NORTHWESTERN
UNIVERSITY

Electrical Engineering and Computer Science Department

Technical Report
Number: NU-EECS-15-01

April 1,2014

Details of the Case for Transforming Parallel Runtime Systems
Into Operating System Kernels

Kyle C. Hale and Peter A. Dinda

Abstract

The needs of parallel runtime systems and the increasingly sophisticated languages and compilers they
support do not line up with the services provided by general-purpose OSes. Furthermore, the semantics
available to the runtime are lost at the system-call boundary in such OSes. Finally, because a runtime
executes at user-level in such an environment, it cannot leverage hardware features that require kernel-
mode privileges---a large portion of the functionality of the machine is lost to it. These limitations warp
the design, implementation, functionality, and performance of parallel runtimes. We make the case for
eliminating these compromises by transforming parallel runtimes into OS kernels. We also demonstrate
that it is feasible to do so. Our evidence comes from Nautilus, a prototype kernel framework that we built
to support such transformations. After describing Nautilus, we report on our experiences using it to
transform three very different runtimes into kernels.

This project is made possible by support from the United States National Science Foundation (NSF) via grant CNS- 0709168, the
Department of Energy (DOE) via grant DE- SC0005343, and Sandia National Laboratories through the Hobbes Project, which
is funded by the 2013 Exascale Operating and Runtime Systems Program under the Office of Advanced Scientific Computing
Research in the DOE Office of Science. Sandia National Laboratories is a multi-program laboratory managed and operated by
Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National
Nuclear Security Administration under contract DE-AC04-94AL85000.

Keywords: hybrid runtimes, HRTs, hybrid virtual machine, HVM, Nautilus

Details of the Case for Transforming Parallel Run-times
Into Operating System Kernels

Kyle C. Hale and Peter A. Dinda
{k-hale, pdinda}@northwestern.edu
Department of Electrical Engineering and Computer Science
Northwestern University

ABSTRACT

The needs of parallel run-time systems and the increasingly
sophisticated languages and compilers they support do not
line up with the services provided by general-purpose OSes.
Furthermore, the semantics available to the run-time are lost
at the system-call boundary in such OSes. Finally, because
a run-time executes at user-level in such an environment, it
cannot leverage hardware features that require kernel-mode
privileges—a large portion of the functionality of the ma-
chine is lost to it. These limitations warp the design, imple-
mentation, functionality, and performance of parallel run-
times. We make the case for eliminating these compromises
by transforming parallel run-times into OS kernels. We also
demonstrate that it is feasible to do so. Our evidence comes
from Nautilus, a prototype kernel framework that we built
to support such transformations. After describing Nautilus,
we report on our experiences using it to transform three very
different run-times into kernels.

1. INTRODUCTION

Modern parallel run-times are systems that operate in user
mode and run above the system call interface of a general-
purpose kernel. While this facilitates portability and sim-
plifies the creation of some functionality, it also has con-
sequences that warp the design and implementation of the
run-time and affect its performance, efficiency, and scalabil-
ity. First, the run-time is deprived of the use of hardware
features that are available only in kernel mode. This is a
large portion of the machine. For example, approximately
1/3 to 1/2 of the Intel processor architecture manual con-
tent deals with such features. The second consequence is
that the run-time must use the abstractions provided by the
kernel, even if the abstractions are a bad fit. For example,
the run-time might need subset barriers, and be forced to
build them out of mutexes. Finally, the kernel has minimal
access to the information available to the parallel run-time
or to the language implementation it supports. For example,
the run-time might not require coherence, but get it anyway.

The complexity of modern hardware is rapidly growing. In

high-end computing, it is widely anticipated that exascale
machines will have at least 1000-way parallelism at the node
level. Even today’s high-end homogeneous nodes, such as
the one we use for evaluation in this paper, have 64 or more
cores or hardware threads arranged on top of a complex
intertwined cache hierarchy that terminates in 8 or more
memory zones with non-uniform access. Today’s heteroge-
neous nodes include accelerators, such as the Intel Phi, that
introduce additional coherence domains and memory sys-
tems. Server platforms for cloud and datacenter computing,
and even desktop and mobile platforms are seeing this si-
multaneous explosion of hardware complexity and the need
for parallelism to take advantage of the hardware. How to
make such complex hardware programmable, in parallel, by
mere humans is an acknowledged open challenge.

