

Electrical Engineering and Computer Science Department

Technical Report
NU-EECS-13-03

April 10, 2013

VMM-based Emulation of Intel Hardware Transactional Memory

Maciej Swiech, Kyle C. Hale, Peter Dinda

Abstract

We describe the design, implementation, and evaluation of emulated hardware transactional memory,
specifically the Intel Haswell Restricted Transactional Memory (RTM) architectural extensions for
x86/64, within a virtual machine monitor (VMM). Our system allows users to investigate RTM on
hardware that does not provide it, debug their RTM-based transactional software, and stress test it on
diverse emulated hardware configurations. We are able to accomplish this approximately 60 times faster
than under emulation. A noteworthy aspect of our system is a novel page-flipping technique that allows
us to completely avoid instruction emulation, and to limit instruction decoding to only that necessary to
determine instruction length. This makes it possible to implement RTM emulation, and potentially other
techniques, far more compactly than would otherwise be possible. We have implemented our system in
the context of the Palacios VMM. Our techniques are not specific to Palacios, and could be implemented
in other VMMs.

This project is made possible by support from the United States National Science Foundation (NSF) via grant CNS-
0709168, and the Department of Energy (DOE) via grant DE-SC0005343.

Keywords: virtual machine monitors, hypervisors, operating systems, hardware transactional
memory

VMM-based Emulation of Intel Hardware Transactional Memory

Maciej Swiech Kyle C. Hale Peter Dinda

Department of Electrical Engineering and Computer Science

Northwestern University

{m-swiech,k-hale,pdinda}@northwestern.edu

Abstract

We describe the design, implementation, and evalua-

tion of emulated hardware transactional memory, specif-

ically the Intel Haswell Restricted Transactional Mem-

ory (RTM) architectural extensions for x86/64, within

a virtual machine monitor (VMM). Our system allows

users to investigate RTM on hardware that does not pro-

vide it, debug their RTM-based transactional software,

and stress test it on diverse emulated hardware configu-

rations. We are able to accomplish this approximately 60

times faster than under emulation. A noteworthy aspect

of our system is a novel page-flipping technique that al-

lows us to completely avoid instruction emulation, and to

limit instruction decoding to only that necessary to deter-

mine instruction length. This makes it possible to imple-

ment RTM emulation, and potentially other techniques,

far more compactly than would otherwise be possible.

We have implemented our system in the context of the

Palacios VMM.Our techniques are not specific to Pala-

cios, and could be implemented in other VMMs.

1 Introduction

Hardware transactional memory (HTM) [6] is a long-

standing concept that holds considerable promise for im-

proving the correctness and performance of concurrent

programs on hardware multiprocessors. Today’s typi-

cal server platforms are already small scale NUMA ma-

chines with O(64) hardware threads spread over O(4)

sockets constituting a midrange server. Further, it is

widely accepted that the growth path of single node per-

formance depends on increased concurrency within the

node. For example, the U.S. national exascale efforts

are crystallizing around a model of billion-way paral-

lelism [1], of which a factor of 1000 or more is antici-

pated to be within a single node [15]. Given these trends,

correct and efficient concurrency within a single node or

server is of overarching importance, not just in systems

software, but also in libraries and applications.

HTM promises better correctness in concurrent code

by replacing locking with transactions over instructions.

Unlike locks, such transactions are composable, meaning

that it is less likely to introduce deadlock and livelock

bugs as a codebase expands. Furthermore, transactions

have the potential for running faster than locks because

the hardware is able to detect violations of transaction

independence alongside of maintaining coherence.

Intel has made HTM a component of its next gener-

ation x86/64 platform, Haswell, and the first chips are

expected to ship in late 2013. This paper focuses on

the restricted transactional memory (RTM) component

of Intel’s specification. RTM is a bit of a misnomer—

it might better be called explicit transactional memory.

With RTM, the programmer starts, aborts, and completes

transactions using new instructions added to the ISA.

Our work does not address the other component of In-

tel’s specification, hardware lock elision (HLE), which

is a mechanism for promoting some forms of existing

lock-based code to transactions automatically—i.e., it is

implicit transactional memory.

Our paper focuses on how to extend a virtual machine

monitor (VMM) so that it can provide the guest with In-

tel Haswell RTM capability even if the underlying hard-

ware does not support it. A natural question is why this

emulation capability would be useful. There are three

immediate use cases. The first is straightforward: with

our capability, it is possible to investigate RTM without

having any hardware that actually supports it. Our work

makes it possible to build and test guest kernel and appli-

cation functionality that leverages RTM on any hardware

that can run the VMM.

The second use case is in testing RTM code against

different hardware models, to attempt to make the code

1

resilient to different and changing hardware. As we de-

scribe in more detail in Section 2, transaction aborts are

caused not only by the detection of failures of trans-

action independence, but also by other events that are

strongly dependent on specific hardware configurations.

For example, the RTM specification notes that a cache

miss may cause a transaction abort. Hence, a transaction

that may succeed on one processor model might abort

on another model. Our emulated RTM functionality al-

lows hooking in model-specific properties, allowing for a

wider range of testing and future-proofing of RTM code.

The third use case is in debugging RTM-using code

via a controlled environment. Through emulation, it is

possible to introduce abort-generating events at specific

points and observe the effects. It is also possible to col-

lect detailed trace data from running code.

We have designed, implemented, and evaluated a sys-

tem for Intel RTM emulation within the Palacios VMM.

Our techniques are not specific to Palacios, and could be

implemented in other VMMs as well. Our contributions

are as follows:

• We have designed a page-flipping technique that

allows instruction execution while capturing

instruction fetches, and data reads and writes. This

technique avoids the need for any instruction

emulation or complex instruction decoding—the

only decoding functionality we need is to

determine the instruction length. Given the

baroque nature of the x86/64 ISA, this greatly

simplifies RTM emulation and could be applied to

other services.

• We have designed an emulation technique for RTM

based around the page-flipping technique,

redo-logging, undefined opcode exceptions, and

hypercalls. The technique is extensible, allowing

for the inclusion of different hardware models, for

example different cache sizes and structures.

• We have implemented the RTM emulation technique

in Palacios. The entire technique comprises about

1300 lines of C code.

