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ABSTRACT

On mobile devices, such as smartphones and tablets, client-

side JavaScript is a significant contributor to power consump-

tion, and thus battery lifetime. We claim that this is par-

tially due to JavaScript interpretation running faster than is

necessary to maintain a satisfactory user experience, and

we propose that JavaScript implementations include a user-

configurable throttle. To evaluate our claim we developed a

web proxy system, named JSSlow, that reduces power con-

sumption by transcoding client-side JavaScript and inject-

ing “sleep” invocations. This can be done safely, even given

JavaScript’s single-threaded nature, through the use of con-

tinuation passing, and the proxy model requires neither server

nor client-side changes. Using JSSlow we studied the 120

most popular sites and found that the technique could reduce

power consumption by an average of 6% on Android phones.

We also considered buggy code (52% reduction) and adver-

tising (10% reduction). To evaluate the system’s impact on

the user experience, we conducted a user study consisting

of interactive tasks the user carried out on. The perceived

performance impact varies by user and site, with the vari-

ation being highest on the most interactive sites, such as

games. This argues for making the throttle user-configurable

in some cases.

1. INTRODUCTION

Modern web sites and web applications include a sig-
nificant client-side component written in the JavaScript
language and interpreted by the browser. The client-
side code can manipulate the the HTML document via
the Document Object Model (DOM), allowing, for ex-
ample, dynamic page updating, page animations, en-
hanced controls, and other interactive elements. More
generally, JavaScript provides a portable Turing-complete
execution model for a high-level scripting language aug-
mented with the capabilities of the browser. The popu-
larity of systems such as Google Documents shows that
even complex applications, such as office tools, can be
highly effectively implemented in this model. YouOS
demonstrated the extremes the model enables, creating
an extensive desktop environment within the model.
Because of the centrality of JavaScript, an important

focus of research and development has been on how to
execute it faster, including projects such as the Google
Closure Compiler [5], which tries to increase JavaScript
efficiency and eliminate potential bugs. This is chal-
lenging because JavaScript is a dynamically typed lan-
guage with high-level features, such as eval, that gen-
erally require interpreted execution. However, it is also
important, as the execution model from the perspec-
tive of a single page is an event-driven model without
threads. While this may simplify application program-
ming because concurrency is not exposed to the devel-
oper, it means that a badly-written event handler can
block others, degrading the user experience, and in the
worst case can result in the browser presenting an “un-
responsive script” warning to the user. A well-written
event handler running too slowly can result in similar
issues.
On a mobile platform, the questions of power, en-

ergy, and battery lifetime complicate matters. Slower
execution of proper JavaScript may reduce power, and
given that internal event generation drives JavaScript
execution together with external events, slower execu-
tion might also reduce energy and enhance battery life-
time due to less work overall. Finally, slower execution
of buggy or peripheral JavaScript might reduce its abil-
ity to waste energy and degrade the user experience.
Previous work [16] has shown that total JavaScript en-
ergy (from transmission and rendering) constitutes a
significant portion of energy used during mobile brows-
ing, e.g. 16% on Amazon.com or 20% on YouTube.com.
We claim that on mobile platforms JavaScript inter-

pretation is generally faster than is necessary to main-
tain a satisfactory user experience, and we propose that
JavaScript implementations include a user-configurable
throttle. For many sites and users, the throttle can
simply be set to a uniform level that will reduce power
compared to today’s open-throttle setting, while not af-
fecting the user experience. For some sites and users,
the throttle is needed so that the user can determine
his own trade-off between power and experience.
To evaluate our claims we developed a web proxy sys-

tem, named JSSlow, that rewrites JavaScript passing
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through it using the continuation-passing style. Lever-
aging this, our system introduces what are effectively
“sleep” calls into the JavaScript interpretation process,
despite the fact that JavaScript has no native sleep func-
tionality. The occurrence of these sleep calls and their
arguments constitute the JavaScript throttle mechanism.
The throttle is itself set via a global variable.
JSSlow is intended as a proof-of-concept for a JavaScript

throttle, and certainly other alternatives, such as changes
to the JavaScript interpreter itself, may be simpler.
JSSlow does have the benefit of allowing any user di-
rect access to the throttle functionality simply by using
our proxy. It also doesn’t require any client or server
changes, making it easier to study our overall claim.
Using JSSlow, we conducted three studies with an

Android mobile phone as the client device. In the first
study, we evaluated the power and energy savings that
the throttle can provide when faced with buggy JavaScript
and advertising JavaScript. Not surprisingly, the bene-
fits are quite substantial. In the second study, we con-
sidered the power and energy savings that the throttle,
with a default setting, can provide for the top 120 web
sites. We found an average power savings of 6%, with
some sites showing significantly higher savings. That is,
the introduction of JavaScript throttle reduces power
across the board and has particularly strong effects for
buggy or exploitative JavaScript.
Our final study was a user study in which we had

participants come to our lab and carry out tasks using
several common web sites/applications on an Android
phone, both with and without JSSlow throttle (with the
default setting) active. During the tasks, we measured
both articulated user satisfaction and power. We found
that for common tasks like commenting on articles or
Facebook, there was little difference in satisfaction be-
tween the two cases. For fine-grain interactive tasks,
such as a game, the impact on user satisfaction varied
considerably, suggesting that making the throttle visi-
ble in such cases would be preferable.
The primary contributions of this work are as follows.

• We identify an opportunity for reducing mobile
device power by throttling JavaScript execution.

• We present the design and implementation of a
mechanism for such throttling, the transcoding JSS-
low web proxy.

• We show that JavaScript throttling can have a ma-
jor effect on reducing the power of buggy and ad-
vertising JavaScript, reducing these by 52% and
10%, respectively.

• We show that JavaScript throttling, at a default,
non-aggressive level, leads to significant power re-
duction for the top 120 web sites. The average
power is reduced by 6%.

• We show that JavaScript throttling, at a default,
non-aggressive level, has little effect on user sat-
isfaction for several common tasks. It does have
an effect on highly interactive tasks, but the effect
appears to be highly user dependent, suggesting
that the throttle setting needs to be exposed to
the user in such cases.

• We discuss alternative methods for implementing
JavaScript throttling.