Some modern run-times, such as the Legion run-time [2,
49] we consider in this paper, already address this challenge
by creating abstractions that programmers or the compilers
of high-level languages can target, abstractions that mir-
ror the machine in portable ways. Very high-level parallel
languages can let us further decouple the expression of par-
allelism from its implementation. Parallel run-times such
as Legion, and the run-times for specific parallel languages
share many properties with operating system (OS) kernels,
but suffer by not being kernels. With current developments,
particularly in virtualization and hardware partitioning, we
are in a position to remove this limitation. In this paper,
we make the case for transforming parallel run-time systems
into kernels, and report on our initial results with a frame-
work to facilitate just that.

We argue that for the specific case of a parallel run-time,
the user/kernel abstraction itself, which dates back to Mul-
tics, is not a good one. It’s important to understand the
kernel/user abstraction and its implications. This abstrac-
tion is an incredibly useful technique to enforce isolation
and protection for processes, both from attackers and from
each other. This not only enables increased security, but also
reduces the impact of bugs and errors on the part of the pro-
grammer. Instead, programmers place a higher level of trust
in the kernel, which, by virtue of its smaller codebase and
careful design, ensures that the machine remains uncompro-
mised. However, because the kernel must be all things to
all processes, the kernel has grown dramatically bigger over
time, as has its responsibilities within the system. This has
forced kernel developers to provide a broad range of services
to an even broader range of applications. At the same time,

the basic model and core services have necessarily ossified
in order to maintain compatibility with the widest range
of hardware and software. In a general-purpose kernel, the
needs of parallelism and a parallel run-time have not been
first-order concerns.

Run-time implementors often complain about the limita-
tions imposed by a general-purpose kernel. While there
are many examples of significant performance enhancements
within general-purpose kernels, and others are certainly pos-
sible to support parallel run-times better, a parallel run-time
as a user level component is fundamentally constrained by
the kernel/user abstraction. In contrast, as a kernel, a paral-
lel run-time would have full access to all hardware features
of the machine, and the ability to create any abstractions
that it needs using those features. We show in this paper
that, in fact, breaking free from the user/kernel abstraction
can produce measurable benefits for parallel run-times.

At first glance, transforming a parallel run-time into a kernel
seems to be a particularly daunting task because language
run-times often have many dependencies on libraries and
system calls. It is important to be clear that we are focused
on the performance or energy-critical core of the run-time
where the bulk of execution time is spent, not on the whole
functional base of the run-time. The core of the run-time
has considerably fewer dependencies and thus is much more
feasible to transform into a kernel. As we describe in Sec-
tion 2, virtualization and hardware partitioning in various
forms have the potential to allow us to partition the run-
time so the non-core elements run at user-level on top of the
full software stack they expect, while the core of the run-
time runs as a kernel. We refer to such a kernel as a hybrid
run-time (HRT) as it is a hybrid between a kernel and a
run-time. Our focus in this paper is on the HRT.

We make the following contributions:

e We describe the limitations of building parallel run-
time systems on top of general-purpose operating sys-
tems and how these limitations are avoided if the run-
time is a kernel. That is, we motivate HRT's.

e We describe the design, implementation, and perfor-
mance of Nautilus, a prototype kernel framework to
facilitate the porting of existing parallel run-times to
run as kernels, as well as the implementation of new
parallel run-times directly as kernels. That is, we cre-
ate the tools needed to easily make HRT's.

We describe our experiences in using Nautilus to trans-
form three run-times into kernels, specifically Legion,

NESL, and a new language implementation named NDPC

that is being co-developed with Nautilus. That is, we
make HRTs, demonstrating their feasibility.

2. ARGUMENT

A language’s run-time is a system (typically) charged with
two major responsibilities. The first is allowing a program
written in the language to interact with its environment (at
runtime). This includes access to underlying software layers
(e.g., the OS) and the machine itself. The run-time ab-
stracts the properties of both and impedance-matches them

User Mode
Parallel App Kernel Mode Parallel App §
Q
User Mode | Parallel Run-time Hybrid Run-time| &
- - g
Kernel Mode| General Kernel (HRT) I E
A~
Node HW | Node V| §
e
(a) Current Model (b) Hybrid Run-time Model
User Mode
Parallel App Kernel Mode Parallel App
User Mode |Parallel Run-tim Hybrid Run-time
- - = Legacy Path (HRT)

Kernel Mode | General Kernel

General Specialized
Virtualization Virtualization
Model Model

‘ Hybrid Virtual Machine (HVM)

Performance Path

€

‘ Node HW

(c) Hybrid Run-time Model Within a Hybrid Virtual Machine

Figure 1: Overview of Hybrid Run-time (HRT) approach:
(a) current model used by parallel run-times, (b) proposed
HRT model, and (c) proposed HRT model combined with a
hybrid virtual machine (HVM).

with the language’s model. The challenges of doing so,
particularly for the hardware, depend considerably on just
how high-level the language is—the larger the gap between
the language model and the hardware and OS models, the
greater the challenge. At the same time, however, a higher-

level language has more freedom in implementing the impedance-

matching.

