

Electrical Engineering and Computer Science Department

Technical Report
NWU-EECS-11-07

July 14, 2011

VNET/P: Bridging the Cloud and High Performance Computing
Through Fast Overlay Networking

Lei Xia Zheng Cui John Lange

Yuan Tang Peter Dinda Patrick Bridges

Abstract

Overlay networking with a layer 2 abstraction provides a powerful model for virtualized
wide-area distributed computing resources, including for high performance computing
(HPC) on collections of virtual machines (VMs). With the emergence of cloud
computing, it is now possible to allow VMs hosting tightly-coupled HPC applications to
seamlessly migrate between distributed cloud resources and tightly-coupled
supercomputing and cluster resources. However, to achieve the application performance
that the tightly-coupled resources are capable of, it is important that the overlay network
not introduce significant overhead relative to the native hardware. To support such a
model, we describe the design, implementation, and evaluation of a virtual networking
system that has negligible latency and bandwidth overheads in 1-10 Gbps networks. Our
system, VNET/P, is embedded into our publicly available Palacios virtual machine
monitor (VMM). VNET/P achieves native performance on 1 Gbps Ethernet networks and
very high performance on 10 Gbps Ethernet networks and InfiniBand. On the latter
networks, performance is converging to native speeds as we continue to enhance
VNET/P. In comparison to VNET/U, its previously demonstrated, and highly optimized,
user-level counterpart, VNET/P can achieve bandwidths over 33 times as high. These
results suggest that it is feasible to extend a software-based overlay network designed to
facilitate computing at wide-area scales into tightly-coupled environments.

This project is made possible by support from the National Science Foundation (NSF) via grants
CNS-0709168 and CNS-0707365, and the Department of Energy (DOE) via grant DE-SC000534.

Keywords: virtualization, cloud computing, high performance computing, overlay networking

VNET/P: Bridging the Cloud and High Performance
Computing Through Fast Overlay Networking

Lei Xia∗ Zheng Cui§ John Lange‡

Yuan Tang† Peter Dinda∗ Patrick Bridges§

∗ Department of EECS
Northwestern University

{lxia,pdinda}@northwestern.edu

§ Department of CS
University of New Mexico

{cuizheng,bridges}@cs.unm.edu

‡ Department of CS
University of Pittsburgh
jacklange@cs.pitt.edu

† School of CSE
UESTC, China

ytang@uestc.edu.cn

ABSTRACT

Overlay networking with a layer 2 abstraction provides a powerful

model for virtualized wide-area distributed computing resources,

including for high performance computing (HPC) on collections

of virtual machines (VMs). With the emergence of cloud comput-

ing, it is now possible to allow VMs hosting tightly-coupled HPC

applications to seamlessly migrate between distributed cloud re-

sources and tightly-coupled supercomputing and cluster resources.

However, to achieve the application performance that the tightly-

coupled resources are capable of, it is important that the overlay

network not introduce significant overhead relative to the native

hardware. To support such a model, we describe the design, im-

plementation, and evaluation of a virtual networking system that

has negligible latency and bandwidth overheads in 1–10 Gbps net-

works. Our system, VNET/P, is embedded into our publicly avail-

able Palacios virtual machine monitor (VMM). VNET/P achieves

native performance on 1 Gbps Ethernet networks and very high

performance on 10 Gbps Ethernet networks and InfiniBand. On

the latter networks, performance is converging to native speeds as

we continue to enhance VNET/P. In comparison to VNET/U, its

previously demonstrated, and highly optimized, user-level counter-

part, VNET/P can achieve bandwidths over 33 times as high. These

results suggest that it is feasible to extend a software-based overlay

network designed to facilitate computing at wide-area scales into

tightly-coupled environments.

1. INTRODUCTION
Cloud computing in the “infrastructure as a service” (IaaS) model

has the potential to provide economical and effective on-demand

resources for high performance computing. In this model, an ap-

plication is mapped into a collection of virtual machines (VMs)

that are instantiated as needed, and at the scale needed. Indeed, for

.

loosely coupled applications, this concept has readily moved from

research [6, 37, 17] to practice [44, 31]. However, Tightly-coupled

scalable high performance computing (HPC) applications currently

remain the purview of resources such as clusters and supercomput-

ers.

The current limitation of cloud computing systems to loosely-

coupled applications is not due to machine virtualization limita-

tions. Current virtual machine monitors (VMMs) and other vir-

tualization mechanisms present negligible overhead for CPU and

memory intensive workloads [15, 28]. With VMM-bypass [27] or

self-virtualizing devices [33] communication overheads can also be

negligible.

While cloud computing does provide minimal intra-node over-

head, it is well known that the network infrastructure imposes sig-

nificant and frequently unpredictable performance penalties. This

is a result of both the large scale of cloud data centers as well as the

common practice of using commodity network architectures such

as 1 Gbps Ethernet. This is especially an acute issue for tightly-

coupled parallel applications specifically designed to target large

scale machines with specialized high-end interconnects such as In-

finiBand. Considerable work has gone into addressing these issues

at the network hardware layer with designs such as Portland, VL2,

and others [30, 10, 18]. While these tools strive to provide uni-

form performance across a cloud data center (a critical feature for

many HPC applications), they do not provide the same features

once an application has migrated outside the local data center and

lack compatibility with the more specialized interconnects present

on HPC systems. The work we describe here is intended to support

a model in which tightly-coupled applications can seamlessly mi-

grate to and from heterogeneous data center networks, specialized

HPC machines, and even the wide-area.

Beyond the need to support such a model across today’s high

throughput/low-latency HPC environments, we note that data cen-

ter network design and cluster/supercomputer network design seems

to be converging [2, 11]. This suggests that future data centers

deployed for general purpose cloud computing will become an in-

creasingly better fit for tightly-coupled parallel applications, and

therefore such environments could potentially also benefit from our

work.

The current limiting factor in employing cloud computing for

tightly-coupled applications is the performance of the virtual net-

working system. This system combines a simple networking ab-

straction within the VMs with location-independence, hardware-

independence, and traffic control. For example, an overlay net-

working system that exposes a layer 2 abstraction lets the user treat

his VMs as being on a simple LAN, while allowing the VMs to be

migrated seamlessly across resources. By controlling the overlay,

the cloud provider can control the bandwidth and the paths between

VMs over which traffic flows. Such systems [40, 36] and others

that expose different abstractions to the VMs [8, 45] have been un-

der continuous research and development for several years. Current

virtual networking systems have sufficiently low overhead to effec-

tively host loosely-coupled scalable applications [9, 5], but their

performance is insufficient for tightly-coupled applications [32].

In response to this limitation, we have designed, implemented,

and evaluated VNET/P, an overlay network that provides a simple,

persistent layer 2 abstraction to a collection of VMs regardless of

their current locations. VNET/P shares its model and vision with

our previously reported VNET/U system, but unlike VNET/U, it

is designed to achieve near-native performance in the 1 Gbps and

10 Gbps switched networks common in clusters today, and pave

the way for even faster networks, such as InfiniBand, in the future.

The model and vision of VNET in general, and the limitations of

VNET/U specifically, are described in more detail in Section 2.

VNET/P is implemented in the context of our publicly avail-

able, open source Palacios VMM, which is described in Section 3.

Palacios [23] is in part designed to support virtualized supercom-

puting, with scaling studies of tightly-coupled parallel applications

of up to 4096 nodes on Sandia National Labs’ Cray XT-class Red

Storm machine showing < 5% application performance degrada-

tion compared to native performance [22]. A detailed description

of VNET/P’s design and implementation is given in Section 4. As

a part of Palacios, VNET/P is publicly available. VNET/P could

be implemented in other VMMs, and as such provides a proof-of-

concept that virtual networking for VMs, with performance over-

heads low enough to be inconsequential even in a cluster environ-

ment, is clearly possible.

