritation. Both the 95th percentile memory and CPU
overhead are within the comfort ranges reported in [4].

C. Data collected

In total, the participants in our study generated 899 irritation
events, averaging over 1.2 events per user per day. Figure 3
shows the cumulative distribution of irritation interarrival
times for each user. In calculating interarrival times, we
only consider the time between irritation events when the
user is “active” according to the methodology described in
section IV-A. A small number of our irritation events are
closely spaced, implying that some users pressed the irritation
key multiple times in quick succession. However, over 95%
of the irritation events occur more than 10 seconds after the
previous event, implying frequent presses are not common.

From this data, it is clear that end-users are frequently
dissatisfied with their network usage—50% of irritation events
occur within 17 minutes of a previous irritation event. In the
next section, we will analyze how this data confirms or refutes
several hypotheses about the user experience.

IV. HYPOTHESES

We now employ the data from the user study to test hy-
potheses or rules of thumb about the sources of user irritation
with the network.

A. Methodology

In evaluating hypotheses we use a common methodology for
correlating factors with irritation events. If a factor correlates
with irritation, we assume it changes near the irritation event.
To make the meaning of “near” precise, we define two
parameters that together specify a window of time around
an irritation event in which the factor may change and be
considered correlated with the event. The window is ω seconds
long and is displaced from the irritation event by an interval
τ . ω can be thought of as how long the change must persist
to cause irritation, while τ is the delay between the cause and
the user’s reaction. For the data presented here, τ = 1 second
and ω is varied as discussed in the text. ω and τ define the
“irritation window.” Data outside of the window is assumed
to be unrelated to the irritation event.

Our methodology must also consider the user’s presence,
as failing to account for times when the user is absent would
introduce two biases. First, anomalous activity that would
otherwise cause irritation would be unnoticed. Second, data
associated with absence, such as low CPU utilization, would
erroneously become associated with a lack of irritation. To
eliminate these biases, we only analyze log data for which we
know the user is present, based on the keyboard and mouse
activity we recorded. We filter out data logged outside of a 60
second window centered around each instance of user activity.

For many of the hypotheses we consider, we compare the
distribution of a given factor outside of all irritation windows
with the distribution of those occurring within irritation win-
dows. We evaluated the sensitivity of our results to the choice
of ω and τ . For ω, we show the results in the paper. For space
reasons, and to avoid making our figures unreadable, we omit
the results of sensitivity to τ ; the sensitivity to τ is much
lower than the sensitivity to ω within a reasonable range. As
an example, consider Figure 4(c), which compares the CDF of
aggregate netflow throughput outside of all irritation windows
(“No Irritation”) with the CDFs for those in irritation windows,
for a range of ω sizes (e.g., “Irritation (Window 5 sec.)”). We
can see that the median aggregate throughput is roughly an
order of magnitude greater during user irritation events and
that this difference is most pronounced when ω= 2 seconds.



10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

Rate (Bps)

0.0

0.2

0.4

0.6

0.8

1.0
C

u
m

u
la

ti
ve

 P
ro

b
a
b

il
it

y
Download
Upload

0 20 40 60 80 100
Working Set Memory Size (MB)

0.0

0.2

0.4

0.6

0.8

1.0

C
u

m
u

la
ti

ve
 P

ro
b

a
b

il
it

y

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Utilization

0.0

0.2

0.4

0.6

0.8

1.0

C
u

m
u

la
ti

ve
 P

ro
b

a
b

il
it

y

(a) Network Overhead (b) Memory Overhead (c) CPU Overhead

Fig. 2. Overhead of running the SoylentLogger tool.

B. Results

Hypothesis 1: Users can distinguish between local and
network sources of irritation.
Result: Supported by our evidence.

It is critical to our analysis that users be able to differentiate
irritation that is due largely to the network from irritation
whose genesis is elsewhere. In other words, we need to
demonstrate that users meaningfully assign blame to the net-
work. While our study documents informed participants that
they were only to indicate irritation with the performance of
network services, it is possible that local conditions unrelated
to the network, such as application load, would falsely trigger
an irritation event. To evaluate the effects of local conditions,
we consider how well two local factors indirectly related to
network performance are correlated with user-reported irrita-
tion: CPU utilization and page fault rate. Overall, we find that
both factors are weakly correlated with user irritation.

