
!

Electrical Engineering and Computer Science Department

Technical Report
NU-EECS-13-04

April 16, 2013

Guarded Execution of Privileged Code in the Guest

Kyle C. Hale and Peter A. Dinda

Abstract

Allowing a guest to have direct, privileged access to hardware can enhance its
performance and functionality. Privileged access to hardware and the VMM also enables
and improves the performance of virtualization services by allowing portions of their
implementations to be hoisted into the guest, even uncooperatively. However, granting
such privilege currently requires that the entire guest be trusted. We present a software
technique, guarded execution of privileged code, that allows the VMM to inject code
modules into the guest that enjoy unrestrained access to specific hardware and VMM
resources. Our system, which combines compile-time, link-time, and run-time
techniques, provides the module developer with the guarantee that the module remains
unmodified, and that it acquires privilege only when untrusted code invokes it through
developer-chosen, valid entry points with a valid stack. An execution path leaving the
module will then trigger a revocation of privilege. The system also provides the
administrator with a secure method for binding a specific module with particular
privileges implemented by the VMM. This lays the basis for guaranteeing that only
trusted code in the guest can utilize special privileges. We give a motivating example by
guarding the execution of a privileged, network interface driver in the form of a Linux
module, such that it, and only it, has uninhibited access to the NIC hardware.

This project is made possible by support from the United States National Science Foundation
(NSF) via grant CNS-0709168, and the Department of Energy (DOE) via grant DE-SC0005343.

Keywords: guarded modules, virtual machines, services, code transformation

Guarded Execution of Privileged Code in the Guest

Kyle C. Hale and Peter A. Dinda
{k-hale, pdinda}@northwestern.edu

Department of Electrical Engineering and Computer Science
Northwestern University

Abstract
Allowing a guest to have direct, privileged access to
hardware can enhance its performance and functional-
ity. Privileged access to hardware and the VMM also
enables and improves the performance of virtualization
services by allowing portions of their implementations
to be hoisted into the guest, even uncooperatively. How-
ever, granting such privilege currently requires that the
entire guest be trusted. We present a software tech-
nique, guarded execution of privileged code, that allows
the VMM to inject code modules into the guest that en-
joy unrestrained access to specific hardware and VMM
resources. Our system, which combines compile-time,
link-time, and run-time techniques, provides the mod-
ule developer with the guarantee that the module remains
unmodified, and that it acquires privilege only when un-
trusted code invokes it through developer-chosen, valid
entry points with a valid stack. An execution path leav-
ing the module will then trigger a revocation of privi-
lege. The system also provides the administrator with a
secure method for binding a specific module with partic-
ular privileges implemented by the VMM. This lays the
basis for guaranteeing that only trusted code in the guest
can utilize special privileges. We give a motivating ex-
ample by guarding the execution of a privileged, network
interface driver in the form of a Linux module, such that
it, and only it, has uninhibited access to the NIC hard-
ware.

1 Introduction

A virtual machine monitor (VMM) does not trust the
guest operating system or application running on top of
it to execute privileged code or directly access devices.
This is by design, and exceptions are rare. Modifications
of privileged physical state such as the interrupt vector

table pointer would allow a guest to subvert the VMM.
However, it is also the case that allowing the guest ac-
cess to privileged host or VMM state can simplify and/or
speed up different services that the VMM may provide.
The most obvious example is passthrough access to I/O
devices, which allow existing guest drivers to be used
and may permit very high performance. Here, the VMM
needs to limit the damage that a rogue guest could in-
flict, for example by using hardware features that allow
the self-virtualization of the device [6, 7], or by operating
in contexts such as HPC environments, where the guest
is trusted and often runs alone [4].

In recent work [2] we argued that allowing the im-
plementation of virtualization services to extend into the
guest can often simplify their design, improve their per-
formance, or enable otherwise unfeasible services. We
presented GEARS, a framework for allowing the imple-
mentation of a virtualization service to span the guest and
the VMM, even without guest cooperation. The element
of GEARS we focus on in this paper is code injection:
GEARS allows a service developer to inject and execute
code within the guest OS and application without its co-
operation. For example, it can force the injection of a
Linux kernel module. Currently, any injected code runs
with the same privilege and the same hardware access as
other guest code.

In this paper, we extend this functionality to allow for
the injection of code into the guest kernel that runs at
whatever privilege and with whatever hardware access
the VMM selects. We refer to this injected code as a
guarded module. When a guest thread of execution (in-
cluding an interrupt) enters the guarded module at a valid
entry point, the VMM will raise the privilege as appro-
priate. When execution leaves the guarded module, the
VMM will lower the privilege to ordinary levels. This
functionality allows a part of the guest to execute with
privilege, specifically the part the VMM has supplied.

1

This guarded module functionality can then be used to
implement virtualization services or for other purposes.

Our technique leverages compile-time and link-time
processing which identifies valid entry and exit points in
the module code, including via function pointers. These
points are in turn “wrapped” with automatically gener-
ated stub functions that communicate with the VMM.
The implementation of our technique applies to Linux
kernel modules. The unmodified source code of the mod-
ule is the input to the implementation, while the output is
a kernel object file that includes the original functionality
of the module and the wrappers. Conceptually, a guarded
module has a border, and the wrapper stubs (and their lo-
cations) identify the valid border crossings between the
guarded module, which is trusted, and the rest of the ker-
nel, which is not.

A wrapped module can then be injected into the guest
using the existing GEARS framework, or voluntarily.
The wrapper stubs and other events detected by the
VMM drive the second component of our technique, a
state machine that executes in the VMM. An initializa-
tion phase determines whether the wrapped module has
been corrupted and where it has been loaded, and then
protects it from further change. Attempted border cross-
ings, either via the wrapper functions, or due to interrup-
t/exception injection are caught by the VMM and vali-
dated. Privilege is granted or revoked on a per-virtual
core basis. Components of the VMM that implement
privilege changes are called back through a standard in-
terface, allowing the mechanism of privilege granting/re-
voking to be decoupled from the mechanism of determin-
ing when privilege should change. Ultimately, privilege
policy is under the ultimate control of the administrator,
who can determine the binding of specific guarded mod-
ules with specific privilege mechanisms.