• We have evaluated our VMM-based RTM emulation

technique and compared it with Intel’s

emulator-based implementation of Haswell RTM

in the Software Development Emulator [8]. Our

implementation is approximately 60 times faster

when a transaction is executing, and has full

performance when none are.

Related work: Herlihy and Moss introduced HTM [6].

Recent work by Rajwar, Herlihy, and Lai showed how

HTM could be extended such that hardware resource

limitations would not be programmer visible [14]. Un-

bounded transactional memory [2] shows that hardware

designs that allow arbitrarily long transactions are fea-

sible, and this work also demonstrated that using such

transactions would allow for significant speedups in Java

and Linux kernel code. Hammond et al [5] have argued

for using such powerful transactions as the basic unit of

parallelism, coherence, and consistency. In contrast to

such work, our goal is simply to efficiently emulate a

specific commercially available HTM system that will

have model-specific hardware resource limitations. By

using our system, programmers will be able to test how

different hardware limits might affect their programs.

However, because the conditions under which our sys-

tem aborts a transaction are software defined, and the

core conflict detection process will work for a transac-

tion of any size, provided sufficient memory is available,

our system could also be employed to test models such

as the ones described above.

Our system leverages common software transactional

data structures, such as hashes and redo logs. Moore et

al developed an undo log-based hardware transactional

memory system [13] which lets all writes go through to

memory and rolls them back upon conflict detection. Our

emulator rolls a redo log forward on a commit.

2 Transactional memory on Intel Haswell

Within the Haswell generation of processors, Intel will

implement hardware transactional memory. The spec-

ification for transactional synchronization extensions

(TSX) [7] has the goals of providing support for new

code that explicitly uses transactions, backward compat-

ibility of some such new code to older processors, and al-

lowing for hardware differences and innovation under the

ISA-visible model. There are two models supported by

TSX, hardware lock elision (HLE) and restricted trans-

actional memory (RTM). Our focus in this paper is on

RTM, although we comment in the conclusion about how

our emulation could be extended to HLE.

In the RTM model, four additional instructions have

been added to the ISA: XBEGIN, XEND, XABORT, and

XTEST. The code first uses CPUID checks to determine

if these instructions are available on the specific hard-

ware. If they are executed on hardware which does not

support them, a #UD (undefined opcode) exception is

generated. Code can use the XTEST instruction to de-

termine if it is executing within a transaction. An RTM

transaction is typically written in a form similar to the

following:

start_label:

XBEGIN abort_label

<body of transaction>

2

<may use XABORT>

XEND

success_label:

<handle transaction commited>

abort_label:

<handle transaction aborted>

The XBEGIN instruction signifies the start of a transac-

tion, and provides the hardware with the address to jump

to if the transaction is aborted. The body of the trans-

action then executes. The hardware continuously checks

numerous code-dependent and code-independent condi-

tions that can cause a transaction to abort. If there is no

abort, the transaction is committed by the XEND.

Conceptually, the core on which the body of the trans-

action, from XBEGIN to XEND, is executing does reads

and writes that are independent of those of code exe-

cuting on other cores, and its own writes are not seen

by other cores until after the XEND completes success-

fully. If another core executes a conflicting write or read,

breaking the promise of independence, the hardware will

abort the transaction, discard all of the writes it has com-

pleted, and jump to the abort label. The code in the body

of the transaction may also explicitly abort the transac-

tion using the XABORT instruction. There are several

other reasons why a transaction may be aborted, and thus

the specific reason is written into RAX so that the abort

handling code can decide what to do.

Beyond conflicting memory reads and writes on other

cores, and the execution of the XABORT instruction,

there are numerous reasons why a transaction may abort.

These form three categories: instructions, exceptions,

and resource limits. Within each category, there are

both implementation-independent and implementation-

dependent items. One of the benefits of our emulated

RTM system is to allow the testing of RTM code under

different implementations to bullet-proof it.

Instructions: The XABORT, CPUID, and PAUSE in-

structions are guaranteed to abort in all implementations.

Whether or not the following instructions may abort de-

pends on the implementation:

• X87 floating point and MMX instructions

• Instructions that update non-status parts of RFLAGS

• Instructions that update segment, debug, and control

registers

• Instructions that cause ring (protection level)

transitions, such as the fast system call instructions

• Instructions that explicitly affect the TLB or caches

• Software interrupt instructions

• I/O instructions

• Instructions within the virtualization extensions

• SMX instructions

• A range of privileged instructions such as HLT,

MONITOR/MWAIT, RD/WRMSR, etc.

An important point is that our system does not require de-

coding and emulating general instructions, and to abort

on one of these classes of instructions we need only

decode an instruction sufficiently to identify its class.

Any such decoding need happen only for the instructions

within the transaction. Furthermore, many of these in-

structions are already detected in the VMM out of ne-

cessity (e.g., control and segment register updates, I/O

instructions, virtualization instructions, most privileged

instructions), and others can be readily intercepted with-

out decoding (e.g. RFLAGS updates, debug registers,

ring transitions, TLB instructions, software interrupts).

Exceptions: An exception on the core executing a trans-

action generally causes the transaction to abort, although

the specification has variable clarity about which excep-

tion aborts are implementation-dependent and which are

guaranteed. We assume that all exceptions that the In-

tel specification says “may” cause aborts “will” cause

aborts. This behavior can easily be changed within

our hardware model. The following exceptions cause

aborts:

• All synchronous exceptions

• General interrupts

• NMI, SMI, IPI, PMI, and other special interrupts

As the VMM is already responsible for injection of gen-

eral and special interrupts, it can easily detect the latter

two cases. Detecting synchronous exceptions is slightly

more challenging, as we discuss later.

Exception delivery within the context of a transac-

tion abort has unusual, although sensible semantics. For

synchronous exceptions, the abort causes the exception

to be suppressed. For example, if a transaction causes

a divide-by-zero exception, the hardware will abort the

transaction, but eat the exception. For interrupts, the

abort causes the interrupt to be held pending until the

abort has been processed. For example, if a device in-

terrupt happens during the execution of a transaction, the

hardware will abort the transaction, and begin its fetch at

abort_label before the interrupt vectors.

