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Abstract

Palacios is a virtual machine monitor (VMM) from the V3VEE Project that is available for public
use as a community resource. Palacios is highly configurable and designed to be embeddable into different
host operating systems, such as Linux and the Kitten lightweight kernel. Palacios is a non-paravirtualized
VMM that makes extensive use of the virtualization extensions in modern Intel and AMD x86 processors.
Palacios is a compact codebase, consisting of ∼ 96, 000 lines of C and assembly of which ∼ 40, 000 are in
the core VMM, and the remainder are in virtual devices, extensions, an overlay network, and other optional
features. Palacios is designed to be easy to understand and readily configurable for different environments.
It is unique in being designed to be embeddable into other OSes instead of being implemented in the context
of a specific OS. This document describes the overall structure of Palacios and how it works, with a focus
on the Linux kernel module variation (other embeddings, such as for Kitten and Minix are documented
separately). We also explain how to download and run Palacios, develop within it, and extend it.

The author list reflects the writers of this technical report. The Palacios codebase has numerous contributors, as described briefly
in Section 16 and on the V3VEE web site (v3vee.org).
This project is made possible by support from the National Science Foundation (NSF) via grants CNS-0709168 (Northwestern
University), CNS-0707365 (University of New Mexico), and the Department of Energy (DOE) via DE-SC0005343 (Northwestern
University, University of Pittsburgh, University of New Mexico, Sandia National Labs, and Oak Ridge National Labs). Initial
support for the development of Palacios was provided to Northwestern University via a subcontract from Oak Ridge National
Laboratory on grant DE-AC05-00OR22725. Sandia National Laboratory provided seed funding to Northwestern University for
multicore guest support. Jack Lange was partially supported by a Symantec Research Labs Fellowship.
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1 Introduction

The V3VEE project (v3vee.org) has created a virtual machine monitor framework for modern
architectures (those with hardware virtualization support) that enables the compile-time creation of VMMs
with different structures, including those optimized for computer architecture research and use in high per-
formance computing. V3VEE began as a collaborative project between Northwestern University and the
University of New Mexico. It currently includes Northwestern University, the University of New Mexico,
the University of Pittsburgh, Sandia National Labs, and Oak Ridge National Lab.

Palacios1 is the V3VEE project’s publicly available, open-source VMM. Palacios currently targets
x86 and x86 642 architectures (hosts and guests) and relies on the use of AMD SVM [1] or Intel VT[3, 9]
architectural extensions. It provides both shadow paging in the virtual MMU model, as well as nested paging
on Intel and AMD hardware that implement this feature. Palacios runs directly on the hardware and provides
a non-paravirtualized interface to the guest. An extensive infrastructure for hooking guest physical memory,
guest I/O ports, and interrupts facilitates experimentation.

Palacios is designed as an embeddable VMM that can be integrated into different host operating
systems. This document describes the Linux embedding of Palacios, in which Palacios is compiled into a
kernel module that can be inserted into a running Linux kernel. Palacios is also commonly embedded (via
static linking) into Sandia’s Kitten lightweight OS, for use in research in virtualization for high performance
computing. Embeddings for the Minix 3 operating system and the GeekOS teaching OS have also been
developed. The primary guest operating systems used for testing Palacios are Linux, CNL, Catamount, and
others.

Research publications on or using Palacios can be found on the V3VEE project web site. A dis-
cussion of our and others’ Palacios-based research is beyond the scope of this document, but the following
research papers also contain further relevant information about the structure of Palacios:

• For more information on the structure of the core VMM and for information on Palacios’s integration
with the Kitten lightweight kernel for virtualization of high performance computers: J. Lange, K.
Pedretti, T. Hudson, P. Dinda, Z. Cui, L. Xia, P. Bridges, A. Gocke, S. Jaconette, M. Levenhagen,
R. Brightwell, Palacios and Kitten: New High Performance Operating Systems for Scalable Virtual-
ized and Native Supercomputing, Proceedings of the 24th IEEE International Parallel and Distributed
Processing Symposium (IPDPS 2010), April, 2010.

• For more information on Palacios’s adaptations specifically for virtualization at large scales, as well as
a scaling study to over 4096 nodes: J. Lange, K. Pedretti, P. Dinda, P. Bridges, C. Bae, P. Soltero, A.
Merritt, Minimal Overhead Virtualization of a Large Scale Supercomputer, Proceedings of the 2011
ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environments (VEE 2011),
March, 2011.

• For more information on the VNET/P high performance overlay network component: L. Xia, Z.
Cui, J. Lange, Y. Tang, P. Dinda, P. Bridges, VNET/P: Bridging the Cloud and High Performance
Computing Through Fast Overlay Networking, Technical Report NWU-EECS-11-07, Department of
Electrical Engineering and Computer Science, Northwestern University, July, 2011.

1Palacios, TX is the “Shrimp Capital of Texas”. The Palacios VMM is quite small, and, of course, the V3VEE Project is a small
research project in the giant virtualization space.

232 and 64 bit guest operating systems are supported, as are 32 and 64 bit host operating systems. 32 bit host Linux is currently
deprecated.
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You may also find the following additional documents to be helpful. They are available from the
Palacios portion of the V3VEE website.

• A getting started guide to Palacios.

• A document describing how to set up PXE network booting to test operating systems. This is an
essential to being able to achieve a fast edit/compile/test cycle when testing on physical hardware.
The document is applicable to Palacios in Kitten and to Palacios in Linux. Y. Tang, L. Xia, Booting
Palacios/Kitten or Palacios/Linux Over the Network Using PXE.

• A guide to integrating Palacios 1.3 with the Kitten 1.3 release.

The 1.3 version of Palacios is a compact codebase. The core VMM, including both AMD and Intel
support, contains about 40,000 lines of C and assembler. Beyond this, virtual devices, extensions, the VNET
overlay network, and other optional features add about another 56,000 lines of C and assembler. The size
of the host OS interface code depends on the set of features that are implemented. The host OS interface
contained in the Linux kernel module is the largest such code we have written. It comprises about 10,000
lines of C, with an additional 4,000 lines of C for the userspace tools.

The purpose of this document is to explain the overall structure and operation of Palacios, and to
act as a guide for those who would like to use, develop within, or contribute to, the Palacios codebase.

Palacios is released under a BSD license. The complete license, and the licenses for related tools
and components is included in the source code release.

2 What you will need

In order to run Palacios you will need either suitable hardware or an emulator, as well as a small
set of required build software. Almost any recent machine can be used for testing, and if none is available
a free emulator can be used. The needed build software is all free and is already a part of typical Linux
distributions, or can be readily installed.

Hardware or emulator for testing To run the current version of Palacios, you will need either a physical
machine that supports the AMD SVM extensions3, the Intel VT extensions4, or a software emulator that
supports one of these. Appendix A describes the common test hardware that we use in the project.

For emulation, we recommend using the excellent QEMU emulator [2], which is freely available.
QEMU can emulate the x86 ISA on a variety of processors and does so particularly well when run on
another x86 chip. We currently use QEMU versions 0.10.5, 0.14.1, and 0.15. These versions of QEMU
include an implementation of the AMD SVM hardware extensions (nested paging is not supported). Because
QEMU is an emulator, you do not actually need a physical machine that supports any hardware virtualization
extensions. Indeed, you do not even need a machine with an x86 processor to to test Palacios. QEMU runs
on Windows, Linux, Mac OS X, and most other Unix platforms.

When using physical hardware, we find it convenient to either work directly on a local machine or
use a Preboot Execution Environment (PXE) with remote development platforms. PXE provides BIOS-level
support for booting machines over the network. One can easily set up a server machine that provides the

3The initial implementations of AMD SVM did not support nested paging. Palacios does not require nested paging support, and
so can run on the earliest (and cheapest) Opterons that included SVM.

4Similarly, Palacios will work with, or without the Intel EPT hardware nested paging feature.
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Palacios image via PXE. Combined with a network power switch or RSA card and an IP-KVM, PXE boot
support makes it straightforward to develop and test on remote hardware.

There is a trade-off between using physical hardware and emulation to run and test Palacios. Phys-
ical hardware is much faster than emulation, but emulation can provide a more deterministic environment
with better tools for debugging. Also, it is common in Palacios, and other OSes, to employ “printf debug-
ging” with output going to a serial port, or a kernel debugger that attaches to the kernel via a serial port.
QEMU’s emulated serial port mostly ignores speed settings and operates as fast as possible. In comparison,
a hardware serial port is typically limited to 115 kbps. For this reason, the highly “printf-intensive” code
typically used when debugging often runs faster on QEMU than on physical hardware.

Essential software for building Palacios The software environment needed to build Palacios includes
several open source or free software tools that you will need to have installed in order to get started. Typical
Linux distributions already have these tools installed. The basic set of tools include:

• GCC and binutils. To our knowledge, Palacios is compatible with all recent versions of GCC and
binutils, however some non-Palacios components we use are not.

• GNU make.

• git. As we use this for version control, you will need to have it installed if you intend to use the public
repository or contribute code to the development branch.

• (When building a Palacios Linux kernel module only) Linux kernel sources or at the kernel header files
for the Linux kernel version you will be using. Most Linux distributions make the headers available
as part of a kernel-headers package.

As an example, at the time of this writing, a frequently used compile server in our group has a vanilla
Red Hat Enterprise Linux Server 5.4, which provides “gcc-4.1.2-46.el5 4.2” , “binutils-2.17.50.0.6-12.el5”,
“make-3.81-3.el5” and “git-1.5.5.6-4.el5”. A frequently used host OS kernel for testing is Linux 2.6.32,
downloaded from kernel.org. We also make extensive use of Fedora 15, which functions with Palacios out
of the box with no additional configuration necessary.

Non-essential software If you plan to do testing on a physical machine, you may find kermit to be helpful,
as well as utilities like setserial and stty in order to control your serial port. Most host OSes, including the
ones we support, such as Linux, send debugging output to the first serial port (“COM1”). We have also
found a properly configured terminal server to be extremely helpful, as it allows developers to just telnet to
the relevant serial connection.

Tools for walking the codebase can be helpful. Some developers advocate cscope and ctags. Others
use etags and emacs. In general, there is a wide array of plug-ins available for both emacs and vim to aid
in source code navigation. It is also possible to develop Palacios from within Eclipse, although we do not
provide the project files to do this.

Especially when used as a Linux kernel module, gdb can be a very helpful tool when remotely
debugging Palacios. This is not as powerful as using gdb on an application, but useful nonetheless. Even
if the host OS you embed Palacios into does not support kgdb, it is still possible to use gdb for remote
debugging on an emulated machine using QEMU’s features. We discuss debugging Palacios with these
tools in detail in Sections 6.6 and 6.7
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Linux host kernel requirements A 2.6 kernel is required for use as the host OS with the Palacios Linux
kernel module. The earliest version we have used is 2.6.30. We commonly test with 2.6.32 and 2.6.40 aka
3.0. Although Palacios supports compilation for a 32 bit host OS, 32 bit Linux host support is currently
deprecated. A 64 bit Linux host is highly recommended. Fedora 15 runs Palacios out of the box using
the stock configuration. We have also verified that Palacios will load into a Red Hat Enterprise Linux 6.0
system running a 2.6.32 kernel built from the RHEL sources using the kernel RPM build process with the
distribution’s config file.

As we elaborate on later, the Linux host kernel MUST be configured with the memory hot-
remove feature. This feature is located under Processor type and features → Allow for memory hot-add
→ Allow for memory hot-remove. It is NOT enabled by default in most kernels. If this feature is not
enabled, Palacios will be unable to allocate large chunks of memory and VM creation will fail.

3 How to get the code

Palacios is available from the V3VEE Project’s web site at http://www.v3vee.org/palacios.
It is available in the following forms:

• Public git repository: git is a version control system originally developed for use with the Linux
kernel. Our public repository makes it possible to gain access to the latest public version of Palacios
and to contribute to its development. You can access the repository using both standard git tools and
a web browser. The public git repository tracks our internal development repository with a delay of
30 minutes. It provides access to the most up to date Palacios code that is publicly available.

• Source releases and snapshots: You can download source releases and snapshots from our web site.

The Palacios tar file or git checkout includes some of the following:

• BOCHS [5]: Modified versions of the BOCHS ROM BIOS and VGA BIOS are included for boot-
strapping the guest VM. This is the default initial guest boot environment.

• VM86 [7]: IBM’s virtual 8086 mode emulator is included to provide real-mode guest bootstrap sup-
port on Intel VT machines. It is unused on AMD machines.

• XED [6]: Intel’s XED x86 instruction decoder/encoder from the Pin Project is included to optionally
provide complete x86 instruction decoding capabilities in Palacios. The XED decoder cannot be used
when building Palacios as a Linux kernel module.

It is important to note that this code is separate from the main source tree of Palacios and is available under
separate licenses. We include it only for convenience. You can install your own copies of these tools from
their respective web sites, build them, and straightforwardly configure Palacios to use them. They are also
optional: Palacios will run the guest boot environment you point it to at configuration time, and its internal
instruction decoder is sufficient for virtualization purposes.

3.1 Getting and installing a source tarball

Simply download the Palacios release tarball from http://www.v3vee.org/download. When
you untar it into your working directory, a subdirectory called palacios will be created. You will find all
of the Palacios source code n this directory.
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3.2 Using the git repository

We highly recommend using git to obtain a copy of Palacios, even if you only want to take a quick
look at the codebase. Using git, you will not only get access to the code, but also be able to readily fetch
updates and browse the development history of Palacios.

Get git The first thing you need to do is install git on your local system. You can download the appropriate
binaries or source at http://www.git-scm.com/download. On Linux, you can usually install git
using a package manager.

For example, on Ubuntu or Debian:

sudo apt-get install git

On RedHat or Fedora:

sudo yum install git

Once git is working, you need to configure your personal identification. To do this, run:

git config --global user.name "Your Name"
git config --global user.email "your_email_address"

Cloning our repository Having installed git, you can now clone from our repository:

git clone http://v3vee.org/palacios/palacios.web/palacios.git

This will checkout the head of the master branch into the subdirectory palacios. You probably want the
devel branch or one of the release branches. To switch to the devel branch, simply execute:

cd palacios
git checkout --track -b devel origin/devel

To checkout the 1.3 branch:

git checkout --track -b Release-1.3 origin/Release-1.3

Information regarding other releases and branches is available on the website.

A bit about git git provides for distributed development. By cloning our repository, as described earlier,
you have created a local repository for your own work in Palacios based on our devel or release 1.3 branch.
You can manage that repository as you will; this includes distributing access to others. You can also incor-
porate changes from our repository. Finally, git can package up your changes so you can send them back to
us for potential inclusion into the main repository.

Although a detailed explanation of git is beyond the scope of this report, there are a few commands
that you will find most useful:

• git branch shows the current branch you are working on.

• git checkout <branch-name> changes to another development branch.
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• git add <file> adds a file to the index to be committed.

• git commit writes your changes to your local clone of the Palacios repository. Use the -a switch
to commit all currently tracked files.

• git pull fetches changes from your origin repository and applies them to your current branch (This
is like a cvs/svn update). Note that in git language, git pull is the equivalent of a git fetch
followed by a git merge

• git stash is helpful for trying out newly committed changes without having them conflict with
your presently uncommitted changes.

• gitk is a very useful graphical user interface to git.

There are a few common use cases that will likely arise while developing Palacios with git. For
example, if you have made some commits for a new feature, you might want to send a patch to one of the
maintainers. First browse which commits you would like to include with, e.g.

git log --pretty=oneline

Then create a patch:

git format-patch <LAST_LOCAL_COMMIT_ID>

This will take all local commits you have made since the commit with that ID and put them in a single
file that you can then e-mail to one of the maintainers, your friends, etc. The file that is created is called a
“patch”. You may also receive a patch. You can then apply it to your own checked out codebase using

git apply <PATCH_FILE>

If you’ve made a pull or a commit that you would like to revert:

git reflog
git reset --hard <COMMIT_ID>

The reflog command shows a chronology of your current branch. When you reset, replace <COMMIT_ID>
with the ID of the listing you would like to revert to.

Sometimes it is convenient to pull changes from upstream without confusing the logical order of
your local commits. This will also eliminate unnecessary merges in the commit stream. A common scenario
here is that you’re working on something that is not ready to be committed yet and you need to do a pull
from the origin repository to get a new commit that someone else has made. A good way of doing this is:

git stash
git pull --rebase
git stash pop

The stash command will push your local uncommitted changes onto a local stack. The rebase option tells
the pull command to pull from upstream but take out your local commits and stack them on top of those
gained from the pull. You can then pop the stash stack to regain your uncommitted changes in your working
directory.

If you would like to learn more about git, we recommend reading one of the many reference manuals
listed at http://www.git-scm.com/documentation.
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4 Building Palacios

We now describe how to configure and compile Palacios, with the example target being Palacios
built as a kernel module and integrated with a Linux host OS. The output of this process is Palacios as
a static library, the Palacios kernel module, and userspace tools for using the module. You can configure
Palacios for other host OS targets. A common denominator for all the targets is the static library that the
build process produces. This static library is suitable for linking, either directly or indirectly, with the host
OS that you are using.

4.1 Configuration

Before you compile Palacios, you will need to do some manual configuration. Palacios currently
uses the Kbuild tool for this process. To configure compilation options, in the palacios/ directory, run
make xconfig if you are using X or make menuconfig otherwise. If you have recently pulled down
a commit or made changes that modify the configuration process, you will be prompted to make the relevant
configuration decisions the next time you run make

The Palacios configuration is a hierarchical namespace where the leaves are individual options to
enable/disable or to set to some value. Options can be dependent, the value of one option affecting the
value of another. Additionally, the existence of an option can depend on the values of other options. In
the following, we describe all of the current options. You can see all the options in the make xconfig
display by selecting Options→ Show All Options.

4.1.1 Essential options

Out of the box, you will want to at least set the following options to create a Linux kernel module:

• Under Target Configuration→ Target Host OS, select the Linux Module option.

• Target Configuration→ Linux Module→ Linux Kernel Source Directory should be set to the fully
qualified path of the source tree of the host kernel for which you are building the module.

• Target Configuration→ X86 Decoder should have the Internal Palacios Decoder selected.

4.1.2 All options

The following is a description of all options in the 1.3 release, in the order in which they appear.

Target Configuration The options under this top-level space relate to the desired host OS integration, the
basic set of features the core VMM will provide, and the core VMM extensions that will be included.

• Target Host OS selects the host OS that we will integrate Palacios with. This determines how Palacios
is built and linked to form a static library, and what additional functionality is built on top of that
static library. Currently, the options are Kitten, “Old Linux” (for directly linking with Linux, which is
deprecated), a Linux kernel module, Minix 3, and Other OS, which is for GeekOS and other minimal
integrations.

• Red Storm (Cray XT3/XT4) is enabled when Palacios will run on Cray XT3/XT4 hardware, which
is slightly different from commodity PC hardware.
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• AMD SVM Support is enabled when Palacios should be able to use the AMD virtualization exten-
sions.

• Intel VMX Support is enabled when Palacios should be able to use the Intel virtualization extensions.