Our contributions are as follows:

• We describe the design of the joint compile-time
and run-time guarded module mechanism.

• We describe the implementation of the design for
supporting guarded Linux modules in the context
of the Palacios VMM. This implementation will be
made publicly available within the Palacios code-
base when this paper is published.

• We evaluate the performance of our implementa-
tion, independent of virtualization service and priv-
ilege mechanism.

• We extend Palacios with a privilege mechanism, a
PCI device passthrough capability that can dynami-
cally acquire and release privilege.

• We study the performance of passthrough NIC
access using guarded modules and the selective
passthrough mechanism.

2 Related work

Swift et al. showed, with Nooks [9], that code wrappers
could be employed to isolate faulty code in Linux ker-
nel extensions, improving the reliability of the core ker-
nel. While the overall goals of Nooks are quite different
(isolation, recovery, and compatibility), the system pro-
vides an illustrative example of defining and protecting
the boundaries between driver and kernel code.

Secure in-VM monitoring, or SIM [8], also executes
VMM code in guest context, but fits within the theme
of introspection and security rather than providing vir-
tualization services. SIM seeks to allow the VMM effi-
cient and secure access to guest internals, but not to equip
the guest with privileged access to hardware or VMM-
resident resources. The entry and exit gates used in SIM
bear many similarities to our generated wrappers, so it
is instructive to point out their differences. While these
gates exist solely to protect a well-known piece of sen-
sitive monitoring code, our wrapping toolchain provides
a general purpose mechanism for protecting the system
during states of privilege that have been dynamically pro-
visioned. The system maintains no notion of the partic-
ular implementation of the modules to which the privi-
leged functionality is to be provisioned. Further, SIM is
designed for a virtualization-based security monitor built
by the hypervisor developer. Our system enables a kernel
module developer with no knowledge of VMM internals
to securely and automatically extend his or her module
with privilege in a virtualized environment.

SYRINGE [1] is another in-VM monitoring system,
but it provides a mechanism by which the monitoring
code can leverage functions in the guest. It does so us-
ing a code injection facility that shares some similarities
with our GEARS framework, but which is more com-
parable to a cross-core remote procedure call. Secure
code can invoke a guest-resident utility function by sig-
naling the VMM to inject a function call, whose results
are then passed to the secure code. However, here the
monitor code resides in a secure VM, and the function
call is injected into an entirely separate guest VM, so
border crossings between secure and insecure code—a
major component of our work—do not arise.

3 Context of work

Our work lies within the context of the Palacios VMM
and the GEARS framework, which we now discuss in

2

further detail. Although we leverage functionality in this
software, it is important to note that the required func-
tionality is readily available in other VMMs.

3.1 Palacios VMM
Our system is implemented in the context of our Pala-
cios VMM. Palacios is an OS-independent, open source,
BSD-licensed, publicly available, embeddable VMM de-
signed as part of the V3VEE project (http://v3vee.
org). The V3VEE project is a collaborative commu-
nity resource development project involving Northwest-
ern University, the University of New Mexico, Sandia
National Labs, and Oak Ridge National Lab. Detailed in-
formation about Palacios can be found elsewhere [5, 3].
Palacios is capable of virtualizing large scale systems
(4096+ nodes) with < 5% overheads [4]. Palacios’s OS-
agnostic design allows it to embed into a wide range of
OS architectures.

The Palacios implementation is built on the virtualiza-
tion extensions deployed in current generation x86/x64
processors—specifically, AMD’s SVM and Intel’s VT.
Palacios supports both 32 and 64 bit host and guest envi-
ronments, both shadow and nested paging models, and a
significant set of devices that constitute the PC platform.
Due to the ubiquity of the x86/x64 architecture, Palacios
is capable of operating across many classes of machines.
Palacios has successfully virtualized commodity desk-
tops and servers, high-end Infiniband clusters, and Cray
XT and XK supercomputers.

3.2 GEARS framework
The Guest Examination and Revision Services (GEARS)
framework, implemented within Palacios, enables guest-
context virtual services, VMM services whose imple-
mentations reside partly, or even entirely, within the
guest itself. Guest-context virtual services have several
advantages over those implemented within the core of a
hypervisor. They are not restrained by the limited soft-
ware interface that the VMM sees, and can implement
functionality that would simply not be possible within
the VMM itself.

We showed that GEARS, a minimal set of extensions
to the hypervisor, can enable a broad range of guest-
context services. The central components that comprise
GEARS include system call interception, process envi-
ronment modification, and code injection. In this work
we focus on the code injection facilities of GEARS, but
more details can be found in previous work [2].

GEARS can inject code into the guest kernel or a user-
space process, and the injected code can execute at a time

chosen by the hypervisor. Code injected into user-space
can even link with guest-resident dynamically-linked li-
braries. However, while the code is injected without the
guest’s knowledge or cooperation, it is certainly not pro-
tected from any malicious intent, and so must execute in
the same limited privilege level as that of the guest it-
self. However, to provide extended functionality, VMM
code must operate at a higher privilege level, and thus
must provide protection mechanisms commensurate with
this privilege. In this paper, we seek to allow guest-
context VMM code to operate with extended privilege,
while maintaining isolation from potentially malicious,
unprivileged guest code.

4 Guarded modules

A guarded module is a component of the guest kernel
for which the VMM provides a specialized execution en-
vironment. Typically, this implies an environment with
higher privileges than normal. The combination of the
VMM and the guarded module maintains the following
invariant: Privilege is raised (the specialized execution
environment is active) for a given virtual core if and only
if that virtual core is executing within the code of the
guarded module and the guarded module was entered via
one of a set of specific, agreed-upon entry points.