2. WHY SLEEPY JAVASCRIPT?

JavaScript is a dynamically typed, object-oriented
scripting language developed by Brendan Eich. It is
implemented by modern web browsers in order to cre-
ate rich, dynamic web pages. The syntax and seman-
tics of the language are a superset of ECMAScript Edi-
tion 3 [3], although each browser implements its own
interpreter, and therefore, version of the language. The
typical model for JavaScript execution is event-driven,
allowing web pages and applications to respond to user
input. JavaScript follows the common model of register-
ing event hooks such as onClick(), and assigning event
handlers to be invoked as a result of events coming in.
We argue that JavaScript is being run faster than

necessary on a mobile platform, and that it is possible
to reduce power with little to no effect on the user ex-
perience simply by slowing down this execution. While
our focus is on reduced power, we feel that reducing
power may also lead to reduction in energy (and thus
an increase in battery lifetime). This is counter intuitive
given that the energy of a task,

Energy = Timerun × Power run

is often believed to have the property that the power
grows more slowly than the time decreases with increas-
ing execution rate. The implication is that given fixed
tasks, the best strategy is to execute them with as high
a rate as possible. Computational sprinting [12], where
execution rate is raised even beyond sustainable thermal
limits for brief periods of time, is the extreme example
of this “race to finish” approach.
This analysis makes sense for some workloads and

tasks, for example, the image recognition kernel in [12],
and perhaps the UI controls on the platform (Section 6.5),
but it may not capture the event-driven nature of JavaScript
execution for a web page or application. Here, the work-
load is likely to be continuous, and in many cases, users
may not be concerned with the speed at which indi-
vidual tasks complete, or even if they complete. Most
importantly, fast execution of JavaScript workload may
well introduce additional tasks, which themselves re-
quire more energy to execute.
Consider a user visiting a page. The user will interact

with the page for a given interval of time, which we call
a dwell time. Given a fixed perceived performance of
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Figure 1: JSSlow system design.

the page, the user’s interaction with the page will not
change. However, if we lower the execution rate of the
JavaScript, we will reduce the power, and reduce the
amount of work that needs to be done over the dwell
time. Suppose there is an advertising animation on the
page. Slowing down the animation’s execution will be
unlikely to change the user’s interaction or satisfaction,
but we will have fewer updates to perform over the dwell
time, and each update will be done at lower power.
Given this, our goal is to convince the JavaScript in-

terpreter to slow down in such a way as to reduce power.
To do the latter, we need it to yield to the kernel, which,
if there is no other work available, will put the proces-
sor into a lower power state. In other words, we need
to convince the JavaScript interpreter to go to sleep.

3. JSSLOW PROXY

The proxy that we have developed, JSSlow, works by
examining the body of HTML pages that pass through
it, identifying key structures of interest in both embed-
ded JavaScript code as well as in referenced JavaScript
code. Within these structures, for example loop bod-
ies, the proxy inserts the equivalent of calls to a “sleep”
function. In this way, we are able to slow down the ex-
ecution of scripts by ensuring that any code likely to be
run repeatedly will have to run our sleep call as well.
There were two key difficulties in applying this trans-
formation to scripts, (1) JavaScript does not contain a
native sleep call, and (2) the JavaScript code is run a
single-threaded context. As we noted in the introduc-
tion, this is in keeping with JavaScript’s event-based
execution model.

3.1 Simulating sleep

A sleep call could be simulated in JavaScript’s event-
based execution model through the use of setTimeout

timer mechanism, but, as we will show, this approach

requires code size comparable to execution steps and
thus is unsuitable for looping/recursive code, which is
exactly the kind of code we want most to improve. Our
adopted approach is to use the continuation passing
programming model, explained in Section 3.2, which
is supported within JavaScript, albeit not widely used.
In essence, our invocations of sleep involve creating a
continuation, and then passing that continuation as a
timer handler that will be invoked once the desired
sleep period has expired. Until the timer event fires,
the JavaScript engine can execute independent threads
for other pages, and, if it is nothing to do, it will in-
ternally await a timer event, using an OS-level sleep()
or select() call. It is the time our page spends in these
system calls that reduces the power consumption of the
page.
Transforming ordinary JavaScript code into the de-

sired continuation-passing form is challenging. To sim-
plify the process, we leverage TameJS, which has been
designed to augment the server-side JavaScript language
with more straightforward ways of using continuation-
passing. By leveraging TameJS on the client-side, we
can achieve our goal in several steps. First, we parse the
JavaScript and identify where we want to inject sleep
calls. Next, we inject those calls using the TameJS con-
tinuation passing syntax. Finally, we use TameJS to
translate back to standards-compliant JavaScript which
we then hand to the client. Figure 1 illustrates the pro-
cess.

3.2 Continuation passing

Continuation passing, a term coined by Steele and
Sussman in their paper on the Scheme programming
language [15], is a style of programming in which con-
trol flow of a program is explicitly managed with con-
tinuations.
The core idea of a continuation is that it captures a

complete execution state in such a way that it can be
restored at a later time. The continuation is made avail-
able at the programmatic level; that is, the program
can itself operate on its own continuations, for exam-
ple explicitly restoring them. Of particular note is the
so-called “current continuation”, which represents the
current execution state. This is often augmented with
the notion of “call with current continuation”, which al-
lows for control-flow parallelism within the program. As
an example, an iterator that operates over tree might be
written recursively. The iterator’s next() function would
use a call with current continuation to restore the recur-
sive execution context, make one step on the tree, and
then return that value with another call with current
continuation back to the caller of next(). In this exam-
ple, continuations allow us to marry the straightforward
implementation of a recursive traversal of the tree with
in-line iteration over the results of this process. The
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sharp-eyed reader might note that this process looks
a lot like a multithreaded process, and there is in fact
an equivalence between cooperative multithreading and
continuation-passing.
In the continuation passing style (CPS) of program-

ming, each function takes an additional argument, namely
the continuation that the result of the function will be
passed to. CPS makes several things more explicit than
in “direct style”—the flow of code is immediately obvi-
ous since the return of a procedure is directly defined,
order of evaluation is explicated since all expressions
must be evaluated from the innermost part out, and all
calls become tail calls which allows for optimizations.
Since each function must be augmented to include an

extra parameter, trying to write code in CPS can be
error-prone. This approach is sometimes implemented
in compilers such as in Appel and Andrew’s book “Com-
piling with Continuations” [1] or in TameJS.