• Compile with Frame Pointers and Compile with Debug Information are enabled to support better
stack traces, and kgdb, when debugging. If you use them, it is recommended that you compile with
host OS with similar options.

• X86 Decoder selects the instruction decoder that Palacios will use. You almost certainly want to use
the Internal Palacios Decoder. If you need to be able to decode any x86 instruction, you can select
the XED decoder. For linkage reasons, XED is not currently supported with the Linux kernel module
target.

• Enable VMM Telemetry Support can be selected to have Palacios periodically output internal per-
formance data. Under this option are additional options that can be enabled to output more data.
Currently, this includes Shadow Paging.

• Enabled Experimental Options makes configuration options that have been labeled as experimental
visible to the configuration process so that you can select them.

• Enable Checkpointing enables the checkpoint/restore features.

• Supported Host OS Features allows you to tell Palacios what host OS behavior it can rely on.
Currently, there are only two options: whether the host supports aligned page allocations, and the
maximum number of CPUs the host will support.

• Host Interfaces allows you to tell Palacios which optional host interfaces are available. Section 10
describes the required and optional interfaces. It is important to note that an optional host interface
implementation is not typically part of the host OS or Palacios, but rather a part of the “glue” code
written to interface the two.

• Extensions allows you to enable optional extensions to the core VMM. Extensions are described in
detail in Section 12 and a list of the included extensions in 1.3 is given there.

Standard Library Functions Palacios makes use of a range of standard C library functions internally.
As the C standard library is not typically linked into code running in kernel mode, Palacios includes its own
implementations of the functions it needs. However, a typical host OS will also implement some of these
functions, potentially creating name collisions. Under this configuration block, you can selectively enable
and disable Palacios’s implementations of individual functions to avoid these collisions. Generally, a user
can ignore this section as selecting the target host OS will automatically set these options correctly.

Virtual Paging This configuration block allows you to select whether Palacios should support shadow
paging, and which shadow paging models to include. These options are currently a basic virtual TLB model
and a virtual TLB model with shadow page table caching. Nested paging support is always compiled into
Palacios and thus does not appear as an option.
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Time Management The options here allow you to configure how the guest sees the passage of time on the
processor by manipulating its TSC. Enable Time Virtualization turns on the feature. Then, Hide VMM
Run Cost causes the TSC that the guest sees to not advance due to time spent in Palacios. Fully Virtualize
Guest TSC results in every read of the TSC triggering an exit to Palacios to be handled according to fully
virtualized time.

Symbiotic Functions The options under this block provide for various symbiotic virtualization capabili-
ties (SymSpy, SymCall, and Symbiotic Modules) as described in detail in a research publication [4], as well
as services built using those capabilities.

VNET This option allows you to enable the VNET/P overlay networking component of Palacios, which
is described in detail in Section 7.

Debug Configuration All components of Palacios can generate debugging output (a la printf). The op-
tions under this heading allow you to selectively enable such output for elements of the core VMM, including
the AMD and Intel-specific interfaces, shadow and nested paging, control register handling, interrupts, tim-
ing, I/O port access, instruction decoding and emulation, machine halt, and virtual device management.
The non-core components of Palacios (e.g., virtual devices, extensions, VNET, checkpointing, etc) simi-
larly have options for selective debug output, but those options are typically included in their individual
configuration sections.

BIOS Selection The options here, for the BIOS, VGABIOS, and VMXASSIST elements, allow you to
select which binaries are mapped into the guest at boot time. For each element, a path to the relevant binary
is given. The BIOS binary is mapped at 0xf0000, the VGABIOS binary at 0xc0000, and VMXASSIST
binary at 0xd0000 (on Intel only).

Virtual Devices Every virtual device in Palacios can be optionally enabled or disabled in this very large
configuration block. More than half of the Palacios codebase consists of virtual devices. If memory usage
is a concern, you can substantially trim Palacios by selecting only the virtual devices that are needed. In
order for a guest to use a virtual device, that device must be enabled here, built into Palacios, and the guest
configuration must specify an instance of it. More details on virtual devices and the list of currently included
virtual devices can be found in Section 11.

4.2 Compilation

Once Palacios is properly configured, you can build it by running the following:

cd palacios/
make all

If you would like to see the detailed compilation steps, run make V=1 all instead.
The compilation process creates a static library named libv3vee.a in your directory. This con-

tains Palacios. If your host OS target is the Linux kernel module, the compilation process will continue
to create the module based on this library. That module will appear as v3vee.ko. This module can be
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dynamically loaded into the Linux host kernel using insmod Note the location of the kernel module, as
you will need it later when running Palacios.

Palacios on Linux also requires that you build several tools that run in userspace in the host OS.
These must be built separately from the module. To build them:

cd palacios/linux_usr
make

This builds several binary files prefixed with v3_. Your distribution may also include a prebuilt binary,
x0vncserver, which is a small, statically linked, VNC server that can be used as a backend for graphics
card virtual devices and the Graphics Console host interface. You will need all of these binaries later when
interacting with Palacios.

5 Guest configuration

Palacios runs guest images, which are built from an XML-based configuration file and zero or more
binary files using a userspace tool. The configuration file allows the user to control the available hardware
in the VM and to associate it with data it will employ.

5.1 Configuration syntax and semantics

In the palacios/utils/guest_creator directory, you will find that we have provided a
default guest configuration named default.xml. This file contains examples of most of the currently
possible options. Some options, including experimental options, may not be documented at a given point in
time. In most cases, to create your own configuration file, you can simply make a copy of this default file,
and then selectively comment or uncomment elements of interest, and edit parameters. It is important to
note that Palacios will attempt to create a VM with whatever configuration you specify, even if it does not
make sense.

In the palacios/vm-configs directory, you will find several additional configuration files for
common configurations. You can also visit the V3VEE web page to download other configurations and
prebuilt image files.

5.1.1 Basic configuration

The basic structure of a configuration file is as follows:

<vm class="VM_CLASS">
MEMORY_CONFIG
VMM_CONFIG
EXTENSIONS
PAGING CONFIG
SCHEDULING_CONFIG
CORES_CONFIG
MEMMAP_CONFIG
FILES
DEVICES
</vm>

14



Here, the VM_CLASS specifies what overall hardware model your VM will conform to. The standard option
here is PC for a standard x86 PC model. Virtually all actual physical hardware conforms to this model.
Other options are currently experimental.

MEMORY_CONFIG is a block describing your VM’s physical memory. The syntax is

<memory [alignment="MEM_ALIGN"]> MEM_SIZE </memory>

where MEM_SIZE is the amount of physical memory in MB. The mapping of this memory into the address
space conforms to the VM’s class. For the PC class, the address space includes the assorted holes and
conventional/extended/etc memory map. Typically, the guest BIOS will report this map via an e820 table.
The optional memory alignment option allows you to force the guest’s physical memory to be allocated from
the host’s physical memory starting at a host physical address that is an integer multiple of the MEM_ALIGN
parameter. For example, if “2MB” is given, then the host physical memory block allocated to use as the guest
memory will be aligned at a 2MB boundary. The purpose of this parameter is to provide large page support
in the virtual paging infrastructure.

VMM_CONFIG represents blocks of VMM (as opposed to VM) configuration for this guest. The
only current block is for telemetry:

<telemetry> "enabled"|"disabled" </telemetry>

If Palacios has been configured with telemetry, and the VM configuration enables it, then telemetry infor-
mation will be output as the VM executes.

EXTENSIONS is a block containing a list of extensions to the core VMM that are to be enabled
for this VM. If an extension has been configured and compiled into Palacios, and it is listed in a VM’s
configuration, then it is active while the VM runs. The overall syntax of this block is:

<extensions>
<extension name="EXT_NAME" >

EXTENSION-SPECIFIC CONFIGURATION OPTIONS
</extension>

</extensions>

Here, EXT_NAME is the name of the desired extension to add. The extension-specific configuration options
are outside of the scope of this discussion.

PAGING_CONFIG describes how virtual paging is to be handled for this guest, if possible given the
hardware capabilities and Palacios’s configuration. There are two general modes, nested paging and shadow
paging. A nested paging configuration has syntax of this form:

<paging mode="nested">
<large_pages> "true"|"false" </large_pages>
</paging>

If large_pages is set to true, then the nested paging implementation will use large pages in constructing
the nested page tables. This will enhance performance. If you specify nested paging on hardware that does
not support it, Palacios will automatically switch to using shadow paging with the default strategy.

The alternative, a shadow paging configuration, has syntax of this form:
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<paging mode="shadow">
<large_pages>"true"|"false"</large_pages>
<strategy> SHADOW_STRATEGY </strategy>
</paging_mode>

Here, if large_pages is true, Palacios will attempt to use large pages in the shadow page tables to
mirror the use of large pages in the guest page tables. This will enhance performance if possible. The
SHADOW_STRATEGY is the implementation of shadow paging to be used. The normally used implemen-
tation is “VTLB”. “SHADOW CACHE”, “VTLB CACHING” , “DAV2M” and other experimental imple-
mentations may also available, but are generally not a good idea to use unless you know what you are doing.
If you do not supply a shadow paging strategy, “VTLB” will be used.

SCHEDULING_CONFIG defines VM-specific scheduling options that Palacios should attempt to
carry out in coordination with the host OS. Currently, there is only one option here:

<schedule_hz> HZ </schedule_hz>

HZ is the number of times per second that Palacios should attempt to yield each virtual core’s thread of
execution to the host OS. Whether it is possible for Palacios to always achieve this goal of invoking the host
OS’s yield() function HZ times per second depends on the minimum exit rate for the VM, which, in turn,
typically depends on the timer interrupt rate of the host OS.

CORES_CONFIG is a block that defines how many virtual cores are available in the VM, and allows
you to specialize behavior for each core if desired. The syntax is:

<cores count=NUM_CORES>
<core>

PER CORE CONFIG FOR CORE 0
</core>
<core>

PER CORE CONFIG FOR CORE 1
</core>

..
</cores>

Currently there are no valid per core configuration options, so tags of the form <core /> should
be used.

MEMMAP_CONFIG allows you to specify regions of the host physical address space to map into the
guest physical address space, and at what guest physical addresses they will map. The syntax is of this form:

<memmap>
<region>

<start> START </start>
<end> END </end>
<host_addr> HOST_ADDR </host_addr>

</region>
<region>

...
</region>

</memmap>
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The parameters should be given in hex, prefaced with “0x”. This indicates that host physical addresses
from HOST_ADDR to HOST_ADDR + (END - START) - 1 are to be mapped into the guest starting at guest
physical address START. Note that explicit passthrough memory mappings like this are generally a bad idea
unless you know what you are doing. Some virtual devices support “passthrough” device access, which
better achieve the typical goals of using memmap blocks.

FILES represents a list of files that are to be included in your VM image when it is built from the
configuration file. The purpose of including file contents is typically to support virtual storage devices, like
CD ROM and hard drives. There are generally two use cases for this functionality at the present time. First,
for testing purposes, it is very convenient for the VM image to be completely self-contained in a single file.
For example, we often will embed an ISO file that is then used in a virtual CD ROM to boot the guest. The
second use case is to support environments where there effectively is no file system on the host, such as
on a node of a supercomputer. In such an environment, the self-contained image file can be readily copied
directly to the memory of the node, allowing for VM launch to behave similarly to job launch. The syntax
of FILES is

<files>
<file id="FILEID1" filename="FILE1" />
<file id="FILEID2" filename="FILE2" />
...

</files>

where FILEID1 is the name by which the contents of the file FILE1 can be referred to later in the config-
uration file.

DEVICES is typically the largest block within a VM configuration. It is a list of the virtual devices
that will be attached to the VM. Each virtual device is an instance of a class of devices, and has a unique id.
The configuration of a virtual device is specific to the class of device. In the next section, we describe the
common virtual devices and their syntax. The syntax of DEVICES is

<devices>
<device class="DEVCLASS1" id="DEVID1">

DEVCLASS1-specific configuration
</device>
<device class="DEVCLASS2" id="DEVID2">

DEVCLASS2-specific configuration
</device>
...

</devices>

The configuration of a virtual device may refer to another virtual device by its ID, however the
device referred to must appear in the configuration before the referring device.

It is possible to specify a device class which has not been built into the VMM. If this is the case,
Palacios will not complete the creation of the VM or be able to launch it.

Palacios has numerous virtual device implementations that can be included in a VM using the syntax
given earlier. We next describe most of these devices and their typical configuration options.
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5.1.2 Basic devices

Keyboard and mouse A PS/2-compatible keyboard and mouse controller can be attached via

<device class="KEYBOARD" id="keyboard" />

There are no options.

NVRAM This device provides a PC-compatible non-volatile RAM for basic machine configuration. The
NVRAM also includes the real-time clock (RTC) component of a basic PC-compatible machine. The syntax
is:

<device class="NVRAM" id="nvram" />
<storage> STORAGE_ID </storage>

</device>

Here, the optional storage block indicates the device that knows the configuration of hard drives, CD
ROMs, and other devices that should be reported by the BIOS. The NVRAM will populate its storage-based
fields using the device noted here. It’s important to realize that this configuration is minimal - the NVRAM
contents are really only used significantly by the BIOS during bootstrap.

5.1.3 Timing devices

Palacios supports the typical set of timing devices and registers that can be expected on a modern PC, except,
currently, for the HPET.

TSC The CPU cycle counter can be selectively virtualized, as described earlier.

APIC Timer The APIC timer is part of the APIC device, described later.

PIT A PC-standard 8254 programmable interval timer device can be attached via

<device class="8254_PIT" id="PIT" />

There are no options.

RTC A PC-standard RTC is included as part of the NVRAM, described earlier.

5.1.4 Interrupt controllers / multicore functionality

Palacios supports both the legacy single processor PC interrupt logic, and the basic interrupt logic of the
Intel Multiprocessor Specification.

PIC A PC-standard legacy 8259A programmable interrupt controller pair in the standard master/slave
configuration can be attached via

<device class="8259A" id="PIC" />

There are no options.
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LAPIC By including this device, a local advanced programmable interrupt controller is attached to ev-
ery core in the system, and these LAPICs are then connected via an ICC bus. The LAPICs provide IPI
functionality and interact with the virtual core threads in Palacios in order to implement the Intel Multipro-
cessor Specification, which is the common PC model for multiprocessors that almost all multiprocessor or
multicore guest OSes rely on. The syntax is

<device class="LAPIC" id="apic" />

There are no options.

IOAPIC The I/O APIC device is the preferred way of performing device interrupt delivery on a multicore
system. Unlike the PIC, which can deliver interrupts only to the first core, the I/O APIC can deliver interrupts
to any core according to delivery criteria set by the guest OS. The syntax is

<device class="IOAPIC" id="ioapic" >
<apic>apic</apic>

</device>

The required <apic/> parameter specifies the LAPIC device in the system. Recall that the LAPIC device
represents an LAPIC on each core in the system, and an ICC bus that allows those LAPICs to communicate.
Here we are stating that the IOAPIC is also attached to that ICC bus.

MPTABLE The MPTABLE device inserts a table into the guest physical memory that describes the pro-
cessors and interrupt processing structure of the system. The table is dynamically created based on the core
configuration, LAPIC configuration, IOAPIC configuration, and PIC configuration. This table conforms to
the requirements of the Intel Multiprocessor Specification and is the way in which the boot processor finds
the other processors in the VM. The syntax is

<device class="MPTABLE" id="mptable" />

There are no options.

5.1.5 Northbridge and Southbridge

These devices implement the interface of the critical elements of the system board chipset.

i440FX This device is an i440FX-compatible northbridge. The syntax to include it is

<device class="i440FX" id="northbridge">
<bus>PCI_BUS</bus>

</device>

The bus options describe the PCI buses that are supported by the northbridge, where PCI_BUS should be
the ID of a PCI bus that has already been described. All PC-class VMs should have a northbridge, unless
you know what you’re doing.
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PIIX3 This device is a PIIX3-compatible southbridge. The syntax to include it is

<device class="PIIX3" id="southbridge">
<bus>PCI_BUS</bus>

</device>

The bus options describe the PCI buses that are supported by the southbridge, where PCI_BUS should be
the ID of a PCI bus that has already been described. It may seem odd that both northbridge and southbridge
refer to a PCI bus. Both are programmable devices and thus must expose interfaces to the OS. They expose
these interfaces via the PCI mechanisms (e.g., BARs), and these interfaces appear on the PCI bus that is
selected. In other words, the interfaces to the northbridge and southbridge are PCI devices. All PC-class
VMs should have a northbridge and southbridge, unless you know what you’re doing.

5.1.6 PCI bus and passthrough/host devices

The VM can have a PCI bus. Many devices in Palacios are PCI devices and so will require the addition of a
PCI bus. We also describe two special devices which allow passthrough access to physical PCI devices on
the system, and to PCI virtual devices that are implemented in the host OS.

PCI The PCI device introduces a PCI bus into the guest and is needed if you will be attaching any PCI
virtual device, or a passthrough device. The syntax is:

<device class="PCI" id="pci0" />

PCI PASSTHROUGH This device allows you to map a PCI device available in the physical hardware
into the guest. The syntax is:

<device class="PCI_PASSTHROUGH" id="MY_ID">
<bus>PCI_BUS_ID</bus>
<vendor_id>VENDOR_ID</vendor_id>
<device_id>DEV_ID</device_id>
<irq>IRQ_NUM</irq>

</device>

Here, PCI_BUS_ID is the ID of the virtual PCI bus to which this device will be added. The VENDOR_ID
and DEV_ID identify the device to be mapped. Palacios will scan the physical PCI buses of the machine
looking for the first device that matches on vendor and device id. This device is then mapped. Additionally,
because Palacios currently cannot determine the IRQ number that the device’s PCI interrupt line maps to,
the user must supply this, which is the IRQ_NUM parameter.

It’s important to note that if the PCI device does DMA, the guest OS needs to be modified so that
DMA target addresses are offset by the same amount that the guest physical address space is offset with
respect to the host physical address space.

PCI FRONT This device provides a frontend to PCI host devices. A host device is one that is imple-
mented in the host OS instead of in Palacios. Palacios access this implementation via the Host Device
interface. In the Linux kernel module integration, this implementation can even be in userspace. The syntax
for adding a PCI frontend device is simple:
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<device class="PCI_FRONT" id="MY_ID" hostdev="HOST_URL">
<bus>PCI_BUS_ID</bus>

</device>

Here, the PCI_BUS_ID is the bus to which to attach the device, while HOST_URL is the name of the device
implementation to attempt to open via the Host Device interface.

5.1.7 Frontend and Backend Devices

Palacios implements a split device structure to enable the combination of I/O mechanisms (backends) with
arbitrary emulated device interfaces (frontends). For example, this makes it possible for the IDE frontend
device to emulate a CD ROM or ATA hard drive on top of different storage backends, such as files, memory,
or the network. The split device structure makes it possible for backends and frontends to be developed
independently.

Currently, the split device structure applies to four classes of devices:

• Block Devices: These devices conform to basic storage device behavior. The expectation here is that
random read and write accesses will occur conforming to the capacity of the device.

• Char Devices: These devices assume byte level read and write behavior that conforms to a stream
like abstraction.