The guarded module boasts the ability to interact
freely with the rest of the guest kernel. In particular, it
can call other functions and access other data within the
guest. A given call stack might intertwine guarded mod-
ule and kernel functions. The “guarding” here refers to
a garrison established between the module and the rest
of the kernel by protecting the code of the guarded mod-
ule and by securing the control flow into and out of it.
However, the system must validate the stack to maintain
this garrison, thereby insulating any stack variables used
internal to the guarded module.

The guest kernel may read and write the code of the
guarded module, although modifications of the code by
any virtual core will eliminate any subsequent possibility
of privileged execution in the guarded module. By de-
fault, the code of the guarded module that the guest ker-
nel sees is its actual code, although it could be disguised
by the VMM using well-known techniques. Also by de-
fault, the guest kernel can read and write the guarded
module’s data. The implementor of the guarded module
bears the responsibility of insuring data integrity. The
VMM can of course optionally provide access to data
hidden from the guest kernel as part of the privileged ex-
ecution environment.

3

http://v3vee.org
http://v3vee.org

Guest KernelGuest�Kernel

Guarded�Module
B d t

Border

ng
s

BorderͲout

BorderͲin

de
r�
Cr
os
si
n

VMM
PrivilegedPrivileged

Bo
r

g
Hardware
Access

g
VMM
Access

Border�Control
State�Machine

Hardware

Figure 1: Big picture of guarded modules.

4.1 Guarded Linux kernel modules
The specific implementation of guarded modules we de-
scribe in this paper applies to Linux kernel modules. Our
implementation fits within the context of the Palacios
VMM and takes advantage of code generation and link-
ing features of the GCC and GNU binutils toolchains.
The VMM-based elements leverage functionality com-
monplace in modern VMMs, and thus could be readily
ported to other VMMs. The code generation and linking
aspects of our implementation seem to us to be feasible
in any C toolchain that supports ELF or a similar format.
The technique could be applicable to other guest kernels,
although we do assume that the guest kernel provides
runtime extensibility via some form of load-time linking.

In our implementation, a guarded Linux kernel module
can either be voluntarily inserted by the guest or invol-
untarily injected into the guest kernel using the GEARS
framework described in Section 3.2. The developer of
the module needs to target the specific kernel he wants to
deploy on, exactly as in creating a Linux kernel module
in general.

Figure 1 illustrates the run-time structure of our
guarded module implementation, and documents some
of the terminology we use. The guarded module is a
kernel module within the guest Linux kernel that is al-
lowed privileged access to the physical hardware or to
the VMM itself. The nature of this privilege, which we
will describe later, depends on the specifics of the mod-
ule. We refer to the code boundary between the guarded
module and the rest of the guest kernel as the border.

Border crossings consist of control flow paths that tra-
verse the border. A border-out is a traversal from the
module to the rest of the kernel, of which there are three

kinds. The first, a border-out call occurs when a ker-
nel function is called by the guarded module, while the
second, a border-out ret, occurs when we return back to
the rest of the kernel. The third, a border-out interrupt
occurs when an interrupt or exception is dispatched. A
border-in is a traversal from the rest of the kernel to the
guarded module. There are similarly three forms here.
The first, a border-in call consists of a function call from
the kernel to a function within the guarded module, while
the second, a border-in ret consists of a return from a
border-out call, and the third, a border-in rti consists
of a return from a border-out interrupt. Valid border-
ins should raise privilege, while border-outs should lower
privilege. Additionally, any attempt to modify the mod-
ule should lower privilege.

The VMM contains a new component, the border con-
trol state machine, that determines whether the guest has
privileged access at any point in time. The state machine
also implements a registration process in which the in-
jected guarded module identifies itself to the VMM and
is matched against validation information and desired
privileges. This allows the administrator to decide which
modules, by content, are allowed which privileges. After
registration, the border control state machine is driven by
hypercalls from the guarded module, exceptions that oc-
cur during the execution of the module, and by interrupt
or exception injections that the VMM is about to perform
on the guest.

The VMM detects attempted border crossings jointly
through its interrupt/exception mechanisms and through
hypercalls in special code added to the guarded module
as part of our compilation process. Figure 2 illustrates
how the two interact.

4.2 Compile-time
Our compilation process, Christoization1, automatically
wraps an existing kernel module with new code needed
to work with the rest of the system. Two kinds of wrap-
pers are generated. Exit wrappers are functions that in-
terpose in the calls from the guarded module to the rest of
the kernel. An exit wrapper, added using link-time pro-
cessing, signals the VMM by a hypercall to lower priv-
ilege just before the underlying function call is made.
When the function returns, it signals the VMM to val-
idate the stack and raise privilege. Entry wrappers are
functions that interpose on calls from the kernel into
the guarded module. Entry wrappers, which are intro-
duced by source preprocessing, use hypercalls to signal
the VMM to raise privilege when called, and then lower

1Named after the famed conceptual artist, Christo, who was known
for wrapping large objects such as buildings and islands in fabric.

4

O i i l M d lB d t ll

Border

Original�ModuleBorderͲout�call Exit�wrapper�
requests�lower�privilege�
on�call,�higher�on�return

BorderͲin�ret

Entry�wrapper�requests�
higher�privilege�on�call,�

lower on return

Wrappers�added�
Through�

BorderͲin�call

BorderͲout�ret

Exception/Interrupt

lower�on�return

BorderͲout
int

Christoization

VMM�detects�
injection,�requests�

Privilege

BorderͲin
iret

lower�privilege Privilege�
Request/Release�
HypercallsReturn�from

Exception/Interrupt
VMM�detects�RTI�
requests�higher�

Privilege��
callbacks

privilege

#PF�write�
to�module

VMM�Controls�Ultimate�Privilege

Border�Control
State�Machine

Figure 2: Guarded modules, showing operation of wrappers and interaction of state machine on border crossings.