The performance evaluation of VNET/P (Section 5) shows that it

is able to achieve native bandwidth on 1 Gbps Ethernet with a small

increase in latency, and very high bandwidth on 10 Gbps Ethernet

with a similar, small latency increase. Latency increases are pre-

dominantly due to the limited support for selective interrupt exiting

in the current AMD and Intel hardware virtualization extensions,

which we expect to be change soon. We also demonstrate in Sec-

tion 6 that VNET/P can effectively support running Ethernet-based

networked programs on non-Ethernet HPC communication device,

specifically InfiniBand NICs.

Through the use of low overhead virtual networking in high-

bandwidth, low-latency environments such as current clusters and

supercomputers, and future data centers, we seek to make it prac-

tical to use virtual networking at all times, even when running

tightly-coupled applications on such high-end environments. This

would allow us to seamlessly and practically extend the already

highly effective virtualization-based IaaS cloud computing model

to such environments. A parallel computation running on a col-

lection of VMs could seamlessly migrate from the wide-area to a

cluster if it proved to require a more tightly-coupled network, and

conversely, from the cluster to the wide-area if its communication

requirements were relaxed. Finally, the computation could migrate

from one cluster to another, for example, to take advantage of a

better price.

Our contributions are as follows:

• We articulate the benefits of extending virtual networking for

VMs down to clusters and supercomputers with high perfor-

mance networks. These benefits are also applicable to cur-

rent and future data centers that support IaaS cloud comput-

ing.

• We describe the design and implementation of a virtual net-

working system, VNET/P, that does so. The design could

be applied to other virtual machine monitors and virtual net-

work systems.

• We evaluate VNET/P, finding that it provides performance

with negligible overheads on 1 Gbps Ethernet networks, and

manageable overheads on 10 Gbps Ethernet networks.

• We describe how VNET/P also provides its abstraction on

top of InfiniBand hardware, allowing guests to exploit such

hardware without any special drivers or an InfiniBand stack.

• We describe how a system like VNET/P could be made even

faster.

It is important to point out that VNET/P is an overlay network

that is implemented entirely in software. It is not a data center

network design, facilitated by hardware, nor a system to provide

Internet connectivity to customer VMs in a data center. The point of

a VNET overlay is to allow a collection of VMs to communicate as

if they are on a simple physical Ethernet network regardless of their

location. As with any overlay, VNET has numerous mechanisms to

establish, monitor, and control the overlay topology and routing on

it, which we summarize from prior work in Section 2. The focus of

this paper, and of VNET/P, is on how to extend VNET to tightly-

coupled environments. In this, the key challenge is how to make

it possible for two VMs, both mapped to such an environment, to

communicate with the bandwidth and latency the environment is

capable of, all while maintaining the VNET abstraction. The paper

focuses on this challenge.

2. VNET MODEL AND CURRENT IMPLE-

MENTATION
We now describe the VNET model and how it supports adaptive

computing, as well as the most recent implementation of VNET

prior to this work and its limitations.

2.1 Model
The VNET model was originally designed to support adaptive

computing on distributed virtualized computing resources within

the Virtuoso system [38], and in particular to support the adaptive

execution of a distributed or parallel computation executing in a

collection of VMs potentially spread across multiple providers or

supercomputing sites. The key requirements, which also hold for

the present paper, were as follows.

1. VNET would make within-VM network configuration the

sole responsibility of the VM owner.

2. VNET would provide location independence to VMs, allow-

ing them to be migrated between networks and from site to

site, while maintaining their connectivity, without requiring

any within-VM configuration changes.

3. VNET would provide hardware independence to VMs, al-

lowing them to use diverse networking hardware without re-

quiring the installation of specialized software.

4. VNET would provide minimal overhead, compared to native

networking, in the contexts in which it is used.

The VNET model meets these requirements by carrying the user’s

VMs’ traffic via a configurable overlay network. The overlay presents

a simple layer 2 networking abstraction: a user’s VMs appear to

be attached to the user’s local area Ethernet network, regardless

of their actual locations or the complexity of the VNET topol-

ogy/properties. The VNET model and our initial implementation

are described in detail elsewhere [40].

The VNET overlay is dynamically reconfigurable, and can act as

a locus of activity for an an adaptive system such as Virtuoso. Fo-

cusing on parallel and distributed applications running in loosely-

coupled virtualized distributed environments e.g., “IaaS Clouds”,

we we demonstrated that the VNET “layer” can be effectively used

to: (1) monitor application communication and computation be-

havior [13, 12]), (2) monitor underlying network behavior [14]),

(3) formulate performance optimization problems [42, 39], (4) ad-

dress such problems through VM migration and overlay network

control [41], scheduling [25, 26], network reservations [24]), and

network service interposition [20].

These and other features that can be implemented within the

VNET model have only marginal utility if carrying traffic via the

VNET overlay has significant overhead compared to the underlying

native network.

2.2 VNET/U implementation
The third generation implementation of VNET, which we now

refer to as VNET/U, supports a dynamically configurable general

overlay topology with dynamically configurable routing on a per

MAC address basis. The topology and routing configuration is sub-

ject to global or distributed control (for example, by the VADAPT [41])

part of Virtuoso. The overlay carries Ethernet packets encapsulated

in UDP packets, TCP streams with and without SSL encryption,

TOR privacy-preserving streams, and others. Because Ethernet

packets are used, the VNET abstraction can also easily interface

directly with most commodity network devices, including virtual

NICs exposed by VMMs in the host, and with fast virtual devices

(e.g., Linux virtio network devices) in guests.

VNET/U is implemented as a user-level system on top of our

VTL traffic library [20]. As a user-level system, it readily inter-

faces with VMMs such as VMware Server and Xen, and requires

no host changes to be used, making it very easy for a provider to

bring it up on a new machine. Further, it is easy to bring up VNET

daemons when and where needed to act as proxies or waypoints.

A VNET daemon has a control port which speaks a control lan-

guage for dynamic configuration. A collection of tools allow for

the wholesale construction and teardown of VNET topologies, as

well as dynamic adaptation of the topology and forwarding rules to

the observed traffic and conditions on the underlying network.

2.3 VNET/U performance
VNET/U is among the fastest virtual networks implemented us-

ing user-level software, achieving 21.5 MB/s (172 Mbps) [20] with

a 1 ms latency overhead communicating between Linux 2.6 VMs

running in VMWare Server GSX 2.5 on machines with dual 2.0

GHz Xeon processors. These speeds are sufficient for its purpose in

providing virtual networking for wide-area and/or loosely-coupled

distributed computing. They are not, however, sufficient for use

within a cluster at gigabit or greater speeds. Making this basic VM-

to-VM path competitive with hardware is the focus of this paper.

VNET/U is fundamentally limited by the kernel/user space transi-

tions needed to handle a guest’s packet send or receive. In VNET/P,

we move VNET directly into the VMM to avoid such transitions.

3. PALACIOS VMM

Palacios is an OS-independent, open source, BSD-licensed, pub-

licly available embeddable VMM designed as part of the V3VEE

project (http://v3vee.org). The V3VEE project is a collab-

orative community resource development project involving North-

western University and the University of New Mexico, with close

collaboration with Sandia National Labs for our efforts in the vir-

tualization of supercomputers. Detailed information about Palacios

can be found elsewhere [23, 21, 46]. Palacios is capable of virtual-

izing large scale (4096+ nodes) supercomputers with only minimal

performance overheads [22].

At a high level Palacios is designed to be an OS-independent,

embeddable VMM that is widely compatible with existing OS ar-

chitectures. In other words, Palacios is not an operating system,

nor does it depend on any one specific OS. This OS-agnostic ap-

proach allows Palacios to be embedded into a wide range of differ-

ent OS architectures, each of which can target their own specific

environment (for instance 32 or 64 bit operating modes). Pala-

cios is intentionally designed to maintain the separation between

the VMM and OS. In accordance with this, Palacios relies on the

hosting OS for such things as scheduling and process/thread man-

agement, memory management, and physical device drivers. This

allows OS designers to control and use Palacios in whatever ways

are most suitable to their architecture.