3.3 TameJS

TameJS [11] is a “source-to-source translator that
outputs JavaScript” developed by OKCupid as a JavaScript
implementation of the C++ Tame framework [7]. It
produces standards-compliant JavaScript that can then
be run by any JavaScript engine. TameJS was devel-
oped with the NodeJS platform [6] in mind. NodeJS at-
tempts to extend JavaScript to the server side, allowing
an application developer to build web applications with
a single language and execution model. In the server
context, especially due to network delays and concur-
rency among many users, the limited concurrency and
cooperative, event-driven execution model of JavaScript
can be particularly limiting. TameJS attempts to ad-
dress these limitations by making the continuation pass-
ing style much easier to use within JavaScript code.
TameJS adds two new primitives to JavaScript to fa-

cilitate programming with continuations:

• the await primitive, which is essentially “call with
current continuation”, and

• the defer primitive, which essentially invokes the
continuation that was passed during the call, re-
turning execution state back to the caller.

The combination of await and defer allow for asynchronous
callback code to operate like regular sequential code.
The following code illustrates how await and defer are
used to introduce pauses in execution:

for (var i = 0; i < 10; i++) {
await{setTimeout(defer(), 100);}
console.log ("hello");

}

The result of the above code is that “hello” is written
to the console 10 times, with a delay of 100ms between
each write. The block of code handed to await immedi-

ately executes, setting a timer that will fire in 100 ms.
The await call also packs up the current continuation,
and passes it to the code. The handler the timer event
will invoke consists of the invocation of defer. It is not
until the defer is invoked that the previously packed up
continuation is unpacked and restored. At this point,
execution continues at the next statement following the
await statement. Most JavaScript engines will imple-
ment the timer delay through select() system calls, giv-
ing the kernel the opportunity to put the processor in
a low-power state if there is no other work to do.
If this code were written without the await/defer com-

bination, “hello” would immediately be printed to the
console 10 times. Because setTimeout is a non-blocking
function, the JavaScript engine does not wait for it to
return before going on to run the rest of the code. The
only way to achieve the desired pause would be to pass
console.log as the callback function to setTimeout. This
approach can be applied easily in places where we only
want to introduce a single delay, but in order to apply it
even to the simple code example above, each iteration
of the loop would need to be its own successive callback
to a deeper setTimeout. That is, we would have to code
the 10 iterations of the loop nest separately.
In general, to implement iterated, or nested continuation-

passing as in the above example in standard JavaScript
would require that we syntactically unroll the iteration
or nesting. The beauty of the TameJS await/defer ex-
tensions is that this is not needed, which allows the im-
plementation of continuation-passing programs in the
straightforward style available in other languages that
support continuations.

3.4 JSSlow

The JSSlow proxy is an extension of a proxy we pre-
viously developed to inject JavaScript-based user in-
terfaces that overlay themselves on existing web sites.
The initial proxy, which itself was an extension of the
Tiny HTTP proxy for Python1, was designed to sup-
port studies of user-centric network scheduling for the
uplink of home routers and is described in more detail
elsewhere [8]. In this paper, we generally do not make
use of its ability to to inject new user interface compo-
nents into the user experience, but rather as a frame-
work within which we we can carry out transformations
of existing JavaScript code. It implements standard
SOCKS proxy semantics and so can be used with any
web browser simply by configuring the browser’s proxy
configuration to use it.
JSSlow observes the HTML body of any response that

goes through it, and then analyzes and alters that body
before returning it to the requesting client. When it
has received the body of the page, it parses it using
Python’s BeautifulSoup library, resulting in a Beauti-

1
http://www.oki-osk.jp/esc/python/proxy/
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fulSoup object which is an abstract syntax tree (AST).
The AST representation and the library then allow us
to search and transform the tree. The core operation
we do is identify JavaScript code blocks into which we
will inject sleep invocations.

Sleep macro implementation.
Our sleep is implemented assuming the existence of

TameJS, and takes the following form

await { setTimeout(defer(), g_slow); }

where g slow is a global variable indicating the sleep du-
ration. We generate a special configuration block to set
g slow at page load time. It can be adjusted at any point
later, for example via a user interface that can also be
injected by the JSSlow proxy. It is important to realize
that while g slow is a throttle, it is a very course grain
one. Any significant g slow value will typically cause
the engine to do a yielding system call, which has a sig-
nificant effect on power, even if g slow is a quite small,
nonzero value. Also note that it is the combination of
g slow and the locations at which the sleep macro is in-
troduced that constitute the overall throttle. The sleep
macro can also be changed to allow for complete deac-
tivation of the sleep functionality, resulting in behavior
virtually identical to the unmodified code. We discuss
alternative methods of throttling in Section 8.

Sleep macro injection.
The following pseudocode illustrates the process of

transforming the AST to include invocations of our sleep
macro:

// create AST of the incoming html
html-copy = BeautifulSoup(incoming-html)

sleep = "await { setTimeout(defer(), g_slow); }"

// iterate over all <script..>..</script> fields
for script in html-copy:

script-copy = script

// fetch local scripts
if script.has_tag("src") && src.is_local():

script-copy = fetch(src.address)

insert-at(sleep, "while")
insert-at(sleep, "if")
insert-at(sleep, "for")
insert-at(sleep, "function")

try:
script-copy = tame-compile(script-copy)

except:
// if compilation failed, just skip
continue

script = script-copy

return html-copy

Figure 2: Testbed as seen by user.