Resource limits: The specification indicates that trans-

actions may only involve memory whose type is

writeback-cacheable. Use of other memory types will

cause an abort. Additionally, pages involved in the trans-

action may need to be accessed and dirty prior to the start

of the transaction on some implementations. Finally, the

specification warns against excessive transaction sizes

and indicates that “the architecture provides no guarantee

3

of the amount of resources available to do transactional

execution and does not guarantee that a transactional ex-

ecution will ever succeed.”

Our interpretation of these parts of the specification

is that a typical implementation is expected to be built

on top of cache coherence logic. The implication is that

transactions will behave differently on different hard-

ware just due to cache differences. For example, the size

of the cache and its associativity will determine whether

a given cache line will get flushed during a transaction,

an event that would then cause an abort. The line size

will likely define the conflict granularity for transactions.

Two writes to the same cache line, but to different words,

will likely be considered to conflict. Hence, the larger

cache line, the more likely a transaction is to fall victim

to an abort caused by a false conflict.

Our system allows the inclusion of a hardware model

that can capture these effects, allowing the bullet-

proofing of code that uses transactions, and the evalua-

tion of the effects of different prospective hardware mod-

els on the code. Interestingly, because it is a software

system, it create the effect of hardware without resource

limits.

3 Design and implementation

The implementation of our RTM emulation system is in

the context of our Palacios VMM, but its overall design

could be used within other VMMs. We now describe our

system, starting with the assumptions we make and the

context of our implementation, then describing the page-

flipping approach it is based on, and finally the architec-

ture and operation of the system itself.

3.1 Assumptions

We assume that our system is implemented in the con-

text of a VMM for x86/x64 that implements full system

virtualization. Such VMMs are able to control privileged

processor and machine state that is used when the guest

OS is running, and to intercept manipulations of machine

state by the guest. We assume the VMM infrastructure

provides the following functionality for control and in-

terception:

1 Shadow paging. We assume shadow paging in the

VTLB model [9, Chapter 31] is available. It is not

essential that the guest run with shadow paging at

all times, merely that it is possible to switch to

shadow paging during transaction execution.

2 Explicit VTLB invalidation. We assume that the

VMM allows us to explicitly invalidate some or all

entries in the shadow paging VTLB, independent

of normal shadow page fault processing.

3 Shadow page fault hooking. We assume that the

VMM allows us to participate in shadow page fault

handling. More specifically, we assume it is

possible for us to install a shadow page fault

handler that is invoked after a shadow page fault

has been determined to be valid with respect to

guest state. Our handler can then choose whether

to fix the relevant shadow page table entry itself, or

can defer to the normal shadow page table fixup

processing.

4 Undefined opcode exception interception. We

assume the VMM allows us to intercept the

x86/x64 undefined opcode exception when it

occurs in the guest.

5 CPUID interception. We assume the VMM allows

us to intercept the CPUID instruction and/or set

particular components of the result of CPUID

requests.

6 Exception interception. We assume the VMM allows

us to selectively enable interception of exceptions

and install exit handlers for them.

7 Exception/interrupt injection cognizance. We

assume the VMM can tell us when a VM entry will

involve the injection of exceptions or interrupts

into the guest. If the VMM uses guest-first

interrupt delivery in which an interrupt can vector

to guest code without VMM involvement, then it

must be possible to disable this for the duration of

the transaction so that the VMM can see all

interrupt and exception injection activity.

The hardware virtualization extensions provided by

Intel and AMD are sufficient for meeting the above as-

sumptions. The same capabilities that the hardware pro-

vides could also be implemented in translating VMMs or

paravirtualized VMMs. Common VMMs already meet

1, 2, 3, 5, and 7 as a matter of course. Items 4 (unde-

fined opcode interception) and 6 (exception interception)

are straightforward to implement. In AMD SVM, for ex-

ample, there is simply a bit vector in the VMCB where

one indicates which exceptions to intercept. On VM exit

due to such an interception, the hardware provides the

specific exception number that occurs.

3.2 Palacios VMM

Our system is implemented in the context of our Pala-

cios VMM. Palacios is an OS-independent, open source,

BSD-licensed, publicly available embeddable VMM de-

signed as part of the V3VEE project (http://v3vee.

org). The V3VEE project is a collaborative commu-

nity resource development project involving Northwest-

ern University, the University of New Mexico, Sandia

National Labs, and Oak Ridge National Lab. Detailed

4

information about Palacios can be found elsewhere [11].

Palacios is capable of virtualizing large scale systems

(4096+ nodes) with < 5% overheads [12]. Palacios’s

OS-agnostic design allows it to be embedded into a wide

range of different OS architectures.

The Palacios implementation is built on the virtualiza-

tion extensions deployed in current generation x86/x64

processors, specifically AMD’s SVM and Intel’s VT.

Palacios supports both 32 and 64 bit host and guest envi-

ronments, both shadow and nested paging models, and a

significant set of devices that comprise the PC platform.

Due to the ubiquity of the x86/x64 architecture Palacios

is capable of operating across many classes of machines.

Palacios has successfully virtualized commodity desk-

tops and servers, high end Infiniband clusters, and Cray

XT and XK supercomputers.

Palacios already met most of the assumptions given

in Section 3.1. Shadow paging capabilities in Palacios

reflect efforts to allow dynamic changes for adaptation.

Palacios did not include support for assumptions 4 and

6 (exception interception). Perhaps ironically, our initial

implementation of these two is for AMD SVM. However,

Intel’s VT also provides an exception bitmap to select

which exceptions in the guest require a VM exit, so these

changes could be readily made for VT as well. In Pala-

cios, exception/interrupt injection cognizance (assump-

tion 6) is implemented with a check immediately before

VM entry, in SVM or VT-specific code. For the sake of

initial implementation simplicity, we focused here again

on the SVM version.

3.3 Architecture

Figure 1 illustrates the architecture of our system. It

shows a guest with two virtual cores, one executing

within a transaction, the other not. The figure illustrates

two core elements, the per-core MIME (Section 3.4),

which extracts fine-grain access information during ex-

ecution, and the global RTME (Section 3.5), which im-

plements the Intel RTM model. The RTME configures

the MIMEs to feed the memory reference information

into the conflict hash data structures (for all cores), and

the per-core redo log data structure (for each core exe-

cuting in a transaction). The conflict hash data structures

are used by the RTME to detect inherent memory access

conflicts that should cause transaction aborts regardless

of the hardware resource limitations. Additionally, the

memory references feed a pluggable cache model, which

detects hardware-limitation-specific conflicts that should

cause transaction aborts. The RTME is also fed by the in-

struction sequences from cores operating in transactions,

and by intercepted exceptions from the guest and injected

exceptions or interrupts from the VMM, which also are

needed to assess whether an abort should occur.