The Palacios implementation is built on the virtualization exten-

sions deployed in current generation x86 processors, specifically

AMD’s SVM [3] and Intel’s VT [16, 43]. A result of this is that

Palacios only supports both host and guest environments that target

the x86 hardware platform. However, while the low level imple-

mentation is constrained, the high level architecture is not, and can

be easily adapted to other architectures with or with out hardware

virtualization support. Specifically Palacios supports both 32 and

64 bit host and guest environments, both shadow and nested paging

models, and a significant set of devices that comprise the PC plat-

form. Work is also underway to support future I/O architectures

such as IOMMUs. In addition to supporting full-system virtualized

environments, Palacios provides support for the implementation of

paravirtual interfaces. Due to the ubiquity of the x86 architecture

Palacios is capable of operating across many classes of machines.

To date, Palacios has successfully virtualized commodity desktops

and servers, high end InfiniBand clusters, and supercomputers such

as a Cray XT.

As stated earlier, Palacios is an OS-independent VMM that is de-

signed to be embeddable into any host OS. Four embeddings cur-

rently exist: Linux, Sandia National Labs’ publicly available Kit-

ten lightweight kernel [34], Minix, and GeekOS. In this paper, we

mostly employ the Linux embedding, although we use the Kitten

embedding for Infiniband.

4. VNET/P DESIGN AND IMPLEMENTATION
We now describe how VNET/P has been architected and imple-

mented in the context of Palacios as embedded in a Linux host.

Section 6 describes how VNET/P is implemented in the context of

a Kitten embedding. The nature of the embedding affects VNET/P

primarily in how it interfaces to the underlying networking hard-

ware and networking stack. In the Linux embedding, this interface

is accomplished directly in the Linux kernel. In the Kitten embed-

ding, the interface is done via a service VM.

4.1 Architecture
Figure 1 shows the overall architecture of VNET/P, and illus-

trates the operation of VNET/P in the context of the Palacios VMM

embedded in a Linux host. In this architecture, guests run in appli-

cation VMs. Off-the-shelf guests are fully supported. Each applica-

Guest OS Guest OS
User Space Guest OS

Application

Guest OS

Application

VNET/P

Control
Device
Driver

Device
Driver

Virtual NIC Virtual NICLinux Kernel

VNET/P Core
VNET/P

Palacios VMM

VNET/P

Bridge

Host Driver

Physical Network

Figure 1: VNET/P architecture

tion VM provides a virtual (Ethernet) NIC to its guest. For high per-

formance applications, as in this paper, the virtual NIC conforms

to the virtio interface, but several virtual NICs with hardware inter-

faces are also available in Palacios. The virtual NIC conveys Eth-

ernet packets between the application VM and the Palacios VMM.

Using the virtio virtual NIC, one or more packets can be conveyed

from an application VM to Palacios with a single VM exit, and

from Palacios to the application VM with a single VM exit/entry

pair.

The VNET/P core is the component of VNET/P that is directly

embedded into the Palacios VMM. It is responsible for routing Eth-

ernet packets between virtual NICs on the machine and between

this machine and remote VNET on other machines. The VNET/P

core’s routing rules are dynamically configurable, through the con-

trol interface by the utilities that can be run in user space.

The VNET/P core also provides an expanded interface that the

control utilities can use to configure and manage VNET/P. The

VNET/P control component uses this interface to do so. It in turn

acts as a daemon that exposes a TCP control port that uses the

same configuration language as VNET/U. Between compatible en-

capsulation and compatible control, the intent is that VNET/P and

VNET/U be interoperable, with VNET/P providing the “fast path”

for communication within high bandwidth/low latency environments.

To exchange packets with a remote machine, the VNET/P core

uses a VNET/P bridge to communicate with the physical network.

The VNET/P bridge runs as a kernel module in the host kernel and

uses the host’s networking facilities to interact with physical net-

work devices and with the host’s networking stack. An additional

responsibility of the bridge is to provide encapsulation. For perfor-

mance reasons, we use UDP encapsulation, in a form compatible

with that used in VNET/U. TCP encapsulation is also supported.

The bridge selectively performs UDP or TCP encapsulation for

packets destined for remote machines, but can also deliver an Eth-

ernet packet without encapsulation. In our performance evaluation,

we consider only encapsulated traffic.

The VNET/P core consists of approximately 2500 lines of C in

Palacios, while the VNET/P bridge consists of about 2000 lines of

C comprising a Linux kernel module. VNET/P is available via the

V3VEE project’s public git repository, as part of the “devel” branch

of the Palacios VMM.

Outside

Network

VNET/P

Bridge

Virtual Device Manager

Virtual NICVirtual NIC Virtio Device
VNET/P Bridge

Device

C f

TXQ RXQ TXQ RXQ TXQ RXQ

Packet

Configure

Interface

Routing table
VNET/P C

Dispatcher

VNET/P Core

Figure 2: VNET/P core’s internal logic.

Links/inter

faces
Link 0

Ro ting t bl

Link 0

Link 1

Routing table

Hash-table
Packet

Di t h I t f 0
based Cache

Dispatcher

Interface 1

Interface 0

Figure 3: VNET/P routing data structures.

4.2 VNET/P core
The VNET/P core is primarily responsible for routing, and dis-

patching raw Ethernet packets. It intercepts all Ethernet packets

from virtual NICs that are associated with VNET/P, and forwards

them either to VMs on the same host machine or to the outside net-

work through the VNET/P bridge. Each packet is routed based on

its source and destination MAC addresses. The internal processing

logic of the VNET/P core is illustrated in Figure 2.

Routing. To route Ethernet packets, VNET/P uses the routing

logic and data structures shown in Figure 3. Routing rules are main-

tained in a routing table that is indexed by source and destination

MAC addresses. Although this table structure only provides linear

time lookups, it is important to note that a hash table-based routing

cache is layered on top of the table, and the common case is for

lookups to hit in the cache and thus be serviced in constant time.

A routing table entry maps to a destination, which is either a

link or an interface. A link is an overlay destination—it is the next

UDP/IP-level (i.e., IP address and port) destination of the packet,

on some other machine. A special link corresponds to the local net-

Guest GuestGuest Guest

packets queues
VNET/P Core

Routing table

Packet Packet PacketPacket
Dispatcher

Thread

ac et

Dispatcher

Thread

Dispatcher

Thread

Dispatcher

Thread

Core CoreCoreCore

Figure 4: VNET/P running on a multicore system. The selec-

tion of how many, and which cores to use for packet dispatcher

threads is made dynamically.

work. The local network destination is usually used at the “exit/entry

point” where the VNET overlay is attached to the user’s physical

LAN. A packet routed via a link is delivered to another VNET/P

core, a VNET/U daemon, or the local network. An interface is a

local destination for the packet, corresponding to some virtual NIC.

For an interface destination, the VNET/P core directly delivers

the packet to the relevant virtual NIC. For a link destination, it in-

jects the packet into the VNET/P bridge along with the destination

link identifier. The VNET/P bridge demultiplexes based on the link

and either encapsulates the packet and sends it via the correspond-

ing UDP or TCP socket, or sends it directly as a raw packet to the

local network.

Packet processing. Packet forwarding in the VNET/P core is

conducted by packet dispatchers. A packet dispatcher interacts

with each virtual NIC to forward packets in one of two modes:

guest-driven mode or VMM-driven mode.

The purpose of guest-driven mode is to minimize latency for

small messages in a parallel application. For example, a barrier op-

eration would be best served with guest-driven mode. In the guest-

driven mode, the packet dispatcher is invoked when the guest’s in-

teraction with the NIC explicitly causes an exit. For example, the

guest might queue a packet on its virtual NIC and then cause an exit

to notify the VMM that a packet is ready. In guest-driven mode, a

packet dispatcher runs at this point. Similarly, on receive, a packet

dispatcher queues the packet to the device and then immediately

notifies the device.