The second major responsibility of the run-time is carrying
out tasks that are hidden from the programmer but nec-
essary to program operation. Common examples include
garbage collection in managed languages, JI'T compilation or
interpretation for compilers that target an abstract machine,
exception management, profiling, instrumentation, task and
memory mapping and scheduling, and even management of
multiple execution contexts or virtual processors. While
some run-times may offer more or less in the way of fea-
tures, they all provide the programmer with a much simpler
view of the machine than if he were to program it directly.

As a run-time gains more responsibilities and features, the
lines between the run-time and the OS often become blurred.
For example, Legion manages execution contexts (an ab-
straction of cores or hardware threads), regions (an abstrac-
tion of NUMA and other complex memory models), task to
execution context mapping, task scheduling with preemp-
tion, and events. In the worst case this means that the run-
time and the OS are actually trying to provide the same
functionality. In fact, what we have found is that in some
cases this duplication of functionality is brought about by
inadequacies of or grievances with the OS and the services it
provides. A common refrain of run-time developers is that
they want the kernel to simply give them a subset of the ma-
chine’s resources and then leave them alone. They attempt
to approximate this as best they can within the confines of
user space and the available system calls.

That this problem would arise is not entirely too surprising.
After all, the operating system is, prima facie, designed to
provide adequate performance for a broad range of general-
purpose applications. However, when applications demand
more control of the machine, the OS can often get in the way,
whether due to rigid interfaces or to mismatched priorities
in the design of those interfaces. Not only may the kernels
abstractions be at odds with the run-time, it may also com-
pletely prevent the run-time from using hardware features
that might otherwise significantly improve performance or
functionality. If it provides access to these features, it does
so through a system call, which—even if it has an appropri-
ate interface for the run-time—monetheless exacts a toll for
use, as the system call mechanism itself has a cost. Simi-
larly, even outside system calls, while the kernel might build
an abstraction on top of a fast hardware mechanism, an ad-
ditional toll is taken. For example, signals are simply more
expensive than interrupts, even if they are used to abstract
an interrupt.

A run-time that is a kernel will have none of these issues.
It would have full access to all hardware features of the ma-
chine, and the ability to create any abstractions that it needs
using those features. We want to support the construction
of such run-times, which we call Hybrid Run-times (HRTS),
as they are hybrids of parallel run-times and kernels. To do
so, we will provide basic kernel functionality on a take-it-
or-leave-it basis to make the process easier. We also want
such run-time kernels to have available the full functional-
ity of the general-purpose OS for components not central to
run-time operation.

Figure 1 illustrates three different models for supporting a
parallel run-time system. The current model (a) layers the
parallel run-time over a general-purpose kernel. The par-
allel run-time runs in user mode without access to priv-
ileged hardware features and uses a kernel API designed
for general-purpose computations. In the Hybrid Run-time
model (b) that we describe in this paper the parallel run-
time is integrated with a specialized kernel framework such
as Nautilus. The resulting HRT runs exclusively in kernel
mode with full access to all hardware features and with ker-
nel abstractions designed specifically for it. Notice that both
the run-time and the parallel application itself are now be-
low the kernel/user line. Figure 1(b) is how we run Legion,
NESL, and NDPC programs in this paper. We refer to this
as the performance path.

A natural concern with the structure of Figure 1(b) is how
to support general-purpose OS features. For example, how
do we open a file? We do not want to reinvent the wheel
within an HRT or a kernel framework such as Nautilus in or-
der to support kernel functionality that is not performance
critical. Figure 1(c) is our response, the Hybrid Virtual
Machine (HVM). In an HVM, the virtual machine moni-
tor (VMM) or other software will partition the physical re-
sources provided to a guest, such as cores and memory into
two parts. One part will support a general purpose virtual-
ization model suitable for executing full OS stacks and their
applications, while the second part will support a virtual-
ization model specialized to the HRT and allowing it direct
hardware access. The specialized virtualization model will
enable the performance path of the HRT, while the general

virtualization model and communication between the two
parts of the HVM will enable a legacy path for the run-time
and application that will let it leverage the capabilities of the
general-purpose kernel for non-performance critical work.