When no virtual core is executing in a transaction, we

revert to normal, full speed execution of instructions by

the hardware. The switch to the illustrated mode of op-

eration occurs when an XBEGIN instruction is detected

via an undefined opcode exception. Only this particular

exception needs to be intercepted during normal (non-

transactional) execution.

3.4 Memory and Instruction Meta-Engine

A core requirement of transactional memory emulation is

being able to determine the memory addresses and data

used by the reads and writes of individual instructions.

When a transaction is active on any core, all cores must

log their activities, producing tuples of the form

{vcore,sequencenum,rip,address,size,value, type}

where sequencenum gives a total order of the tuples of a

given vcore (virtual core), rip is the address of the in-

struction being executed, address is the address being

read or written, size is the size of the read or write, value

is the value read or written, and type indicates whether

the reference is a read, write, or instruction fetch.

The part of our design that accomplishes this fine-

grain capture of the memory operations and data of in-

struction execution is the Memory and Instruction Meta-

Engine, or the MIME.1 One of the major contributions of

this work is the novel page-flipping technique on which

the MIME is based. This technique allows us to avoid ac-

tual instruction emulation and most aspects of instruction

decoding. The MIME’s page-flipping technique is based

on the indirection and forced page faults made possible

through shadow paging, and breakpoints to the VMM

made possible through the hypercall mechanism.

Shadow paging and shadow page faults: It is neces-

sary for the VMM to control the pages of physical mem-

ory that the guest has access to. Conceptually, with the

VMM, there are two levels of indirection. Guest vir-

tual addresses (GVAs) are mapped to guest physical ad-

dresses (GPAs) by the guest OS’s page tables (the gPT),

and GPAs are in turn mapped to host physical addresses

(HPAs) by the VMM. There are two main methods of

supporting this mapping, nested paging and shadow pag-

ing. In nested paging, the GPA→HPA mapping is main-

tained in separate page tables constructed by the VMM

(the nPT), and used by the hardware jointly with the

guest page tables in the process of translating every

memory reference in the guest. The VMM can safely

1The name is chosen for two reasons. First, the MIME mimics in-

struction execution. Second, it operates at a meta-level by manipulating

the processor’s instruction execution engine.

5

vcore 0 vcore 1
reads

writes

Out‐of‐trans
reads

committed

writes

Guest No Transaction TRANSACTION

Instruction

Execution

Instruction

Execution

VMM Exit Handling

Exception Exits
Exception Injects

#PF,

hcall

#PF,

hcall

MIMEMIME

d d

In‐trans
d

Execution ExecutionException Injects hcall

ABORT or
COMMIT

InstructionsInstructions

C Redo Log
Conflict

Hashes

writes
reads

writes

reads

writes

reads,
writes

RTME

inherent conflicts

resource

Cache

Model

RTME

VMM

resource

conflicts

Figure 1: Overall architecture of the system

ignore the gPT since the hardware is responsible for in-

tegrating the gPT and the nPT.

In shadow paging, in contrast, the GVA→GPA and

GPA→HPA mappings are integrated by the VMM into

a single set of shadow page tables (the sPT) that express

GVA→HPA mappings that combine guest and VMM in-

tent. The VMM makes the hardware use this integrated

set of page tables when the guest running. Unlike nested

paging, the VMM cares about changes to the guest page

tables and other paging state in shadow paging. Any ar-

chitecturally visible change to guest paging state needs

to invoke the VMM so that the VMM can adjust the in-

tegrated page tables to incorporate it. In order to do so,

the VMM intercepts TLB-related instructions and con-

trol register reads and writes. Hence, any operation the

guest performs to alert the hardware TLB of a change

instead alerts the VMM of the change. The VMM’s

shadow paging implementation thus acts as a “virtual

TLB” (VTLB) and the shadow page tables are the VTLB

state.

Suppose the guest creates a mapping (a page table en-

try) for the GVA 0xdeadb000, which it does by writ-

ing this mapping to the gPT. The new mapping is not

guaranteed to be architecturally visible until the TLB is

informed. The guest does this by using an INVLPG in-

struction to flush any matching entry from the TLB. The

VMM intercepts this instruction, where it informs the

VMM that any entry it has the the VTLB (the sPT) must

be removed. When the guest later accesses some address

on the newly mapped page, for example 0xdeadbeef,

the hardware walks the sPT, and on finding no entry,

raises a page fault. The page fault is also intercepted

by the VMM, which starts a walk of the gPT, looking for

0xdeadb000. If no such entry existed in the gPT, the

VMM would then inject a page fault into the guest. In

this case, however, the gPT has a corresponding entry,

and so the sPT is updated to include this entry, as well

as a mapping to the appropriate HPA. Since the page

fault occurred as a result of inconsistency between the

sPT and gPT, it is referred to as a shadow page fault, and

the guest OS is unaware that it ever happened. The next

time the guest tries to access any address on the page

0xdeadb000 the sPT will have the correct mapping.

In the above example, a mapping was evicted from the

VTLB (the sPT) due to the INVLPG instruction. It is

also possible for VTLB eviction to be triggered for other

reasons inside the VMM. In Palacios, there are internally

usable functions for invalidating individual pages or all

pages of an SPT. Thus, code in Palacios, such as the

MIME, can force a shadow page fault to happen on the

next access to a page.

Breakpoint hypercalls: In addition to forced shadow

page faults, the MIME also relies on being able to intro-

duce breakpoints that cause an exit back the the VMM.

There are numerous mechanisms that could be used for

this purpose. We use a hypercall. Both AMD and In-

tel support special instructions, vmmcall in the case of

AMD, that force an exit to the VMM with arguments

6

delivered in registers. To set a breakpoint at a given in-

struction, we overwrite it with a vmmcall, after first

copying out the original instruction (more specifically, a

number of bytes corresponding to the length of the hy-

percall sequence). To resume execution, we simply copy

back in the original instruction content and set the in-

struction pointer to it.