• Network Devices: These devices operate on network packets, and contain interfaces for exchanging
packets between the backend and frontend.

• Console Devices: These devices deal with console interaction and allow multiple console clients to
connect to an emulated console device.

In order to add a functioning device to your configuration, you must specify both a frontend device,
which is visible to the guest, and a backend device, which implements the underlying class of functionality.

First, a frontend device is specified using the following general syntax:

<device class=FRONTEND-CLASS id=FRONTEND-ID>
GLOBAL FRONTEND DEVICE CONFIGURATION

</device>

The global frontend device configuration governs how the frontend device will connect to and interact wit
the guest. For example, it might include the PCI bus to which the device is attached, or how many subsidiary
buses it provides.

Second, a backend device is specified using the following general syntax:

<device class=BACKEND-CLASS id=BACKEND-ID>
BACKEND DEVICE CONFIGURATION
<frontend tag=FRONTEND-ID>

FRONTEND DEVICE INSTANCE CONFIGURATION
</frontend>

</device>
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The backend device is used to determines how the underlying functionality is handled by the VMM. The
backend configuration includes options for the backend device itself, the specific frontend it will be con-
nected to, and additional options that will be passed to the frontend that specify how the frontend should
emulate the backend device instance.

The frontend block is perhaps the most confusing part of the split architecture. One frontend device
may make visible several underlying backend devices. For example, a storage controller may support mul-
tiple drives. Therefore, when the backend device is specified, its frontend block indicates to the frontend
device how this particular backend device should appear in the guest. For example, it might specify that
backend device should appear as a particular kind of drive on a particular channel of the controller.

We will now examine the different split device architectures in more detail.

5.1.8 Storage controllers and devices

A VM is given storage through a combination of frontends and backends. A storage frontend is a virtual
device visible directly to the VM. A storage backend is invisible to the VM and actually implements the data
storage mechanism. A frontend is added first, followed by a backend that specifies it.

IDE controller frontend This device introduces an PCI IDE controller and ATA + ATAPI device frame-
work, which is necessary if you plan to include CD ROM drives or ATA hard drives. The syntax to include
it is

<device class="IDE" id="ide">
<bus>PCI_BUS</bus>
<controller>SOUTHBRIDGE</controller>

</device>

where PCI_BUS is the ID of the bus to which to attach the controller, and SOUTHBRIDGE is the ID of the
southbridge that governs that bus.

This device acts both as the IDE controller and as a frontend for common kinds of storage devices
that can be attached to it, namely ATA hard drives and ATAPI CD ROMs. When a storage backend attaches
itself to the IDE controller, it also indicates what form of storage device it is to appear to be.

Virtio block device frontend A second form of frontend for storage is the Linux virtio-compatible block
device. The virtio block device has a simple syntax:

<device class="LNX_VIRTIO_BLK" id="blk_virtio">
<bus>PCI_BUS</bus>

</device>

RAMDISK storage backend The RAMDISK backend keeps its storage in RAM. The RAM can be ini-
tially populated with the contents of a file. A common use case for this is when we want to embed a boot
CD into the image file, which would look like:

<device class="RAMDISK" id="CD0">
<file>FILE_ID</file>
<frontend tag="IDE_ID">
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<model>V3Vee CDROM</model>
<type>CDROM</type>
<bus_num>BUS_NUM</bus_num>
<drive_num>DRIVE_NUM</drive_num>

</frontend>
</device>

This indicates that the ramdisk is to be initially populated using the data from the file previously indicated
for embedding into the image and named FILE_ID. The ramdisk will attach itself to the controller (here
an IDE Controller we previously added) indicated by IDE_ID That controller is to make it appear as a
CDROM attached to the indicated IDE bus at the indicated drive number (i.e., master or slave).

FILEDISK storage backend The FILEDISK backend keeps its storage in files in the host OS’s filesys-
tem. A common use case for this is to store the hard drive of a VM, for example:

<device class="FILEDISK" id="ATA0" writeable="1">
<path>/home/foo/mydisk.data</path>
<frontend tag="IDE_ID">

<model>V3Vee ATA Drive</model>
<type>HD</type>
<bus_num>BUS_NUM</bus_num>
<drive_num>DRIVE_NUM</drive_num>

</frontend>
</device>

This indicates that the filedisk is writeable and is backed by the host path /home/foo/mydisk.data. The
filedisk will attach itself to the controller (here an IDE Controller we previously added) indicated by IDE_ID
That controller is to make it appear as an ATA harddisk attached to the indicated IDE bus at the indicated
drive number (i.e., master or slave).

NETDISK storage backend The NETDISK backend accesses its storage over the network. A common
use case for this is to store the hard drive of a VM on a diskless cluster, for example:

<device class="NETDISK" id="ATA1">
<IP>129.105.49.33</IP>
<port>9789</port>
<tag>mydisk</tag>
<frontend tag="IDE_ID">

<model>V3Vee ATA Drive</model>
<type>HD</type>
<bus_num>BUS_NUM</bus_num>
<drive_num>DRIVE_NUM</drive_num>

</frontend>
</device>

This indicates that Palacios should attach to a netdisk server running on 129.105.49.33, port 9789, and
request access to the disk named there as “mydisk”. If it’s available, it should be attached to the VM’s IDE
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controller (indicated by IDE_ID That controller is to make it appear as an ATA harddisk attached to the
indicated IDE bus at the indicated drive number (i.e., master or slave).

TMPDISK storage backend The TMPDISK backend makes available storage for the lifetime of the VM
on the host. The storage is in memory, starts empty, and is discarded when the VM is stopped. A common
use case for this is to store the swap drive drive of a VM on a diskless cluster, for example:

<device class="TMPDISK" id="ATA2">
<size>SIZE</size>
<frontend tag="IDE_ID">

<model>V3Vee ATA Drive</model>
<type>HD</type>
<bus_num>BUS_NUM</bus_num>
<drive_num>DRIVE_NUM</drive_num>

</frontend>
</device>

This indicates that Palacios should create a temporary disk of size SIZE MB and attach it to the VM’s IDE
controller (indicated by IDE_ID That controller is to make it appear as an ATA harddisk attached to the
indicated IDE bus at the indicated drive number (i.e., master or slave).

5.1.9 Network interfaces

Similar to storage devices, NICs also are partitioned into frontends that appear in the guest and backends
that implement actual packet sending and receiving. The two primary backends are the VNET overlay and
the network bridge, both of which are described in detail in Section 7. Here, we focus on the frontends.

NE2000 frontend The NE2000 is a simple, PCI-based NE2000-compatible network adapter. The syntax
for adding it is simple:

<device class="NE2000" id="ne2000">
<mac>MACADDR</mac>
<bus>PCI_BUS_ID</bus>

</device>

Here, the MAC_ADDR is the hardware address of the card, while PCI_BUS_ID is the ID of the PCI bus to
which it is attached.

RTL8139 frontend This is a simple, PCI-based RTL8139-compatible network adaptor. The syntax is the
same as for the NE2000:

<device class="RTL8319" id="rtl8139">
<mac>MACADDR</mac>
<bus>PCI_BUS_ID</bus>

</device>
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VMNET frontend A simple hypercall-based NIC is also available:

<device class="VMNET" id="vmnet" />

Virtio NIC frontend A Linux virtio-compatible NIC frontend is also available, and has the following
syntax:

<device class="LNX_VIRTIO_NIC" id="nic_virtio">
<bus>PCI_BUS</bus>
<mac>MAC_ADDR</mac>

</device>

This device provides the guest with a frontend for low-overhead access to a network back end. This can be
associated with numerous services, which are described in more detail in Section 7.

5.1.10 Serial port, virtio serial console, and stream backend

Palacios includes an 8250/16550-compatible serial port frontend device. This can be attached to a stream
backend device to allow you to interact with the serial port from the host. Note that this device provides 4
serial ports (“COM1” through “COM4”). A Linux virtio console frontend device is also available.

SERIAL frontend The syntax for inserting the serial port device is straightforward:

<device class="SERIAL" id="serial" />

There are no options.

Virtio console device frontend The console char device has a simple interface.

<device class="LNX_VIRTIO_CONSOLE" id="cons_virtio">
<bus>PCI_BUS</bus>

</device>

CHAR STREAM backend The typical backend used for serial ports and the serial console device is the
char stream device, which has a simple syntax:

<device class="CHAR_STREAM" id="char_stream" >
<name>NAME</name>
<frontend>

<tag>TAG</tag>
</frontend>

</device>

Here, NAME represents the name of the stream that will be supplied to the host’s Stream interface to identify
the stream. The frontend block identifies the device, such as the serial device or the virtio console device
which will serve as the frontend. The TAG value is the ID of that frontend device.

25



5.1.11 Video cards and consoles

Palacios includes a text-mode video card frontend that can interface with backends that talk to userspace
tools on the host, or directly to the network. It also includes a graphics video card that interacts with the
Graphics Console host interface.

In addition to the combination of a video card and the keyboard device, the serial port and virtio
console devices can also be used to access the guest OS.

CGA VIDEO frontend The CGA VIDEO device provides baseline CGA text-mode display card for the
machine. The syntax is

<device class="CGA_VIDEO" id="cga" passthrough="enable"|"disable" />

If passthrough is set to ”enable”, the guest’s manipulations of the CGA virtual device are also sent to
the underlying CGA-compatible graphics hardware. CGA is a frontend device only. Nothing is displayed
unless a suitable backend device is attached, two of which are described next.

The CGA VIDEO device does not make the screen visible to the user on its own. Export of the
screen is done via a text console backend, of which there are several.

TELNET CONSOLE backend The Telnet console makes it possible to telnet to VM’s CGA VIDEO
screen (and the VM’s keyboard):

<device class="TELNET_CONSOLE" id="telnet" >
<frontend tag="cga" />
<port>19997</port>

</device>

Here the frontend block identifies which text-mode display card will provide the output data for the
Telnet console, while the port block indicates the port to which the user shall telnet to access the console.
The Telnet console is useful when Palacios is integrated with a host OS that can support the Socket host
interface, but cannot support the Console or Graphics Console host interfaces.

CURSES CONSOLE backend The Curses console makes the VM’s CGA VIDEO screen (and its key-
board) visible via the Console host interface. On Linux, this is used to provide access to the console via the
v3_cons and v3_cons_sc userspace tools. The syntax is simply:

<device class="CURSES_CONSOLE" id="curses" >
<frontend tag="cga" />

</device>

The frontend block indicates which text-mode display card will provide the output data for the Curses
console.

VGA The VGA device provides a baseline VGA graphics card for the machine. The syntax is relatively
simple:

<device class="VGA" id="vga" passthrough="enable"|"disable"
hostframebuf="enable"|"disable" />
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If passthrough is enabled, the guest’s manipulations of the VGA virtual device are also sent to the under-
lying VGA-compatible graphics hardware. This is primarily supported to aid debugging. If hostframebuf
is enabled, the guest’s manipulations of the VGA virtual device result in drawing activity in a host frame
buffer memory region via the graphics console optional host interface, which is the common output path for
the VNC-based console. One of these options must be enabled in order for guest output to be seen.

Unlike the CGA VIDEO device, the VGA device does not support backends. It uses the Graphics
Console host interface directly. With the Linux integration, the implementation of this interface interacts
with a userspace tool that makes the display and keyboard visible via the VNC protocol.

5.1.12 Generic “catch-all” device

The Generic device is a “catch-all” device that can be used for several purposes, including:

1. Dropping guest interactions with a physical device.

2. Spying on guest interactions with a physical device.

3. Providing a front-end for a non-PCI Host Device.

We begin with an example of using the device for (1) or (2):

<device class="GENERIC" id="generic" forward="physical_device" >
<ports>

<start>PORT_START</start>
<end>PORT_END</end>
<mode>PORT_MODE</mode>

</ports>
<memory>

<start>MEM_START</start>
<end>MEM_END</end>
<mode>MEM_MODE</mode>

</memory>
</device>

A generic device can have an arbitrary number of port and memory regions, making it straightforward to pro-
duce the profile of any PC device. Here, the I/O ports in the range PORT_START through PORT_END are in-
tercepted and handled according to PORT_MODE The mode “GENERIC PASSTHROUGH” allows I/O port
reads or writes to proceed on the underlying hardware, while “GENERIC PRINT AND PASSTHROUGH”
additionally causes the interactions with the underlying hardware (and their results) to be printed. Similarly,
“GENERIC IGNORE” and “GENERIC PRINT AND IGNORE” cause the guest’s attempts to be ignored,
and ignored with printing. In the latter modes writes are discarded, while reads are satisfied with zeros.
Printing further requires that the Generic device itself be compiled with debugging turned on. Handling
guest physical memory regions is identical.

When configured as above, any “PASSTHROUGH” activity is directed to the actual physical device.
To use the Generic device for (3), as a frontend for a host device, requires only the following change:

<device class="GENERIC" id="generic"
forward="host_device" url="HOST_URL">
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Where HOST_URL is a string naming the relevant device implementation to the Host Device interface. In
such a generic device, any “PASSTHROUGH” activity is directed to the Host Device interface instead of to
the physical hardware.

5.1.13 Other devices

There are a range of other devices that can be included, but most of these are experimental.

Virtio Balloon The Linux virtio-compatible balloon device has a simple syntax:

<device class="LNX_VIRTIO_BALLOON" id="balloon_virtio">
<bus>PCI_BUS</bus>

</device>

This device allows the guest to ask the VMM when to shrink or expand its memory usage.

Additional virtio-like devices There are also several additional paravirtualized devices that have inter-
faces that are specific to Palacios, but that conform to the overall virtio model. These are the symbiotic,
symbiotic module, and VNET virtio devices. VNET is described in Section 7. The others are outside of the
scope of this document.

5.2 Some hints for your configuration file

It is generally easiest to take a working configuration file and modify it for your purposes.
A Palacios image file essentially consists of a magic cookie, a directory of blobs, including their

sizes and offsets, the configuration file, and finally the blobs. When Palacios creates a VM from the image,
it interprets the configuration in sequential order in a single pass. Thus, it is important that any device or
other entity appear before references to it. Palacios currently does only minimal sanity checking of the
configuration.

To configure a single core PC class VM, it’s sufficient to simply have a PIC. However, more recent
versions of some guests (e.g., Linux) expect to see an APIC even on a single core machine. If you run a
single core guest and get an invalid address exception in high (32 bit) guest physical memory, this is almost
certainly because your guest is blindly assuming an APIC to be available.

To configure a typical multicore PC class VM, it is necessary to specify multiple cores and also
to include APIC, IOAPIC, and MPTABLE devices. These devices provide compatibility with the Intel
Multiprocessor Specification that is needed for a typical multicore guest OS to find and boot the additional
(AP) processors, and to allow all the processors to communicate via IPIs. These three devices go together
and work hand-in-hand with the multiple virtual cores. You will also need to configure a PIC, however,
since at least the BIOS expects to be able to use it. The following idiom is common:

<cores count=NUM_CORES>
<core />

</cores>

...
<device class="8259A" id="pic" />
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<device class="LAPIC" id="apic" />

<device class="IOAPIC" id="ioapic" >
<apic>apic</apic>

</device>

<device class="MPTABLE" id="mptable" />

Having some sort of access to a guest console is usually a good idea when getting started. The most
common way to do this with a Linux host is add a CGA frontend device, a CURSES CONSOLE backend
device, and a keyboard device:

<device class="KEYBOARD" id="keyboard" />

<device class="CGA_VIDEO" id="cga" passthrough="disable" />

<device class="CURSES_CONSOLE" id="curses" >
<frontend tag="cga" />

</device>

This combination will let you attach to the text-mode console of the guest using a simple userspace tool,
allowing you to switch the screen (or current terminal window) between interacting with the host and inter-
acting with the guest.

When you’re getting started, it’s usually easiest to use a bootable CD as your guest, and to build it
into your image file as a RAMDISK whose initial content is supplied from a file. Thus, the following idiom
is common:

<files>
<file id="boot-cd" filename="/local/path/to/my_guest.iso"/>

</files>

...

<device class="IDE" id="ide">
<bus>pci</bus>
<controller>southbridge</controller>

</device>

<device class="RAMDISK" id="CD0">
<file>boot-cd</file>
<frontend tag="ide">

<model>V3Vee CDROM</model>
<type>CDROM</type>
<bus_num>0</bus_num>
<drive_num>0</drive_num>
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</frontend>
</device>

If you have a particularly large bootable CD, or a large hard drive, you will probably not want to
embed this content into the image file for performance reasons. Furthermore, Linux (and other host OSes)
also put limits on how large a Palacios image file can be, which in turn will limit the size of drive contents
possible using the above idiom. If your guest is particularly large, you may want to use a file disk instead,
replacing the ramdisk block in the above idiom with

<device class"FILEDISK" id="CD0">
<path>/path/on/host/to/my_guest.iso</path>
<frontend tag="ide">

<model>V3Vee CDROM</model>
<type>CDROM</type>
<bus_num>0</bus_num>
<drive_num>0</drive_num>

</frontend>
</device>

Here, the ISO file will need to appear in the host filesystem at the indicated path.

5.3 Building the guest

Once the guest XML file has been configured, you must build a Palacios-specific image file from it
and any files it references.

The tool used for creating image files build_vm, which itself is built in the following manner:

cd palacios/utils/guest_creator
make

You then use build_vm in the following way:

./build_vm /path/to/my_config.xml -o /path/to/my_guest_image.img

The output of this command is a self contained guest image that can be loaded directly into Palacios.

6 Running Palacios and its VMs

We now describe how to use Palacios to run a guest within a Linux host OS. Our description in
Section 6.1 through 6.2 assumes that you already have a functioning Linux host system with access to a
root shell prompt, and that you have copied the v3vee.ko kernel module and the assorted v3_* userspace
tools to an accessible filesystem.

In Section 6.3 we describe how you can build a tiny Linux host environment, which is very suitable
for testing Palacios under QEMU, while in Sections 6.6 and 6.7 we describe debugging using QEMU/GDB
and QEMU/Linux/KGDB.
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6.1 Setting up Palacios

Once you have established your environment on the host OS, you must first insert the v3vee module
into the kernel:

insmod /path/to/v3vee.ko

After this step, you will want to run dmesg to see if Palacios reported any errors while loading
and configuring the machine. Palacios should have detected all the cores of the machine and initialized the
appropriate hardware virtualization support on each one. You should also see /dev/v3vee at this point.
This is the device through which Palacios is controlled.

Next, you will want to be sure that the v3_* utilities are on your path:

export PATH=$PATH:/path/to/v3_utils

Finally, you will want to allocate memory for Palacios to use to support large physical memory
allocations:

v3_mem MEM_MB

Here, MEM_MB is the number of megabytes of physical memory that should be reserved. This memory
is removed from the exclusive control of Linux and placed under the exclusive control of Palacios. The
memory allocation should succeed. dmesg will show the specifics of allocation.