An effort to build this HVM capability into the Palacios
VMM [38] is currently underway in our group as part of
the Hobbes exascale software project [15]. However, it is
important to note that other paths exist. For example,
Guarded Modules [31] could be used to give portions of a
general-purpose virtualization model selective privileged ac-
cess to hardware, including I/O devices. As another exam-
ple, Dune [5] uses hardware virtualization features to provide
privileged CPU access to Linux processes. The HVM could
be built on top of Dune. The Pisces system [45] would en-
able an approach that could eschew virtualization altogether
by partitioning the hardware and booting multiple kernels
simultaneously without virtualization. Our focus in this pa-
per is not on the HVM capability, but rather on the HRT.

3. NAUTILUS

Nautilus! is a small prototype kernel framework that we
built to support the HRT model, and is thus the first of its
kind. We designed Nautilus to meet the needs of parallel
run-times that may use it as a starting point for taking full
advantage of the machine. We chose to minimize imposition
of abstractions to support general-purpose applications in
lieu of flexibility and small codebase size. As we will show in
Sections 4-6, this allowed us to port three very different run-
times to Nautilus and the HRT model in a very reasonable
amount of time. Nautilus is a Multiboot2-compliant kernel
and we have tested it on several Intel and AMD machines,
as well as QEMU and our own Palacios VMM.

As Nautilus is a prototype for HRT research, we targeted the
most popular architecture for high-performance and parallel
computing, x86_64. However, given the very tractable size
of the codebase, introducing platform portability would not
be too challenging. A port to the Intel Phi is underway.

We stress that the design of Nautilus is, first and foremost,
driven by the needs of the parallel run-times that use it.
Nevertheless, it is complete enough to leverage the full ca-
pabilities of a modern 64-bit x86 machine to support three
run-times, one of which (Legion) is quite complex and is
used in practice today.

3.1 Design and Performance

Currently, Nautilus is designed to boot the machine, dis-
cover its capabilities, devices, and topology, and immedi-
ately hand control over to the run-time. Figure 2 shows the
core functionality provided by Nautilus. Current features
include multi-core support, Multiboot2-compliant modules,
synchronization primitives, threads, IRQs, timers, paging,
NUMA awareness, IPIs, and a console. We will describe
these capabilities in turn. We spent a good deal of time
measuring the capabilities that affect the performance of
the HRTs we built, and we will report on their performance
in the following paragraphs.

!Named after the submarine-like, mysterious vessel from
Jules Verne’s Twenty Thousand Leagues Under the Sea.

User Mode

Kernel Mode A e R
Parallel Application
Kernel
Runtime :
HRT
Threads | Sync. | Paging | Events | Topology | Bootstrap | Timers | IRQs | Console éNautilus
Hardware
Figure 2: Structure of Nautilus.

oS i Avg | Min Max alization of instructions when timing. Notice how the mini-
Nautilus | 16795 2907 | 44264 mum time to create a thread for Nautilus is about 11x faster
Linux 38456 | 34447 | 238866 than with pthreads.

Figure 3: Time to create a single thread measured in cycles.

Experimental setup We took all measurements on our lab
machine named leviathan. We chose this machine for our
experiment because it has a large number of cores and an
interesting organization, similar to what a supercomputer
node might look like. It is a 2.1GHz AMD Opteron 6272
(Interlagos) server machine with 64 cores and 128 GB of
memory. The cores are spread across 4 sockets, and each
socket comprises two NUMA domains. All CPUs within
one of these NUMA domains share an L3 cache. Within
the domain, CPUs are organized into 4 groups of 2 hard-
ware threads. The hardware threads share an L1 instruction
cache and a unified L2 cache. Hardware threads have their
own L1 data cache. We configured the BIOS for this ma-
chine to “Maximum performance” to eliminate the effects of
power management. This machine also has a “freerunning’
TSC, which means that the TSC will tick at a constant rate
regardless of the operating frequency of the processor core.
For Linux tests, it runs Red Hat 6.5 with stock Linux kernel
version 2.6.32.