Inputs: Guest kernel
source tree

Module source +
Makefile

Stage 1:
Source

Analysis
Module source
preprocessed

Module entries
identified

module_init()
routine identified

Stage 2:
Source

Annotation

Callback
wrappers
generated

New
module_init()

generated
Add generated
code to source

Stage 3: Linker
Wrapping

Module exits
identified

Exits guarded
with linker
wrappers

Stage 4:
Metadata

Generation

Entry points,
code segment
hash, module

name recorded

Outputs: Christoized
Module

Guarded Module
Metadata

Figure 3: Christoization process

privilege when the call returns to the kernel. The precise
positions of the hypercall instructions in the wrappers are
used by the VMM to validate the requests.

We designed our compile-time tool chain so that mod-
ule developer effort is minimized when generating a
guarded module. The requisite knowledge and materi-
als are the same as what would be required of a devel-
oper writing a Linux kernel module. Figure 3 depicts the
Christoization process at a high level. The necessary in-

puts to our toolchain are the guest Linux Makefile and
kernel headers, as well as the source and Makefile for
the module to be Christoized. Additionally, the privilege
names required by the module are passed as command-
line parameters. Access to the guest Linux source tree
may also be required if the developer wishes to use exter-
nal functions that use non-standard calling conventions.

The first stage of the Christoization process is module
source analysis. We scan the source files of the mod-
ule, looking for functions that are assigned as callbacks.
These functions represent entry points into the module,
as the kernel will invoke them asynchronously. In order
to effectively identify all of these functions, we must run
a preprocessing pass over the module to make sure that
external inlined functions and macros are accounted for.
Once the entry callbacks are identified, we must search
the source for the function that the module developer reg-
isters using Linux’s module_init macro. This func-
tion will serve as the initial gateway into the module and
must be intercepted by the VMM.

In the source annotation stage, each entry callback as-
signment in the source is changed to a macro that will
expand to an entry wrapper function particular to that
callback. These wrappers are added to the source file
automatically and are depicted in Figure 4. The key idea
here is that a hypercall is inserted both before and after
the call to the original entry point. The remaining in-
structions are there to preserve the environment in such

5

a way that the original function is not aware that it has
been wrapped. The module_init routine is then sim-
ilarly wrapped with a registration hypercall that notifies
the VMM when it has been inserted into the guest kernel.

The linker wrapping stage takes the output of the an-
notation stage (a compiled object) and identifies unde-
fined function references. These represent exits to the
kernel. They are wrapped with exit wrappers, which are
assembly stubs similar to entry wrappers, and which are
shown in Figure 5. Exit wrappers lower privilege before
the original call and raise it on return. They are added us-
ing ld’s function wrapping capability. The result of this
linking step is that the module’s original unresolved ex-
ternal references are resolved to the exit wrappers, while
the exit wrappers reproduce the original unresolved sym-
bols. As a result, any external call from the original mod-
ule goes through an exit wrapper.

The final stage of the Christoization process is meta-
data generation. Here, information collected in the previ-
ous stages is aggregated into a formatted file with which
the administrator can later register the guarded module.
The essential metadata consists of the module’s name, its
required privileges, and the offsets in the compiled object
of the identified valid entry points. This list can later be
further restricted or expanded by the module developer.
Additionally, to ensure module integrity at load-time, a
cryptographic content hash of the code segment is per-
formed and recorded. This metadata is later passed by
the administrator to the VMM during the guarded mod-
ule registration process, and it is used from then on by
the border control state machine to validate the hyper-
calls and other events it receives.

It is again important to note that the Christoization
process is fully automated. The module developer need
only intervene when the recognized entry points into the
module do not meet his or her needs.

4.3 Run-time

The run-time element of our system is based around the
border control state machine. As Figure 2 illustrates, the
state machine is driven by hypercalls originating from the
guarded module, and by events that are raised elsewhere
in the VMM. As a side-effect of the state machine’s
execution, it generates callbacks to other components
of the VMM (selective privilege-enabled VMM compo-
nents) notifying them when valid privilege changes oc-
cur. The state machine also handles the initialization of a
guarded module and its binding with these other parts of
the VMM. We now describe guarded module execution
with respect to the state machine.

entry_wrapped:

popq %r11

pushq %rax

movq $border_in_call, %rax

(a) vmmcall

popq %rax

callq entry

pushq %rax

movq $border_out_ret, %rax

(b) vmmcall

popq %rax

pushq %r11

ret (to rest of kernel)

Figure 4: An entry wrapper for a valid entry point.

exit_wrapped:

popq %r11

pushq %rax

movq $border_out_call, %rax

(a) vmmcall

popq %rax

callq exit

pushq %rax

movq $border_in_ret, %rax

(b) vmmcall

popq %rax

pushq %r11

ret (back into guarded module)

Figure 5: An exit wrapper for the valid exit point.

Module initialization The guarded module is injected
into the guest, either voluntarily by the user, or involun-
tarily by the administrator using GEARS’s code injec-
tion facility. The module’s initialization code immedi-
ately calls the guarded module registration function that
was generated by Christoization. This function makes an
initialization hypercall, providing a claimed hash as its
argument. In response, the state machine validates the
module using the metadata associated with the claimed
hash. First, the address of the initialization hypercall in-
struction, combined with the known offset of the instruc-
tion in the text segment stored in the metadata, allows us
to determine the load address of the module’s text seg-
ment. The metadata includes the length of the text sec-
tion. With this information, the state machine then marks
the text segment as unwritable in the shadow or nested
page tables, making it impossible for the guest to change

6

it. The next step is to compute the hash over the text
segment memory and compare it to the hash stored in the
metadata.2 If the hashes match, the state machine notifies
the selective privilege-enabled component that privilege
should be raised, transitions to the privileged state, en-
ables interception of exceptions, and returns to the guest.
At this point, the guarded module can complete the re-
mainder of its initialization. In effect, module initializa-
tion is treated as the first border-in call.