Process: We now describe the MIME process for exe-

cuting an instruction using the following example:

prev: addq %rbx, %rax

cur: INSTRUCTION

next: movq %rdx, %rbx

...

target:

...

Here, cur is the address of the instruction we intend to

execute, while next is the address of the subsequent in-

struction, and target is a branch target if the current

instruction is a control-flow instruction.

Write-only data flow instruction: To begin with, let us

make the current instruction more specific, for example,

suppose it is

cur: movq %rax, (%rcx)

This instruction writes the memory location given in the

register %rcx with the 8 byte quantity in the register

%rax.

MIME executes this instruction, and other instructions

in the following way. We begin this process with the

requirement that the sPT is completely empty (all entries

in the VTLB have been invalidated). Note that the last

step in the following reestablishes this assumption for the

next instruction.

1 We enter the guest with %rip=cur.

2 The instruction fetch causes a shadow page fault,

which exits back to the VMM, which hands it to

the MIME.

3 The MIME discovers this is an instruction fetch by

comparing the faulting address and the current

%rip and noting the fault error code is a read

failure. In response, it creates an sPT entry for the

page the instruction is on. While the page is fully

readable and writable by the MIME, the sPT entry

allows the guest only to read it. The MIME then

overwrites next with a breakpoint hypercall,

saving the previous content.

4 We enter the guest with %rip=cur.

5 The instruction fetch now succeeds. Instruction

execution now succeeds as well, up to the data

write. The data write produces a shadow page

fault, which exits back to the VMM, which hands it

the MIME.

6 The MIME discovers this is a data write by noting

that the fault code is a write failure. It can

optionally compare the fault address with the

instruction pointer to determine whether this is an

attempt to modify the currently executing

instruction. This can serve as a trigger for

transaction abort when the MIME is used in the

TM system.

7 In response to the data write, the MIME maps a

temporary staging page in the sPT for the faulting

address, and it stores the address of the write.

8 We enter the guest with %rip=cur.

9 The instruction fetch and the data write now succeed

and the instruction finishes, writing its result in the

temporary staging page.

10 %rip advances to next, resulting in the fetch and

execution of the breakpoint hypercall (note that the

code page is now mapped in), which exits back to

the VMM, which hands it to the MIME.

11 The MIME now reads the value that was written by

the instruction on the temporary staging page. It

can now make this write available for use by other

systems. For example, the RTM system will place

it into its own data structures if a transaction is

occurring. If no other system is interested, it copies

the write back to the actual data page.

12 At this point the MIME has generated two tuples for

the record: the instruction fetch and the data write.

13 The MIME now restores the instruction at next

14 The MIME invalidates all pages in the VTLB.

Strictly speaking, only two pages are unmapped

from the sPT, the code page and the temporary

staging page.

15 If MIME-based execution is to continue with next,

goto 1, otherwise we are done.

Read-only data flow instruction: For an instruction

such as

cur: movq (%rcx), %rax.

which reads 8 bytes from the memory location given in

%rcxand writes that result into the register %rax, exe-

cution is quite similar. At stage 5, a shadow page fault

due to the data read will occur. In stage 6, the MIME will

detect it is a data read and sanity check it if needed. In

stage 7, the MIME will map the staging page read-only,

and copy the data to be read to it. This data can come

from a different system. For example, the RTM system

might supply the data if the read is for a memory loca-

tion that was previously written during the current trans-

action. After the instruction finishes, it will then provide

7

two tuples for the record: the instruction fetch and the

data read.

Read/write data flow instruction: It is straightforward

to execute an instruction such as

cur: addq %rax, (%rcx)

which reads the 8 bytes from memory at %rcx adds them

to the contents of %rax and then writes the 8 byte sum

back to the memory at the address in %rcx. For all

but the final write, the execution is identical to that of

the read-only instruction given above. After completing

stage 7, the staging page will be mapped read-only, and

thus there will be an additional shadow page fault corre-

sponding to the write. This fault will be handled in the

same manner as with the write-only instruction. After the

instruction finishes execution, it will then provide three

tuples for the record: the instruction fetch, the data read,

and the data write.

Control flow instruction: If a control flow instruction

reads data (e.g., an indirect jump) or writes data (e.g., a

stack write on a call), these reads and writes are handled

in the same manner as the preceding data flow instruc-

tions. The key difference in the processing of control

flow instructions is that there are up to two breakpoints

that need to be introduced. For unconditional control

flow, a single breakpoint needs to be introduced at the

target address instead of at the next instruction. For con-

ditional control flow, two breakpoints need to be intro-

duced, one at the target and one at the next instruction.

Generalization: Although the above description uses

simple two operand instructions and the simplest mem-

ory addressing mode as examples, it’s important to note

that the technique works identically for different num-

bers of operands and for arbitrary addressing modes. In-

deed, even for implicit memory operands, the hardware

will produce shadow page faults alerting us to their pres-

ence. The primary limitation is an instruction that in-

cludes multiple reads and/or multiple writes to the same

page may not have all of its reads and writes captured.

We describe this in more detail later. All addressing

mode computations, as well as segmentation, are done

well before a page fault on instruction or data references

can result. The hardware does this heavy-lifting for us.

Instruction decoding and emulation: Step 3 of the pro-

cessing described above requires basic instruction decod-

ing. The issue is that x86/x64 instructions are of variable

length (from 1 to 15 bytes). Hence, in order to determine

what next is, we need to be able to determine the size

of the current instruction. If the MIME does not need to

trace control-flow instructions, this is the only require-

ment. If control-flow instructions are to be handled by

the MIME, then we must further decode control-flow in-

structions to the point where we can also determine their

target address. Our implementation uses the open source

Quix86 decoder [10] to do this decoding for us. No em-

ulation is done at all—we rely on the hardware to do in-

struction execution for us instead.

Read optimization in RTM: In our earlier description

of handling read-only instructions and read-write instruc-

tions, we describe the use of a staging page during the

read—that is, when a data read is detected, we copy the

value to be read to a staging page, and then present this

page to the guest. In RTM, this is required when a core

executing a transaction reads a value it has previously

written during the transaction. At this point, in order to

maintain isolation, the written value exists only in a redo

log and must be copied from it. For a core that is not ex-

ecuting in a transaction, or for an in-transaction read of a

value that was not previously written in the transaction,

the staging page can be avoided and the read allowed to

use the actual data page. This optimization is included in

our RTM system.