Threads In designing a threading model for Nautilus, we
considered the experiences of many others, including work

on high-performance user-level threading techniques like sched-

uler activations [1] and Qthreads [50]. Ultimately, we de-
signed our threads to be very lightweight in order to provide
an efficient starting point for HRTs. The threading model
is not imposed on the run-time. It is simply offered as a
primitive. We found that our threads performed quite well
compared to traditional user-space pthread usage. It is im-
portant to note that, unlike pthreads, the threads we use
in Nautilus are kernel threads. They are more than that
however, because there is only a kernel, which includes the
HRT and the Nautilus kernel framework. The nature of the
threads in Nautilus is determined by how the runtime uses
them. This means that we can directly map the logical view
of the machine from a runtime’s point of view (see Section 4)
to the physical machine. This is not typically possible to do
with any kind of guarantees when running in userspace. In
fact, this is one of the concerns that the Legion runtime
developers expressed with running Legion on Linux.

Figure 3 shows the average, minimum, and maximum time
in cycles to create a single thread in both Nautilus and Linux
(using pthreads). These numbers were taken over 1000 runs
and we used the rdtscp instruction to enforce proper seri-

Figure 4 shows the time to create a number of threads in
sequence, and we take results over 10 runs. This figure il-
lustrates that the performance advantage of Nautilus’s very
light-weight threads, in fact, increases as the thread count
scales. This creates an advantage for parallel run-times that
need to leverage node-level parallelism to create units of
work very quickly. Graphs (d), (e), and (f) highlight the per-
formance difference as a function of thread count by showing
the speedup of Nautilus’s threading facilities over pthreads
in Linux. We believe these results show that Nautilus pro-
vides a reasonable starting point for HRTs attempting to
exploit the full potential of the machine.

Another distinctive aspect to Nautilus threads is that a
thread fork (and join) mechanism is provided in addition
to the common interface of starting a new thread with a
clean new stack in a function. A forked thread has a limited
lifetime and will terminate when it returns from the current
function. It is incumbent upon the run-time to manage the
parent and child stacks correctly. This capability is lever-
aged in our ports of NESL and NDPC.

Synchronization We now give a brief description of the
simple spinlock primitive used in Nautilus. We chose to
highlight spinlocks because in designing Nautilus, we fo-
cused heavily on the Legion run-time’s model of execution,
in which threads represent logical processors. The ideal case
for Legion occurs when threads are pinned to CPUs and
experience no contention (i.e. no preemption) for physical
resources. In this case, more complex synchronization prim-
itives like mutexes are unnecessary.

Nautilus’s implementation of a spinlock uses a GCC intrinsic
that compiles down into an atomic xchg instruction, which
will enforce locking on the memory bus. We use the pause
instruction in between spins to allow maximum performance
for hyperthreads on the same physical core. This instruc-
tion will insert a small delay into the spin loop, freeing up
pipeline resources for potential contenders.

Figure 5 shows the total time to acquire and subsequently
release a spinlock 500 million times on both Nautilus and
Linux. Here, “Linux” means we use pthread_spin_lock.
Note that the time comes within 9% of the heavily optimized
pthreads version. The bottom rows show the time, measured
in cycles, to acquire and release a single lock one time. The

(@)

(b)

(©

6 6 6
7X106 Nautilus —e— 7X105 Nautilus —e— 7X106 Nautilus ——
6x10° Linux - & -, 6x10° - Linux - & - & 6x10° Linux - & -
5x10° | . 5x10° | ’ 5x10° | K
2 6 | P 2 6 | 3 6 L .]
% 4)(106 K % 4)(106) % 4)(106 K
3 3x10° - .= 1 & 3x10® NG 3 3x10° - .G 1
2x10° F o 1 2x10°8 F » 2x10° | 1
.o 7 .G
1x108 | o s 1x108 | .- 1x108 | o J_/e/‘
0——B o 08— g o ok - CRN
2 4 8 16 32 64 2 8 16 32 64 4 8 16 32 64
Threads Threads Threads
(d) (U]
26 T T T T 45 T T T T
24 | 40 I
22 ¢ 35 |
o 20 o o 30 -
3 18 3 3 251
2 16+ 2 2 20+
» 14+ 0 » 15+
12 - 10
10 ¢ 5|
8 10 . . . 0
2 4 8 16 32 64 2 8 16 32 64 2 4 8 16 32 64
Threads Threads Threads

Figure 4: Average (a), minimum (b), and maximum (c) time to create a number of threads in sequence. Average (d), minimum

(e), and maximum (f) speedup of Nautilus over Linux for multiple thread creations.