Border-in call to border-out ret A valid entry into
the guarded module results in a hypercall from the en-
try wrapper (Figure 4(a)) that requests a privilege raise.
The address of this hypercall instruction is then validated
against the list of addresses where such instructions were
placed, which is stored in the metadata. If it is in the list,
the state machine invokes a privilege-raising callback,
and transitions to the privileged state. Before returning,
it also enables interception of exceptions. Before exiting
from a valid entry, the entry wrapper similarly invokes
another hypercall (Figure 4(b)), which requests a lower-
ing of privilege. When privilege is lowered, exception
interception is returned to its nominal state.

Border-out call to border-in ret A call from the
guarded module to the rest of the kernel results in a hy-
percall from the exit wrapper (Figure 5(a)) that requests a
lowering of privilege. As a side-effect of lowering priv-
ilege, exception interception is returned to its nominal
state. When the call returns, a second hypercall (Fig-
ure 5(b)) requests a raising of privilege. After sanity
checking the address against the metadata, privilege is
raised, and exception and interrupt interception are again
enabled.

Border-out int to border-in rti The purpose of inter-
cepting exceptions that occur when executing with priv-
ilege is to assure that we can lower privilege when these
events trigger an interrupt handler dispatch and raise it
once execution resumes in the guarded module. More
generally, we must trap any switch from the guarded
module code to kernel context. When the guest is not
executing in the guarded module, nominal exception
handling is sufficient. Our handler for exception inter-
cepts simply causes the VMM to re-inject the exceptions
alongside its normal injection of interrupt events.

Because we need to be aware of all interrupt/excep-
tion dispatch, We have modified the Palacios VM entry
code so that, just before such an entry, if the guest is ex-
ecuting with privilege, we determine if an interrupt or

2A direct comparison of the text segment content is also possible.

exception injection will occur on the entry. If so, we
lower privilege, switch back to nominal interception of
exceptions, and enable interception of the rti instruc-
tion, which will be executed when the interrupt or excep-
tion handler completes. We also note the current %rip
and other information related to this interrupt dispatch.

At this point, we allow the VM entry to complete, and
interrupt dispatch ensues. We emulate rti instructions
when they occur, looking for any rti that will return
control to the instruction at which the original interrup-
t/exception was injected. When we discover a match, we
raise privilege, re-enable exception interception, disable
rti interception, and resume execution with privilege in
the guarded module.

We note that one privilege that could be granted to a
module is the ability to disable interrupts while it exe-
cutes. If this is the case, this code path could be entirely
avoided.

Internal calls The wrappers shown in Figure 4 and
Figure 5 are linked such that they are only invoked on
border crossings. Calls internal to the guarded module
do not have any additional overhead. The same applies
for calls internal to the kernel.

Nesting and stack checking Although it is convenient
to think of (and generate code for) border-crossings in
matched pairs, it is important to realize that an execution
path may involve multiple border-crossings. For exam-
ple, the kernel might invoke a callback function on the
module, which requires privilege, but which in turn calls
a kernel function, which should not have privilege, and
that subsequently makes another callback into the mod-
ule, which should. The sequence of events for that exam-
ple would be: border-in call, border-out call(*), border-
in call, border-out ret, border-in ret(**), border-out ret.
While border-ins and border-outs must eventually all be
matched, they can nest. This nesting of border crossings
introduces an opportunity to subvert the guarded module
through the stack. Our primary concern is the protection
of the ret that is the last line of Figure 5. If the border-
out call(*) had its return address modified on the stack,
the border-in ret(**) would return to that address with
privilege raised!

To address this, the border control state machine tracks
the nesting level and the stack state, and validates the
stack state on any border-in. When a border-in occurs
with a nesting level of zero, the state machine captures
the starting point of this “first border-in” stack frame
(i.e., %rsp and %rbp). When a border-out occurs,
the state machine captures the ending point of this “last

7

border-out” stack frame, and computes and stores a hash
of the stock content from the first entry to this last exit.
On any border-in whose nesting level is greater than zero,
the actual stack is again hashed and compared with the
last border-out hash. If they do not match, privilege is
not granted.

Deinitialization The Christoization processing inserts
a deinitialization hypercall as the last thing the module
executes. After validating the hypercall’s location, the
state machine lowers privilege, removes any special in-
terception that is active, and remaps the module with
guest-specified writability. Privilege will not change
again unless the initialization hypercall is executed.

Suspicious activity The state machine detects suspi-
cious activity by noting privilege changing hypercalls at
invalid locations, shadow or nested page faults indicating
attempts to write the module code, and stack hash mis-
matches. Our default behavior is simply to lower priv-
ilege when these occur, and continue execution. Other
reactions are, of course, possible.

4.4 Interfaces
We have previously described how the system works
from the perspective of the guarded module developer
(Section 4.2). We now consider it from the perspective
of the developer of the selective privilege-enabled VMM
component that the system drives, and from the perspec-
tive of the administrator, who controls which VMs get
special selective privileges, and which guarded modules
these privileges should be associated with.

The purpose of the selective privilege-enabled VMM
component is to implement the actual raising and lower-
ing of privilege. The developer of this component uses a
simple registration function during the initialization of
the component. The registration function associates a
privilege name with a state pointer and a group of call-
back functions for the context of a specific VM. There
are four callbacks, one each for initialization of selective
privilege behavior, deinitialization of the same, and for
raising and lowering privilege. The raise/lower callbacks
occur per-virtual core, and are required to complete their
operation before returning.