Logging debugging output You may find it helpful to record debugging output from Palacios. A simple
way to do this is:

cat /proc/kmsg > LOGFILE &
echo LOGLEVEL > /proc/sys/kernel/printk

6.2 Managing a VM

Creating a VM To create a new VM, execute

v3_create /path/to/my_guest_image.img MyGuestName

This creates a new VM with the appropriate configuration options and the name MyGuestName. If there
is a creation error, examining the kernel log (e.g., run dmesg) will provide more details on why it failed. A
created VM is not yet running.

The new VM is represented as a device and if you run ls -1 /dev/v3-* you should see some-
thing like:

/dev/v3-vm0
...

Each VM appears as a separate, numbered device file. This device file is the control point for the VM, and
is referred to by the other v3_* utilities.
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Launching a VM To launch the newly created VM, we use:

v3_launch /dev/v3-vm<N>

where <N> is replaced by the number corresponding to the VM—in this case you would use v3-vm0 This
command will actually boot the VM. Now if you run ps you should see a kernel thread in the output that
looks like

[MyGuestName-0]

This kernel thread is the first virtual core of the VM. Additional cores appear as other kernel threads, with
core numbers given as suffixes. So, if MyGuestName were a four core VM, ps would show:

[MyGuestName-0]
[MyGuestName-1]
[MyGuestName-2]
[MyGuestName-3]

Interacting with the VM’s console If the guest includes a CURSES_CONSOLE console backend, you
should now be able to connect to the guest console by running

v3_cons /dev/v3-vm<N>

You will automatically be connected to the console of the guest, but to exit you can press the Esc key.
v3_conswill only work correctly if you are directly connected to the console of the physical host machine.
It uses raw terminal access to allow full passthrough of PC scancodes from the physical keyboard to the
virtual keyboard. If you are using a virtual terminal (xterm, etc), you will want to use this instead:

v3_cons_sc /dev/v3-vm<N> 2> debug.log

v3_cons_sc uses cooked terminal access and converts from this ASCII character stream to scan codes.
While this makes it compatible with any terminal, it also means that not all scan codes can be generated.

If the guest uses a VGA card, and it is configured with the host frame buffer enabled, you can connect
to it by first starting a special VNC server that is among the utilities:

x0vncserver --PasswordFile=˜/vncpasswd -rfbport 5951 /dev/v3-vm<N> &

This makes the VGA card (and keyboard/mouse) visible at port 5951 via the VNC protocol. If this is
successfully running, you can now connect to this VM using any VNC client using a syntax like:

vncviewer localhost:5951

If the guest uses a console, such as the virtio console or a serial console, that is backed by a
CHAR_STREAM device, you can attach to that console using

v3_stream /dev/v3-vm<N> SERIAL_TAG

where SERIAL_TAG is the ID of the relevant device. If you only need to see output from the console, you
can use v3_monitor instead of v3_stream.
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Pausing and continuing a VM To pause a VM’s execution, use

v3_pause /dev/v3-vm<N>

and to resume execution of a paused VM, use

v3_continue /dev/v3-vm<N>

Migrating a VM’s virtual cores A VM’s virtual core to physical core mapping does not change except
under explicit requests. These requests are made in the following manner:

v3_core_move /dev/v3-vm<N> VCORE-ID PCORE-ID

where VCORE-ID is the virtual core number to move, and PCORE-ID is the physical core number to move
it to.

Saving and loading a VM Saving and loading a VM forms the basis for basic checkpoint/restore func-
tionality and basic migration functionality. When a VM is saved, it is written to a store in such a way that it
can be restored from it and pick up where it left off.

To save a VM, it must first be paused, and then it can be saved:

v3_pause /dev/v3-vm<N>
v3_save /dev/v3-vm<N> STORE URL

Here, STORE indicates the storage engine, and the URL indicates how the storage engine is to save the data.
To restore a saved VM, we first create it, as described above, then load the saved state into it, and finally we
launch it:

v3_create /path/to/my_guest_image.img MyGuestName
v3_load /dev/v3-vm<N> STORE URL
v3_launch /dev/v3-vm<N>

Stopping and freeing VMs To turn off a VM, execute

v3_stop /dev/v3-vm<N>

Once the VM is stopped, you can free its resources:

v3_free <N>

Typical guest output When launching a guest, you will see the following in succession on the console:

1. The Palacios setup process

2. The boot of the guest, starting with its BIOS, and leading through its normal boot sequence.

Palacios dumps debugging output via host OS facilities. In Linux, this is via the syslog framework. The
amount and nature of Palacios debugging information that appears depends on compile-time options.
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6.3 A minimal Linux host

If you’re doing intensive development in Palacios, especially when using QEMU, you may find it
very handy to create a minimal Linux host OS image. This will make it possible to boot your test machine
very quickly.

You can compile a Linux kernel into a bootable ISO image by running

cd hostlinux-src-dir
make isoimage

This will create a file called image.iso in the directory arch/x86/boot/. If you set the following
options in your host Linux configuration:

• General Setup → Initial RAM filesystem and RAM disk (initramfs/initrd) support — set this to en-
abled

• General Setup→ Initial RAM filesystem and RAM disk (initramfs/initrd) support→ Initramfs source
files — set this to the directory that will become the root directory of the initial ram disk.

then the noted directory tree will become part image.iso. When image.iso is booted, the loader will
populate a ramdisk with its contents, and make this ramdisk the root file system for the kernel. The upshot is
that with the right initramfs source directory contents (for example, a busybox distribution), your ISO image
will quickly boot your own host kernel to a root command prompt.

It is important that when the kernel boots, it be given the movablecore option, specifying the
upper limit on the number of physical pages that can be provided to Palacios.

To test Palacios, your initramfs source files should include all of the Palacios userspace utilities (e.g.,
v3_* and possibly x0vncserver) described in Section 4.2, the Palacios v3vee.ko kernel module, and
any guest images you may want to use. It is often convenient to place the appropriate v3 commands in
an init script in the guest initramfs. This obviates the need to interact with the guest and helps with rapid
development and debugging.

Some test environments (e.g. PXE boot) require that the kernel image and initrd are directly avail-
able, or can run even faster than with an ISO if they are (e.g., QEMU). Avoiding the ISO also allows you to
decouple building the host kernel and the initrd. To build your host in this manner, compile your host kernel
in this manner:

cd hostlinux-src-dir
make bzImage

Instead of an ISO file, it creates a file called bzImage in the arch/x86/boot/ directory. This is the
kernel itself. Now if you modify your initramfs, you can rebuild it independently of the host kernel. Linux
provides a script called gen_initramfs_list.sh in the hostlinux-src-dir/scripts/ direc-
tory that will create a cpio packed archive from your initramfs. To rebuild the initramfs, run:

cd hostlinux-src-dir/scripts
./gen_initramfs_list.sh -l /path/to/initrd/initramfs > \

/path/to/initrd/.initramfs_data.cpio.d
./gen_initramfs_list.sh -o /path/to/initrd/initramfs_data.cpio \

-u 0 -g 0 /path/to/initrd/initramfs
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We find it convenient to put these commands into a wrapper script called make_init.sh.
The initramfs_data.cpio file contains the ramdisk contents that will become the root file

system, while bzImage contains the kernel itself.

Hints We highly recommend starting from a kernel configuration and initramfs that has is known to be
working for Palacios work. Failing that, we recommend fetching a kernel directly from kernel.org and
building an initramfs around BusyBox. This is also the configuration we recommend if you decide to build
a test guest (Section 6.8).

An initramfs will probably need to contain one or more device files. Creating these will require root
privileges. For example, you may need to execute

sudo mknod initrd/initramfs/dev/console c 5 1
sudo chown 0600 initrd/initramfs/dev/console

in order to create a console device in your initramfs. If you do not have root privileges, there is an alternative.
Assuming that you have a directory initrd in which there is an initramfs subdirectory that contains
the contents for the initramfs_data.cpio you are building, and your Linux configuration points to
the initrd directory, you can then create a file initrd/root_files that contains directives for the
creation of special files as part of the build process. The equivalent entry to the above would be

nod /dev/console 0600 0 0 c 5 1

6.4 Testing in QEMU

There are three ways to test in QEMU. The first is to boot and install your distribution within a
QEMU emulated machine, copy the Palacios components and VM images to it, and then execute Palacios
in the context of your distribution. The primary weakness of this is that full distributions may run very
slowly under emulation. The other two ways to test with QEMU involve using a minimal host, which can
be generated as described above.

One can simply boot the ISO image that resulted from the make isoimage host OS build com-
mand. This method is simple and intuitive, but requires that you rebuild the kernel and ISO image whenever
either the host kernel or the initrd contents change. To boot with this method, run the following:

qemu-system-x86_64 -smp 1 -m 2047 \
-serial file:./serial.out \
-cdrom hostlinux-src-dir/arch/x86/boot/image.iso

Here the -smp switch specifies the number of processors to emulate and the -m switch specifies the amount
of memory. You can change these according to your needs. the -serial option tells QEMU to write
out the output from the serial port to a file called serial.out. You can also direct this to the terminal
by using -serial stdio. Some users experience problems with a mismapped keyboard when running
QEMU. Often, this is fixed by providing the option -k en-us.

QEMU has special support for booting Linux kernels. It can act as a boot loader that immediately
maps in the kernel and an initrd image. If you have built these, as described in the previous section, you can
boot the host OS from QEMU using a command like:
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qemu-system-x86_64 -smp -1 -m 2047 -serial stdio -k en-us \
-kernel hostlinux-src-dir/arch/x86/boot/bzImage \
-initrd /path/to/initrd/initramfs_data.cpio \
-append "movablecore=262144 debug earlyprintk=ttyS0, keep console=tty0"

Here, the -kernel option indicates the host kernel that will be booted, and the -initrd option indicates
the initrd contents. The -append option is the way in which to pass additional arguments to the kernel.
Here, the movablecore kernel option is critical as it defines the upper limit of how much memory can be
handed to Palacios.

6.5 Networking in QEMU

Even when testing networking-related services, QEMU can be used. It is even possible for a user
with no special privileges on the physical machine to use QEMU networking. In the following, we will use
the following terms:

• Physical machine: the machine on which QEMU is running.

• Physical OS: the OS running on the physical machine.

• Emulated machine: the machine instance QEMU is creating.

• Host OS: the OS running in the emulated machine, which has Palacios embedded in it.

• Virtual machine: the virtual machine created by Palacios.

• Guest OS: the OS running in the virtual machine.

Our focus is on supporting connectivity for emulated machine, on making it appear to be connected to a
network. In all cases the emulated machine appears to have ordinary networking hardware (e.g., some kind
of NIC).

QEMU can be configured to provide both local and global connectivity for the emulated machine.
By local connectivity, we mean allowing the emulated machine to talk to the physical machine. By global
connectivity, we mean allowing he emulated machine to talk to anything that the physical machine is con-
nected to.

Connectivity can be established using either QEMU’s user networking features, or by having QEMU
talk to a TAP interface, which may or may not be bridged to other interfaces. User networking does not
require any special privileges, but is restrictive. TAP networking requires root privileges, but is very flexible,
up to allowing you to make the emulated machine a peer on the physical machine’s network.

6.5.1 TAPs and bridging

TAP (and TUN) are features of the Linux kernel (the physical OS) running on the the physical machine. A
TAP is basically a virtual Ethernet NIC with the additional property that a userspace program can directly
send and receive raw Ethernet packets on it. This makes it possible to directly connect userspace handling of
packets with kernel handling of packets. Once a TAP interface is created, it can be manipulated as if it were
a regular network interface. Additionally, userspace programs interact with the TAP interface by reading
and writing a special file descriptor. For example, when a program writes to this file descriptor, the kernel
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will see it as if data has been received on the wire. If data is received on the TAP from some other source,
the program can read it from the file descriptor.

An orthogonal feature of the Linux kernel is bridging. Bridging allows multiple NICs (including
TAPs) to be combined into, for example, Ethernet switches. By bridging a TAP interface used jointly by
QEMU and the kernel, and a regular physical NIC, it is possible for the host OS to communicate to the
broader network through the physical NIC.

TUN/TAP and bridging support are components of the Linux kernel that must be specifically en-
abled and included in the build process for the physical OS kernel. However, most common Linux builds
have them enabled by default, so you probably already have them. The following assumes you have both
installed and enabled.

To enable QEMU networking with TAP, it is first necessary to create the TAP interfaces on the host,
and, if applicable, bridge them to the physical network. An unbridged TAP interface (with correct routes)
will enabled local connectivity. A TAP interface bridged with a physical NIC (again with appropriate routes)
will allow global connectivity.

Development machines will typically have several TAP interfaces, usually with each being allocated
for one developer.

Simple TAP interface for local connectivity To create and manage new TAP interfaces, you can use the
tunctl command. If your distribution does not come with tunctl you can get it in Ubuntu by installing
the User Mode Linux utilities package:

sudo apt-get install uml-utilities

In Redhat, Fedora, and CentOS:

sudo yum install tunctl

Even without tunctl you can manage and create TAP interfaces with a simple C program that pro-
vides similar functionality. To see a sample C program go to http://backreference.org/2010/
03/26/tuntap-interface-tutorial/. We use a program similar to the one on this site called
tap_create. To create a new tap interface with tap_create run the following:

sudo tap_create tap<N>

or

sudo tunctl -t tap<N>

Where <N> is the tap device number you would like to assign. If this ran correctly, assuming you used
device number 0, if you run ifconfig -a you should see something like this in the list:

tap0 Link encap:Ethernet HWaddr 0e:e1:90:c0:fd:d8
BROADCAST MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:500
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

Now we must bring up the new TAP interface so that QEMU can use it:
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sudo ifconfig tap<N> up 172.2<N>.0.1 up

This brings up interface tap<N> with the IP address 172.2<N>.0.1. It also creates a routing rule
that instructs the machine to direct traffic on 172.2<N>.0.1/16 to tap<N>. This way if the host OS
running under QEMU uses an IP address within this range, you can connect to it from the local machine. For
example, if we set up tap0 this way, if you ping 172.20.0.2, the packet (and in general, all packets with
a destination address within this range) will be directed through the tap0 interface. The source address will
appear as 172.20.0.1. QEMU can pick up these packets in its interface and the appropriate application
in the emulated machine can respond to 172.20.0.1.

Bridged TAP interface for global connectivity If you want global connectivity, the process is as follows.
We assume here that you have already installed the TAP utilities, either tunctl or tap_create as
described above. You also need to make sure that you have the brctl utility installed. If you don’t, you
can get it in Ubuntu with:

sudo apt-get install bridge-utils

and in RedHat, Fedora, and CentOS:

yum install bridge-utils

First, you must bring up the physical interface, say eth1, with the appropriate address for your
network:

sudo ifconfig eth1 <addr> netmask <netmask>

The interface may already be up, of course. Next, create the TAP interface, if it doesn’t already exist, and
then bring it up without an IP address:

sudo ifconfig tap<N> up

Then you must create a bridge device:

sudo brctl addbr br0

and add both eth1 and tap<N> to it:

sudo brctl addif br0 tap<N>
sudo brctl addif br0 eth1

Finally, you need to bring up the bridge interface:

sudo ifconfig br0 up

What this has done is “plugged” both eth1 and tap<N> into a virtual Ethernet switch so that they can
communicate with each other.

Note that for this to work, the IP address used by the host OS in the emulated machine must be set
correctly. In this case, it must be set correctly to reflect the network that eth1 is connected to. That is, the
host OS must put its NIC on the same subnet as eth1 is on.

TAP devices and bridging do not survive a reboot, therefore it is handy to do this work in a file that
init runs during startup. We often do this in /etc/rc.local, for example.
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Making QEMU use your TAP interface After your TAP device has been created, configured, and op-
tionally bridged, you can then have QEMU use it via a syntax similar to the following:

qemu-system-x86_64 -smp 1 -m 2047 \
-serial file:./serial.out \
-cdrom hostlinux-src-dir/arch/x86/boot/image.iso \
-net nic,model=rtl8139 \
-net tap,ifname=tap<N>

The key here is the last two lines. The first indicates that QEMU should add an emulated version of the
rtl8139 NIC to the emulated machine. The second line instructs QEMU to use TAP for its networking
backend for that NIC, associating it with the appropriate TAP interface device.

Once the host OS comes up and brings up the rtl8139 with a reasonable IP address (one on the
subnet on which the TAP interface is), it should be possible to ping the host OS from the physical machine
using that address. If the TAP has been bridged to a physical interface, it should be possible to ping the host
OS from any machine that can reach the physical machine.

A good deal of this process can be automated by creating a script called qemu-ifup that automat-
ically brings up the appropriate TAP interfaces and adds them to relevant network bridges if needed. You
can also instruct QEMU to run this script when it starts up by providing the following option:

-net tap,ifname=tap<N>,script=/path/to/qemu-ifup

By default, QEMU will look for /etc/qemu-ifup and /etc/qemu-ifdown. If your physical OS
supports sudo scripting, you can then restrict who has access to these scripts via /etc/sudoers. If it
does not support sudo scripting, you can restrict access to the underlying utilities.

6.5.2 User networking

If you don’t have root or relevant sudo access to the physical machine and physical OS you can still use
networking, albeit in a more restrictive manner that is quite similar to NAT networking. The basic idea is
that QEMU can create and listen to tunnel ports on the physical machine and forward the TCP connections
or UDP activity on these ports to the emulated machine as Ethernet packets, and convert Ethernet packets
sent by the emulated machine to activity on those connections.

With user networking, QEMU essentially includes a TCP/IP stack that it uses to implement a virtual
network behind a NAT. While this is convenient in that it doesn’t require privileged access to the system,
there are some drawbacks. Namely, performance is relatively poor compared to TAP, and protocols other
than TCP and UDP cannot be used. This means you won’t be able to use utilities like ping that utilize ICMP
traffic.

To illustrate the process of setting up QEMU user networking, we will use the following example.
We want to run a vncserver on the host OS in the emulated machine that accepts connections on port 5901,
and we want to be able to access that server from a client running on the physical machine. To do this, we
run QEMU with the appropriate arguments:

qemu-system-x86_64 -smp 1 -m 2047 \
-serial file:./serial.out \
-cdrom hostlinux-src-dir/arch/x86/boot/image.iso \
-net user \
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-net nic,model=e1000 \
-redir tcp:6901::5901

The last three lines are important for this discussion. The first of these indicates that QEMU should use its
user networking backend. The next line tells QEMU to install an e1000 NIC into the emulated machine.
Finally, the -redir option instructs QEMU to listen on TCP port 6901 on the physical machine, and
redirect connections on that port to connections on port 5901 on the emulated machine. If we then connect
to 6901, QEMU will generate and handle the appropriate packets on the emulated e1000, translating between
connection traffic and Ethernet packets on the e1000 NIC.

Note that the host OS must have the appropriate drivers for the NIC and it must bring up the interface
appropriately. How this is done depends on whether the host OS has a DHCP client. QEMU’s user network-
ing backend uses a DHCP server to allocate IP addresses (by default within the range 10.0.2.0/24) for
the emulated machine. The virtual DHCP server is located at 10.0.2.2 and a virtual DNS server will be
available at 10.0.2.3. The virtual DHCP server hands out IP addresses starting at 10.0.2.15. If the
host OS you’re booting under QEMU is configured to use a DHCP client, it can simply run:

ifup eth0

Otherwise, you must configure the interface with a static IP address within the range that the virtual DHCP
server allows, for example

ifconfig eth0 up 10.0.2.15 netmask 255.0.0.0

Recall that this IP address is the first in the range that the virtual DHCP server allocates for its emulated
machines. The netmask reflects this range, i.e. 10.0.2.0/24.