In essence, we transform all scripts that are inlined in
the page or that are referenced by the page and exist on
the same site. Each script has sleep macros introduced
into the bodies of its of its control structures (while, if,
for, and the entry points of functions). The transformed
scripts (including the referenced scripts) are then in-
lined into the page. If a transformation or inlining of a
script fails, we use the original script.
We currently avoid transforming referenced scripts

that are not local to the originating page’s site. This
is because we found that many such scripts would re-
quire more subtle transformations in order to be suc-
cessfully inlined. For example, if a script containing
the line document.write(‘‘</script>’’) were fetched, es-
caping would be needed to avoid having the string be
interpreted by the HTML parser as a script tag. Be-
cause of this limitation, we currently under report the
potential effect of JavaScript throttling, particularly for
throttling advertising and marketing JavaScript, which
is almost all non-local. We say more about this missed
opportunity in Section 7.4.
Once we have finished adding sleep invocations to a

script, we run the modified script through the TameJS
compiler. TameJS transforms all of our uses of the sleep

macro back to standard JavaScript, but also includes a
require call that brings in the TameJS library code. We
then replace this with the TameJS library code itself
(252 lines of JavaScript), resulting in a script that is as
self-contained as the original script.
The transformed script is then inserted back into the

body of the page and the proxy continues on to the
next script. If any error occurred in the compilation
of the transformed script, the original script is instead
left on the page. Once all scripts had been processed,
the script prepends the initialization code, including the
global declaration of the sleep duration.

4. TESTBED

To carry out the studies described in this paper, we
developed a simple testbed centered around a Google
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Galaxy Nexus Android phone. The purpose of the testbed
is to enable instantaneous power measurement of the
phone while allowing the phone to be used either di-
rectly by a user or in an automated fashion, following a
script. The phone is used on battery power in all cases.
The phone is configured to use the JSSlow proxy, which
is also part of the testbed. Figure 2 shows the appear-
ance of the part of the testbed seen by the user. The box
under the phone is a current clamp. The phone uses a
WiFi for connectivity, attaching to an access point un-
der our direct control.

4.1 Power measurement

Instantaneous power is measured by connecting a con-
ductor directly from the positive terminal of the battery
to the positive terminal on the phone, with an insulator
directly between the two ends of the conductor, creat-
ing a loop external to the phone that current can run
through. In order to allow the battery to still fit into the
phone (allowing easy connections between the other 3
terminals) a thin conductor was needed. We use layers
of metal foil as the conductor.
With the external loop directly accessible, we are able

to use a current clamp to measure the current flowing
out of the battery. Since this method uses an indirect
method of measuring current flow, it has a very low
impact on the current itself, which results in accurate
readings with little perturbation.
The current clamp we use is a FLUKE i30, which

has a maximum current of 20A RMS, and an output of
100 mV

A
. The device has an accuracy of ±1% at ±2mA

and a resolution of ±1mA. The output of the current
clamp is fed into a RadioShack 22-812 digital multime-
ter (DMM), which provides access to readings via an
RS232 serial port. This port is wired via a RS232 to
USB converter to a monitoring PC. We record DMM
readings with QtDMM, software designed for commu-
nication with various DMMs. Readings are taken at 10
Hz.
It is important to note that the combination of the

phone, current loop, current clamp, etc, remains hand-
portable—the user can still hand-hold the phone.
In order to arrive at power, we must multiply the

current read from the current clamp by the voltage of
the battery. The battery Voltage is subject to some
noise, but is relatively stable at 3.8V. This gives us a
conversion from voltage read by the current clamp to
power of

W = Vclamp ×
A

100mV
×

1000mV

V
× 3.8V

4.2 WebProxyAutomator

Our testbed can be used non-interactively, consecu-
tively visiting and measuring the power of a list of sites
with and without the proxy enabled. To facilitate such

Scenario Proxy On [W] Proxy Off [W] Diff [%]
Bugs 1.599 3.325 -52%
Ads 1.332 1.472 -10%

Figure 3: Power reduction for infinite loop bugs
and advertising. Average power over 10 s.

studies, and other non-interactive experimentation, we
created an automated testing application, WebProx-
yAutomator (WPA) for use with the Google Android
operating system. WPA creates a WebView [4], which is
an instance of the built in Android web browser, and
then makes successive calls to load a new page from
the list at selected intervals, tarrying at each page for a
user-selected visit time.

5. OPPORTUNITY

To evaluate the potential power savings that are avail-
able through JavaScript throttling, we used the testbed
to study a range of sites without considering user in-
teraction. This work included a study of the effect on
buggy JavaScript and advertising, and a study of the
effect on the top 120 most visited web sites.

5.1 Buggy JavaScript and advertising

The effects of JavaScript throttling on power are most
extreme in cases where the JavaScript in question is
buggy, typically resulting in an event handler being es-
pecially long, or going into an infinite loop. To evaluate
this, we crafted an intentionally buggy test site with the
following JavaScript,

var i = 1; while(1) { i *= -1; }

which is run before any text is displayed on the page.
The result is that the browser becomes unresponsive
and the text never appears. When viewing the same
page through JSSlow, however, the text immediately
renders, the browser is responsive, and the power con-
sumption was less than half that of the untransformed
site. This represents the upper bound of power savings
that are possible with JavaScript throttling as imple-
mented in JSSlow. This result can be seen in the first
row of Figure 3. The power is reduced by 52%, which
bounds the opportunity for JavaScript throttling.
Advertising makes extensive use of JavaScript, and

because ad code is essentially throw-away code, it is
more likely to have bugs. To evaluate the effect of JSS-
low JavaScript throttling on advertisements, we manu-
ally extracted 50 ads from visits to a random subset of
10 sites from the Google’s top-1000 sites (more details
on this list in Section 5.2) and ran them through JSS-
low, the results of which can be seen in the second row
of Figure 3.
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5.2 Top 120 most visited sites

To evaluate the effects of JSSlow-based JavaScript
throttling in a real world environment, but without user
interaction, we used the WebProxyAutomator (WPA,
described in Section 4.2) to programmatically load pop-
ular web sites with and without JSSlow enabled and
measured the difference in power. The specific set of
sites we we loaded were selected from the Google Ad-
Planner list of the top 1000 sites2. Because we ran the
phone on battery power, we were only able to visit the
top 120 sites before battery depletion.
Each site was visited an average of four times with

the proxy on, and four times with the proxy off. A
visit included a load and dwell time of 10 seconds, that
is, from the time the site started loading to when we
advanced to the next site was 10 seconds. The suite of
tests was covered in about 2.7 hours, at which point the
battery was depleted. During the load and dwell time,
the testbed measured the power at 10 Hz. Thus, for one
visit, we have 100 measurements. We refer to this as
a power signature. We can compare power signatures
with and without JSSlow, with an example shown in
Figure 4, but we generally compare averages over the
duration of the power signature.
It is important to point out that this automated test-

ing involved no interaction with the contents of the
page, thus removing the possibility of running JavaScript
from user-interaction driven events such as onClick()