The administrator includes the guarded module exten-
sion in the guest configuration file, and gives the exten-
sion a name for the specific privilege it will export. This
name matches the privilege name noted before, and is
ultimately resolved upon guest creation. The adminis-
trator also uses a user-level tool to associate the guarded

 0

 1000

 2000

 3000

 4000

 5000

 6000

Border-out Call Border-in Ret Border-in Call Border-out Ret

C
PU

 C
yc

le
s

Border Crossing Type

privilege lower/raise
hypercall handling
entry point lookup

exit handlng

Figure 6: Privilege change cost without stack integrity
checks.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

Border-out Call Border-in Ret Border-in Call Border-out Ret

C
PU

 C
yc

le
s

Border Crossing Type

privilege lower/raise
hypercall handling
entry point lookup

exit handling
stack checking

Figure 7: Privilege change cost with stack integrity
checks.

module’s metadata file with the privilege name within
the context of a specific VM. Hence, the administrator
has ultimate control over privilege.

5 Evaluation

We now consider the costs of the guarded module sys-
tem, independent of any specific guarded module that
might drive it, and any selective privilege-enabled VMM
component it might drive. We focus on the costs of bor-
der crossings and their breakdown. The most important
contributors to the costs are VM exit/entry handling, and,
for some crossings, the stack validation mechanism.

All measurements were conducted on a Dell Pow-
erEdge R415. This is a dual-socket machine, each socket
with a quad-core, 2.2 GHz AMD Opteron 4122 installed,

8

giving a total of 8 physical cores. The machine has
16 GB of memory. It runs Fedora 15 with a stock Fe-
dora 2.6.38 kernel. Our guest environment uses a single
virtual core that runs a BusyBox environment based on
Linux kernel 2.6.38. The guest runs with nested paging
using 2 MB page mappings. DVFS control is disabled.

Figure 6 illustrates the overheads in cycles incurred
at runtime without stack validation enabled. All cycle
counts were averaged over 1000 samples. There are four
major components to the overhead. The first is the cost
of initiating a lower or raise callback. This cost is very
small at around 100 cycles. The second cost, labeled
“hypercall handling”, denotes the cycles spent inside the
hypercall itself, not including entry validations and priv-
ilege changes. This cost is also quite small, and also
typically under 100 cycles. “entry point lookup” repre-
sents the cost of a hash table lookup, which is invoked
on border-ins when the instruction pointer is checked
against the valid entry points that have been registered
during guarded module initialization. The cost for this
lookup is roughly 240 cycles. Finally, “exit handling”
is the time spent in the VMM handling the exit outside
of guarded module runtime processing. At about 4000
cycles, this component dominates the border-crossing
cost in our implementation in Palacios. The typical total
border-crossing cost is only a few hundred cycles more
than this. Reducing this base overhead relies on enhance-
ments in the remainder of the VMM and in the hardware
virtualization extensions.

Figure 7 gives a similar breakdown, but with stack
integrity checking functionality enabled, and operation
proceeding as described in Section 4.3. Here, the typi-
cal costs of border-out calls and border-in returns have
grown to about 9000 cycles. The 5000 cycle expansion
is due to to stack address translations and hash computa-
tions. Border-in calls also grow slightly slower due to
the initial translation and recording of the entry stack
pointer. Border-out rets are unaffected. The overhead
of the stack integrity checking mechanism could be re-
duced by checking the minimal set of sensitive compo-
nents on the guest stack, e.g. the return addresses and
frame pointers.

The guarded module codebase consists of the compile-
time tools, which comprise 223 lines of Perl, 260 lines of
Ruby and the run-time elements added to the VMM. The
latter are generally concentrated in an optional extension
of 1007 lines of C that could be ported to other VMMs.
Some changes to the VMM core were made to facilitate
interrupt and exception interception and dispatch to the
GEARS guarded module system. These changes include
178 lines of C.

6 Example

Having described the general design, implementation,
and evaluation of our guarded module system within the
Palacios VMM, we now consider a complete example
of functionality built upon it. The goal of the exam-
ple is to illustrate how a complete system operates and
shake loose issues that are independent of the concept of
guarded modules themselves.

In our example, we seek to provide a guest OS with
direct access to a network interface card (NIC), but with-
out trusting the guest. The NIC’s device driver is avail-
able in the Linux kernel source tree, and can be compiled
as a module. More specifically, we focus on the Broad-
com BCM5716 Gigabit NIC. We Christoize the driver,
creating a kernel module that we can later inject into
the untrusted guest. The border control state machine in
Palacios pairs this driver with Palacios’s PCI passthrough
functionality, which we have extended with selectively
privileged operation. Recall that Christoization is almost
entirely automated, so the result is an unmodified device
driver, executing in the guest, having direct access to the
NIC, while nothing else in the guest does.

6.1 Selectively privileged PCI passthrough
Like most VMMs, Palacios has hardware passthrough
capabilities. Here, we use its ability to make a hard-
ware PCI device directly accessible to the guest. This
consists of a generic PCI front-end virtual device (“host
PCI device”) , an interface it can use to acquire and re-
lease the underlying hardware PCI device on a given host
OS (“host PCI interface”), and an implementation of that
interface for a Linux host.

A Palacios guest’s physical address space is contigu-
ously allocated in the host physical address space. Be-
cause PCI device DMA operations use host physical ad-
dresses, and because the guest programs the DMA en-
gine using guest physical addresses it believes start at
zero, the DMA addresses the device will actually use
must be offset appropriately. In the Linux implemen-
tation of our host PCI interface, this is accomplished us-
ing an IOMMU: acquiring the device creates an IOMMU
page table that introduces the offset. As a consequence,
any DMA transfer initiated on the device by the guest
will be constrained to that guest’s memory. A DMA can
then only be initiated by programming the device, which
is restricted to the guarded module.