Figures 4(a-b) show the CPU utilization and page fault
rate for a range of ω values. Both distributions show little
difference in the presence of an irritation event. In contrast to
this, Figure 4(c) shows that the distribution of link utilization
is noticeably different, with the median throughput almost an
order of magnitude greater during irritation. Indeed, greater
network activity in the form of increased throughput implies
a higher rate of user irritation. Thus, we conclude that it is
unlikely that many cases of irritation are due to application
load or memory contention and that users can successfully
distinguish between local and network sources of irritation.
Hypothesis 2: Most user irritation is associated with small
connections.
Result: Supported by our evidence, with further observa-
tions.

It is widely assumed that small flows are critical to the
end-user experience and that the poor performance of small
flows dominantly affects users’ perception of the network
service. As a result, the performance of small flows has
traditionally been one of the key QoS metrics [9], [2], [10]. In
order to improve the performance of small flows, researchers
proposed adaptive bandwidth allocation schemes that aim to
minimize file-transmission times using filesize-based service
differentiation. As an example, Guo and Matta [3] use RIO in
core routers and a packet classifier at the edge to distinguish
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Fig. 5. Flow size distribution for a range of window sizes. Irritation
events are associated with larger flows, on average, than flows not associated
with irritation. However, the absolute size of these flows is not dramatically
different.
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Fig. 6. Flow duration distribution for a range of irritation window sizes.
When considering window sizes less than 10 seconds, the distribution of flow
durations is substantially different during irritation events.

between large and small TCP flows. Yang and de Veciana
[18] develop TCP/SAReno in which the AIMD parameters
dynamically depend on the remaining file size.

Overall, we find that while connections present during
irritation tend to skew larger in size and longer in duration,
the majority of the connections associated with irritation are
quite small. In Figure 5, we compare the distributions of flow
sizes both during irritation and not. The median flow size is
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Fig. 4. Correlation with machine-local conditions and network utilization. While the CPU utilization and page fault rate show little correlation with with
irritation, the aggregate network throughput is shows noticeable difference during user irritation.
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Fig. 7. Flow duration and total data transferred for both netflows associated with irritation and not. The circle on each plot is centered at the median flow size
and duration. While the flows present during user irritation tend to be longer in duration, the size of those flows is comparable to those apart from irritation.

2.8 times larger during irritation, although the absolute size
of these these flows is still less than 10 KB. As shown in
Figure 6, the flow duration during irritation is considerable
longer, with the median duration 34.6 times larger during
irritation. Figure 7 provides another way of looking at this
result. Figure 7(a) plots flow duration versus flow size for
each flow not associated with irritation, while Figure 7(b) does
the same for those flows that are associated with irritation.
The circle in each plot represents the median flow size and
duration. User irritation is most closely associated with small
flows that are long-lived, which might be termed the lethargic
mice.
Hypothesis 3: User irritation is dependent on the application
and services with which that user interacts.
Result: Supported by our evidence.

We suspected that the network applications a user interacts
with will vary in their association with irritation. This is a
natural assumption as applications vary in their QoS require-
ments, resulting in some being more sensitive to disruptions
in service. We also suspected that the content provider also
plays a role in user irritation. For example, to enhance web
browsing experiences, content distribution networks (CDNs)
move web content closer to clients by caching copies of web
(and other) objects on thousands of servers worldwide. It has
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Fig. 8. The portion of non-irritation and irritation traffic associated with
each application. Firefox, Chrome, and the Avast Internet Security Suite
(ashWebSV) are associated a higher proportional of netflows during irritation
than not, while idle system activity is less likely to associated with irritation.

been demonstrated that this approach can help improve Web
response times (e.g., [6], [14]) and so it is assumed that CDNs
positively impact users’ perceived QoS. We find that this is not
always the case as the rate of user irritation associated with



No Irritation Irritation Total % Bytes in
Host Traffic (MB) Flows Traffic (MB) Flows Traffic (MB) Irritation
Google Inc. 8402.24 85133 295.85 1376 8698.08 3.40
Comcast Cable Communications Inc. 6475.09 7084 0.04 3 6475.13 < 0.01
Northwestern University 4242.61 88970 66.10 908 4308.71 1.53
Level 3 Communications 3988.20 18024 234.10 582 4222.30 5.54
Limelight Networks Inc. 3155.00 14608 2.51 110 3157.51 0.08

(a) Top-5 ASs by traffic volume.