Across our sample set, we found an average power
reduction of 6% when using JSSlow. However, there
is considerable variation across sites. Figure 5 shows
the distribution of the difference between the throttled
and non-throttled runs for the set, while Figure 6 plots
the absolute power measured for the paired runs. We
note that even though there is an overall power savings,

2
https://www.google.com/adplanner/static/top1000/
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Figure 6: Comparison of absolute power with
and without the use of JSSlow. Average power
over 10 s.

there are sites for which we actually increase power. It
is important to point out that JSSlow can be disabled
in these cases, simply by setting the g slow parameter
to zero.
It is important to note that the power savings also in-

clude the additional power used to fetch the larger con-
tent in the case of the JSSlow transforms being active.
For each script, the JSSlow transformation expands the
script’s size by a factor of two, and adds about 252 lines
of library code. In other words, a script of n lines ex-
pands to one of 2×n+252 lines. These results in more
energy spent in receiving the script.
As described in Section 3.4, JSSlow does not cur-

rently throttle non-local scripts, such as ads. Given
that we found that explicitly handling ads lead to power
reductions of 10% (Section 5.1), it seems probable that
further power reductions will be possible for the top-120
sites once this functionality is complete. Given these re-
sults, we believe the baseline average power reduction
due to simple inclusion of a JavaScript throttle with a
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Users

Age
17-25 15
25-35 4
35-45 1

Gender
Male 13

Female 7

Area of Study

Computer Science 10
Science / Engineering 3

Liberal Arts 2
Other 5

Length of smartphone usage

Never 1
0-1 Months 2

6 Months - 1 Year 4
1-2 Years 5
2+ Years 8

Smartphone Type Owned

None 1
Android 9

Blackberry 2
iOS 7

Other 1

Figure 7: User study demographics.

default setting, ignoring interaction, is 6–10%.

6. USER STUDY

JSSlow aims to reduce the power consumption of JavaScript
interpretation by slowing it down, which could poten-
tially have an inverse impact on user satisfaction with
the web sites running those scripts. We designed and
ran a user study that would evaluate the effect of JSSlow
throttling on both user-perceived satisfaction, as well
as measuring the change in power consumption during
real-world usage.

6.1 Subjects

Our IRB approval allowed us to advertise our study
at various locations throughout the Northwestern Uni-
versity campus. We selected the first 20 students who
replied to participate in the study. Demographics of
this population are presented in Figure 7. The study
was designed to take one hour, each user was compen-
sated for their time with a $20 gift certificate.

6.2 Tasks

The purpose of each task was to approximate the nor-
mal usage of a mobile device by a user, as well as to
provide various scenarios for which JSSlow might have
an effect. The tasks were split broadly among 2 cat-
egories: low interactivity tasks, and high interactivity
tasks. What we are trying to capture with these cate-
gories is the level of interaction the user will have with
JavaScript. The sorts of interaction in low interactivity
sites are generally restricted to tasks of the form of leav-
ing a comment, or navigating to a certain part of a site,
if the navigation is implemented in JavaScript. High
interactivity tasks are ones in which the user is con-
stantly interacting with the script in some way, such as
with controls in a game.

CNN and Facebook were selected as low interactivity
tasks that are representative of common sites that users
visit on their mobile devices. CNN stands in for news
and blog-type sites, while Facebook is the exemplar of
a social network site.
High interactivity tasks were harder to find, as JavaScript

is still relatively new to interactive applications, and
browsers do not necessarily implement the same subsets
of JavaScript technologies, or with similar performance
(Internet Explorer, for example, does not perform well
on WebGL benchmarks). Additionally, there are rela-
tively few JavaScript applications that are written to
be used with a mobile interface. For these reasons, we
chose a very simple application for users—a game of
“Snake” written in HTML5 3. The game is controlled
by a user swiping the screen in the direction they want
the snake to move, with the stipulation that the snake
can only ever make 90◦ turns.

6.3 Methodology

We designed an double-blind intervention study in
which the subject would either have their code slowed
down through the proxy or not, but not be made di-
rectly aware of which state they were in. Additionally,
the proctor administering the exam would not be aware
of the current state either, but only collect information
regarding the subject’s current satisfaction.
The device that the subject was given to use during

the study is the same one described in Section 4. We
now consider the flow of the study from the perspective
of the subject and the perspective of the proctor.

Subject.
When a subject first arrived, we had them fill out a

questionnaire designed to determine their level of knowl-
edge and comfort with a modern mobile device. For the
duration of the study, the subject only interacted with
web sites in the device’s browser, which minimized the
amount of experience and knowledge needed of the An-
droid platform.
The user was then given 5–10 minutes to browse to

any site. The purpose was to get them familiar with
the device, as well as to the normal speeds of the net-
work and browser. The device was connected to the
proxy for the entire duration of the study, throttling
was turned off during each familiarization phase. Once
the user finished familiarizing themselves with the de-
vice, they were prompted to give his current satisfaction
with the performance of the device, in order to establish
a baseline for that subject.
At this point the device would be pointed to a landing

page, which included links to each page the user would
visit over the course of the study. For both of the low
interactivity sites, a dummy account was already logged

3
snake.alexthorpe.com
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(a) CNN

(b) FaceBook

(c) Game

Figure 8: Absolute difference in power versus
absolute difference in reported satisfaction. Av-
eraged over task intervals. The star represents
power difference without interactivity.

in, so as not to require the user logging into a personal
account, eliminating any privacy concerns.
For CNN and Facebook, the user would visit an arti-

cle or page, respectively, read through the content, and
then post a short comment. During the course of this
process, the user would be periodically prompted to in-
dicate their level of satisfaction with the site. They were
asked to verbally express their satisfaction on a Likert
scale of 1–10, where 1 represented complete dissatisfac-
tion, and 10 represented complete satisfaction.
Once finished with the low interactivity tasks, the

user would be pointed to the high interactivity task,
and given 5–10 minutes to familiarize themselves with
the speed and reactivity of the game. During this time,
the proxy was again off. Once this time was up, the user
would play the game for two 5-minute sessions. As in
the previous phase, the user was periodically prompted
to verbally provide his current level of satisfaction.
When both sessions had been completed, the user was

asked to fill out an exit questionnaire, indicting his over-
all satisfaction with the performance of the device for
the entire study. They were also asked to note any times
during which they noticed changes in performance.