The purpose of VMM-driven mode is to maximize throughput

for bulk data transfer in a parallel application. Unlike guest-driven

mode, VMM-driven mode tries to handle multiple packets per VM

exit. It does this by having VMM poll the virtual NIC. The NIC is

polled in two ways. First, it is polled, and a packet dispatcher is run,

if needed, in the context of the current VM exit (which is unrelated

to the NIC). Even if exits are infrequent, the polling and dispatch

will still make progress during the handling of timer interrupt exits.

The second manner in which the NIC can be polled is in the

context of a packet dispatcher running in a kernel thread inside the

VMM context, as shown in Figure 4. The packet dispatcher thread

can be instantiated multiple times, with these threads running on

4000

3000

3500

2500

3000

2000

M
b

p
s

UDP

1500

M

TCP

1000

0

500

0

1 2 3

of VNET/P Threads

Figure 5: Early example of scaling of receive throughput by

executing the VMM-based components of VNET/P on separate

cores, and scaling the number of cores used. The ultimate on-

wire MTU here is 1500 bytes.

different cores in the machine. If a packet dispatcher thread de-

cides that a virtual NIC queue is full, it forces the NIC’s VM to

handle it by doing a cross-core IPI to force the core on which the

VM is running to exit. The exit handler then does the needed event

injection. Using this approach, it is possible, to dynamically em-

ploy idle processor cores to increase packet forwarding bandwidth.

Influenced by Sidecore [19], an additional optimization we de-

veloped was to offload in-VMM VNET/P processing, beyond packet

dispatch, to an unused core or cores, thus making it possible for the

guest VM to have full use of its cores (minus the exit/entry costs

when packets are actually handed to/from it). Figure 5 is an exam-

ple of the benefits of doing so for small MTU communication.

VNET/P switches between these two modes dynamically de-

pending on the arrival rate of packets destined to or from the virtual

NIC. For low rate, it enables guest-driven mode to reduce the sin-

gle packet latency. On the other hand, with a high arrival rate it

switches to VMM-driven mode to increase throughput. Specifi-

cally, the VMM detects whether the system is experiencing a high

exit rate due to virtual NIC accesses. It recalculates the rate period-

ically. If the rate is high enough when the guest transmits packets,

then VNET/P switches the virtual NIC associated with that guest

from guest-driven mode to VMM-driven mode. In other hand, if

the rate drops low from the last recalculate period, it switches back

from VMM-driven to guest-driven mode.

For a 1 Gbps network, guest-driven mode is sufficient to allow

VNET/P to achieve the full native throughput. On a 10 Gbps net-

work, VMM-driven mode is essential to move packets through the

VNET/P core with near-native throughput.

4.3 Virtual NICs
VNET/P is designed to be able to support any virtual Ether-

net NIC device. A virtual NIC must, however, register itself with

VNET/P before it can be used. This is done during the initializa-

tion of the virtual NIC at VM configuration time. The registra-

tion provides additional callback functions for packet transmission,

transmit queue polling, and packet reception. These functions es-

sentially allow the NIC to use VNET/P as its backend, instead of

using an actual hardware device driver backend.

Linux virtio virtual NIC. Virtio [35], which was recently de-

veloped for the Linux kernel, provides an efficient abstraction for

VMMs. A common set of virtio device drivers are now included

as standard in the Linux kernel. To maximize performance, our

performance evaluation configured the application VM with Pala-

cios’s virtio-compatible virtual NIC, using the default Linux virtio

network driver.

MTU. The maximum transmission unit (MTU) of a networking

layer is the size of the largest protocol data unit that the layer can

pass onwards. A larger MTU improves throughput because each

packet carries more user data while protocol headers have a fixed

size. A larger MTU also means that fewer packets need to be pro-

cessed to transfer a given amount of data. Where per-packet pro-

cessing costs are significant, larger MTUs are distinctly preferable.

Because VNET/P adds to the per-packet processing cost, support-

ing large MTUs is helpful.

VNET/P presents an Ethernet abstraction to the application VM.

The most common Ethernet MTU is 1500 bytes. However, 1 Gbit

and 10 Gbit Ethernet can also use “jumbo frames”, with an MTU

of 9000 bytes. Other networking technologies support even larger

MTUs. To leverage the large MTUs of underlying physical NICs,

VNET/P itself supports MTU sizes of up to 64 KB.1 The applica-

tion OS can determine the virtual NIC’s MTU and then transmit and

receive accordingly. VNET/P can advertise the appropriate MTU.

The MTU used by virtual NIC can result in encapsulated VNET/P

packets that exceed the MTU of the underlying physical network.

In this case, fragmentation has to occur, either in the VNET/P bridge

or in the host NIC (via TCP Segmentation Offloading (TSO)). Frag-

mentation and reassembly is handled by VNET/P and is totally

transparent to the application VM. However, performance will suf-

fer when significant fragmentation occurs. Thus it is important that

the application VM’s device driver select an MTU carefully, and

recognize that the desirable MTU may change over time, for exam-

ple after a migration to a different host. In Section 5, we analyze

throughput using different MTU sizes.

4.4 VNET/P Bridge
The VNET/P bridge functions as a network bridge to direct pack-

ets between the VNET/P core and the physical network through the

host NIC. It operates based on the routing decisions made by the

VNET/P core which are passed along with the packets to be for-

warded. It is implemented a Linux kernel module running in the

host.

When the VNET/P core hands a packet and routing directive up

to the bridge, one of two transmission modes will occur, depending

on the destination:

• Direct send Here, the Ethernet packet is directly sent. This

is common for when a packet is exiting a VNET overlay and

entering the physical network, as typically happens on the

user’s network. It may also be useful when all VMs will

remain on a common layer 2 network for their lifetime.

• Encapsulated send Here the packet is encapsulated in a UDP

packet and the UDP packet is sent to the directed destination

IP address and port. This is the common case for traversing

a VNET overlay link.

For packet reception, the bridge uses two modes, simultaneously:

• Direct receive Here the host NIC is run in promiscuous mode,

and packets with destination MAC addresses corresponding

1This may be expanded in the future. Currently, it has been sized
to support the largest possible IPv4 packet size.

Host User Space

Remote Machine
VNET/P Host Machine

Host User Space

VNET/P

configuration
User

config

Configuration

Connectionsg

console
config
files

Connections

H t K l
VNET/P Control

Host Kernel

Palacios VNET/P Bridge

VNET/P CVNET/P Core

Figure 6: VNET/P overlay control interface. VNET/P is con-

trolled via a userspace utilities, including a daemon that sup-

ports remote configuration using a protocol compatible with

VNET/U. A VNET overlay is controlled via this protocol,

and thus all the configuration, monitoring, and control algo-

rithms previously described in the context of VNET/U apply to

VNET/P as well.

to those requested by the VNET/P core are handed over to it.

This is used in conjunction with direct send.

• Encapsulated receive Here, UDP packets bound for the com-

mon VNET link port are disassembled and their encapsulated

Ethernet packets are delivered to the VNET/P core. This is

used in conjunction with encapsulated send.

Our performance evaluation focuses solely on encapsulated send

and receive.

4.5 Control
The VNET/P control component allows for remote and local

configuration of links, interfaces, and routing rules so that an over-

lay can be constructed and changed over time. VNET/U already

has user-level tools to support VNET, and, as we described in Sec-

tion 2, a range of work already exists on the configuration, mon-

itoring, and control of a VNET overlay. In VNET/P, we reuse

these tools as much as possible by having the user-space view of

VNET/P conform closely to that of VNET/U. The VNET/P con-

figuration console allows for local control to be provided from a

file, or remote control via TCP-connected VNET/U clients (such

as tools that automatically configure a topology that is appropriate

for the given communication pattern among a set of VMs [41]). In

both cases, the VNET/P control component is also responsible for

validity checking before it transfers the new configuration to the

VNET/P core. The control interface is illustrated in Figure 6.