A PCI device is programmed via control/status regis-
ters that are mapped into the physical memory and I/O
port address spaces through standardized registers called
BARs. Each BAR contains a type, a base address, and

9

a size. Palacios’s host PCI device virtualizes the BARs
(and other parts of the standardized PCI device config-
uration space). This lets the guest map the device as
it pleases. For a group of registers mapped by a BAR
into the physical memory address space, the mapping is
implemented using the shadow or nested page tables to
redirect memory reads and writes. For a group of regis-
ters mapped into the I/O port space, there is no equivalent
to these page tables, and thus the mappings are imple-
mented by I/O port read/write hooks. When the guest
executes an IN or OUT instruction, an exit occurs, the
hook is run, and the handler simply executes an IN or
OUT to the corresponding physical I/O port. If the host
and guest mappings are identical, the ports are not inter-
cepted, allowing the guest to read/write them directly.

We extended our host PCI device to support selective
privilege; in the terminology of Section 4.3, it is now
a selective privilege-enabled VMM component. In this
mode of operation, virtualization of the generic PCI con-
figuration space of the device proceeds as normal. How-
ever, at startup, BAR virtualization ensures that the ad-
dress space regions of memory and I/O BARs are ini-
tially hooked to stub handlers. The stub handlers sim-
ply ignore writes and supply zeros for reads. This is the
unprivileged mode. In this mode, the guest sees the de-
vice on its PCI bus, and can even remap its BARs as
desired, but any attempt to program it will simply fail
because the registers are inaccessible. In selective privi-
lege operation, the host PCI device also responds to call-
backs for raising and lowering privilege. Raising priv-
ilege switches the device to privileged mode, which is
implemented by remapping the registers in the manner
described earlier, resulting in successful accesses to the
registers. Lowering privilege switches back to unprivi-
leged mode, and remaps the registers back to the stubs.
Raising and lowering privilege happens on a per-core ba-
sis.

The original host PCI device, in which the guest has
fully privileged access to the underlying device at all
times, comprised 500 lines of C. Adding selective priv-
ilege operation expanded the implementation to approx-
imately 553 lines of C. Combined with the rest of the
system, the selectively privileged host PCI device lets us
permit fully privileged access to the underlying device
within a guarded module, but disallow it otherwise.

6.2 Selective passthrough for the NIC
The NIC uses exactly one BAR to define a 32 MB re-
gion of the memory address space. When it is mapped
by the host PCI device in selective privilege operation,
a privilege raise request causes our system to map the

Privilege Change Cycles µs
Lower 4307 2.0
Raise 4800 2.2

Figure 8: System-dependent overhead for the NIC.

device by changing the shadow or nested page table en-
tries corresponding to the guest physical address region
the guest has chosen. On a privilege lower request, these
entries are removed, so any subsequent access to those
addresses will cause a page fault which eventually calls
our hooked stub.

6.3 Overheads
Compared to simply allowing privilege for the entire
guest, a system that leverages guarded modules incurs
additional overheads. Some of these overheads are
system-independent, and were covered in Section 5. The
most consequential component of these overheads is the
cost of executing a border-in or border-out, each of which
consists of a hypercall or exception interception (requir-
ing a VM exit) or interrupt/exception injection detection
(done in the context of an in-progress VM exit), a lookup
of the hypercall’s address, a stack check or record, con-
ducting a lookup to find the relevant privilege callback
function, and then the cost of invoking that callback.

We now consider the system-dependent overhead for
the NIC. There are two elements to this overhead: the
cost of changing privilege and the number of times we
need to change privilege for each unit of work (packet
sent or received) that the module finishes.

Changing privilege In Palacios, memory region map-
pings, including those for regions that map to callback
functions (“memory hooks”) reside in a red-black tree
mapped to the underlying nested or shadow page tables
being used. Here, we employ nested paging and 64
bit operation. In this combination, the host PCI device,
when fronting for the NIC, responds to a privilege raise
request by: (1) removing the existing 32 MB region that
maps the BAR to a memory hook, (2) modifying the cor-
responding nested page table entries, and (3) adding a
new 32 MB region mapping the BAR to the actual de-
vice’s memory region. Lowering privilege repeats steps
1 and 2, but for 3, the privilege implementation maps a
memory hook region and marks the page table entries as
unavailable so that nested page faults occur and redirect
to callback functions. Assuming 2 MB superpages and
suitable alignment, the system will adjust 16 nested page
table entries in each case.

10

Function Name Frequency
border-in call to

bnx2 msi 1shot 0.23
bnx2 start xmit 0.16

border-out ret from
bnx2 msi 1shot 0.23
bnx2 start xmit 0.16

border-out call to
consume skb 0.66

phys addr 0.01
border-in ret from

consume skb 0.66
phys addr 0.01

Border-in 1.06
Border-out 1.06
Total / Packet Send 2.12

Figure 9: NIC border crossing per packet send.

Figure 8 shows the measured system-dependent over-
head for raising and lowering privilege for the NIC. We
conducted all measurements in this section with the con-
figuration described in Section 5.

Combining the system-independent and system-
dependent costs, we expect that a typical border cross-
ing overhead, assuming no stack checking will consist of
about 3000 cycles for VM exit/entry, 4000 cycles to ex-
ecute the border control state machine, and about 4500
cycles to enable/disable access to the NIC. These 11500
cycles comprise 5.2 µs on this machine. Stack checking
would add an average of about 4500 cycles, leading to
16000 cycles (7.3 µs).

Border crossings per packet We instrumented the
border-crossing handlers in our system to record the ad-
dresses at which the crossings happened, and then used
those addresses to determine the functions within the
guarded module and the guest kernel that were involved
with these crossings. To generate traffic, we used ttcp in
the guest to communicate with ttcp on a separate physical
machine on the same Ethernet switch.

The NIC does interrupt coalescing, so determining
precisely where individual packet transmissions/recep-
tions begin and end presents a challenge. Instead, we
also tracked the number of packets communicated over
the interval of time that the ttcp traffic was active. Divid-
ing the counts for the individual functions and the packet
counts allowed us to determine the average number of
border-crossings of each kind, and for each function.