Now the vncserver can be started on port 5901 under the host OS in the emulated machine. And
you can connect to it by connecting to localhost:6901 on the physical machine.

On a typical physical machine and physical OS, the tunnel ports will be firewalled from outside
access, but it is still possible to connect to them by tunneling to them via SSH. For example, if you wanted
to connect to the vnc server from a different machine, you could create an ssh tunnel like:

ssh -L7901:localhost:6901 you@physicalmachine

And then point your vnc client to localhost:7901. SSH then will tunnel your connection to port 6901 on the
physical machine, where QEMU will then forward it into your emulated machine where the host OS will
see it as an incoming TCP connection to port 5901, where your vnc server will waiting to accept it.

For much more information concerning QEMU networking, visit
http://wiki.qemu.org/Documentation/Networking.

6.6 Debugging with QEMU

It is possible to do Palacios debugging using GDB and QEMU, even if your host OS does not
support KGDB. We do this by starting QEMU with these additional flags:

-monitor telnet:localhost:4444,server

QEMU will now wait for a telnet connection on port 4444 before it starts. Connect to the telnet server with
the command:
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# telnet localhost 4444

This will bring up a monitor prompt, in which you can run the following:

(qemu) gdbserver 9999
Waiting gdb connection on port ’9999’

At this point, you can switch to a different window and fire up GDB with the Linux ELF kernel image,
located in hostlinux-src-dir/

# gdb vmlinux

Then set the target to the QEMU port:

(gdb) target remote localhost:9999
Remote debugging using localhost:9999 0x000083c0

You can now set breakpoints, single step through functions, and , among other things, examine and dump
data. You will need to use continue instead of run since you are connecting to a running program. Once
you continue, you will see the boot process start. In the above example, 4444 and 9999 are TCP port
numbers. You can pick any port that is not already in use.

6.7 Debugging with KGDB

KGDB is a useful feature of Linux that allows detailed kernel debugging. Unlike the previous
technique, KGDB must have cooperation from Linux, but it gives finer-grained information and is easier to
use. You can also use it with physical hardware, via a serial port.

To set up KGDB, you first need to compile both the Palacios kernel module and Linux with de-
bugging support. In the Linux make xconfig or make menuconfig dialogue, under the ”Kernel
hacking” section, make sure the following options are enabled:

Compile the kernel with debug info
Compile the kernel with frame pointers
KGDB: kernel debugging with remote GDB ->

KGDB: use kgdb over the serial console

Under the ”General Setup” section, enable

Prompt for development and/or incomplete code/drivers

and under ”Device drivers”, enable

Character devices -> Serial drivers ->
8250/16550 and compatible serial support

Character devices -> Serial drivers ->
Console on 8250/16550 and compatible serial port

The Linux kernel command-line parameters must also be changed so that it invokes KGDB on boot. You
can find the default parameters in arch/x86/boot/Makefile Change the FDARGS variable so that it
looks like this:
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FDARGS = movablecore=262144 debug kgdb=ttyS0,
38400 kgdboc=ttyS0, 38400 kgdbwait

This says that KGDB should use the serial port and it should wait for a connection from GDB.
In Palacios, make sure that under the ”Target Configuration” section

Compile with Frame pointers
Compile with Debug information

are enabled.
After you’ve compiled the kernel and Palacios, you can boot up in QEMU with something like this:

qemu-system-x86_64 -smp 1 -m 2047 -serial tcp::4444,server,nowait \
-cdrom hostlinux-src-dir/arch/x86/boot/image.iso

This indicates that QEMU should make the serial port available for TCP networking on port 4444. As Linux
boots, it will stop and prompt for a connection from GDB. To connect, run

gdb hostlinux-src-dir/vmlinux
(gdb) target remote localhost:4444

It should connect, and if you type continue the kernel will resume its boot process.
Physical hardware is quite similar, except that the target specified to GDB will be the relevant serial

port.

6.8 Debugging with a test guest

Most interactions between the guest and Palacios are due to the guest OS, and thus it is in these
interactions that bugs are most likely to be found. While Palacios’s logging features, and the debugging
tools QEMU and KGDB provide, can give considerable detail for the “VMM side” of these interactions,
they do not give you the “guest side” of the interactions. It is often the case that seeing what is going on
in the guest kernel, at source level, at the point an interaction goes awry can provide the insight to quickly
quash a bug. Even being able to cause the guest kernel to emit additional debugging prints can often localize
a failure to a piece of source code that then serves as the clearest representation of how to reproduce the bug.
All this is equally true if you’re trying to debug a BIOS or other early boot codebase.

A common debugging approach we use is to build a tiny Linux distribution consisting of a BusyBox-
based userspace environment, and a customized Linux kernel we build ourselves. The process for doing this
is virtually identical to the process described in Section 6.3 for building a small host OS environment for
testing. The primary differences are that:

• You will want to configure and compile the test guest kernel so that it manifests the bug.

• You will modify the source code of the test guest kernel, for example to add whatever output you
need, possibly using a specialized output device described later.

• Your initramfs will not contain any Palacios modules, guests, or userspace tools. A simple BusyBox-
based environment is usually sufficient.

When you write the XML configuration for your test guest, you will want to add the internal
OS_DEBUG and BOCH_DEBUG devices:
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<device class="BOCHS_DEBUG" id="bochs debug"></device>
<device class="OS_DEBUG" id="os debug"></device>

The BOCHS debug device uses port 0x402 for informational output and 0x403 for debugging output. Any
character emitted to these ports in the guest, via an OUT instruction, will be displayed in the log of the host.
This is intended for output from ROM BIOS, VGA BIOS, or VMXASSIST code, or other pre-boot code that
you may choose to run instead. The OS debug device uses port 0xc0c0. Any character emitted to that port
by an OUT instruction will be displayed in the log of the host. The device also supports an output hypercall
that the guest OS can use. For both devices, the display in the host log is line-buffered to avoid confusion.

7 VNET for bridged and overlay networking

Palacios includes the VNET/P system, which can be used essentially in two modes. In both cases,
it acts as a backend to NIC front-end devices mapped in to the guest. In the first mode, it can simply bridge
a front-end NIC to the underlying physical network (e.g. “bridged networking”). In the second mode, it
attaches a front-end NIC to a VNET overlay network that can span many machines and sites.

In general, VNET is an overlay network system that allows for a globally controlled overlay topol-
ogy while having a simple layer 2 (Ethernet) interface to VMs. VMs connected to a VNET network think
they are all on the same local area network, regardless of where they are, and their IP addresses are the
same regardless of their location. The VNET network may be bridged to the physical network at specific
points. VNET has been under development for several years, and numerous research publications can be
found on the v3vee.org and virtuoso.cs.northwestern.edu web sites, including the earliest
vision paper [8].

VNET/P is an implementation of the VNET model in the Palacios VMM. It shares the same model
and vision with our previously implemented VNET/U system, but unlike VNET/U, it is fully implemented
inside the hypervisor and designed to achieve near native performance in the 1 Gbps and 10 Gbps switched
networks common in clusters today. More details on the VNET/P can be found in [10].

7.1 Enabling VNET/P in Palacios

VNET/P must be enabled, and Palacios recompiled, before it can be used. Currently, it is disabled
by default. To enable it, turn on the following options

VNET -> Enable Vnet in Palacios
Virtual Devices -> Enable VNET Backend Device

These assures that the core VNET/P components and the backend device that connects a VM’s virtual
Ethernet devices with VNET/P forwarding components are built and linked in.

You will also want to enable the following options in order to support network bridging:

Target Configuration -> Host Interfaces
-> Host support for Raw Packet Transmission

Virtual Devices -> Enable Direct Bridge to Host network

The VNET overlay carries Ethernet packets encapsulated in UDP packets or TCP streams. Because
Ethernet packets are used, the VNET abstraction can easily interface directly with most commodity network
devices, including virtual NICs exposed by VMMs to the guest and fast paravirtualized devices (e.g., Linux
virtio network devices) in guests.
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You will need to enable one or more of the frontend NICs in Palacios to interface with VNET. These
are: To enable virtual NICs in Palacios, turn on one of more of following:

Virtual Devices -> Enable Virtio Network Device
Virtual Devices -> NE2K
Virtual Devices -> RTL8139

The Virtio NIC implementation in Palacios is fully compatible with the virtio NIC driver in Linux kernel
version 2.6.21 and later and will achieve the highest performance if your guest supports this driver.

7.2 Configuring your guest with bridged networking

The simplest way to use VNET/P is to support bridging of virtual NICs with the physical network.
To do this, add one or more NICs to your guest configuration, for example, a virtio NIC:

<device class="LNX_VIRTIO_NIC" id="net_virtio1">
<bus>pci0</bus>
<mac>44:55:56:57:58:60</mac>

</device>

Then add a NIC_BRIDGE device to serve as a backend for your NIC:

<device class="NIC_BRIDGE" id="net_bridge">
<frontend tag="net_virtio1" />
<hostnic name="eth0" />

</device>

Notice that we supply the name of the NIC on the host to which to bridge the guest NIC.
Once your VM is running, configure the host’s physical NIC to promiscuous mode. Your virtual

NIC will appear on the network side-by-side with the physical NIC.

7.3 Configuring your guest with overlay networking

To use overlay networking in VNET/P, your guest needs to include one or more frontend NICs. For
example, you might add a virtio NIC:

<device class="LNX_VIRTIO_NIC" id="net_virtio1">
<bus>pci0</bus>
<mac>44:55:56:57:58:60</mac>

</device>

After one or more virtual NICs are added to the guest, you need to connect these virtual NICs to the
VNET/P network. To do that, a VNET/P backend device has to be created for each frontend virtual NIC.
The backend binds the frontend NIC to VNET. For example:

<device class="VNET_NIC" id="vnet_nic1">
<frontend tag="net_virtio1" />

</device>

With this configuration, all traffic that the virtual frontend NIC sees is delivered from or to the
VNET overlay. How and where packets flow depends on the VNET topology and forwarding rules, which
can be dynamically configured, as we describe next.
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7.4 Configuring an overlay

VNET/P supports a dynamically configurable general overlay topology with dynamically config-
urable routing on a per-MAC address basis.

In VNET, an Interface is a virtual ethernet device in a VM, an Edge is a logical link (e.g. a UDP, TCP
or other type of network connection) between two hosts through the physical network, and a Forwarding
Rule is a rule specifying how VNET handles certain types of ethernet packets it has received, mainly based
on the packet’s source or destination MAC address and other information.

In VNET/P, an interface is identified by the MAC address of the virtual NIC it represents. An edge
is identified by the IP address of the remote host it connects to. A forwarding rule is defined using the
following format:

src-MAC dst-MAC dst-TYPE dst-ID src-TYPE [src-ID]

The syntax of each part in the rule is defined as follows:

src-MAC = not-MAC|any|MAC
dst-MAC = not-MAC|any|MAC
dst-TYPE = edge|interface
src-TYPE = edge|interface|any
dst-ID = src-ID = IP|MAC

MAC = xx:xx:xx:xx:xx:xx
IP = xxx.xxx.xxx.xxx

src-MAC and dst-MAC are MAC qualifiers to be matched to the source and destination MACs of an ethernet
packet. They comprise a standard MAC address with an optional prefixed qualifier. The qualifier ”not”
indicates that all packets with a MAC other than the one specified should be matched. The ”any” qualifier
matches any MAC address. dst-TYPE and dst-ID specify where VNET should deliver a packet if there is
one that matches the specified rules. It could be either an interface or an edge. The MAC or IP address is
given thereafter depending on the type of destination. Similarly, the src-TYPE and src-ID specify the source
of the packet to be matched. This is optional; if the src-TYPE is not ”any”, the origin of the packet must be
matched as well.

VNET/P maintains three core tables on each host: an interface table, a link table and a forwarding
table. The control of these tables is done via an interface that appears in /proc/vnet. One of the goals
of our research efforts, is to maintain and control these tables on all the hosts comprising a VNET network
in a globally adaptive way to increase the performance of the application running in the set of VMs on the
VNET network. Here, we describe only the mechanisms for the local configuration of these tables.

To add a rule to the forwarding table, run the following command in the host Linux’s shell:

echo "add <src-MAC> <dst-MAC> <dst-TYPE> <dst-ID> <src-TYPE> [src-ID]" \
> /proc/vnet/routes

To delete a rule from the table, first run:

cat /proc/vnet/routes

to get the index of the rule you are about to delete, and then type the following command to delete it.
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Figure 1. Network topology in the example configuration of VNET/P

echo "del <route-idx>" > /proc/vnet/routes

Similarly, to create an edge from a local host to a remote host, run following command in the host shell:

echo "ADD <dst-ip> 9000 <udp|tcp>" > /proc/vnet/links

Where the dst-ip is the IP address of the remote host to be connected to. We use 9000 as the default listen
port of the VNET/P daemon in the host. You can choose the connection type of the edge as either a UDP or
TCP connection.

To delete an edge between a local and a remote host, first type

cat /proc/vnet/links

to get the index of the edge you are about to delete, and then run the following to delete the edge from the
local VNET/P edge table.

echo "DEL <link-idx>" > /proc/vnet/links

Example global overlay configuration We now give an example on how to configure a VNET/P overlay
for three VMs running on three hosts connected to each other through the IP network. All three VMs will
appear to be on the same Ethernet network.

In our example configuration, 3 VMs (namely VM 1, 2, 3) are connected via VNET networking.
One VM is launched on each host (as shown in Figure 1). The IP addresses of the three hosts (namely Host
A, B, C) are listed below:
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Host IP:
A: 172.0.0.201
B: 172.0.0.202
C: 202.0.0.3

Each guest VM is configured with one virtual NIC with MAC addresses listed as follows:

MAC of VMs’ virtio NIC:
VM 1: 44:55:56:57:58:60
VM 2: 44:55:56:57:58:61
VM 3: 44:55:56:57:58:62

The VNET/P configuration steps in host A are as follows: First, we create links from host A to the other two
remote hosts:

echo "add 172.0.0.202 9000" > /proc/vnet/links
echo "add 202.0.0.3 9000" > /proc/vnet/links

Then we add forwarding rules to the VNET forwarding table. Note that the forwarding entries in the example
are only one way to configure all 3 VMs to be able communicate with each other.

echo "add not-44:55:56:57:58:60 44:55:56:57:58:60 \
interface 44:55:56:57:58:60 any" > /proc/vnet/routes

echo "add not-44:55:56:57:58:60 FF:FF:FF:FF:FF:FF \
interface 44:55:56:57:58:60 any" > /proc/vnet/routes

echo "add 44:55:56:57:58:60 44:55:56:57:58:61 edge 172.0.0.202 any"
echo "add 44:55:56:57:58:60 44:55:56:57:58:62 edge 202.0.0.3 any"
echo "add 44:55:56:57:58:60 FF:FF:FF:FF:FF:FF edge 172.0.0.202 any"
echo "add 44:55:56:57:58:60 FF:FF:FF:FF:FF:FF edge 202.0.0.3 any"

The rules for the broadcast Ethernet address support protocols such as ARP.
Similarly, the VNET/P configuration steps in host B are as follows:

echo "add 172.0.0.201 9000" > /proc/vnet/links
echo "add 202.0.0.3 9000" > /proc/vnet/links

echo "add not-44:55:56:57:58:60 44:55:56:57:58:60 \
interface 44:55:56:57:58:60 any" > /proc/vnet/routes

echo "add not-44:55:56:57:58:60 FF:FF:FF:FF:FF:FF \
interface 44:55:56:57:58:60 any" > /proc/vnet/routes

echo "add 44:55:56:57:58:60 44:55:56:57:58:61 edge 172.0.0.201 any"
echo "add 44:55:56:57:58:60 44:55:56:57:58:62 edge 202.0.0.3 any"
echo "add 44:55:56:57:58:60 FF:FF:FF:FF:FF:FF edge 172.0.0.201 any"
echo "add 44:55:56:57:58:60 FF:FF:FF:FF:FF:FF edge 202.0.0.3 any"

Finally, the configuration steps for host C:
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echo "add 172.0.0.201 9000" > /proc/vnet/links
echo "add 172.0.0.202 9000" > /proc/vnet/links

echo "add not-44:55:56:57:58:60 44:55:56:57:58:60 \
interface 44:55:56:57:58:60 any" > /proc/vnet/routes

echo "add not-44:55:56:57:58:60 FF:FF:FF:FF:FF:FF \
interface 44:55:56:57:58:60 any" > /proc/vnet/routes

echo "add 44:55:56:57:58:60 44:55:56:57:58:61 edge 172.0.0.201 any"
echo "add 44:55:56:57:58:60 44:55:56:57:58:62 edge 172.0.0.202 any"
echo "add 44:55:56:57:58:60 FF:FF:FF:FF:FF:FF edge 172.0.0.201 any"
echo "add 44:55:56:57:58:60 FF:FF:FF:FF:FF:FF edge 172.0.0.202 any"

8 Code structure

We now consider the directory structure used by Palacios and then describe the nature of the code-
base more deeply.

8.1 Directory structure

The overall directory structure of Palacios is shown below:

palacios/
bios/ BIOS, VGA BIOS, and VT assist code

used to bootstrap a VM
geekos/ geekos embedding (deprecated)
linux_module/

Linux-specific code used to build
a Palacios kernel module - this code
interfaces Linux and Palacios

linux_usr/ userspace tools for use with the
Palacios kernel module on Linux

manual/ developer manual for local developers
and others

misc/ assorted code that doesn’t fit elsewhere
modules/ (currently unused)
palacios/ host OS-independent core of the Palacios

codebase - this is where most of the action is
scripts/ (internal - ignore)
symmods/ modules for use with symbiotic virtualization
test/ (internal - ignore)
utils/ assorted utilities, for building VM images,

formatting code, analyzing Palacios output, etc.

At the top level, you will also find copies of the Palacios license and other basic documentation.
You can find more information about Linux, Kitten, Minix 3, and GeekOS on their respective web

sites. The changes needed to support Palacios can be made to be relatively minor. If you’re looking for an
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example of a thin interface layer, we recommend looking at Kitten’s Palacios support. You may also find
the GeekOS embedding, in the geekos subdirectory to be useful, although it is important to point out that it
is now dated and we do not expect to extend it. The core OS hooks that Palacios needs have changed only
minimally since the GeekOS embedding was current, and thus it can still be illustrative. Here is a summary
of the most salient GeekOS changes made to support Palacios.

• palacios/geekos/src/geekos/{vm.c, vmm stubs.c} implement the basic interface with Palacios.

• palacios/geekos/src/geekos/{serial.c} implements serial debugging output from GeekOS.

• palacios/geekos/src/geekos/{ne2k.c, rtl8139.c} implement GeekOS drivers for simple network cards.

• palacios/geekos/src/{lwip,uip} contain the LWIP and UIP TCP/IP stacks.