OS Execution time (s) 30000

Nautilus 13.72 not available in userspace

Linux 12.53 25000

[oF] Avg. acquire/release time (cycles)

Nautilus 59 20000 |

Linux 36
Figure 5: Total time to acquire and release a spinlock 500 % 15000 | overhead too high

17 > .

million times on Nautilus and Linux, and average time in o in userspace

les f i 1 ir.
cycles for an acquire/release pair 10000 1 |
parallel applications we tested on Legion spend most of their
time in computation-heavy loops, and are thus not heavily 5000 | 1
influenced by the cost of synchronization. Egggggsj

0 RRRRRX

Paging Nautilus has a very simple, yet very high-performance

paging model aimed at high-performance parallel applica-
tions. When the machine boots up, each core identity-maps
the entire physical address space using 2 MB pages to cre-
ate a single unified address space. The static identity map
eliminates expensive page faults and TLB shootdowns, and
reduces TLB misses. These events would not only reduce
performance, but also introduce unpredictable OS noise. OS
noise is well known to introduce timing variance that be-
comes a serious obstacle in large-scale distributed machines
running parallel applications. The same will hold true for
single nodes as core counts continue to scale up. The intro-
duction of variance by OS noise (not just by asynchronous
paging events) not only limits the performance and pre-
dictability of existing run-times, but also limits the kinds
of run-times that can take advantage of the machine. For
example, run-times that need tasks to execute in synchrony
(e.g., in order to support a bulk-synchronous parallel appli-
cation or a run-time that uses an abstract vector model) will
experience serious degradation if OS noise comes into play.

The use of a single unified address space also allows very
fast communication between threads, and eliminates much

Linux N. MWAIT N. condvar N. w/kick

Figure 6: Average event wakeup latency.

of the overhead of context switches when Nautilus boots
with preemption enabled. The only preemption is between
kernel threads, so no page table switch ever occurs. This is
especially useful when Nautilus runs virtualized, as a large
portion of VM exits come from paging related faults and
dynamic mappings initiated by the OS, particularly using
shadow paging. A shadow-paged Nautilus exhibits the min-
imum possible shadow page faults, and shadow paging can
be more efficient that nested paging, except when shadow
page faults are common.

Events Events are a common abstraction that run-time sys-
tems often use to distribute work to execution units, or work-
ers. The Legion run-time makes heavy use of them, so we
wanted to make sure that Nautilus provided an efficient im-
plementation of them. In Legion, the events are used to no-
tify logical processors (Legion threads) when there are tasks
ready to execute. To help show the potential of Legion +
Nautilus as an HRT, we measured the performance of these
“wakeup” events.

Speedup over Linux userspace
(9]
T
L

[RREILIIIA
RIRBRELLLS
[RRRLLREN
[RRRRRRRRA

N. MWAIT

N. condvar N. wrkick

Figure 7: Speedup over Linux for event wakeups in Nautilus.

Figure 6 shows the average latency between an event noti-
fication and the subsequent wakeup. Here, we had a single
thread on one core go to sleep and wait for an event no-
tification from a thread running on the adjacent physical
core. The latency is measured in cycles and the average is
taken over 100 runs. The first box on the left shows the
latency of a common mechanism used in Linux for event
notification, the pthread implementation of condition vari-
ables. In this case, the measurement is the time between
calling pthread_cond_signal and the subsequent wakeup
from pthread_cond_wait. A wakeup takes about 25000 cy-
cles. The following three boxes show various Nautilus imple-
mentations of event notification. “N.MWAIT” shows the la-
tency when using the newer MONITOR/MWAIT extensions pro-
vided by modern processors. These instructions allow one
thread to go to sleep on a range of memory, waiting for a
write to that memory by another thread. Note that the
MONITOR/MWAIT instructions are not available in user-space.
While the latency improves considerably over pthread’s con-
dition variables in Linux user-space, we suspect it is limited
by the hardware latency incurred when waking up from a
sleep state. The MONITOR/MWAIT extensions provide optional
hints to enter lower sleep states and allow faster wakeups,
but our machine does not support this feature.