No Irritation Irritation Total % Bytes in
Host Traffic (MB) Flows Traffic (MB) Flows Traffic (MB) Irritation
Advanced Video Communications Inc. 767.08 3032 452.35 10 1219.43 37.10
Global Crossing Ltd. 480.51 1325 240.20 19 720.71 33.33
NTT America Inc. 559.78 5379 246.13 45 805.91 30.54

(b) Top-3 ASs by irritation rate.

Fig. 10. Traffic quantity and irritation rates for a selection of ASs. ASs with seemingly identical responsibilities, such as content replication and delivery,
show considerable variation in their respective irritation rates. Also, not that a small number of ASs are associated with large amounts of irritation.
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Fig. 9. For each destination AS, the number of flows seen to the AS is plotted
versus the fraction of bytes associated with irritation events. Note that even
for destinations for which we have considerable data, the rate of irritation can
be very high.

CDN traffic is highly variable across providers.

In Figure 8, we plot the percentage of flows attributed to
each application, along with the percentage of flows associated
with irritation attributed to each application. A difference
between the two bars for a given application implies that
the application was associated with a disproportionate amount
of irritation. Almost 40% of the netflows seen in our study
are generated from Firefox, and 75.8% of the flows in our
study come from web traffic. Surprisingly, we find that Internet
Explorer has a lower rate of irritation as compared the other
browsers. We hypothesize that this is due to participants in
our study using different browsers for different sites and
services. As we will show, the choice of service plays an
important role in user irritation. Another 30% of the flows
terminated before SoylentLogger could query the operating
system for the associated application, giving the “-” label in the
figure. Consistent with our earlier findings, these short-lived
connections are less likely to be associated with irritation.

The volume of web traffic makes it clear that it is not
sufficient to consider only the application associated with

each netflow. To determine the web application in use, we
first attempted to reverse map each IP address using DNS.
Unfortunately, this method covered little more than 20% of
our data. Next, we considered using the IP to Autonomous
System Number (ASN) maps provided by Cymru [15]. Using
this data we were able to map over 96% of our netflows.

To compare the amount of irritation associated with each
autonomous system (AS), we consider the amount of data
associated with irritation. As before, we associate a flow with
an irritation event if that flow is present during the irritation
window specified by that event. If a flow is associated with
irritation, we consider all bytes of that flow as irritation bytes.
Thus, the irritation rate is the number of bytes in all such
flows divided by the total number of bytes transferred to or
from that AS. While this methodology places a greater weight
on larger flows, we feel that it appropriately compares the
consumption-based pricing model most content hosts adopt.

In Figure 9 we plot, for each of the 284 ASs that have
over 100 flows, the number of flows seen with that AS as a
destination and the fraction of all bytes transferred to or from
that AS that are associated with an irritation event. We find
that there are a large number of ASs with substantial per-byte
irritation rates. 12 of these ASs have over 10% of their traffic
associated with irritation, which implies a disproportionate
amount of user irritation.

In Figure 10(a-b) we show a traffic and irritation summary
for several high-activity and high-irritation ASs. Figure 10(a)
shows the top 5 ASs in terms of traffic. There is both consid-
erable data for all of these providers and visible stratification
among them. For example, while Level 3 Communications and
Limelight Networks provide similar content delivery services,
the two have very different irritation rates, with Level 3’s
irritation rate being 69 times greater.

Figure 10(b) shows the top 3 ASs (of those with more than
1000 flows) in terms of irritation rate. These hosts show very
high rates of irritation emanating from a small number of large
flows. While these ASs represent less than 5.1% of traffic, they
make of 48.9% of all bytes associated with irritation.
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Fig. 11. The distribution of per-user irritation inter-arrival times given that
the previous interarrival time is less than some threshold.
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Fig. 12. Windows “Signal Quality” metric as we sweep though a range of
window sizes. The greatest difference between the two distributions is reached
with a window size of 2.

Hypothesis 4: User irritation is stateful.
Result: Supported by our evidence.

To characterize the extent to which user irritation is stateful,
we consider triples of sequential irritation events. We plot the
distribution of the inter-arrival time between the second and
third events given that the inter-arrival time of the first and
second is below some threshold. We then vary this threshold
for a range of values. If user irritation is indeed stateless, then
these distributions should not differ.