• palacios/geekos/src/geekos/{net.c,socket.c} implements a simple socket interface for the LWIP/UIP
network stack in GeekOS.

• palacios/geekos/src/geekos/pci.c implements basic PCI scan and enumerate functionality for GeekOS.

• palacios/geekos/src/geekos/{queue.c, ring buffer.c} implement these data structures.

• Corresponding include files are in palacios/geekos/include.

• Other smaller changes are made and can be easily found with a diff against the GeekOS “Project 0”
code.

The directory structure of the Palacios codebase (palacios/palacios) is as below:

include/ main include directory
config/ (internal, used for configuration process)
devices/ virtual devices
interfaces/ optional interfaces Palacios can use or support
palacios/ palacios core
vnet/ VNET high performance overlay network
xed/ XED decoder interface (XED is optional)

lib/ static libraries to link with palacios
(for example, a XED interface layer)

i386/ 32 bit libraries
x86_64/ 64 bit libraries

src/ main src directory
devices/ virtual devices
extensions/ optional VMM extensions
interfaces/ optional interfaces Palacios can use or support
palacios/ the core VMM

mmu/ address translation options
vnet/ VNET high performance overlay network

The build process will lead to object files being generated in the various src directories.
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8.2 Codebase nature

Palacios itself (the code in palacios/palacios) essentially consists of the following components:

• Core VMM. This code, located in palacios/palacios/{src,include}/palacios, implements the vast ma-
jority of the logic of the Palacios VMM. The palacios/palacios/src/palacios/mmu code implements
the various options for virtual memory virtualization (shadow paging, shadow paging with caching,
nested paging, etc).

• Virtual devices. This code, located in palacios/palacios/{src,include}/devices implements software
versions of devices that the guest expects to be found on an x86 PC.5 This includes the APIC de-
vice, which is intimately tied to Palacios’s support for multicore guests. Most virtual devices can be
optionally selected for inclusion.

• Host OS interfaces. The required interface definition is located in palacios/palacios/include/palacios/vmm.h,
particularly the v3_os_hooks structure. The host OS must implement all features included in this
structure. Optional interfaces are defined in palacios/palacios/include/interfaces. These interfaces
only need to be implemented by the host OS if Palacios has been configured to include features that
depend on them. Note that both required and optional interfaces also export functions that form the
programming interface that the host OS uses to request that Palacios perform actions.

• Guest bootstrap functionality. This code, located in palacios/rombios includes code that is initially
mapped into a VM in order to bootstrap it. Palacios is agnostic about the bootstrap code and you
can change it to suit your own purposes. Palacios begins executing a VM in the same manner (and
to the same specification) as a processor reset on physical x86 hardware. For a multicore guest, the
first virtual core is always elected as the Boot Processor (BP) while the other virtual cores act as
Application Processors (APs) and await a startup IPI.

• Extensions. This code, located in palacios/palacios/src/extensions, contains optional components that
modify or extend the functionality of the core VMM. Many of our implementations of research ideas
appear here.

• VNET/P. This code implements a high performance overlay network with a layer 2 abstraction pre-
sented to guests. It allows guests to connect to a virtual Ethernet LAN that can span multiple hosts.
VNET/P is compatible with the VNET/U overlay network (previously just called VNET) implemented
by Northwestern in the Virtuoso cloud computing project. Because VNET/P is deeply embedded in
Palacios, it is able to deliver extremely high performance over 10 gigabit Ethernet and similar speed
Infiniband networks.

The Palacios build process compiles each of these components and then combines them into a single static
library, palacios/libv3vee.a. This library can then be linked with the host OS to add VMM func-
tionality. The host OS additionally needs to be modified to call into this library.

If you build Palacios for Linux, you will additionally see the file v3vee.ko appear in the top level
directory. This file is the kernel module that can be inserted into your Linux kernel using insmod. You will
also need to separately build and copy the userspace utilities.

5It is very important to understand the distinction between a virtual device and a device driver. A device driver is software that
implements a high-level interface to a hardware device. A virtual device is software that emulates a hardware device, exporting
a low-level hardware interface to the guest. A virtual device may use the services of a device driver, but it is not a device driver.
Virtual devices are a part of Palacios. Device drivers are a part of the host OS.
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The Core VMM code has essentially three components:

• Architecture independent components. These have the prefix vmm or vm .

• AMD SVM-specific components. These have the prefix svm . The AMD VMCB is in vmcb.{c,h}.

• Intel VT-specific components. These have the prefix vmx . The Intel VMCS is in vmcs.{c,h}.

As described briefly earlier, the file palacios/palacios/include/palacios/vmm.h defines the host OS
interface to Palacios. Essentially, the host OS passes Palacios a set of function pointers to functionality
Palacios must have. Palacios provides a set of functions that allow for the creation, launching, and control
of a VM. The optional host interfaces, defined in palacios/palacios/include/interfaces operate similarly -
the host registers a structure of function pointers to implementations of functionality Palacios needs, and
Palacios provides additional functions that the host can use to control the functionality (if any).

The main event loop for guest execution is located in svm.c and vmx.c, for AMD SVM and Intel
VT, respectively.

Palacios includes implementations of linked lists, queues, ring buffers, hash tables, and other basic
data structures.

9 Theory of operation

We now describe, at a high-level, how Palacios works, and how it interacts with the guest and host
OS.

9.1 Perspective of guest OS

A Palacios guest sees what looks to be a physical machine with one or more processors. A multiple
CPU/core VM sees an environment that is compatible with the Intel Multiprocessor Specification, but single
core versions need not have APICs. The guest is booted as normal from a BIOS, and interacts directly with
what appears to it to be real hardware. Palacios is not a paravirtualized VMM, but it is possible to register
hypercalls for the guest to use, if desired. The common, out of the box, guest interactions with the machine
and its devices are through standard hardware interfaces. The guest can execute any instruction, operate in
any protection ring, and manipulate any control register.

9.2 Integration with host OS

Palacios does require a host OS to be embedded into, but that host OS need only provide very
minimal functionality in order for Palacios to work. 32 or 64 bit host OSes are supported, although our
primary targets are 64 bit host OSes, particularly Linux and Kitten. The Minix group develops the Minix 3
target. The GeekOS target was developed by us, but is unlikely to see further development.

The host OS boots the machine, and then uses the Palacios functions to create and manage guest
environments. From the host OS perspective, Palacios and the guest it runs are for the most part, one or
more kernel threads that use typical kernel facilities. However, there are important differences:

• Palacios is involved in interrupt processing.

• Palacios needs to have exclusive access to some of the machine’s physical memory.
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• Palacios may bind its threads to specific physical cores.

• Palacios can generate IPIs.

• Palacios can ask the host to vector interrupts to it.

• Palacios independently manages paging for guests.

• Palacios can provide guests with direct access to physical resources, such as memory-mapped and
I/O-space–mapped devices.

How the VM appears to the end-user depends on the abstractions implemented in the host OS.

9.3 Details on the Linux embedding

The integration of Palacios with Linux is implemented in palacios/linux_module/ with
user-space tools needed to control VMs provided in palacios/linux_usr/.

The Linux integration is the largest and most complex of all the known Palacios/host embeddings.
All required interfaces and optional interfaces are implemented here, and the userspace components include
the usual range of tools needed to control VMs, interact with their consoles, etc.

The embedding has been designed to require no source code changes to the Linux kernel, and
only minimal changes to its configuration. Fedora 15 is compatible with Palacios out of the box, with not
additional reconfiguration necessary of the host kernel. However other off-the-shelf kernels, for example
from Red Hat and Ubuntu,require a minor kernel configuration change to be compatible with Palacios.

In order function correctly Palacios requires that memory hot-remove and hot-add be enabled in
the host kernel. Many kernels are configured to support hot add only. The current Linux embedding of
Palacios requires that hot remove also be available. Palacios uses hot remove to acquire exclusive access to
large chunks of physical memory, managing this physical memory without kernel intervention.

Currently Palacios does not support running a second VMM concurrently on the same machine.
It is, however, possible to initialize Palacios on only selected cores. Using this functionality it is possible
to “space share” the cores among multiple VMMs, at least as far as Palacios is concerned. With minor
modifications to KVM, it is possible to operate both VMMs on one machine at the same time. The specifics
for this are discussed elsewhere.

By default, when the v3vee.ko kernel module is loaded, Palacios initializes the hardware virtualiza-
tion support on all cores known to the host Linux. To userspace, the Linux embedding of Palacios appears
as a special device, /dev/v3vee. This device supports a range of ioctls that serve to create, launch, pause,
resume, checkpoint, restore, and destroy VMs. A VMs virtual cores are statically assigned to physical cores,
but a userspace tool allows the user to change this mapping at any time. Multiple virtual cores (from one or
more VMs) can be multiplexed on the same physical core. The number of virtual cores in a virtual machine
can exceed the number of physical cores on the actual hardware.

The Linux embedding arranges so that each core of the VM appears as a named kernel thread with
the virtual core number as a suffix (e.g., “foo-1”, “foo-2”, etc). Additionally, the Linux embedding arranges
so that the VM appears in the /dev hierarchy, numbered according to the order it was launched (e.g., the
second VM launched appears as /dev/v3-vm1). The Linux user space tools can then interact with these
per-VM devices, using ioctls to access VM-specific functionality, for example to connect text and graphics
consoles, userspace backends for virtual devices and interfaces, etc.
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9.4 Boot process

The host OS is responsible for booting the machine, establishing basic drivers and other simple
kernel functionality, and creating at least one kernel thread to run a Palacios VM. In order to create a VM,
the host OS reads a VM image file into memory and passes a pointer to it to Palacios. Palacios reads a
description of the desired guest configuration from the image file and calls back into the host OS to allocate
physical resources to support it. It then builds the relevant data structures to define the machine, establishes
the initial contents of the VM control structures available on the hardware (e.g., a VMCB on AMD SVM
hardware), an initial set of intercepts, the initial processor and device state, and the initial state of the paging
model that is to be used. It maps into the guest’s physical address space the bootstrap code (typically a
BIOS and VGA BIOS.) A typical guest VM is configured with an APIC and an MPTABLE device. The
MPTABLE device creates an Intel Multiprocessor Specification-compatible MP table in the guest physical
memory that describes the available cores and interrupt controllers in the VM. Palacios then launches a host
OS kernel thread for each virtual core. Virtual core 0 is elected as the BP, and the other cores become APs,
starting in an idle state.

Palacios then uses the SVM or VT hardware features to launch the guest’s core 0, starting the guest
in real mode at CS:IP=f000:fff0. Thus the guest begins executing at what looks to it like a processor reset.
As we have mapped our BIOS into these addresses (segment f000), the BIOS begins executing as one might
expect after a processor reset. The BIOS is responsible for the first stage of the guest OS boot process,
loading a sector from floppy, hard drive, or CD ROM and jumping to it.

In a multicore guest, the guest OS will bootstrap the other cores (the APs) at some point in its boot
process. It finds the cores and the interrupt logic interconnecting them by discovering and parsing the MP
table that Palacios has written into guest memory. It boots these cores by issuing interprocessor interrupts
(IPIs) to them via its APIC. Palacios handles the delivery of these interrupts, in particular using the INIT
and SIPI IPI messages sent to an AP core to release that core’s kernel thread from the idle state, setting its
entry point, and then doing a VM entry similar to what it did for the BP core. For those unfamiliar with
this process, the salient points are that an AP core’s startup is virtually the same as for the BP, as described
above, except that its initial CS:IP (the entry point) is determined from the SIPI message sent by the guest
kernel running on the BP.

9.5 Soft state and checkpoint/migration

In order to understand some aspects of Palacios’s operation, it is important to understand that while
the in-memory representation of a VM is quite complex, involving numerous architecture-independent and
architecture-dependent data structures, these boil down to three categories:

• VM image.

• Hard state.

• Soft state.

The bulk of the in-memory representation of a VM is soft state, which can be reconstructed from the combi-
nation of the VM image (which may itself be ephemeral in memory as long as a copy is available on storage)
and the hard state.

Paging provides a good example. In the VM image is a description of the physical memory layout
of the VM (similar to an e820 table), as well as directives for the paging model to be used to implement
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it (e.g., shadow or nested, use of large pages). The hard state includes, for example, the guest’s current
control register set (e.g., CR3, pointing to its current page table) and the guest physical memory contents
(which include that page table). For shadow paging, the soft state includes the currently in-use shadow page
table structures and other elements of the virtual TLB state. All of that soft state can be discarded at any
time—the shadow paging implementation will rebuild the shadow page tables incrementally, based on the
physical memory layout (from the image) and the hard state from the guest (the control registers and guest
page tables stored in the guest physical memory).

Checkpointing in Palacios is built on this model. A checkpoint stores only hard state. Restoring
a VM from a checkpoint is very similar to booting a VM. Just as in bootstrap, the VM image is used
to construct the VM’s representation in memory. Following this, the representation is patched using the
information in the checkpoint. Finally, the VM’s cores are started in the modes, register contents, and entry
points reflected in the hard state (as compared to those reflected in the reset state as in the initial VM boot
process). At this point, the VM is constructed and the hard state has been restored. As the VM executes,
Palacios builds up soft state incrementally.

Migration of a VM between machines essentially looks virtually the same as a checkpoint/restore
process on a single machine, except that hardware compatibility is sanity-checked on the restore side.

Migration of a virtual core from one physical core to another operates in a different manner. Outside
of synchronization, the main activity is that the architecture-specific elements of the VM representation in
use by the destination physical core are changed. For example, on an Intel machine, the VMCS of the
migrated virtual core is loaded into the destination physical core.

9.6 VM exits and entries

The guest executes normally on a core until an exceptional condition occurs. The occurrence of an
exceptional condition causes a “VM exit” on that core. On a VM exit, the context of the guest OS is saved,
the context of the host OS kernel (where Palacios is running) is restored, and execution returns to Palacios.
Palacios handles the exit and then executes a VM entry, which saves the host OS context, restores the guest
context, and then resumes execution at the guest instruction where the VM exit occurred. As part of the
VM exit, hardware interrupts may be delivered to the host OS. As part of the VM entry, software-generated
interrupts (virtual interrupts) may be delivered to the guest. At a very high level, the Palacios kernel thread
handling a guest core looks like this:

interrupts_to_deliver_to_guest = none;
guest_context = processor_reset_context;
while (1) {

(reason_for_exit, guest_context) =
vm_enter(guest_context,

conditions,
interrupts_to_deliver_to_guest);

update_time();

// we are now in an exit
enable_delivery_of_interrupts_to_host();

(guest_context,
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interrupts_to_deliver_to_guest) =
handle_exit(guest_context,

reason_for_exit,
conditions);

}

By far, the bulk of the Palacios code is involved in handling exits.
The notion of exceptional conditions that cause VM exits is critical to understand. Exceptional

conditions are generally referred to either as exit conditions (Intel) or intercepts (AMD). The hardware
defines a wide range of possible conditions. For example: writing or reading a control register, taking a
page fault, taking a hardware interrupt, executing a privileged instruction, reading or writing a particular I/O
port or MSR, etc. Palacios decides which of these possible conditions merits an exit from the guest. The
hardware is responsible for exiting to Palacios when any of the selected conditions occur. Palacios is then
responsible for handling those exits.

The above description is somewhat oversimplified, as there is actually a third context involved, the
shadow context. We previously used guest and shadow context interchangeably. It is important now to
explain what is meant by each of host context, guest context, and shadow context. The host context is the
context of the host OS kernel thread running Palacios. As one might expect, it includes register contents,
control register contents, and the like. This includes the segmentation registers and paging registers. The
guest context is the context in which the guest thinks it is currently running, and includes similar information.
The guest OS and applications change guest context at will, although such changes may cause exits. The
shadow context, which also contains similar information, is the processor context that is actually being used
when the guest is running. That is, the guest does not really run in guest context, it just thinks it does.
In fact, it actually runs using the shadow context, which is managed by Palacios. The VM exits are used,
in part, so that Palacios can see important changes to guest context immediately, and make corresponding
changes to the shadow context. A VM exit or entry is a partially hardware-managed context switch between
the shadow context and the host context. Another way of looking at it is that the shadow context reconciles
and integrates the intent of Palacios and the intent of the guest OS.

9.7 Paging

From the guest’s perspective, it establishes page tables that translate from the virtual addresses to
physical addresses. However, Palacios cannot allow the guest to establish a mapping to any possible physical
address, as this could allow the guest to conflict with Palacios, the host OS, or other guests. At the same time,
Palacios must maintain the illusion that the guest is running, by itself, on a raw machine, where mappings
to any physical address are permitted.

Conceptually, we can imagine using two levels of mapping to solve this problem. Virtual addresses
in the guest (“guest virtual addresses”) map to “physical” addresses in the guest (“guest physical addresses”)
using the guest’s page tables, and these guest physical addresses map to “host physical addresses” (real
physical addresses) using Palacios’s page tables.

Palacios can implement this abstraction in several ways, which can be broadly categorized as nested
paging and shadow paging.
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9.7.1 Nested paging

One way of maintaining this two level mapping is to use a hardware feature called nested paging, which is
available in the second generation of AMD processors with virtualization extensions, and recent versions of
Intel processors with virtualization extensions. AMD currently calls this feature “RVI (Rapid Virtualization
Indexing)” while Intel calls it “EPT (Enhanced Page Tables)”. Everyone else calls it nested paging.

Nested paging directly implements the above conceptual model in hardware as two layers of page
tables, one layer controlled by the guest, and the other by the VMM. Palacios supports nested paging on
AMD and Intel hardware that has it. Large page support can be used to enhance nested paging performance.

9.7.2 Shadow paging

Palacios can also implement the two level mapping without hardware support using shadow paging. Shadow
page tables are part of the shadow context—the actual processor context used when the guest is executed.
They map from guest virtual addresses to host physical addresses. The guest’s page tables are not used by
the hardware for virtual address translation.

Changes to the guest’s page tables are propagated to Palacios, which makes corresponding, but
not identical, changes to the shadow page tables. This propagation of information happens through two
mechanisms: page faults (which cause VM exits) and reads/writes to paging-related control registers (which
cause VM exits). For example, a page fault may cause a VM exit, the handler may discover that it is due
to the shadow page tables being out of sync from the guest page tables, repair the shadow page tables, and
then re-enter the guest.

Of course, some page faults need to be handled by the guest itself, and so a page fault (on the
shadow page tables) which causes an exit may result in the handler delivering a page fault (on the guest
page tables) to the guest. For example, a page table entry in the guest may be marked as not present because
the corresponding page has been swapped to disk. An access to that page would result in a hardware page
fault, which would result in a VM exit. The handler would notice that the shadow page table entry was in
sync with the guest, and therefore the guest needed to handle the fault. It would then assert that a page fault
for the guest physical address that originally faulted should be injected into the guest on the next entry. This
injection would then cause the guest’s page fault handler to run, where it would presumably schedule a read
of the page from disk.