The final two boxes (“N. condvar” and “N. w/kick”) show
the Nautilus implementation of condition variables. They
are very lightweight, and a signal will essentially just en-
queue the waiting thread on a processor’s run queue. This
is another capability that is not typically available to a user-
space thread. At some point, the kernel’s scheduler must in-
tervene to take the thread off of a wait queue and schedule
it. In Nautilus, the run-time can do this directly. Notice the
significant latency improvement in the Nautilus implemen-
tations over pthreads. Figure 7 shows the improvement in
terms of speedup.

When a thread is signalled in Nautilus, if the next timer
tick does not occur immediately, the thread may have some
delay before execution begins. To mitigate this potential
issue, we introduced an optimization to Nautilus condition
variables that “kicks” the appropriate CPU by sending it
an inter-processor interrupt (IPI) after it has woken up the
waiting thread. An IPI sends a message over an interrupt
delivery network connecting the interrupt controllers of the
processor cores. The core specified in the destination ad-

Target Min. latency (cycles)
Rem. Socket 1 4135
Rem. Socket 2 4161
Rem. Socket 3 3926
Loc. Socket, Rem. Node 3902
Loc. Socket, Rem. Core 3707
Loc. Socket, Loc. Core 4691

Figure 8: IPI round-trip latencies on leviathan with varying
distances.

dress will wake up (if needed) and immediately execute the
corresponding interrupt handler. This gives the run-time
the ability to force execution of a tasks of its choosing on
a remote destination core. Note that the IPI is unavailable
when running in user-space. The performance is shown in
the last box of Figure 6. Notice how the wakeup latency is
reduced by about 36% from the default condition variable
implementation. This tells us that IPIs have a great deal of
potential as a hardware feature that HRT's can leverage.

Event notifications can also be implemented using messages,
and IPIs are a very useful messaging transport—the Linux
kernel uses them in many places. To explore the potential of
run-time event notifications using IPIs, we measured their
round-trip latency on our leviathan machine. Figure 8 shows
the minimum latency of 100 round-trip IPIs between various
locations within the machine. We measure a round-trip la-
tency by reading the TSC, sending an IPI to a remote core,
and waiting for its acknowledgement. When it arrives, we
read the TSC again to produce a latency in cycles. Here,
“Rem. Node” means an IPI to the same socket but to a core
on a remote NUMA node. “Loc. Socket, Rem. Core” indi-
cates a core on the same socket and NUMA node. The last
row shows the latency to a hardware thread on the same
physical core. Local cores within the same chip are closest
and thus have the smallest round-trip latency at about 3700
cycles, or 1.8usec. From the inter-socket measurements, we
suspect that socket 1 is the furthest away from and socket 3
is the closest to the sending core. The IPI latency to a hard-
ware thread on the same physical core is surprisingly high,
and we suspect this may be due to contention over resources
they share. These measurements also line up with those in
Figure 6, as the cost of a wakeup is roughly the same as an
IPI round-trip latency to a core on the same socket.

Toplogy Large, modern machines typically organize mem-
ory into separate domains according to physical distance
from a physical CPU socket or core. This introduces a
variable latency when accessing memory in the different do-
mains. This variable latency is typically referred to as Non-
Uniform Memory Access (NUMA). Platform firmware typ-
ically enumerates these NUMA domains and exposes their
sizes and toplogy to the operating system in a way that sup-
ports both modern and legacy OSes.

In order to provide maximum performance to parallel run-
times, Nautilus includes support for NUMA machines. While
this may seem like a small issue, in practice we saw NUMA
effects that would double the execution time of a long-running
parallel application on the Legion run-time. NUMA-awareness
is therefore very important. While user-space processes do
typically have access to NUMA information and policies,
run-times executing in the Nautilus framework have full con-

Language SLOC
C 22697
CH+ 133
x86 Assembly 428
Scripting 706

Figure 9: Source lines of code for the Nautilus kernel.

trol over the placement of threads and memory and can
thus enjoy guarantees about what can affect run-time per-
formance.

Bootstrap Nautilus bootstraps the machine much like any
other OS, but is spared the need to bring up a complex user-
space environment. Once Nautilus initializes the physical
resources of the machine, such as memory, processors, and
devices, control over these resources falls into the hands of
the run-time. Nautilus enforces no policies or mechanisms
that may limit the performance or functionality of parallel
run-times. Because HRT bootstrap may well take the place
of process creation within an HVM, the timing of Nautilus
bootstrap is important. On our hardware, the time from
when the boot loader invokes Nautilus to the time the first
instruction of the run-time executes is on the order of a few
milliseconds.