Figure 11 plots the distributions. It is clear that irritation
rate is indeed influenced by the prior knowledge of the user’s
irritation rate, implying that user irritation is stateful. When
a user expressed irritation twice in the preceding 10 seconds,
the next irritation event is likely to be generated within 10
seconds in 60% of the cases. This implies that irritation, once
caused, tends to persist for the user.
Hypothesis 5: RSSI and link quality indicators predict user
irritation on wireless networks.
Result: Not supported by our evidence.

We next explore the correlation between irritation events
generated during the study and the condition of the local
wireless network. To do this, we consider two metrics: the
“Signal Quality” metric provided by Windows and the vendor-
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Fig. 13. The distribution of normalized received signal strength reported
by the wireless interface during irritation. While there are some irritation
events associated with lower signal strength, these represent less than 20% of
irritation events at wireless access points.

specific received signal strength indicator (RSSI) exposed by
the 802.11 hardware. Overall we find that irritation events
are most correlated with the “Signal Quality” metric and that
disruptions are not transient.

During our testing of the SoylentLogger tool, we noticed
that the range of RSSI values varied depending on the user,
implying that the value for this parameter was dependent on
the wireless adapter in the user’s hardware. This was confirmed
by examining the 802.11 specification, which specifically
leaves units of the RSSI value undefined [5]. Before we could
effectively compare RSSI values between users, we needed
some way to normalize their values. Because we are interested
in examining when either metric is deviating from a normal
range, we decided to transform the raw value into a z-score
normalized for each user.

In Figure 12 we plot the distribution of the normalized
Windows “Signal Quality” metric both in the presence of
irritation and not for a range of ω. The difference between the
distributions is maximized when ω = 2 two seconds, though
the signal quality metric is not sensitive to ω. This, along with
the fact that signal quality is consistently lower near irritation
events, implies that while users are more likely to express
irritation if signal quality is decreased, it does not appear that
this is caused by transient physical-layer disruptions.

In Figure 13 we plot a distribution of normalized RSSI
values around irritation along with a baseline. We see the
largest difference when the RSSI value is more than one
standard deviation below the average RSSI value for that
hardware. However, fewer than 20% of the measured RSSI
values during irritation events fall into this category. Once
again, we see little sensitivity to the choice of ω value,
implying that the irritation is unlikely to be caused by transient
changes in signal strength.

Overall, the “Signal Quality” metric appears to have a
stronger correlation with user irritation as compared to the
RSSI measure. However, when we consider how well signal
quality predicts irritation, the measure does little good. In
Figure 14 we show the false-positive and false-negative rate for
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Fig. 14. The predictive power of the Windows “Signal Quality” for user
irritation, using a threshold-based predictor, as a function of the threshold.
There is no threshold which provides low false negative and false positive
rates simultaneously.
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Fig. 15. The rate of irritation events for the top-25 most frequently visited
access points, sorted in order of decreasing irritation rate.

a threshold-based predictor using various signal quality values.
While important, signal quality is not a strong predictor of user
irritation by itself.
Hypothesis 6: User irritation is affected by user location.
Result: Supported by our evidence.

Finally, we consider the extent to which irritation is asso-
ciated with wireless access points. Figure 15 shows the rate
of irritation for the 25 most frequently visited access points,
each having at least 5 hours of user activity. If each access
point were equally likely to be associated with user irritation,
we would expect a uniform distribution; however, this is not
the case. Also, across all access points for which we have
more than 1 hour of trace data, the top 20% of locations in
terms of irritation rate are responsible for 64% of the overall
irritation rate. Improving service at a small subset of locations
may result in a disproportionate reduction in total irritation.

V. CONCLUSION

We presented a tool and a methodology for collecting
and studying end-user irritation with the network “in the
wild.” We used the data we collected from an extensive user
study to test a range of assumptions or rules of thumb that

are commonly made in network control systems or adaptive
applications. The most important implications of our work so
far are that users are able to appropriately assign blame to the
network when they are irritated, and that a small number of
sources seem to disproportionately contribute to the irritation
experienced by those users. This suggests that low-overhead
end-user feedback, such as in our tool, could be used to
focus the resources of network maintenance on these “hot
spots”, maximizing return on investment. At the present time,
we are testing further hypotheses using our data, and we
are investigating how a network irritation hot spot detection
system might be designed.
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