The core idea behind Palacios’s current shadow paging support is that it is designed to act as a
“virtual TLB”. A detailed description of the virtual TLB approach to paging in a VMM is given in the Intel
processor documentation. One issue with virtual TLBs is that switching from one page table to another can
be very expensive, as the “virtual TLB” is flushed. Palacios attempts to ameliorate this problem through the
use of a shadow page table cache that only flushes tables as they become invalid, as opposed to when they
are unused. This is a surprisingly subtle problem since the page tables themselves, are, of course, mapped
via page tables.

9.7.3 Experimental paging

The Palacios codebase also includes experimental paging approaches, which are not enabled for compilation
by default. These include shadow paging with predictive prefetching of guest translations, and a paging
mode that dynamically switches between shadow and nested paging based on workload characteristics.
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9.8 Interrupt delivery

Interrupt delivery in the presence of a VMM like Palacios introduces some complexity. By default
Palacios sets the “interrupt exiting” condition when entering a guest. This means that any hardware interrupt
(IRQ) that occurs while the guest is running causes an exit back to Palacios. As a side-effect of the exit,
interrupts are masked. Palacios turns off interrupt masking at this point, which results in the interrupt
being delivered by the common path in the host OS. Palacios has the option to translate the interrupt before
unmasking, or even can ignore it, but it does not currently do either.

A Palacios guest can be configured so that it receives particular hardware interrupts. For this reason,
the host OS must provide a mechanism through which Palacios can have the interrupt delivered to itself, as
well as any other destination. When such a “hooked” interrupt is delivered to Palacios, it can arrange to
inject it into the guest at the next VM entry. Note that this injected interrupt will not cause another exit.

Similar to a guest, a virtual device linked with Palacios itself can arrange for interrupts to be deliv-
ered to it via a callback function. For example, a virtual keyboard controller device could hook keyboard
interrupts for the physical keyboard so that it receives keystroke data.

Note that hooking interrupts for passthrough or to drive a virtual device is typically not done when
Palacios is embedded into a complex host OS, such as Linux. It is useful functionality for some hosts,
however.

Virtual devices are generally not driven by interrupt delivery, but rather by callback functions that
are visible either in the core VMM/host interface (palacios/palacios/include/palacios/vmm.h) or in the op-
tional interfaces (palacios/palacios/include/interfaces). For example, our keyboard controller virtual device
works as follows. When the physical keyboard controller notes a key-up or key-down event, it generates
an interrupt. This interrupt causes an exit to Palacios. Palacios turns on interrupts, which causes a dispatch
of the keystroke interrupt to the host OS’s keyboard device driver. The driver reads the keyboard controller
and then pushes the keystroke data to the host OS. The host OS is responsible for demultiplexing between
its own processes/threads and the Palacios threads. If it determines that the keystroke belongs to Palacios,
it calls a “v3 deliver keyboard event” upcall in Palacios, which, after further demultiplexing, vectors to the
relevant virtual keyboard controller device. This virtual device processes the data, updates its internal state,
and (probably) requests that Palacios inject an interrupt into the guest on the next entry. The guest driver
will, in turn, respond to the interrupt by attempting to read the relevant I/O port, which will again cause an
exit and vector back to the virtual keyboard controller.

9.9 Device drivers and virtual devices

Device drivers exist at two levels in Palacios. First, the host OS may have device drivers for physical
hardware. Second, the guest OS may have device drivers for physical hardware on the machine, and for
virtual devices implemented in Palacios. A virtual device is a piece of software linked with Palacios that
emulates a physical device, perhaps making use of device drivers and other facilities provided by the host
OS. From the guest’s perspective, physical and virtual devices appear identical.

The implementation of virtual devices in Palacios is facilitated by its shadow paging support, I/O
port hooking support, and interrupt injection support. Palacios’s shadow paging support provides the ability
to associate (“hook”) arbitrary regions of guest physical memory addresses with software handlers that are
linked with Palacios. Palacios handles the details of dealing with the arbitrary instructions that can generate
memory addresses on x86. This is the mechanism used to enable memory-mapped virtual devices. Simi-
larly, Palacios allows software handlers to be hooked to I/O ports in the guest, and it handles the details of

57



the different kinds of I/O port instructions (size, string, rep prefix, etc) the guest could use. This is the mech-
anism used to enabled I/O-space mapped virtual devices. As we previously discussed, Palacios handlers can
intercept hardware interrupts, and can inject interrupts into the guest. This provides the mechanism needed
for interrupt-driven devices.

In addition to hooking memory locations or I/O ports, it is also possible in Palacios to allow a guest
to have direct access, without exits, to given physical memory locations or I/O ports. This, combined with
the ability to revector hardware interrupts back into the guest, makes it possible to assign particular phys-
ical I/O devices directly to particular guests. While this can achieve maximum I/O performance (because
minimal VM exits occur) and maximum flexibility (because no host device driver or Palacios virtual device
is needed), it requires that (a) the guest be mapped so that its guest physical addresses align with the host
physical addresses the I/O device uses, and (b) that we trust the guest not to ask the device to read or write
memory the guest does not own.

10 Host OS interfaces

Palacios interacts with the host OS through a core, non-optional interface, and a set of additional,
optional interfaces.

10.1 Core host OS interface

Palacios expects to be able to request particular services from the OS in which it is embedded.
Function pointers to these services are supplied in a v3_os_hooks structure:

struct v3_os_hooks {
void (*print)(const char * format, ...)

__attribute__ ((format (printf, 1, 2)));

void *(*allocate_pages)(int num_pages, unsigned int alignment);
void (*free_pages)(void * page, int num_pages);

void *(*malloc)(unsigned int size);
void (*free)(void * addr);

void *(*paddr_to_vaddr)(void * addr);
void *(*vaddr_to_paddr)(void * addr);

int (*hook_interrupt)(struct v3_vm_info * vm, unsigned int irq);
int (*ack_irq)(int irq);

unsigned int (*get_cpu_khz)(void);

void (*yield_cpu)(void);

void *(*mutex_alloc)(void);
void (*mutex_free)(void * mutex);
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void (*mutex_lock)(void * mutex, int must_spin);
void (*mutex_unlock)(void * mutex);

unsigned int (*get_cpu)(void);

void * (*start_kernel_thread)(int (*fn)(void * arg),
void * arg, char * thread_name);

void (*interrupt_cpu)(struct v3_vm_info * vm,
int logical_cpu, int vector);

void (*call_on_cpu)(int logical_cpu, void (*fn)(void * arg),
void * arg);

void * (*start_thread_on_cpu)(int cpu_id,
int (*fn)(void * arg),
void * arg, char * thread_name);

int (*move_thread_to_cpu)(int cpu_id, void * thread);
};

The print function is expected to take standard printf argument lists.
allocate_pages() is expected to allocate contiguous physical memory, specifically numPages

worth of 4 KB pages, and return the physical address of the memory. free_pages() deallocates a con-
tiguous range of physical pages. Host physical addresses should be used. malloc() and free() should
allocate kernel memory and return virtual addresses suitable for use in kernel mode. These operate on host
virtual addresses.

The paddr_to_vaddr() and vaddr_to_paddr() functions should translate from host phys-
ical addresses to host virtual addresses and from host virtual addresses to host physical addresses, respec-
tively.

The hook_interrupt() function is how Palacios requests that a particularly interrupt should
be vectored to itself. When the interrupt occurs, the host OS should use v3_deliver_irq() to actually
push the interrupt to Palacios. Palacios will acknowledge the interrupt by calling back via ack_irq().

get_cpu_khz() is self explanatory.
The Palacios guest execution thread will call yield_cpu()when the guest core does not currently

require the CPU. The host OS can, of course, also preempt it, as needed.
The mutex functions should allow for the creation, use, and destruction of locks on the host OS. The

locks used must be appropriate for true multiprocessor/multicore locking if Palacios is to be used on more
than one core.

get_cpu() should return the logical CPU number on which the calling thread is currently exe-
cuting. What is meant by “logical” here is that the number returned should be the one used for the relevant
CPU in whatever numbering scheme is used by the host OS.

start_kernel_thread() is self explanatory. start_thread_on_cpu() should create a
kernel thread and bind it to the relevant logical CPU. move_thread_to_cpu() should immediately bind
the relevant thread to the indicated logical CPU and not return until it has done so. interrupt_cpu()
should immediately send an IPI to the destination logical CPU with the indicated vector, while call_on_cpu()
should interrupt the destination logical CPU and call the indicated function on it.

After filling out a v3_os_hooks structure, the host OS calls Init_V3() with a pointer to this
structure, and the number of CPUs that are available. In response, Palacios will determine the hardware
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virtualization features of each of the CPUs, and initialize hardware virtualization support on each of them.
Once it returns, the following functions can be used:

• v3_create_vm() Construct a VM from an in-memory image.

• v3_load_vm() Restore a VM from an in-memory image and a hard state checkpoint.

• v3_start_vm() Boot or resume a constructed or restored VM.

• v3_pause_vm() Suspend the execution of VM.

• v3_continue_vm() Resume execution of a suspended VM.

• v3_move_vm_core() Change the mapping of a virtual core to physical core.

• v3_save_vm() Checkpoint a VM’s hard state.

• v3_stop_vm() Stop VM execution.

• v3_free_vm() Deallocate a stopped VM.

There is currently no interface function for VM migration.
The host OS must be able to deliver certain events to Palacios, which are delivered through the

following interface functions

• v3_deliver_keyboard_event()

• v3_deliver_mouse_event()

• v3_deliver_timer_event()

• v3_deliver_serial_event()

• v3_deliver_packet_event()

Similar to the VM management functions, these event delivery functions are associated with individual
VMs. That is, the host conceptually delivers events to a VM, not to the whole of Palacios.

As can be seen, the bare outline of the core interface between the host OS and Palacios is quite
simple. However, there is complexity in the Palacios/host OS interaction vis a vis interrupts (covered in
Section 9), and in pushing necessary data to Palacios for use in virtual devices (covered in Section 11).

10.2 Optional host OS interfaces

Implementing the core host OS interface is sufficient to be able to run VMs using Palacios, but
advanced functionality in Palacios relies on implementations of additional interfaces. The current set of
optional interfaces is as follows:

• File. The File interface allows Palacios to interact with the file system of the host OS. This is used to
provide file-based backends for devices such as CD ROMs and ATA hard drives.

• Socket. The Socket interface allows Palacios to use the network stack of the host OS, for example to
create TCP connections and UDP flows. This is used to provide network-based backends for various
devices.
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• Packet. The Packet interface allows Palacios to send and receive raw network packets. This is used
to support VNET and to provide bridged networking.

• Stream. The Stream interface allows Palacios to associate a streaming device, such as a serial port,
with a host-level stream. In the Linux module implementation, allows, for example, accessing a VM’s
serial port from a userspace program.

• Keyed Stream. The Keyed Stream interface presents the abstraction of a collection of named streams
to Palacios. Palacios currently only uses this abstraction for checkpointing. The Linux module has im-
plementations of this interface that map the collection to a directory of files, a hash table of in-memory
streams, and tagged data over a network connection. It also includes support for the implementation
of keyed streams in userspace.

• Console. The Console interface interfaces with a VM’s text-mode display adaptor (e.g. CGA) and
keyboard to allow the host OS to display the VM console as appropriate. In the Linux module, the
console interface implementation provides for a userspace utility to attach to the VM and display its
console in the current terminal.

• Graphics Console. The Graphics Console interface interfaces with a VM’s text-mode and graphics-
mode display adaptor (e.g. VGA), keyboard, and mouse to allow the host OS to display the VM
console as appropriate. In the Linux module, the graphics console interface implementation provides
for a userspace utility to attach to a frame buffer. The utility then exports this frame buffer, keyboard,
and mouse to remote clients through the VNC protocol.

• Host Device. The Host Device interface makes it possible to implement a virtual device in the context
of the host OS instead of within Palacios. Both legacy devices and PCI devices can be supported. The
host-based device is then made visible in the VM through the use of the generic virtual device or
the PCI frontend virtual device. In the Linux module, the host device interface implementation also
supports the construction of devices in userspace. That is, a virtual device can be implemented as a
user-level Linux program as well as within the Linux kernel.

• Inspector. The Inspector interface allows the host OS to examine and modify the state of a running
VM. Any state registered for inspection in Palacios is visible through this interface. The state is
presented in the form of a hierarchical namespace. In the Linux module, this interface allows making
a VM’s state visible and modifiable via the sysfs hierarchy.

• GEARS. The Guest Examination And Revision Services is a growing interface that allows the host OS
to tap into and manipulate the behavior of the guest OS and its applications. Current services include
software interrupt interception, Linux system call interception, Linux system call hijacking, Linux
application environment variable manipulation, and code injection into Linux guests and applications.

11 Virtual devices

Every modern OS requires a given set of hardware devices to function, for OSes running in a vir-
tual contexts the set of required devices must be virtualized. The Palacios VMM contains a framework to
make implementation of these virtual devices easier. Palacios also includes a set of virtual devices. These
are located palacios/palacios/\{include,src\}/devices/, which is also where additional
virtual devices should be placed.
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11.1 Virtual device interface

A virtual device includes an initialization function, such as:

static int mydev_init(struct v3_vm_info *vm, v3_cfg_tree_t *cfg);

that is registered and associated with an name like:

device_register("MYDEV",mydev_init);

Then a device of class “MYDEV” is then encountered in constructing a VM from an XML con-
figuration file, the registered initialization function will be called, and handed a pointer to the VM being
constructed, and to the subtree of the XML tree relating to that device. The initialization function is ex-
pected to then parse this subtree, construct the relevant internal state of the device instance, and finally
call

struct vm_device *dev = v3_add_device(vm, dev_id, &dev_ops, &internal);

Here, dev_id is the ID of this instance of the device, and internal is the internal state of the instance.
dev_ops is a structure of form:

struct v3_device_ops {
int (*free)(void *private_data);
int (*save)(struct v3_chkpt_ctx *ctx, void *private_data);
int (*load)(struct v3_chkpt_ctx *ctx, void *private_data);

};

The save and load functions are used for checkpoint/restore of the device, while free is used to free
the internal state. In all cases the private data pointer returns the originally registered pointer to the internal
state of this device instance.

Typically, the device initialization function (e.g., mydev_init) will create the device state, and
then configure itself to correctly interact with the guest’s environment. The methods for guest interaction are
discussed in detail in Section 13. Typically, however, devices hook themselves to IO ports, guest physical
memory regions, and sometimes interrupts. These hooks are used to give the device a presence in the
“hardware” the guest sees. For example, when the guest code reads from an I/O port that has been hooked
by a particular virtual device, Palacios calls back to that function that that device provided to complete the
read.

Virtual devices typically also need to interact with the host OS, typically to access physical devices
on which they are built. This interaction is usually quite specific to the kind of virtual device and to the host
OS. For the virtual devices we provide along with Palacios, we have defined such interfaces. Therefore,
these devices provide good examples for how such interaction should be coded.

11.2 Included virtual devices

The current list of included virtual devices is:

• Advanced Programmable Interrupt Controller (APIC) [based on the Intel APIC specification and the
Intel Multiprocessor Specification]
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• Input/Output Advanced Programmable Interrupt Controller (IOAPIC) [based on the Intel IOAPIC
Specification and the Intel Multiprocessor Specification]

• MPTABLE device (used to inject MP Tables into the guest as described in the Intel Multiprocessor
Specification]

• Programmable Interrupt Controller (PIC) [based on Intel 8259A]

• Programmable Interval Timer (PIT) [based on Intel 8254]

• i440FX-compatible North Bridge

• PIIX3-compatible South Bridge

• PCI Bus

• IDE bus

• ATA hard drive

• ATAPI CD ROM

• CGA (text mode only) display adapter

• VGA (text and graphics mode) display adapter

• Serial port (8250/16550)

• Virtio-compatible balloon device

• Virtio-compatible block device

• Virtio-compatible console device

• Virtio-compatible network device

• NE2000-compatible network device

• RTL8139-compatible network device

• Keyboard/Mouse [based on the PS/2 interface]

• NVRAM and RTC

• Debug port for the BOCHS BIOS

• A generic interception device to inspect I/O traffic and IRQ occurrences, as well as to allow passthrough-
access to non-PCI physical devices. The generic device can also serve as a frontend for host OS-based
device implementations. In the Linux module, this implementation includes support for devices im-
plemented in userspace.

• A PCI frontend device for host OS-based device implementations. In the Linux module, this imple-
mentation includes support for devices implemented in userspace.
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• A PCI passthrough device that allows for passthrough guest access to physical PCI devices.

Devices that use storage (such as the CD ROM and ATA hard drive) can implement that storage on
top of memory, files, and or network connections depending on which optional host OS interfaces have been
implemented.

Devices that use stream communication (such as the serial port) depend on stream functionality
implemented by an optional host OS interface.

The VNET/P overlay network also involves virtual devices. These are described separately in Sec-
tion 7.

12 Extensions

We now describe the Palacios extension model and currently implemented extensions.

12.1 Extension model

Although the most common way of extending Palacios is the implementation of virtual devices, the
Palacios framework also attempts to simplify the addition of functionality to the core of the VMM without
the need to modify the core source code directly. This is important for two reasons. First, it makes the task
of the extension author easier. Second, it avoids introducing timing, synchronization, or interrupt handling
bugs into the subtle code at the core of the VMM.

The interface for Palacios extensions is given in
palacios/palacios/include/palacios/vmm_extensions.h. Extensions are typically placed
into palacios/palacios/src/extensions/.

An extension is registered using code similar to this:

static struct v3_extension_impl myext_impl = {
.name = "MYEXT",
.init = init_myext,
.deinit = deinit_myext,
.core_init = coreinit_myext,
.core_deinit = coredeinit_myext,
.on_entry = entry_myext,
.on_exit = exit_myext

};

register_extension(&myext_impl);

The extension is then used by including an extension block in the XML configuration of the VM that
has the matching name (“MYEXT” here). When this is seen at VM creation time, the callback function
(init_myext) is invoked with a pointer to the VM being constructed and the XML subtree rooted at the
extension block. When a core is inited, the core initialization function is called (coreinit_myext). The
deinit callbacks are invoked as the VM is being destroyed.

Most important for typical extensions are the callbacks for VM exit and VM entry. These callbacks
are invoked with the VM architecture independent and architecture-dependent state in a safe state and with
normal host OS interrupt processing on. The initialization functions provide a way to register internal

64



extension state, which is then handed back to these callbacks. The initialization functions can also hook
ports, memory, MSRs, etc, for extensions, similar to devices. Guest interaction is described in more detail
in Section 13.

12.2 Current extensions

The following extensions are currently present in the codebase and can be selectively enabled in the
configuration process:

• Time Virtualization. This extension includes efforts to improve time virtualization across all timing
devices the guest has access to.

• TSC Virtualization. This extension virtualizes the hardware cycle counter that the guest sees.

• MTRR Virtualization. This extension allows for virtualization of the MTRR registers, which control
how the CPU interacts with different regions of physical memory.

• Inspector. This extension provides the backend for the Inspector host interface, making it possible for
the host to access registered VM state as a hierarchical namespace.

• Machine Check Injection Framework. This extension makes it possible to inject what to the guest
appear to be hardware errors. Many different kinds of errors can be injected.