4.6 Performance-critical data paths and flows
Figure 7 depicts how the components previously described oper-

ate during packet transmission and reception. These are the perfor-

mance critical data paths and flows within VNET/P, assuming that

virtio virtual NICs (Section 4.3) are used. The boxed regions of

the figure indicate steps introduced by virtualization, both within

the VMM and within the host OS kernel. There are also additional

overheads involved in the VM exit handling for I/O port reads and

writes and for interrupt injection.

Network Packet Send

Application OSApplication OS

VMM
OUT to I/O Port of VNIC

Virtual NIC IO Handler
S d k t t VNET

Context Switch

VNET/P Packet Dispatcher

Send packet to VNET

Send packet to VNET/P BridgeSend packet to VNET/P Bridge

VNET/P B id

Host OS

VNET/P Bridge
Packet Encapsulation

Host OS NIC device driver
OUT to IO ports

Physical Ethernet HW
Packet launch

Network Packet Receive

Physical Ethernet HWPhysical Ethernet HW

Host OS Device Driver

Device Interrupt

VNET/P Bridgeg

P l i VMM

Send packet to VNET/P core

De-capsulation

Palacios VMM

VNET/P P k t Di t hVNET/P Packet Dispatcher
Routing Packet

Send Packet to destination VM

Virtual NIC for destination VM
Send Packet to destination VM

Inject Virtual Interrupt
Guest OS device driver

Inject Virtual Interrupt

Packet receive completion

Figure 7: Performance-critical data paths and flows for packet transmission and reception. Solid boxed steps and components occur

within the VMM itself, while dashed boxed steps and components occur in the host OS.

Transmission. The guest OS in the VM includes the device driver

for the virtual NIC. The driver initiates packet transmission by writ-

ing to a specific virtual I/O port after it puts the packet into the

NIC’s shared ring buffer (TXQ). The I/O port write causes an exit

that gives control to the virtual NIC I/O handler in Palacios. The

handler reads the packet from the buffer and writes it to VNET/P

packet dispatcher. The dispatcher does a routing table lookup to

determine the packet’s destination. For a packet destined for a VM

on some other host, the packet dispatcher puts the packet into the

receive buffer of the VNET/P bridge and notify it. Meanwhile,

VNET/P bridge fetches the packet from the receive buffer, deter-

mines its destination VNET/P bridge, encapsulates the packet, and

transmits it to the physical network via the host NIC on the host

machine.

Note that while the packet is handed off multiple times, it is

copied only once inside the VMM, from the send buffer (TXQ)

of the receive buffer of the VNET/P bridge. Also note that while

the above description, and the diagram suggest sequentiality, packet

dispatch can occur on a separate kernel thread running on a separate

core, and the VNET/P bridge itself introduces additional concur-

rency. Thus, from the guest’s perspective, the I/O port write that

initiated transmission returns essentially within a VM exit/entry

time.

Reception. The path for packet reception is essentially symmet-

ric to that of transmission. The host NIC in the host machine

receives a packet using its standard driver and delivers it to the

VNET/P bridge. The bridge unencapsulates the packet and sends

the payload (the raw Ethernet packet) to the VNET/P core. The

packet dispatcher in VNET/P core determines its destination VM

and puts the packet into the receive buffer (RXQ) of its virtual NIC.

Similar to transmission, there is considerably concurrency in the

reception process. In particular, packet dispatch can occur in paral-

lel with the reception of the next packet.

5. PERFORMANCE EVALUATION
The purpose of our performance evaluation is to determine how

close VNET/P comes to native throughput and latency in the most

demanding (lowest latency, highest throughput) hardware environ-

ments. We consider communication between two machines whose

NICs are directly connected. In the virtualized configuration the

guests and performance testing tools run on top of Palacios with

VNET/P carrying all traffic between them using encapsulation. In

the native configuration, the same guest environments run directly

on the hardware.

Our evaluation of communication performance in this environ-

ment occurs at three levels. First, we benchmark the TCP and UDP

bandwidth and latency. Second, we benchmark MPI using a widely

used benchmark. Finally, we use basic communication benchmark

included with a widely used HPC benchmark suite.

5.1 Testbed and configurations
Our testbed consists of two physical machines, which we call

host machines, that have the following hardware:

• Quadcore 2.4 GHz X3430 Intel Xeon(tm) processors

• 8 GB RAM

• Broadcom NetXtreme II 1 Gbps Ethernet NIC (1000BASE-

T)

• NetEffect NE020 10 Gbps Ethernet fiber optic NIC (10GBASE-

SR) in a PCI-e slot

The Ethernet NICs of these machines are directly connected with

twisted pair and fiber patch cables.

We considered the following two software configurations:

• Native: In the native configuration, neither Palacios nor VNET/P

is used. A minimal BusyBox-based Linux environment based

on an unmodified 2.6.30 kernel runs directly on the host ma-

chines. We refer to the 1 and 10 Gbps results in this configu-

ration as Native-1G and Native-10G, respectively.

• VNET/P: The VNET/P configuration corresponds to the ar-

chitectural diagram given in Figure 1, with a single guest

VM running on Palacios. The guest VM is configured with

one virtio network device, 1 core, and 1 GB of RAM. The

guest VM runs a minimal BusyBox-based Linux environ-

ment, based on the 2.6.30 kernel. The kernel used in the VM

identical to that in the Native configuration, with the excep-

tion that the virtio NIC drivers are loaded. The virtio MTU

is configured as its largest possible size (64K Bytes).2 We

refer to the 1 and 10 Gbps results in this configuration as

VNET/P-1G and VNET/P-10G, respectively.

Performance measurements are made between identically con-

figured machines. That is, VNET/P-1G refers to 1 Gbps communi-

cation between two machines configured as described in VNET/P

above, and so on.

To assure accurate time measurements in the virtualized case,

our guest is configured to use the CPU’s cycle counter, and Pala-

cios is configured to allow the guest direct access to the underlying

hardware cycle counter.

Our 1 Gbps NIC only supports MTUs up to 1500 bytes, while

our 10 Gbps NIC can support MTUs of up to 9000 bytes. We use

these maximum sizes unless otherwise specified.

5.2 TCP and UDP microbenchmarks
Latency and throughput are the fundamental measurements we

use to evaluate the VNET/P system performance. First, we consider

these at the IP level, measuring the round-trip latency, the UDP

goodput, and the TCP throughput between two nodes. We measure

round-trip latency using ping by sending ICMP packets of different

sizes. UDP and TCP throughput are measured using ttcp-1.10.

UDP and TCP with a standard MTU

Figure 8 show the TCP throughput and UDP goodput achieved in

each of our configurations on each NIC. For the 1Gbps network,

host MTU is setup to 1500 bytes, and for 10Gbps network, host

MTUs of 1500 bytes and 9000 bytes are both tested.

We begin by considering UDP goodput when a standard host

MTU size is used. For UDP measurements, ttcp was configured

to use 64000 byte writes sent as fast as possible over 60 seconds.

For the 1 Gbps network, VNET/P easily matches the native good-

put. For the 10 Gbps network, VNET/P achieves 74% of the native

UDP goodput. The UDP goodput that VNET/P is capable of, us-

ing a standard Ethernet MTU, is approximately 33 times that of

VNET/U.

For TCP throughput, ttcp was configured to use a 256 KB socket

buffer, and to communicate 40 MB writes are made. Similar to the

UDP results, VNET/P has no difficulty achieving native throughput

on the 1 Gbps network. On the 10 Gbps network, using a standard

Ethernet MTU, it achieves 78% of the native throughput while op-

erating approximately 33 times faster than VNET/U.