Proctor and proxy.
The study was designed to be double blind—neither

the user nor the proctor were aware of the state of the
proxy. The proxy had a user-study mode that would
expose certain controls to the proctor, allowing it to
transition to the appropriate state for each phase of the
study. During each interactive phase, the proctor would
prompt the user to verbally indicate their satisfaction
every 30 seconds, and note this figure down.
The proxy would start in a non-throttling state, so

as to allow the user to get accustomed to the base-
line behavior during the initial familiarization phase.
Once this was done, the proctor would send a signal to
the proxy, making it transition to the low interactiv-
ity state. During this state, the proxy would randomly
choose whether or not to throttle each site that was
loaded. The proctor would send signals to the proxy for
when the user started each site, allowing careful time
stamps to be kept. At the end of this phase, the proc-
tor would send the proxy another signal, putting it back
into the familiarization state.
For the first game session the proxy would randomly

choose whether or not it would throttle JavaScript, and
it would then choose the opposite of that choice for the
second run.
During the entire study, the instantaneous power draw

was being measured and recorded. This information,
combined with the time-stamped logs and satisfaction
results allowed us to extract the average satisfaction for
each site in each task, the average power used during
the time spent on that site, and whether or not the site
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Average Difference Off-On Average
Task Avg StDev Conf On Off

CNN 0.29 0.39 0.12 7.84 7.54
FB -0.11 0.34 0.11 7.18 7.29

Game -0.26 1.24 0.39 5.39 5.65

Figure 9: Average absolute difference in satis-
faction levels with proxy on or off, and average
absolute satisfaction levels with proxy on or off.

Average Difference Off-On [W] Average [W]
Task Avg StDev Conf On Off

CNN -0.12 0.22 0.06 2.08 2.20
FB -0.05 0.08 0.03 1.88 1.92

Game 0.013 0.10 0.036 2.26 2.25

Figure 10: Average absolute difference in power
(over task interval) with proxy on or off, and
average absolute power levels with proxy on or
off.

had been throttled.

6.4 Results

We conducted our study over a total of 20 subjects,
and were able to get satisfaction results from 19 sub-
jects, as well as power readings for 15 subjects. We
report on these 15 in the following. To account for any
anchoring effect due to the user-based interpretation of
satisfaction, we did our analysis based on the differ-
ences in satisfaction, paired by user. We looked at the
values of the absolute differences, as well as the relative
differences.
The results of the study are presented in Figures 8

through 12. Figure 8 plots the differences in power ver-
sus the differences in satisfaction for each user between
slowed down and normal script execution. The figure is
split into 3 plots, showing the results for each task. We
also show the average power savings in the case of no
user input, indicated with a black star.
The tables in Figure 9 and Figure 10 present the find-

ings in absolute difference. For each task, the satisfac-
tion ratings and power usage for slowed down and nor-
mal site performance are compared for that user, and
then averaged across all users. We also calculate the
standard deviation, and 95% confidence interval for the
average value that we found. The last two columns
show the average value of satisfaction with the proxy
slowing down JavaScript execution across all users, and
the average value of satisfaction with JavaScript run-
ning normally.
The tables in Figure 11 and Figure 12 present the

same data set, but consider the percentage difference in
satisfaction and power usage, rather then the absolute
difference. For these values standard deviation, and

Task Avg [%] StDev Conf

CNN 4.24 5.24 1.67
FB -1.10 5.55 1.81

Game -0.18 33.10 10.52

Figure 11: Relative difference in satisfaction.

Task Avg [%] StDev Conf

CNN -5.24 10.00 2.92
FB -2.38 3.61 1.05

Game 0.85 4.55 1.33

Figure 12: Relative difference in power.

95% confidence interval are also calculated.

6.5 Analysis

We consider the data from our study using our two
broad categories: low-interactivity and high-interactivity
tasks. We consider the data from these categories sep-
arately since users may have different expectations for
how fast each operates. We are testing whether we can
proceed power and energy reduction during interactive
use, without effecting the satisfaction of the user.
Figure 9 is telling us that there is little change in user

satisfaction when the proxy is applied in the low inter-
activity tasks. The confidence intervals suggest that for
the Facebook score the detected difference is not mean-
ingful, while for CNN, the detected difference is statisti-
cally significant but very small. On the other hand, for
the high interactivity task, we see large variation, but
with both increased and decreased satisfaction, suggest-
ing that response to performance in high interactivity
cases is highly user-dependent. While not statistically
significant, the difference between the proxy on and off
is quite small. Figure 11 tells much the same story.
If we average all low interactivity results together, we
get a change in satisfaction of 1.6% between the proxy
being on versus it being off.
Figure 10 shows statistically significant power savings

for the low interactivity tasks. Figure 12 presents the
relative differences. Average all of the low interactivity
measurements, we get average power saving of 3.8%.
This number is worth comparing with the top-120 study
(Section 5.2 where we found a 6% savings, without any
user interaction.
For the high interactivity task we find a small increase

in power consumption, although it does not rise to sta-
tistical significance. Nonetheless, this might seem im-
possible and contradictory with our automated testing-
based finds, but we now consider an explanation.