Figures 9–10 show the results of this analysis for the
NIC. Sending requires on the order of 2 border crossings

Function Name Frequency
border-in call to

bnx2 msi 1shot 0.04
border-out ret from

bnx2 msi 1shot 0.04
border-out call to

skb put 1.0
napi gro receive 1.0
eth type trans 1.0

netdev alloc skb 1.0
phys addr 0.56
napi schedule 0.04

border-in ret from
skb put 1.0
napi gro receive 1.0
eth type trans 1.0

netdev alloc skb 1.0
phys addr 0.56
napi schedule 0.04

Border-in 4.64
Border-out 4.64
Total / Packet Receive 9.28

Figure 10: NIC border crossings per packet receive.

(privilege changes) per packet, while receiving requires
on the order of 9 border crossings per packet. Note that
many of the functions that constitute border crossings are
actually leaf functions defined in the kernel. This indi-
cates that we could reduce the overall number of border
crossings per packet by pulling the implementations of
these functions into the module itself. We leave further
details and exploration of these leaf functions for future
work.

6.4 Performance

Consider a machine sending packets on a TCP connec-
tion operating in congestion-avoidance mode. Each ACK
received will clock a packet send. Given this pairing and
the previous analysis, we would expect to see 11 bor-
der crossings for each packet sent on this TCP connec-
tion. At 5.2 µs per border crossing, we would expect to
be able to transmit 1

11⇥5.2 = 17.4 thousand TCP pack-
ets per second. With a 1500 byte MTU, this would be
26.1 MB/s (208 Mb/s). This the upper bound on the
performance we should expect given the current over-
heads. With stack checking enabled, we would expect
18.9 MB/s (151 Mb/s).

Figure 11 shows the measured performance, using
ping and ttcp, of the selectively privileged passthrough

11

with stack-check
ping latency 0.186ms
ttcp throughput 129.54Mb/s

without stack-check
ping latency 0.164ms
ttcp throughput 170.212Mb/s

Figure 11: NIC performance.

NIC in our system. The Christoized kernel module exe-
cutes in the guest, and it interacts with the run-time ele-
ments of the system, which grant and revoke privileged
access to the NIC as control flow enters and leaves the
module. This combination constitutes a proof-of-concept
of the entire guarded module system. The performance
agrees with the bounds analysis given earlier.

7 Conclusions and future work

We presented the design, implementation, and evaluation
of a system for allowing modules in the guest OS to ob-
tain higher privileged access to the physical machine and
the VMM. Our system is founded on joint compile-time
and run-time techniques that bestow privilege only when
control flow enters the guarded module at verified loca-
tions. We demonstrated an example use of the system
by creating a passthrough NIC that only a designated
guarded module we inject into the guest can program.
The guest kernel can use this guarded module as it would
any other NIC driver.

Our ongoing and future work lies along two lines.
First, we will explore methods that can further enhance
the performance of this system. Building upon the anal-
ysis of Section 6, we plan to further study methods by
which we can reduce the cost and number of border
crossings needed for a specific module. As previously
mentioned, we are investigating an expansive linking
process in which kernel functions invoked by the guarded
module are incrementally incorporated into the module
itself. Our second line of investigation is in designing
other virtualization services that could be simplified or
enabled by employing guarded modules.

References

[1] CARBONE, M., CONOVER, M., MONTAGUE, B.,
AND LEE, W. Secure and robust monitoring of vir-
tual machines through guest-assisted introspection.
In Proceedings of the 15th International Conference
on Research in Attacks, Intrusions, and Defenses
(RAID 2012) (September 2012), pp. 22–41.

[2] HALE, K., XIA, L., AND DINDA, P. Shifting
GEARS to enable guest-context virtual services.
In Proceedings of the 9th International Conference
on Autonomic Computing (ICAC 2012) (September
2012).

[3] LANGE, J., DINDA, P., HALE, K., AND XIA,
L. An introduction to the palacios virtual machine
monitor—release 1.3. Tech. Rep. NWU-EECS-
11-10, Department of Electrical Engineering and
Computer Science, Northwestern University, Octo-
ber 2011.

[4] LANGE, J., PEDRETTI, K., DINDA, P., BRIDGES,
P., BAE, C., SOLTERO, P., AND MERRITT, A. Min-
imal overhead virtualization of a large scale super-
computer. In Proceedings of the 2011 ACM SIG-
PLAN/SIGOPS International Conference on Virtual
Execution Environments (VEE 2011) (March 2011).

[5] LANGE, J., PEDRETTI, K., HUDSON, T., DINDA,
P., CUI, Z., XIA, L., BRIDGES, P., GOCKE,
A., JACONETTE, S., LEVENHAGEN, M., AND
BRIGHTWELL, R. Palacios and kitten: New high
performance operating systems for scalable virtual-
ized and native supercomputing. In Proceedings of
the 24th IEEE International Parallel and Distributed
Processing Symposium (IPDPS 2010) (April 2010).

[6] LIU, J., HUANG, W., ABALI, B., AND PANDA,
D. High performance vmm-bypass i/o in virtual ma-
chines. In Proceedings of the USENIX Annual Tech-
nical Conference (May 2006).

[7] RAJ, H., AND SCHWAN, K. High performance
and scalable i/o virtualization via self-virtualized de-
vices. In Proceedings of the 16th IEEE International
Symposium on High Performance Distributed Com-
puting (HPDC) (July 2007).

[8] SHARIF, M. I., LEE, W., CUI, W., AND LANZI,
A. Secure in-vm monitoring using hardware virtu-
alization. In Proceedings of the ACM Conference
on Computer and Communications Security (CCS
2009) (November 2009).

[9] SWIFT, M. M., BERSHAD, B. N., AND LEVY,
H. M. Improving the reliability of commodity op-
erating systems. In Proceedings of the 19th ACM
symposium on Operating Systems Principles (SOSP
2003) (October 2003), pp. 207–222.

12