UDP and TCP with a large MTU

We now consider TCP and UDP performance with 9000 byte jumbo

frames our 10 Gbps NICs support. We adjusted the VNET/P MTU

so that the ultimate encapsulated packets will fit into these frames

without fragmentation. For TCP we configure ttcp to use writes

of corresponding size, maximize the socket buffer size, and do 4

million writes. For UDP, we configure ttcp to use commensurately

large packets sent as fast as possible for 60 seconds. The results are

also shown in the Figure 8. We can see that performance increases

across the board compared to the 1500 byte MTU results.

2An astute reader may find it quite curious that we would choose
a guest MTU (64K) that is significantly larger than the host MTUs
(1500/9000 bytes) into which we will ultimately encapsulate pack-
ets. This unusual choice, which optimizes performance, is due
to a tradeoff between fragmentation/reassembly costs, and VM
exit/entry and per-exit VNET/P processing costs. With a smaller
guest MTU, fragmentation/reassembly could, of course, be reduced
or even avoided. However, as the guest MTU shrinks, for a given
volume of data to be transferred there will be more guest exits, each
of which contributes a fixed cost. The right guest MTU will depend
on the hardware and the host OS.

700

800

600

700

VNET/P-10G

N ti 10G

500

s

Native-10G

400

M
B

y
te

s
/s

300

M

100

200

0

100

4 64 1024 16K 256K 4M4 64 1024 16K 256K 4M

Message Size (Bytes)

Figure 11: Intel MPI SendRecv microbenchmark showing bi-

directional bandwidth as a function of message size for native

and VNET/P on the 10 Gbps hardware with a host MTU of

9000. There is no reduction in performance compared to the

unidirectional case.

Latency

Figure 9 shows the round-trip latency for different packet sizes,

as measured by ping. The latencies are the average of 100 mea-

surements. While the increase in latency of VNET/P over Native

is significant in relative terms (2x for 1 Gbps, 3x for 10 Gbps), it

is important to keep in mind the absolute performance. On a 10

Gbps network, VNET/P achieves a 130 µs round-trip, end-to-end

latency. The latency of VNET/P is over three times lower than that

of VNET/U.

5.3 MPI microbenchmarks
Parallel programs for distributed memory computers are typi-

cally written to, or compiled to, the MPI interface standard [29].

We used the OpenMPI 1.3 [7] implementation in our evaluations.

We measured the performance of MPI over VNET/P by employ-

ing the widely-used Intel MPI Benchmark Suite (IMB 3.2.2) [4],

focusing on the point-to-point messaging performance. We com-

pared the basic MPI latency and bandwidth achieved by VNET/P

and native.

Figure 10 illustrates the latency and bandwidth reported by Intel

MPI PingPong benchmark for our 10 Gbps configuration. Here,

the latency measured is the one-way, end-to-end, application-level

latency. That is, it is the time from when an an MPI send starts on

one machine to when its matching MPI receive call completes on

the other machine. For both native and VNET/P, the host MTU is

set to 9000 bytes.

VNET/P’s small message MPI latency is about 55 µs, about 2.5

times worse than the native case. However, as the message size

increases, the latency difference decreases. The measurements of

End-to-end bandwidth as a function of message size shows that na-

tive MPI bandwidth is slightly lower than raw UDP or TCP through-

put, and VNET/P performance tracks it similarly. The bottom line

is that the current VNET/P implementation can deliver an MPI la-

tency of 55 µs and bandwidth of 520 MB/s on 10 Gbps Ethernet

hardware.

Figure 11 shows the results of the MPI SendRecv microbench-

mark in which each nodes simultaneously sends and receives. There

1000

800

600600

M
b

it
s

Native-1G

400 VNET/P-1G

200

0

TCP-1500 UDP-1500

8000

6000

7000

Native-10G

5000

6000
VNET/P-10G

4000

M
b

it
s

3000

M

2000

1000

0

TCP-9000 UDP-9000 TCP-1500 UDP-1500

(a) 1 Gbps network with host MTU=1500 Bytes (b) 10 Gbps network (with Host MTU=1500, 9000 Bytes)

Figure 8: End-to-end TCP throughput and UDP goodput of VNET/P on 1 and 10 Gbps network. VNET/P performs identically to

the native case for the 1 Gbps network and achieves 74–78% of native throughput for the 10 Gbps network.

1.6

1.8

1.4

1.6
VNET/P 1G

Native 1G

1

1.2

s

0.8

1

m

0.4

0.6

0.2

0

64 256 1024 4096 16384 65400

ICMP Pkt size (Bytes)

0 7

0.8

VNET/P 1500

0.6

0.7 VNET/P 9000

Native 1500

0.5
Native 9000

0.4m
s

0 2

0.3

0.1

0.2

0

64 256 1024 4096 16384 6540064 256 1024 4096 16384 65400

ICMP Pkt size (Bytes)

(a) 1 Gbps network (Host MTU=1500Bytes) (b) 10 Gbps network (Host MTU=1500, 9000Bytes)

Figure 9: End-to-end round-trip latency of VNET/P as a function of ICMP packet size. Small packet latencies on a 10 Gbps network

in VNET/P are ∼130 µs.

is no decrease in performance because VNET/P is able to recruit

sufficient idle cores.

5.4 HPCC benchmark
HPC Challenge (HPCC) [1] is a widely used benchmark suite

for evaluating likely MPI application performance. Since our focus

is on communication performance and we are testing with two ma-

chines, We evaluated VNET/P using the HPCC b_eff Latency and

Bandwidth components.

Latency is determined via a ping pong benchmark executing be-

tween two processes, one on each node. The client process sends

a message (“ping”) to the server process, which bounces it back to

the client (“pong”). Communication uses the basic MPI blocking

send and receive functions. The ping-pong process is repeated un-

til convergence. Bandwidth is measured by sending 2,000,000 byte

messages repeatedly in a tight loop using the basic MPI blocking

primitives. The average one-way latency and bandwidth are re-

ported, along with minimums and maximums.

Figure 12 shows the results of the HPCC benchmarks. For the

1 Gbps network, VNET/P achieves the same bandwidth as native,

while its latency is about 2 times larger. For the 10 Gbps network,

VNET/P achieves a throughput of 502 MB/s, comparing to native

performance of 718 MB/s, while VNET/P’s latency is slightly more

than 2 times higher.

6. VNET/P FOR INFINIBAND
In support of hardware independence, the 3rd goal of VNET ar-

ticulated in Section 2.1, we have developed an implementation of

VNET/P that allows guests that only support Ethernet NICs to be

seamlessly run on top of an InfiniBand network, or to span Infini-

Band networks and other networks. Regardless of the underlying

networking hardware, the guests see a simple Ethernet LAN.

300

350

250

300
o

n
d

s
)

VNET/P-10G

200

250

ic
ro

s
e
c

o

Native-10G

150

n
c
y
 (

m
i

100L
a
te

50

0

4 32 256 2048 16K 64K

Message Size (Bytes)

700

800

600

700

VNET/P-10G

N ti 10G

500

/s

Native-10G

400

M
B

y
te

s
/

200

300

M

100

200

0

Message Size (Bytes)

(a) One-way latency (b) One-way bandwidth

Figure 10: Intel MPI PingPong microbenchmark showing one-way latency and bandwidth as a function of message size on the 10

Gbps hardware. The host MTU is set to 9000.

1 Gbps Network

Native VNET/P

Message Length: 8 Latency (µs) min/avg/max 24.1/24.1/24.1 58.3/59.1/59.6

Message Length: 2000000 Bandwidth(MByte/s) min/avg/max 116.8/116.9/116.9 113.8/115.1/116.1

10 Gbps Network

Native VNET/P

Message Length: 8 Latency (µs) min/avg/max 18.2/18.3/18.4 53.2/58.3/59.4

Message Length: 2000000 Bandwidth (MByte/s) min/avg/max 713.5/718.8/720.2 490.5/502.8/508.2

Figure 12: HPCC benchmark results giving one-way latency and bandwidth for MPI communication. We compare native perfor-

mance and VNET/P performance on both 1 Gbps hardware (MTU=1500) and 10 Gbps hardware (MTU=9000).