Impact of the interactive governor.
The phone that we used was running Android OS

version 4.0.4, which uses the Linux “interactive” CPU
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frequency governor, whose goal is to provide as smooth
a user interface as possible. The governor accomplishes
this by ramping up the processor to the maximum power
state on any human input, and then evaluates past load
to slowly scale down power state [17]. The assumption is
that once user interaction has been initiated, more user
interaction is likely to happen, and the system should be
able to process / respond to that interaction as quickly
as possible.
Figure 13 shows the instantaneous power draw on

the battery in 3 scenarios: (1) a site is loaded by the
browser, rendered, and allowed to run for 30 seconds,
(2) the same site is loaded and rendered by the browser,
but after 25 seconds a user begins typing a comment,
and (3) the same site is loaded and rendered by the
browser, but after 20 seconds the user inputs random
swipes (continuous contact with the screen). We can
see that the power draw during user interaction is on
the order of that of the initial page fetch and load in
the case of typing, and about half of that in the case of
random swipes.
Because of the interactive governor, there will be in-

creased power usage during any time a user is interact-
ing with the device. We claim that the more frustrated
a user became with the decreased responsiveness of the
game application, the more often they would press the
screen, trying to correct errors that had been commit-
ted during gameplay because the interface had applied
their previous action too late. This effect will also be
noticeable in any situation where a user has to scroll
through a page often, or has to follow multiple links to
get to the content they are looking for.

Power versus satisfaction.
In Figure 8 we compare the change in satisfaction

to the change in power draw for each user, and plot
them for each task. We have included dotted lines that
separate the space into 4 quadrants. If an increase in
power savings came directly at the cost of satisfaction
(and vice versa) we would expect clustering of points
in the upper-right lower-left quadrants, as a positive
difference in satisfaction is good, and a positive change
in power usage is bad. These plots include data from all
users, places where no data was collected is represented
with a difference of 0.
In the CNN results, most of the points are clustered

in the lower-right hand of the plot, with a few outliers.
This is interesting, in that there were very few users who
reported lower satisfaction with slowed down execution.
In the Facebook plot, we see a similar distribution of
power difference, though at a smaller scale. In this task
however, there was much more variance in the change in
satisfaction, users reported both positive and negative
changes in performance.
This could be partly attributable to the fact that the

user had to click through more links to get to the full
text of the article. Users were told not to let load time
influence their ratings of satisfaction, but they could
have taken that factor into consideration anyways.
The plot for the game task has results scattered through-

out each quadrant, suggesting that each user’s percep-
tion of performance is highly varied, and argues for al-
lowing the user to control whether or not a slowdown is
applied.

7. LIMITATIONS OF JSSLOW

We now consider some of the limitations of our spe-
cific implementation of a JavaScript throttle. The JSS-
low proxy is a proof of concept, showing that it is pos-
sible to slow down execution with no client or server
changes, but, as we show in Section 8, there may be
other, finer grain ways of implementing a throttle that
avoid JSSlow’s implementation issues.

7.1 Continuation passing style

JSSlow’s use of CPS to simulate sleep calls introduces
limitations related to memory use and performance.

Stack space.
Consider a loop. By transforming the loop body

to use continuations, we are basically transforming the
loop into a recursion. In the worst case, we then would
need to allocate additional stack space for each itera-
tion or block of iterations of a loop, as it is a function
call. The TameJS compiler tries to limit stack use via
tail call optimization, and, strictly speaking, since the
original code is a loop, it must be possible to do this
optimization. However, the actual optimizer is unable
to detect this situation in some cases. In such cases,
the runtime stack grows with number of loop iterations
resulting in large memory use, and, of course, the script
fails if the stack gets too large.
As an example, using the V8 engine included in Node.js,

with a 4 KB runtime stack, and a for loop with no ad-
ditional allocation that TameJS was unable to tail call
optimize, the transformed script ran out of memory be-
tween 13,000 and 14,000 iterations.
Running out of stack space is not an inherent issue

with JSSlow’s approach, but is a consequence of unrec-
ognized tail call recursion optimization opportunities.

Performance.
Another consequence of the JSSlow approach of slic-

ing up program execution via continuations is that there
is overhead associated with continuation creation and
use. To measure this overhead, we compared normal
and transformed versions of a for and while loop. The
body of each loop was a non-blocking arithmetic oper-
ation, with no allocation. In the transformed version,
each loop iteration became a continuation, but there
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Figure 13: Power signature with and without user interaction. “Clean” indicates the site without
any user interaction. “Typing” and “Swiping” indicate these activities are occurring.

was no sleep used during the continuation. We ran
13,000 iterations of the for loop (where tail call opti-
mization was not performed) and 100,000 iterations of
the while loop (where it was). For each, we measured
the time it took for the loop to complete in the base
and transformed code. All code was run on the V8
JavaScript engine included in Node.js using a stack size
of 4 KB. The transformed for loop run times increased
by an average of 2.1%, the transformed while loop run
times increased by an average of 1.6%.

7.2 Increased content size

Since JSSlow must not only inject additional “sleep”
calls into intercepted code, but also transform the re-
sulting code into code runnable by any JavaScript en-
gine, we are increasing the size of the content being
delivered to the mobile device. Given that wireless re-
ception of data also affects battery usage, we must be
careful to take this into account, as it will have an ef-
fect on our energy savings. Our results do this, as we
capture the average power over both the fetch and the
dwell time. If throttling were implemented internally
in the JavaScript interpreter in the client, however, the
additional energy cost due to the increased content size
could be avoided.

7.3 Energy increases

Our results from the top-120 sites (Section 5.2) indi-
cate that we save energy on most sites by using JSS-
low. However, a small fraction of sites actually have in-
creased energy use. Ideally, a tool like JSSlow would be
able to deactivate itself for such sites. While we can set
the g slow throttle in the JSSlow-transformed code, even
when set at zero, the energy costs due to the increased
content size and the overhead of continuation-passing
execution remain. If throttling were implemented in-

ternally in the JavaScript interpreter, however, these
cost could be avoided. The interpreter could also adap-
tively set the equivalent of g slow, testing if a non-zero
level actually results in decreased power.

7.4 Missed opportunities in advertising

JSSlow currently inlines scripts, but we have diffi-
culty inlining scripts that come from non-local sites.
We therefore have disabled this functionality in most of
our studies. However, advertising JavaScript is almost
always of this non-local form, and, as we showed in
Section 5.1, it is particularly amenable to energy reduc-
tion by our transformations. The consequence is that
we were unable to apply the JSSlow throttle to most
advertising, and thus miss this further opportunity to
decrease energy use, and possibly increase satisfaction,
for typical sites.