Implementation limitations: There are two limitations

of our implementation of the MIME that we are aware

of. The first is that in the context of a single instruction,

we can detect only the first read and the first write to an

individual page. The reason for this limitation is that in

order to make progress in instruction execution, we must

resolve page faults. On a shadow page fault on a read of

page, we enable read access to the page, and similarly, a

write enables write access to the page. Because the en-

abling access is done at the page granularity, subsequent

references to the page do not result in further shadow

page faults. The primary class of instructions where this

may be an issue is string instructions with a REP pre-

fix. The MIME can detect this prefix and raise an error

to the user—for RTM, the transaction is aborted. Many

VMMs, including Palacios, already have instruction em-

ulation for this class of instructions, as it is often needed

for I/O and memory hooking. In principle, MIME could

fall back on emulation for this specific cases, although it

does not do so currently.

The second implementation limitation is that instruc-

tions or data that span two pages are not supported. On

the x86/64 the only alignment requirement imposed by

the hardware is byte-alignment, so such cases are le-

gal. However, compilers try very hard to avoid producing

such cases, as unaligned references may be more expen-

sive. Currently MIME detects this situation and simply

raises an error to the caller. The RTM implementation

turns it into a transaction abort.

8

3.5 Restricted Transactional Memory Engine

As shown in Figure 1, the RTME uses per-virtual core

MIMEs to capture instructions and their memory ac-

cesses in a step-by-step manner during execution. The

only instructions it needs to emulate are the XBEGIN,

XEND, XABORT, and XTEST instructions. Because

these instructions are not available in the hardware, they

cause an undefined opcode exception which is caught by

the VMM and delivered to the RTME.

When the first XBEGIN occurs, it is emulated by cap-

turing its abort target, advancing the RIP to the next

instruction, and switching all virtual cores to MIME-

based execution. Additionally, the RTME has the VMM

enable exiting on all exceptions with callbacks to the

RTME. Also, a special check is enabled in the inter-

rupt/exception injection code that is run before any VM

entry. The check tests if an injection will occur on entry,

if so a callback is made to the RTME before the entry.

Either callback is interpreted by the RTME as requiring

a transaction abort for that virtual core.

From the next entry on, MIME-based execution is oc-

curring on all virtual cores. On all virtual cores, the

writes seen by the MIME are written to the conflict hash

data structures. For a virtual core that is not executing in

a transaction, the writes are also reflected to guest mem-

ory, and all reads are serviced from guest memory. For a

virtual core that is executing in a transaction, writes are

sent to the redo log instead of to guest memory. Reads

are serviced from guest memory, except if they refer to a

previous write of the transaction, in which case they are

serviced from the redo log. For all cores, reads and writes

are also forwarded to the cache model by the RTME.

In addition to the callbacks described earlier, the

RTME is also called back by the MIME as it executes its

state machine. This allows the RTME to examine each

instruction and its memory operations to see if an abort

is merited. Instructions are checked against the list given

earlier. For all memory operations, the RTME checks the

conflict hash data structures and the cache model. The

former indicates whether a conflict would have occurred

assuming an ideal, infinite cache. For example, if this

core is not in a transaction, and has just written a mem-

ory location that some other core that is in a transaction

previously wrote, a conflict is detected and the other core

needs to abort its transaction. The cache model deter-

mines if a conflict due to to hardware limitations has oc-

curred. For example, if the current write is coming from

a core that is executing in a transaction, and that write

would cause a cache eviction of a previous write from

the transaction, the cache model would detect this con-

flict and indicate that the current core needs to abort its

transaction. A final source of an abort is when the RTME

detects the XABORT instruction during the MIME in-

struction fetch.

Handling a transaction abort is straightforward: the

writes in the redo log are discarded, the relevant error

code is recorded in a guest register, the guest RIP is set to

the abort address, and the guest is reentered. Transaction

commits occur when the XEND instruction is detected,

and are also straightforward: the RTME plays the redo

log contents into the guest memory, advances the RIP,

and reenters the guest. For either an abort or a commit,

we also check if it is the last active transaction. If so,

we switch all cores back to regular execution (turning off

MIME, all callbacks, and exception interception, except

for the illegal opcode exception, which remains needed

to detect the next XBEGIN).

Redo log considerations: Our redo log structure is,

strictly speaking, not a log. Rather, it stores only the

last write and read to any given location. However, dur-

ing MIME execution, there exist short periods where the

most recent write or read is actually stored on the MIME

staging page. A versioning bit is used so that when the

MIME-based execution of an instruction is completed, it

is possible to update the redo log with newer entries on

the staging page. These aspects of the design allow us

to compactly record all writes and all internal reads of a

transaction.

Conflict detection: In addition to the conflict hashes,

conflict detection in the RTME uses a global transac-

tional memory (TM) state, a global transaction context,

a per-core TM state, and a per-core transaction num-

ber. The global TM state indicates whether any core is

running a transaction, while the per-core TM state in-

dicates whether the specific core is executing a transac-

tion. Each core independently assigns sequence num-

bers to its transactions in strictly ascending order, and the

per-core transaction number is the sequence number of

the current, or most recent transaction on that core. The

global transaction context gives the sequence number of

the currently active transaction, or most recently com-

pleted (aborted or committed) transaction on each core.

When any core is running a transaction, all cores must

record the memory accesses they make, we accomplish

this through the use of two hash tables. The first, called

the address context hash, is a chained hash mapping

memory locations to timestamped accesses. Each en-

try in the hashed bucket represents the global transaction

context at the time of a memory operation, which acts

as a ordering, or timestamp. In this way we are able to

both record all memory accesses done by a core, as well

as keep track of when they occurred. Since all mem-

9

ory accesses are tagged with the global context, when a

core is checking for conflicts it can simply look at ac-

cesses made with the same context as its current transac-

tion number.

The second hash table, called the access type hash,

keeps track of the type of memory operation that was run

on an address in a given context (read, write, or both).

When a memory operation is run by a core, it creates one

entry for each core in its hash. Data is duplicated in this

manner to facilitate quick lookup on conflict checking as

well as garbage collection.