Figure 13 shows the architecture of VNET/P over InfiniBand and

can be compared and contrasted with the VNET/P over Ethernet

architecture shown in Figure 1. Note the abstraction that the guest

VMs see is identical: the guests still believe they are connected by

a simple Ethernet network.

For the current Infiniband implementation, the host OS that is

used is Sandia National Labs’ Kitten lightweight kernel. Kitten

has, by design, a minimal set of in-kernel services. For this reason,

the VNET/P Bridge functionality is not implemented in the kernel,

but rather in a privileged service VM called the Bridge VM that has

direct access to the physical Infiniband device.

In place of encapsulating Ethernet packets in UDP packets for

transmission to a remote VNET/P core, VNET/P’s InfiniBand sup-

port simply maps Ethernet packets to InfiniBand frames. These

frames are then transmitted through an InfiniBand queue pair ac-

cessed via the Linux IPoIB framework.

We conducted preliminary performance tests of VNET/P on In-

finiBand using 8900 byte TCP payloads running on ttcp on a testbed

similar to the one described in Section 5.1. Here, each node was a

dual quadcore 2.3 GHz 2376 AMD Opteron machine with 32 GB

of RAM and a Mellanox MT26428 InfiniBand NIC in a PCI-e slot.

The Infiniband NICs were connected via a Mellanox MTS 3600

36-port 20/40Gbps InfiniBand switch.

It is important to point out that VNET/P over Infiniband is a work

in progress and we present it here as a proof of concept. Nonethe-

less, on this testbed it achieved 4.0 Gbps end-to-end TCP through-

put, compared to 6.5 Gbps when run natively on top of IP-over-

InfiniBand in Reliable Connected (RC) mode.

7. CONCLUSION AND FUTURE WORK
We have described the VNET model of overlay networking in

a distributed virtualized computing environment and our efforts in

extending this simple and flexible model to support tightly-coupled

high performance computing applications running on high-performance

networking hardware in current supercomputing environments, fu-

ture data centers, and future clouds. VNET/P is our design and

implementation of VNET for such environments. Its design goal

is to achieve near-native throughput and latency on 1 and 10 Gbps

Ethernet, InfiniBand, and other high performance interconnects.

To achieve performance, VNET/P relies on several key tech-

niques and systems, including lightweight virtualization in the Pala-

cios virtual machine monitor, high-performance I/O, and multi-

core overlay routing support. Together, these techniques enable

VNET/P to provide a simple and flexible level 2 Ethernet network

abstraction in a large range of systems no matter the actual underly-

ing networking technology is. While our VNET/P implementation

is tightly integrated into our Palacios virtual machine monitor, the

principles involved could be used in other environments as well.

We are currently working to further enhance VNET/P’s perfor-

mance. One approach we are currently evaluating is injecting VNET/P

Figure 13: The architecture of VNET/P over InfiniBand. Pala-

cios is embedded in the Kitten lightweight kernel and forwards

packets to/receives packets from a service VM called the bridge

VM.

directly into the guest. For a symbiotic guest [21], the VMM could

supply a driver module that internally implemented VNET/P func-

tionality and had direct hardware access. This arrangement would

allow a guest VM to route its network traffic through the VNET

overlay without any VMM involvement. For a non-symbiotic guest,

it may be possible to nonetheless forcibly inject a protected driver

and restrict physical device access to only when that driver is run.

We are also working on functionality enhancements of VNET/P,

particularly broader support on InfiniBand and on the Cray SeaStar

interconnect on XT-class supercomputers.

8. REFERENCES
[1] Hpc challenge benchmark. http://icl.cs.utk.edu/hpcc/.

[2] ABU-LIBDEH, H., COSTA, P., ROWSTRON, A., O’SHEA,

G., AND DONNELLY, A. Symbiotic routing in future data

centers. In Proceedings of SIGCOMM 2010

(August–September 2010).

[3] AMD CORPORATION. AMD64 virtualization codenamed

“pacific” technology: Secure virtual machine architecture

reference manual, May 2005.

[4] CORPORATION, I. Intel cluster toolkit 3.0 for linux.

http://software.intel.com/en-us/articles/intel-mpi-

benchmarks/.

[5] EVANGELINOS, C., AND HILL, C. Cloud computing for

parallel scientific hpc applications: Feasibility of running

coupled atmosphere-ocean climate models on amazon’s ec2.

In Proceedings of Cloud Computing and its Applications

(CCA 2008) (October 2008).

[6] FIGUEIREDO, R., DINDA, P. A., AND FORTES, J. A case

for grid computing on virtual machines. In Proceedings of

the 23rd International Conference on Distributed Computing

Systems (ICDCS 2003) (May 2003).

[7] GABRIEL, E., FAGG, G. E., BOSILCA, G., ANGSKUN, T.,

DONGARRA, J. J., SQUYRES, J. M., SAHAY, V.,

KAMBADUR, P., BARRETT, B., LUMSDAINE, A.,

CASTAIN, R. H., DANIEL, D. J., GRAHAM, R. L., AND

WOODALL, T. S. Open MPI: Goals, concept, and design of

a next generation MPI implementation. In Proceedings of the

11th European PVM/MPI Users’ Group Meeting (September

2004), pp. 97–104.

[8] GANGULY, A., AGRAWAL, A., BOYKIN, P. O., AND

FIGUEIREDO, R. IP over P2P: Enabling self-configuring

virtual ip networks for grid computing. In Proceedings of the

20th IEEE International Parallel and Distributed Processing

Symposium (IPDPS 2006) (April 2006).

[9] GARFINKEL, S. An evaluation of amazon’s grid computing

services: Ec2, s3, and sqs. Tech. Rep. TR-08-07, Center for

Research on Computation and Society, Harvard University,

2008.

[10] GREENBERG, A., HAMILTON, J. R., JAIN, N., KANDULA,

S., KIM, C., LAHIRI, P., MALTZ, D. A., PATEL, P., AND

SENGUPTA, S. VL2: A scalable and flexible data center

network. In Proceedings of SIGCOMM 2009 (August 2009).

[11] GUO, C., LU, G., LI, D., WU, H., ZHANG, X., SHI, Y.,

TIAN, C., ZHANG, Y., AND LU, S. Bcube: A high

performance, server-centric network architecture for modular

data centers. In Proceedings of SIGCOMM 2009 (August

2009).

[12] GUPTA, A. Black Box Methods for Inferring Parallel

Applications’ Properties in Virtual Environments. PhD

thesis, Northwestern University, May 2008. Technical Report

NWU-EECS-08-04, Department of Electrical Engineering

and Computer Science.

[13] GUPTA, A., AND DINDA, P. A. Inferring the topology and

traffic load of parallel programs running in a virtual machine

environment. In Proceedings of the 10th Workshop on Job

Scheduling Strategies for Parallel Processing (JSSPP 2004)

(June 2004).

[14] GUPTA, A., ZANGRILLI, M., SUNDARARAJ, A., HUANG,

A., DINDA, P., AND LOWEKAMP, B. Free network

measurement for virtual machine distributed computing. In

Proceedings of the 20th IEEE International Parallel and

Distributed Processing Symposium (IPDPS) (2006).

[15] HUANG, W., LIU, J., ABALI, B., AND PANDA, D. A case

for high performance computing with virtual machines. In

Proceedings of the 20th ACM International Conference on

Supercomputing (ICS 2006) (June–July 2006).

[16] INTEL CORPORATION. Intel virtualization technology

specification for the ia-32 intel architecture, April 2005.

[17] KEAHEY, K., FOSTER, I., FREEMAN, T., AND ZHANG, X.