7.5 Course-grain operation

The JSSlow throttle consists of the locations of the
injected sleep invocations, and the duration of the sleep
intervals. Even with a very small sleep interval, this can
have a quite course-grain effect on the performance/power
tradeoff. If we inject the sleep macro in every loop iter-
ation, we have the potential of invoking the kernel sleep
system call once per iteration. This would slow the loop
to one over the minimum sleep interval the kernel pro-
vides. In the case of a typical desktop Linux kernel,
configured with a 1 ms periodic timer, this would po-
tentially decrease the loop iteration loop to as little as
1 KHz. Having finer grain control over when and how
often the JavaScript interpreter thread yields would al-
low for a more gradual tradeoff between performance
and power.
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8. RECOMMENDATIONS

Despite its limitations, the JSSlow implementation of
the JavaScript throttle, and the results we have derived
from using it, are, we believe, sufficient for us to make a
set of recommendations about the possible mechanisms
and policies of JavaScript throttling.

8.1 Deploy JavaScript throttling

JSSlow and the results we have developed using it
show that it is feasible to reduce power and energy on
mobile devices via JavaScript throttling with little effect
on user satisfaction. Arguably, the limitations of JSS-
low’s implementation of throttling actually understate
the case.
JavaScript throttling could potentially be deployed

in an incremental way, using a proxy approach, like
JSSlow’s, to provide throttling for existing, unmodi-
fied client software talking to existing, unmodified sites.
Over time, more sophisticated forms of throttling could
be rolled out.

8.2 Throttle the engine

The limitations of JSSlow, described in Section 7
could be avoided if the throttle mechanism were em-
bedded into the JavaScript interpreter, or engine, it-
self. The interpreter main loop could simply decide on
whether to yield or sleep on each iteration. This would
provide a very fine grain throttle while not changing any
JavaScript syntax or semantics. Furthermore, since the
throttle would be part of the browser implementation,
instead of embedded into the JavaScript code itself, as
in JSSlow, there would be no code expansion limitation
nor any continuation passing overhead.
We examined two JavaScript engines, V8 and Spider-

Monkey, with the goal of evaluating the challenges of
such an implementation. In both cases, we were readily
able to find good points at which to add throttling.
In the V8 codebase, we added a sleep call to the Invoke

function, located in the file execution.cc. The Invoke

function marks a point of entry for execution of code in
the V8 virtual machine. Through the use of selective
invocation of a nanosleep() system call with different pa-
rameters, we are able to slow down JavaScript execution
with arbitrary precision.
In the SpiderMonkey codebase, we identified the DO NEXT OP

macro, located in the filed jsinterp.cpp, as a location to
implement a throttle. DO NEXT OP is the step in the Spi-
derMonkey state machine during which the next script
opcode is fetched and processed.
To control this mechanism, we could provide programmer-

driven policy or a user-driven policy, both of which we
describe next.

8.3 Expose the throttle to the programmer

Given a throttle built into a JavaScript engine, as

described in the previous section, a natural question is
what policy should control this mechanism. It is tempt-
ing to simply expose the sleep functionality directly to
the developer, but this might conflict with JavaScript’s
event-driven model, and would probably require the in-
troduction of threading to be effective. Calling sleep
in part of the code should not put the entire document
to sleep. For example, we would not want to stop user
elements from rendering while we wait for non-essential
code to run again.
One alternative that we believe would be fruitful is

to directly expose the control parameter that the en-
gine is using internally to decide when to sleep and for
how long. However, this would have the disadvantage of
breaking the abstraction between the JavaScript code
and any given interpreter—we would like the program-
mer to be able to adjust the throttle of any interpreter.
Another alternative, which would maintain this ab-

straction, would be to codify a set of API functions that
can be provided by any interpreter, functions that pro-
vide for relative throttle changes, and extremes, such as:
throttle up(), throttle down(), throttle max(), and throttle min().
Extending control through an API such as this would
allow the application developer to provide input into the
throttle-setting process in an engine-independent way,
while leaving ultimate control to the engine developer.
This approach also has the advantage of not requiring
any change to the standard JavaScript execution model.

8.4 Expose the throttle to the user

In the user study that we conducted, throttling ap-
plied to the high interactivity task resulted in a high
variance of changes in satisfaction. Considering that
each user likely has both a distinct perception of per-
formance change, as well as a different expectation of
application performance, this makes sense, and argues
for exposing a level of control to the user.
In this model, throttling would be turned on by de-

fault and set to an initial value that would either be de-
termined by the engine developer, the application devel-
oper, or the mechanism we describe in the next section.
The user would be presented with a method to change
the throttle setting, or turn off throttling altogether,
perhaps in the form of a visible button or toggle, or
via a physical button, or via a special swipe pattern, or
biometrics, or perhaps even via a maneuver that is de-
tectable using an accelerometer. The change in throttle
level from the default would be stored locally, so that
the user would not have to change this every time they
revisited the application. Previous work (e.g. [13, 8, 14,
9, 10]) has shown that by allowing users to set their own
level of performance leads to power reductions as well
as more satisfied users, and that users are often quite
capable of setting such throttles.
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8.5 Socialize the default throttle setting

A shared problem with any policy for setting the
throttle is how to determine the default setting, which
will represent a good tradeoff of satisfaction and energy
savings. Users or applications could then modify this
setting as needed. One approach might be, for each site,
to select a response latency bound for controls (e.g., 15
ms as in [2]), and then select a throttle setting that just
barely achieves this. The approach we prefer would be
to have the JavaScript engines report user settings per
site to a common service. This service would integrate
the settings to determine average or median settings for
a site that it would then convey to users visiting the site
for the first time.

9. CONCLUSION

We investigated the claim that throttling the exe-
cution rate of client-side JavaScript can lead to lower
power and energy on mobile devices without a signifi-
cant decrease in user satisfaction with the the sites that
employ the JavaScript code. We have generally found
this to be the case, particularly for lower-interactivity
sites. Our studies were done with an implementation
of throttling that is based around JavaScript transfor-
mation in a web proxy. While this has the advantage
of working with any client or site, its limitations may
also understate the case. Nonetheless, it appears that
even a simple throttle implemented in this way, with
a default, unalterable setting, is able to reduce aver-
age energy over a range of sites by 4–10%, with lower
interactivity leading to more savings. These results rec-
ommend the deployment of JavaScript throttling, and
we provided a range of recommendations on how to do
so.
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