Suppose we are running on a guest with two virtual

cores, and core 0 begins a transaction. Each cores will

begin running its MIME and recording its memory ac-

cesses. Now suppose core 1 runs an instruction which

writes to memory address 0x53. It will first note the

global transactional context, and add a node to the bucket

for address 0x53 in the address context hash with this

context. It will then will then make two new entries for

the access type hash, one for each core in the system.

Each entry will map address 0x53, a core number, and

that core’s transaction number to a structure indicating

the access was a write.

If the memory accesses of a core executing a transac-

tion conflict with those of any other core, the transaction

must be aborted. To check for conflicts, we use the con-

text hashes. Conflict checking could be done after each

instruction, or when attempting to commit a transaction.

In our implementation, conflict checking is cheap rela-

tive to instruction run time and so we generally it so after

each instruction.

When the MIME indicates that an instruction execut-

ing in a transaction is finished, the RTME, executing on

that core will scan its redo log, checking each read and

write for conflicts with each of the other cores. Suppose

now that core 0 is scanning its redo log, and it contains

a write to address 0x53. Core 0 will check the entry for

address 0x53 in every other core’s address context hash.

If it finds a node with the same context as its own cur-

rent transaction number, that implies a potential conflict,

and core 0 will then check the entry in that remote core’s

access type hash for the key with the address 0x53 and

core 0’s transaction number under which the access was

made. This tells it what kind of access the other core

performed, and thus we can discard a read/read pair as

non-conflict.

Garbage collection: Memory use expands during exe-

cution as the redo logs and conflict hashes grow in size.

Redo logs are garbage collected at the end of each trans-

action. Since the conflict hashes contain information

from multiple generations of transactions, we must an-

swer the questions of how to determine which entries are

garbage, and when to perform this garbage collection.

Garbage collection leverages the access type hash. We

start by noting the current global transaction context,

then we iterate over all the keys of the access type hash,

and for each key (an address), we walk over its corre-

sponding list of contexts. If we find a context that is

strictly less than the global context, this means that there

is no core left that may need to check that memory opera-

tion, as it happened during transactions that are no longer

active. We can generate from this stale context the corre-

sponding keys for the access type hash, and delete those

keys from it. Finally, we delete the stale context from

the list, and delete the key from the address context hash

if the list is now of zero length. A locking strategy is

employed to assure that a garbage collection and MIME

accesses are mutually exclusive.

When to garbage collect is a more difficult question,

as when we have an opportunity to do so, we cannot be

certain what the state of other cores is, or when the next

opportunity to garbage collect may occur. Currently in

our implementation each core will garbage collect on ev-

ery transaction completion.

Interrupt injection: MIME-based execution of guest

instructions during a transaction operates considerably

slower than direct hardware execution. As a conse-

quence, in our system, a transaction is more likely to

experience an external interrupt and thus a transaction

abort. Of particular note are timer interrupts, which are

ultimately derived from host time. It is important to note

that all external interrupts that the guest sees are injected

by the VMM. Hence, it is always possible to delay in-

terrupt injection until after a transaction completes. Fur-

thermore, Palacios has a time-dilation feature [3], mod-

eled on DieCast [4], that was originally designed for in-

terfacing with external simulators. Time-dilation can be

also be used to slow the apparent passage of time in the

guest by manipulating guest time sources, including the

rate or period of timer devices (such as the APIC timer)

that produce interrupts. Using interrupt injection delay

and time dilation, it is possible to execute the transaction

without an apparent interrupt, or with an interrupt prob-

ability similar to what would have been experienced if

MIME-based execution were as fast as direct hardware

execution.

4 Evaluation

In evaluating our RTM implementation we considered

three aspects: the size of our implementation, how it runs

code with transactions, and the performance of the im-

plementation relative to the native execution rate of the

hardware and compared to a different emulator.

10

Test environment: All testing was done on a Dell Pow-

erEdge R415. This is a dual socket machine which

each socket having a quadcore AMD Opteron 4122 in-

stalled, giving a total of 8 physical cores. The machine

has 16 GB of memory. It ran Fedora 15 with a 2.6.38

kernel. Our guest environment uses two virtual cores

that runs BusyBox environment based on Linux kernel

2.6.38. The virtual cores are mapped one-to-one with

unoccupied physical cores.

Implementation size: Our implementation of RTM em-

ulation is an optional, compile-time selectable extension

to Palacios, and we made an effort to limit changes to the

core of Palacios itself. There were two major areas where

we had to modify the Palacios core, namely (1) handling

of exceptions and interrupts, some of which are needed

to drive the RTME, and (2) page fault handling, allowing

some page faults to drive the MIME. These changes and

the entirety of the extension code comprise 1300 lines of

C. Given the size and very clear changes to the Palacios

codebase, it should be possible to port our implementa-

tion to other VMMs.

Test cases: To test the correctness of our implementa-

tion, we needed a test suite which would present the im-

plementation with various behaviors, and an ability to

test the outcome. GCC 4.7 includes support for com-

piling the Haswell transactional instructions, but the test

cases shipped with it only evaluate the behavior of soft-

ware transactional memory. We found we had to write

our own test cases, which test the following scenarios:

• Transaction calls XABORT after making no changes

to memory

• Transaction calls XABORT after having “written” to

memory

• Transaction writes memory with an immediate value

• Transaction reads memory into a register

• Transaction writes a register to memory

• Transaction reads and writes the same memory

location

• Transaction thread writes to distinct addresses

• Transaction and non-transactional thread write to

overlapping addresses

The test cases are written using pthreads. After the

threads set their affinity for distinct virtual cores, and

synchronize, they then repeat their activity. Hence, over

time, the various different possible orderings of execu-

tion are seen, as are aborts due to external causes (e.g.,

interrupts). These form random test cases for our imple-

mentation, which it passes.

Performance: The MIME-based execution model must

obviously be slower than normal execution under the

VMM or at native speeds.2 To produce a native baseline,

we stripped the RTM instructions from our test cases and

ran them directly on the host machine, timing the execu-

tion of the body of the transaction using the TSC. To pro-

duce timings for RTM emulation, we similarly used the

TSC to measure the time to execute the body of the trans-

action, and configured Palacios with passthrough access

to the hardware TSC to assure accurate timing.