Virtual workspaces: Achieving quality of service and quality

of life in the grid. Scientific Programming 13, 3 (2005),

265–276.

[18] KIM, C., CAESAR, M., AND REXFORD, J. Floodless in

seattle: a scalable ethernet architecture for large enterprises.

In Proceedings of SIGCOMM 2008 (2008).

[19] KUMAR, S., RAJ, H., SCHWAN, K., AND GANEV, I.

Re-architecting vmms for multicore systems: The sidecore

approach. In Proceedings of the 2007 Workshop on the

Interaction between Operating Systems and Computer

Architecture (June 2007).

[20] LANGE, J., AND DINDA, P. Transparent network services

via a virtual traffic layer for virtual machines. In Proceedings

of the 16th IEEE International Symposium on High

Performance Distributed Computing (HPDC) (June 2007).

[21] LANGE, J., AND DINDA, P. Symcall: Symbiotic

virtualization through vmm-to-guest upcalls. In Proceedings

of the 2011 ACM SIGPLAN/SIGOPS International

Conference on Virtual Execution Environments (VEE)

(March 2011).

[22] LANGE, J., PEDRETTI, K., DINDA, P., BAE, C., BRIDGES,

P., SOLTERO, P., AND MERRITT, A. Minimal-overhead

virtualization of a large scale supercomputer. In Proceedings

of the 2011 ACM SIGPLAN/SIGOPS International

Conference on Virtual Execution Environments (VEE)

(March 2011).

[23] LANGE, J., PEDRETTI, K., HUDSON, T., DINDA, P., CUI,

Z., XIA, L., BRIDGES, P., GOCKE, A., JACONETTE, S.,

LEVENHAGEN, M., AND BRIGHTWELL, R. Palacios and

kitten: New high performance operating systems for scalable

virtualized and native supercomputing. In Proceedings of the

24th IEEE International Parallel and Distributed Processing

Symposium (IPDPS 2010) (April 2010).

[24] LANGE, J., SUNDARARAJ, A., AND DINDA, P. Automatic

dynamic run-time optical network reservations. In

Proceedings of the 14th IEEE International Symposium on

High Performance Distributed Computing (HPDC) (July

2005).

[25] LIN, B., AND DINDA, P. Vsched: Mixing batch and

interactive virtual machines using periodic real-time

scheduling. In Proceedings of ACM/IEEE SC

(Supercomputing) (November 2005).

[26] LIN, B., SUNDARARAJ, A., AND DINDA, P. Time-sharing

parallel applications with performance isolation and control.

In Proceedings of the 4th IEEE International Conference on

Autonomic Computing (ICAC) (June 2007). An extended

version appears in the Journal of Cluster Computing, Volume

11, Number 3, September 2008.

[27] LIU, J., HUANG, W., ABALI, B., AND PANDA, D. High

performance vmm-bypass i/o in virtual machines. In

Proceedings of the USENIX Annual Technical Conference

(May 2006).

[28] MERGEN, M. F., UHLIG, V., KRIEGER, O., AND XENIDIS,

J. Virtualization for high-performance computing. Operating

Systems Review 40, 2 (2006), 8–11.

[29] MESSAGE PASSING USER INTERFACE FORUM. MPI: a

messsage-passing interface standard, version 2.2. Tech. rep.,

MPI Forum, September 2009.

[30] MYSORE, R. N., PAMBORIS, A., FARRINGTON, N.,

HUANG, N., MIRI, P., RADHAKRISHNAN, S.,

SUBRAMANYA, V., AND VAHDAT, A. Portland: A scalable

fault-tolerant layer 2 data center network fabric. In

Proceedings of SIGCOMM 2009 (August 2009).

[31] NURMI, D., WOLSKI, R., GRZEGORZYK, C., OBERTELLI,

G., SOMAN, S., YOUSEFF, L., AND ZAGORODNOV, D. The

eucalyptus open-source cloud-computing system. In

Proceedings of the 9th IEEE/ACM International Symposium

on Cluster Computing and the Grid (May 2009).

[32] OSTERMANN, S., IOSUP, A., YIGITBASI, N., PRODAN, R.,

FAHRINGER, T., AND EPEMA, D. An early performance

analysis of cloud computing services for scientific

computing. Tech. Rep. PDS2008-006, Delft University of

Technology, Parallel and Distributed Systems Report Series,

December 2008.

[33] RAJ, H., AND SCHWAN, K. High performance and scalable

i/o virtualization via self-virtualized devices. In Proceedings

of the 16th IEEE International Symposium on High

Performance Distributed Computing (HPDC) (July 2007).

[34] RIESEN, R., BRIGHTWELL, R., BRIDGES, P., HUDSON,

T., MACCABE, A., WIDENER, P., AND FERREIRA, K.

Designing and implementing lightweight kernels for

capability computing. Concurrency and Computation:

Practice and Experience 21, 6 (April 2009), 793–817.

[35] RUSSELL, R. virtio: towards a de-facto standard for virtual

i/o devices. SIGOPS Oper. Syst. Rev. 42, 5 (2008), 95–103.

[36] RUTH, P., JIANG, X., XU, D., AND GOASGUEN, S.

Towards virtual distributed environments in a shared

infrastructure. IEEE Computer (May 2005).

[37] RUTH, P., MCGACHEY, P., JIANG, X., AND XU, D.

Viocluster: Virtualization for dynamic computational

domains. In Proceedings of the IEEE International

Conference on Cluster Computing (Cluster) (September

2005).

[38] SHOYKHET, A., LANGE, J., AND DINDA, P. Virtuoso: A

system for virtual machine marketplaces. Tech. Rep.

NWU-CS-04-39, Department of Computer Science,

Northwestern University, July 2004.

[39] SUNDARARAJ, A. Automatic, Run-time, and Dynamic

Adaptation of Distributed Applications Executing in Virtual

Environments. PhD thesis, Northwestern University,

December 2006. Technical Report NWU-EECS-06-18,

Department of Electrical Engineering and Computer Science.

[40] SUNDARARAJ, A., AND DINDA, P. Towards virtual

networks for virtual machine grid computing. In Proceedings

of the 3rd USENIX Virtual Machine Research And

Technology Symposium (VM 2004) (May 2004). Earlier

version available as Technical Report NWU-CS-03-27,

Department of Computer Science, Northwestern University.

[41] SUNDARARAJ, A., GUPTA, A., , AND DINDA, P. Increasing

application performance in virtual environments through

run-time inference and adaptation. In Proceedings of the

14th IEEE International Symposium on High Performance

Distributed Computing (HPDC) (July 2005).

[42] SUNDARARAJ, A., SANGHI, M., LANGE, J., AND DINDA,

P. An optimization problem in adaptive virtual environmnets.

In Proceedings of the seventh Workshop on Mathematical

Performance Modeling and Analysis (MAMA) (June 2005).

[43] UHLIG, R., NEIGER, G., RODGERS, D., SANTONI, A.,

MARTIN, F., ANDERSON, A., BENNETTT, S., KAGI, A.,

LEUNG, F., AND SMITH, L. Intel virtualization technology.

IEEE Computer (May 2005), 48–56.

[44] WALKER, E. Benchmarking amazon ec2 for high

performance scientific computing. USENIX ;login: 3, 8

(October 2008), 18–23.

[45] WOLINSKY, D., LIU, Y., JUSTE, P. S.,

VENKATASUBRAMANIAN, G., AND FIGUEIREDO, R. On

the design of scalable, self-configuring virtual networks. In

Proceedings of 21st ACM/IEEE International Conference ofr

High Performance Computing, Networking, Storage, and

Analysis (SuperComputing / SC 2009) (November 2009).

[46] XIA, L., LANGE, J., DINDA, P., AND BAE, C. Investigating

virtual passthrough i/o on commodity devices. Operating

Systems Review 43, 3 (July 2009). Initial version appeared at

WIOV 2008.