• Guest Examination and Revision Services. GEARS is a collection of extensions that implement the
backend to the host OS GEARS interface. This allows for manipulation of the guest in a range of
ways.

13 Guest interaction

There are numerous ways for Palacios components, such as virtual devices or experimental systems
software, to interact with a VM guest environment and control its behavior. Specifically, Palacios allows
components to dynamically intercept CPUID instructions, IRQs, software interrupts, I/O port operations,
MSR operations, and memory operations. They can also intercept certain specific host events. Components
can also inject exceptions, interrupts, virtual interrupts, and software interrupts into running guests. We will
now describe these interfaces and their APIs.

13.1 CPUID hooking

CPUID hooking if useful if a Palacios component wants to handle executions of the CPUID instruc-
tion to control the view of the processor that the guest sees. This is done by calling v3_hook_cpuid.

int v3_hook_cpuid(struct v3_vm_info * vm, uint32_t cpuid,
int (*hook_fn)(struct guest_info * info,

uint32_t cpuid,
uint32_t * eax,

uint32_t * ebx,
uint32_t * ecx,

uint32_t * edx,
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void * private_data),
void * private_data);

The function takes the guest context, the CPUID request to hook, the callback function to invoke, and a
pointer to data hand back to the callback when it is invoked. The callback function can manipulate the
register state it is handed as it pleases. Notice that the callback function is given the state of the core, not the
state of the whole guest. This is because CPUID is core-specific.

A matching unhook function, v3_unhook_cpuid() is also provided. CPUID executions can be
dynamically hooked and unhooked.

13.2 Interrupt hooking

Interrupt hooking is useful when a Palacios component wants to handle specific interrupts that occur
in guest context. For example, if a special hardware device is being used exclusively by Palacios (and not
the host OS) then Palacios can request that the device’s interrupts be delivered directly to the responsible
Palacios component. This is done by calling v3_hook_irq().

int v3_hook_irq(struct v3_vm_info * vm,
uint_t irq,
int (*handler)(struct v3_vm_info * vm,

struct v3_interrupt * intr,
void * priv_data),

void * priv_data);

This function takes a reference to a guest context, an IRQ number, and a pointer to a function that will
be responsible for handling the interrupt. The function also allows arbitrary state to be made available to
the handler via the priv_data argument. v3_hook_irq() installs an interrupt handler in the host OS
that will then call the specified handler whenever it is triggered. The arguments passed to the handler are a
pointer to the guest context, a pointer to the interrupt state, and the pointer to the arbitrary data originally
passed into the hook function.

The interrupt state is included in the v3_interrupt structure:

struct v3_interrupt {
unsigned int irq;
unsigned int error;
unsigned int should_ack;

};

It includes the interrupt number, the error number that is optionally included with some interrupts, as well
as a flag specifying whether the host OS should acknowledge the interrupt when the handler returns.

Another use case for interrupt hooking is the situation where Palacios wants to give a guest complete
control over a piece of hardware. This requires that any interrupts generated by the actual hardware device
be propagated into the guest environment. While a Palacios component could register a handler for the
interrupt and manually resend it to the guest, there is a shortcut for this situation:

int v3_hook_passthrough_irq(struct v3_vm_info * vm, uint_t irq);
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This function tells Palacios to register an interrupt handler with the host, and then inject any interrupt that
occurs directly into the guest.

Interrupts can be dynamically hooked. Dynamic unhooking is not currently supported.
The optional GEARS extension provides the ability to hook software interrupts (e.g. INT instruc-

tions), v3_hook_swintr(), the fast system call instructions (e.g., SYSENTER/SYSCALL), and Linux
system calls, v3_hook_syscall().

13.3 I/O hooking

I/O hooking is essential for building many forms of virtual devices. The x86 architecture includes a
16-bit “I/O” address space (the addresses are called “I/O ports”) that is accessed with a special set of IN and
OUT instructions. I/O hooking allows a Palacios component, such as a virtual device, to register a handler
for particular ports. Whenever the guest OS performs an IN or OUT operation on a I/O port, that operation
is translated to a read or write call to a specified handler.

The API looks like this:

void v3_hook_io_port(struct v3_vm_info * vm, uint16_t port,
int (*read)(struct guest_info * core,

uint16_t port, void * dst,
uint_t length, void * private_data),

int (*write)(struct guest_info * core,
uint16_t port, void * src,
uint_t length, void * private_data),

void * private_data);

For each port to be intercepted a call is made to v3_hook_io_portwith the port number and two function
pointers to handle the reads/writes. Each I/O operation will result in one call to the appropriate read/ write
function. The read call corresponds to an IN instruction and reads data into the guest, while the write call
corresponds to OUT instructions and writes data from the guest.

IN and OUT instructions come in byte, word (double byte), and double word (quad byte) varieties.
These are translated into equivalent length calls to the read and write handlers. The handlers are expected to
handle them in one step. There are also string versions of the IN and OUT instructions. And, furthermore,
the REP prefix can be used. Repeated forms of the string derivatives result in multiple calls to the read or
write function for each repetition. Note that this is how it is done in hardware as well. The calls to the read
and write handlers correspond to what a device would see on the bus.

Setting a hook callback to NULL enables passthrough operation for that operation on the specified
port. This allows a guest to have direct access to hardware IO ports on a port by port basis, as decided by
the VMM.

The v3_unhook_io_port() function removes an I/O port hook. I/O ports can be dynamically
hooked and unhooked.

13.4 Memory hooking

Memory hooking is essential for building many forms of virtual devices, in particular those that are
memory-mapped. Palacios supports intercepting read and write operations to specific memory regions de-
fined at page granularity. This is done via a call to either v3_hook_full_mem or v3_hook_write_mem
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int v3_hook_full_mem(struct v3_vm_info * vm, uint16_t core_id,
addr_t guest_addr_start, addr_t guest_addr_end,
int (*read)(struct guest_info * core,

addr_t guest_addr, void * dst,
uint_t length, void * priv_data),

int (*write)(struct guest_info * core,
addr_t guest_addr, void * src,
uint_t length, void * priv_data),

void * priv_data);

int v3_hook_write_mem(struct v3_vm_info * vm, uint16_t core_id,
addr_t guest_addr_start, addr_t guest_addr_end,

addr_t host_addr,
int (*write)(struct guest_info * core,

addr_t guest_addr, void * src,
uint_t length, void * priv_data),

void * priv_data);

v3_hook_write_mem captures only write operations that happen to a given region of physical
memory. Read operations are executed by the hardware directly on the region without trapping into a VM.
This is useful for situations where you only want to capture modification events to a particular memory
region, but don’t care about fully virtualizing the memory contents.

v3_hook_full_mem captures both read and write operations allowing components to fully vir-
tualize a given range of memory. This is useful for implementing memory mapped I/O.

The guest_addr_start and guest_addr_end arguments specify the guest physical mem-
ory region for which read and write operations will be intercepted and sent to the handler functions. The
guest_addr parameters to the read/write handlers are the guest physical addresses at which the oper-
ations were made. The host_addr argument to v3_hook_write_mem is used to specify the host
physical memory address of the memory being hooked. Any write operation that occurs in the hooked re-
gion will be executed using this region, and all read operations will read data directly from it. After a write
operation has executed the result of that operation is passed to the write hook callback function.

The read and write handlers are called by Palacios in response to individual memory references
in the guest. For typical uses of memory hooking, this usually amounts to instruction level granularity,
as almost all instructions only support a single memory operand, and it’s rare that one hooks memory
containing instructions. For example, a mov eax, dword <addr> instruction would result in a 4 byte
read call.

Memory regions can be dynamically hooked and unhooked. The unhook call is v3_unhook_mem().

13.5 MSR hooking

Model-specific registers (MSRs) are registers that the guest can access to probe, measure, and con-
trol the specific microprocessor it is running on. Palacios components can hook reads and writes to MSRs.
This functionality can be used to hide microprocessor functionality from the guest or provide a software
implementation of that functionality.

The MSR hooking framework looks like this:

68



int v3_hook_msr(struct v3_vm_info * vm, uint32_t msr,
int (*read)(struct guest_info * core,

uint32_t msr, struct v3_msr * dst,
void * priv_data),

int (*write)(struct guest_info * core,
uint32_t msr, struct v3_msr src,
void * priv_data),

void * priv_data);

Similar to other hooks, the handlers are called when the hooked MSR is read or written. Palacios handles
the details of the particular instruction that is accessing the MSR.

The handler is passed the MSR as a union:

struct v3_msr {
union {

uint64_t value;

struct {
uint32_t lo;
uint32_t hi;

} __attribute__((packed));
} __attribute__((packed));

} __attribute__((packed));

Similarly to I/O hooks, NULL read/write callback parameters are interpreted as enabling passthrough
operation. This is necessary for a subset of the architectural MSRs that are virtualized automatically by the
hardware. In this case the read/write operations can execute directly on hardware virtualized copies of the
MSRs.

MSRs can be dynamically hooked and unhooked. The unhook function is v3_unhook_msr().
Additionally, a v3_get_msr_hook() is available to look up these hooks.

13.6 Host event hooking

To allow specific host OS events to be forwarded to appropriate Palacios components, Palacios
implements a mechanism for those components to register to receive given host events. Currently, Palacios
supports keyboard, mouse, and timer event notifications. These events must be generated from inside the
host OS, and currently target very specific interfaces that cannot be generalized. The intent is to allow for
greater flexibility in designing the host interface to the Palacios VMM.

The method of registering for a host event is through the function v3_hook_host_event:

int v3_hook_host_event(struct v3_vm_info * vm,
v3_host_evt_type_t event_type,
union v3_host_event_handler cb,
void * private_data);

The event_type and handler arguments are defined as:
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typedef enum { HOST_KEYBOARD_EVT,
HOST_MOUSE_EVT,
HOST_TIMER_EVT,
HOST_CONSOLE_EVT,
HOST_SERIAL_EVT,
HOST_PACKET_EVT} v3_host_evt_type_t;

union v3_host_event_handler {
int (*keyboard_handler)(struct v3_vm_info * vm,

struct v3_keyboard_event * evt,
void * priv_data);

int (*mouse_handler)(struct v3_vm_info * vm,
struct v3_mouse_event * evt,
void * priv_data);

int (*timer_handler)(struct v3_vm_info * vm,
struct v3_timer_event * evt,
void * priv_data);

int (*serial_handler)(struct v3_vm_info * vm,
struct v3_serial_event * evt,
void * priv_data);

int (*console_handler)(struct v3_vm_info * vm,
struct v3_console_event * evt,
void * priv_data);

int (*packet_handler)(struct v3_vm_info * vm,
struct v3_packet_event * evt,
void * priv_data);

};

As one can imagine, the current set of event types and handlers supports the standard virtual devices
included with Palacios. A shortcut exists to cast a given handler function to a union v3_host_event_handler
type:

#define V3_HOST_EVENT_HANDLER(cb) ((union v3_host_event_handler)cb)

To hook a host event, a Palacios component firsts implements a handler as defined in the
v3_host_event_handler union. Then it calls v3_hook_host_eventwith the correct event_type
as well as the handler function, cast appropriately. As an example, a component that wants to hook mouse
events would look like:

int mouse_event_handler(struct guest_info * info,
struct v3_mouse_event * evt,
void * private_data) {

// implementation
}

v3_hook_host_event(dev->vm, HOST_MOUSE_EVT,
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V3_HOST_EVENT_HANDLER(mouse_event_handler),
dev);

Each type of event handler takes a different argument. These are the current arguments for the
currently supported events:

struct v3_keyboard_event {
unsigned char status;
unsigned char scan_code;

};

struct v3_mouse_event {
unsigned char data[3];

};

struct v3_timer_event {
unsigned int period_us;

};

struct v3_serial_event {
unsigned char data[128];
unsigned int len;

};

struct v3_console_event {
unsigned int cmd;

};

struct v3_packet_event {
unsigned char * pkt;
unsigned int size;

};

The keyboard event includes the current status of the keyboard controller and the raw scan code (if any).
The mouse event includes the latest mouse data packet. The timer event includes the time since the previous
timer event. The serial event contains a sequence of bytes. The console event contains a command word.
The packet event contains a variable sized packet that has been received.

Currently, host events can be dynamically hooked, but not unhooked.
The host event hooking infrastructure is likely to change over time.

13.7 Injecting exceptions, interrupts, virtual interrupts, and software interrupts

A Palacios component can decide to inject an exception or an interrupt into the guest. As explained
earlier in the theory of operation of Palacios, injection occurs as a part of entry into the guest. Injected
interrupts or exceptions do not cause an exit, although the guest’s processing of them may do so.

There are two functions that can be used to raise an exception:
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int v3_raise_exception(struct guest_info * core
uint_t excp);

int v3_raise_exception_with_error(struct guest_info * core,
uint_t excp,
uint_t error_code);

These functions are self-explanatory. Which one should be used depends on the specific exception that is be-
ing raised (only some exceptions include an error code). It is the calling Palacios component’s responsibility
to use the appropriate function.

Interrupts can be raised and lowered:

int v3_raise_irq(struct v3_vm_info * vm, int irq);
int v3_lower_irq(struct v3_vm_info * vm, int irq);

It is important to note that raising an interrupt raises it on the virtual interrupt controller architecture (PIC,
APIC, IOAPIC, etc) . When the interrupt is actually delivered, and to which core it is delivered, depends
on the guest’s current configuration of the interrupt controller architecture, for example interrupt masking,
interrupt routing, interrupt flags, and the priorities of other interrupts and exceptional conditions that are
also raised.

Virtual interrupts can also be raised and lowered:

int v3_raise_virq(struct guest_info * vm, int virq);
int v3_lower_virq(struct guest_info * vm, int virq);

Virtual interrupts imply dispatch directly on a specific core instead of via the interrupt controller architecture.
Interrupt flags, and the priorities of the various interrupts and other exceptional conditions are observed.

Software interrupts are simply raised as they will produce immediate dispatch (just as if an INT
instruction were executed):

int v3_raise_swintr(struct guest_info * core, uint8_t vector);

There is no notion of lowering a software interrupt. Priorities and interrupt flags are strictly observed, as on
the actual PC hardware.

13.8 Barriers

Generally, hook callback functions, extensions, and other functionality can run independently on
each core. However, synchronized activity across cores may be needed at times. To support this, Palacios
provides a barrier mechanism:

int v3_raise_barrier(struct v3_vm_info *vm_info,
struct guest_info *local_core);

Raising a barrier on one core causes all other cores to immediately exit and invoke v3_wait_at_barrier()
as soon as possible. Once they all have done so, v3_raise_barrier() will return. The calling core is
now executing with exclusive access to the VM. Once the calling core finishes the tasks it needs to do, it
invokes v3_lower_barrier(), which allows all the cores to continue execution.
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14 Coding guidelines

Use whitespace well. “The use of equal negative space, as a balance to positive space, in a compo-
sition is considered by many as good design. This basic and often overlooked principle of design gives the
eye a ’place to rest,’ increasing the appeal of a composition through subtle means.” Use spaces not tabs.

Stop on failure. Because booting even a basic Linux kernel results in over 1 million VM exits,
catching silent errors is next to impossible. For this reason ANY time your code has an error it should return
-1, and expect the execution to halt shortly afterwards. This includes unimplemented features and unhandled
cases. These cases should ALWAYS return -1.

Keep the namespace small and unpolluted. To ease porting, externally visible function names
should be used rarely and have unique names. Currently we have several techniques for achieving this:

1. #ifdefs in the header file. As Palacios is compiled, the symbol __V3VEE__ is defined. Any
function that is not needed outside the Palacios context should be inside an #ifdef __V3VEE__
block. This will make it invisible to the host OS.

2. static functions. Any utility functions that are only needed in the .c file where they are defined
should be declared as static and not included in the header file.

3. v3_ prefix. Major interface functions should be named with the prefix v3_. This makes it easier
to understand how to interact with the subsystems of Palacios. Further, if such functions need to be
externally visible to the host OS, the prefix makes the unlikely to collide with host OS symbols.

Respect the debugging output convention. Debugging output is sent through the host OS via
functions in the os_hooks structure. These functions should be called via their wrapper functions, which
have simple printf semantics. Two functions of note are PrintDebug and PrintError.

• PrintDebug should be used for debugging output that can be turned off selectively by the compile-
time configuration.

• PrintError should be used when an error occurs. These calls will never be disabled and will
always print.

15 How to contribute

If you have modified or extended Palacios and would like to contribute your changes back to the
project, you can do so using git’s patch facility.

When code is ready to be contributed, you should first do a local commit:

git commit

Next, generate a patch set that can be applied to the remote repository. This is done by running

git format-patch origin/<branch-name>

where <branch-name> will be Release-1.3 or devel unless otherwise noted by us, or by the
V3VEE web site.

This will find all of the commits you have done locally and that are not present in the remote branch.
It will then write out a series of patch files in the current directory containing all of the local commits. You
can then email these patch files to contributions@v3vee.org for possible inclusion in the mainline
codebase.
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A Our test environment

We currently use the following machines when testing Palacios:

• HP Proliant ML115 with an AMD Opteron 1210 processor, 1 GB RAM, 160 GB SATA drive, and
ATAPI CD ROM. The 1210 is among the cheapest AMD processors that support SVM without nested
paging.

• Dell PowerEdge SC1435 with an AMD Opteron 2350 processor, 2 GB RAM, 160 GB SATA drive,
and ATAPI CD ROM. The 2350 is among the cheapest AMD processors that support SVM with nested
paging.

• Dell PowerEdge SC440 with an Intel Xeon 3040 processor, 2 GB RAM, 160 GB SATA drive, and
ATAPI CD ROM. The 3040 is among the cheapest Intel processors that support VT without nested
paging.

• Dell Optiplex 380 with an Intel Core 2 Duo E7550 processor, 4 GB RAM, 160 GB SATA drive, and
ATAPI CD ROM.

• Dell PowerEdge R210 with an Intel Xeon X3430 processor, 8 GB RAM, 160 GB SATA drive, and
ATAPI CD ROM.

• Dell PowerEdge R410 with an Intel Xeon E5620 processor, 8 GB RAM, 160 GB SATA drive, and
ATAPI CD ROM.

• Dell PowerEdge T110 with a Intel Xeon X3450 processor, 4 GB RAM, 500 GB SATA drive, and
ATAPI CD ROM.

• Dell Optiplex 790 with an Intel Core i7 2600 processor, 8 GB RAM, 1 TB SATA drive, and ATAPI
CD ROM.

• Dell PowerEdge R415 with dual AMD Opteron 4174s, 16 GB RAM, 2 TB SAS drive, and ATAPI CD
ROM.

• Gray box, dual quadcore 2.3GHz AMD 2376, 32GB memory, 500GB SATA drive, ATAPI DVD-ROM
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• HP ProLiant BL460c G6 BladeSystem with dual-socket quad-core Intel Xeon X5570, 24 GB RAM,
no disk

• HP ProLiant BL465c G7 BladeSystem with dual-socket 12-core AMD Opteron 6172, 32 GB RAM,
no disk

• Cray XT4, specifically compute nodes with single-socket quad-core AMD Opteron 1354, 8 GB RAM,
SeaStar 2.1 network interface, no disk
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