On average, we found that emulating RTM caused a

slowdown on the order of 1,500×. This slowdown is

due to the multiple exits to the VMM per instruction to

support MIME-based execution, each of which require

at least a few thousand cycles to process. It is impor-

tant to note that this slowdown only occurs when some

virtual core is executing a transaction. In the absence of

an open transaction, performance is identical to normal

performance under the VMM.

We also ran our test cases on Intel’s Software Devel-

opment Emulator (SDE), where we found a slowdown on

the order of 90,000×—our RTME runs approximately 60

times faster during a transaction. Moreover, the SDE’s

overhead occurs all the time, as one might expect for full

emulation. There is a caveat in these numbers, however.

The cache model we are using in our RTME is the null

model (no aborts due to hardware resource limits), while

Intel’s is not. That said, we found that the average MIME

“step” – the average time to process a read or write –

took on the order of 7,000 cycles. This means that we

would need to use a cache emulator that took upwards of

400,000 cycles per read or write in order for our system

to slow down to speeds of emulation.

5 Conclusions

We developed an implementation of Intel’s HTM exten-

sions in the context of a VMM using MIME, a novel

page-flipping technique. Our implementation allows the

programmer to write code with TSX instructions, allows

for bullet-proofing of code for various hardware archi-

tectures, as well as allowing tight control of the environ-

ment under which a transaction is occurring. We are able

to achieve this with limited instruction decoding, and at

speeds approximately 60 times faster than under emula-

tion.

Future Work: The MIME page-flipping technique that

we developed for this paper is very interesting as it lets

us single-step through a program and record its memory

accesses, while not having to emulate any of the instruc-

tions. This functionality could be leveraged to perform

other tasks, for instance MIME could be used to create

2Virtualized and native are identical for these test cases provided no

external interrupt occurs.

11

memory-traces of any running application, allowing the

programmer to understand the application-specific mem-

ory access patterns. Given that MIME was developed to

run independently on multiple cores, the logging capa-

bilities could also be leveraged to allow for strict control

in the debugging of concurrent applications. Each hy-

percall breakpoint could be used to pause execution of

that MIME’d process, allowing the programmer to con-

trol exactly when each process runs. In this way, each

possible state of interaction between concurrent threads

could be carefully tested and monitored.

References

[1] ADVANCED SCIENTIFIC COMPUTING ADVISORY

COMMITTEE. The opportunities and challenges of

exascale computing. Tech. rep., Department of En-

ergy, Fall 2010.

[2] ANANIAN, C., ASANOVIC, K., KUSZMAUL, B.,

LEISERSON, C., AND LIE, S. Unbounded transac-

tional memory. In Proceedings of the 11th Interna-

tional Symposium on High-Performance Computer

Architecture (2005), HPCA ’05.

[3] BRIDGES, P., ARNOLD, D., AND PEDRETTI, K.

Vm-based slack emulation of large-scale systems.

In Proceedings of the 1st International Workshop

on Runtime and Operating Systems for Supercom-

puters (2011), ACM.

[4] GUPTA, D., VISHWANATH, K. V., AND VAHDAT,

A. Diecast: testing distributed systems with an

accurate scale model. In Proceedings of the 5th

USENIX Symposium on Networked Systems Design

and Implementation (2008), NSDI’08, USENIX

Association.

[5] HAMMOND, L., WONG, V., CHEN, M., CARL-

STROM, B. D., DAVIS, J. D., HERTZBERG, B.,

PRABHU, M. K., WIJAYA, H., KOZYRAKIS, C.,

AND OLUKOTUN, K. Transactional memory co-

herence and consistency. In Proceedings of the 31st

annual international symposium on Computer ar-

chitecture (2004), ISCA ’04, IEEE Computer Soci-

ety.

[6] HERLIHY, M., AND MOSS, J. E. B. Transac-

tional memory: architectural support for lock-free

data structures. In Proceedings of the 20th annual

international symposium on computer architecture

(1993), ISCA ’93, ACM.

[7] INTEL. Intel architecture instruction set extensions

programming reference. http://software.

intel.com/sites/default/files/m/3/

2/1/0/b/41417-319433-012.pdf, 2012.

[8] INTEL. Intel software development emulator,

November 2012. v. 5.31.0.

[9] INTEL. Intel 64 and ia-32 architectures software

developer’s manual volume 3c, chapter 32. http:

//download.intel.com/products/

processor/manual/325384.pdf, 2013.

[10] KUDRYAVTSEV, A., KOSHELEV, V., PAVLOVIC,

B., AND AVETISYAN, A. Modern hpc cluster virtu-

alization using kvm and palacios. In Proceedings of

the Workshop on Cloud Services, Federation, and

the 8th Open Cirrus Summit, held in conjunction

with ICAC 2012 (2012), ACM.

[11] LANGE, J., PEDRETTI, K., HUDSON, T., DINDA,

P., CUI, Z., XIA, L., BRIDGES, P., GOCKE,

A., JACONETTE, S., LEVENHAGEN, M., AND

BRIGHTWELL, R. Palacios and kitten: New high

performance operating systems for scalable virtu-

alized and native supercomputing. In Proceed-

ings of the 24th IEEE International Parallel and

Distributed Processing Symposium (IPDPS 2010)

(April 2010).

[12] LANGE, J. R., PEDRETTI, K., DINDA, P.,

BRIDGES, P. G., BAE, C., SOLTERO, P., AND

MERRITT, A. Minimal-overhead virtualization of

a large scale supercomputer. In Proceedings of

the 7th ACM SIGPLAN/SIGOPS international con-

ference on Virtual execution environments (2011),

VEE ’11, ACM.

[13] MOORE, K., BOBBA, J., MORAVAN, M., HILL,

M., AND WOOD, D. Logtm: log-based transac-

tional memory. In Proceedings of the Twelfth Inter-

national Symposium on High-Performance Com-

puter Architecture (2006), HPCA ’06.

[14] RAJWAR, R., HERLIHY, M., AND LAI, K. Vir-

tualizing transactional memory. In Proceedings of

the 32nd annual international symposium on Com-

puter Architecture (2005), ISCA ’05, IEEE Com-

puter Society.

[15] SACHS, S., AND YELICK, K. Ascr programming

challenges for exascale. Tech. rep., Department of

Energy, 2011.

12