Timers By default, Nautilus enables a scheduler tick mech-
anism so that run-times may, if they require it, implement a
preemptive scheduling model. The default periodic timer in-
terrupt in Nautilus comes from the Advanced Programmable
Interrupt Controller (APIC) present on all modern x86 ma-
chines. We chose the APIC timer because every processor
core has its own APIC timer, and therefore does not need
to receive scheduling events from other cores. This frees up
IPIs for other uses within the run-time.

For timing of events, Nautilus provides primitives to read
several platform timers, including the legacy i8254 PIT and
the more precise high-precision event timer (HPET). For
example, Nautilus exposes a clock_gettime () function that
will read the HPET’s monotonic counter registers. While
this made the process of porting run-times easier, the run-
time is by no means limited to using this method.

IRQs External interrupts in Nautilus work just like any
other operating system, with the exception that by default
only the timer interrupt is enabled at bootup. The run-
time has complete control over interrupts, including their
mapping, assignment, and priority ordering.

Console Nautilus exposes a set of text-mode console utili-
ties (such as printk()) that allow a run-time to immediately
display useful output on the machine. This output can be
routed to the video card and/or a serial port.

3.2 Complexity

We now make a case for the potential for Nautilus as a vehi-
cle for HRTs, now setting aside the attractive performance
of its primitives.

The process of building Nautilus as a minimal kernel layer
with support for a complex, modern, many-core x86 machine
took six person-months of effort on the part of seasoned
OS/VMM kernel developers. Figure 9 shows that Nautilus

Language | SLOC
C++ 133
C 636

Figure 10: Lines of code added to Nautilus to support Le-
gion, NDPC, and NESL.

is fairly compact, with a total of roughly 24000 lines of code.

Building a kernel, however, was not our main goal. Our main
focus was supporting the porting and construction of run-
times for the HRT model. The Legion run-time, discussed
at length in the next section, was the most challenging and
complex of the three run-times to bring up in Nautilus. Le-
gion is about double the size of Nautilus in terms of code-
base size, consisting of about 43000 lines of C++. Porting
Legion and the other run-times took a total of about four
person-months of effort. Most of this work went into under-
standing Legion and its needs. The lines of code actually
added to Nautilus to support all three run-times is shown in
Figure 10. We only needed to add about 800 lines of code.
This is tiny considering the size of the Legion run-time.

This suggests that exploring the HRT model for existing or
new parallel run-times, especially with a small kernel like
Nautilus designed with this in mind, is a perfectly manage-
able task for an experienced systems researcher or developer.
We hope that these results will encourage others to similarly
explore the benefits of HRTs.

4. EXAMPLE: LEGION

The Legion run-time system is designed to provide applica-
tions with a parallel programming model that maps well to
heterogeneous architectures [2, 49]. Whether the application
runs on a single node or across nodes—even with GPUs—
the Legion run-time can manage the underlying resources
so that the application does not have to. There are several
reasons why we chose to port Legion to the HRT model.
The first is that the primary focus of the Legion developers
is on the design of the run-time system. This not only al-
lows us to leverage their experience in designing run-times,
but also gives us access to a system designed with experi-
mentation in mind. Further, the codebase has reached the
point where the developers’ ability to rapidly prototype new
ideas is hindered by abstractions imposed by the OS layer.
Another reason we chose Legion is that it is quickly gaining
adoption among the HPC community, including within the
DOE’s exascale effort. The third reason is that we have cor-
responded directly with the Legion developers and discussed
with them issues with the OS layer that they found when
developing their run-time.

Under the covers, Legion bears many similarities to an op-
erating system and concerns itself with many issues that
an OS must deal with, including task scheduling, isolation,
multiplexing of hardware resources, and synchronization. As
we discussed in Section 2, the way that a complex run-time
like Legion attempts to manage the machine to suit its own
needs can often conflict with the services and abstractions
provided by the OS.

As Legion is designed for heterogeneous hardware, includ-
ing multi-node clusters and machines with GPUs, it is de-
signed with a multi-layer architecture. It is split up into the

110

‘Nau_tilus ——
100 | Linux - El- 4
1]
90 ',
80
70 |
@
o 60 |
£
E 50
i
40 |
30
20
10 |
.

0 . . .
2 4 8 16 32 62

Legion Processors (threads)
Figure 11: Run time of Legion circuit simulator versus core
count. The baseline Nautilus version has higher performance
at 62 cores than the Linux version.

high-level run-time and the low-level run-time. The high-
level run-time is portable across machines, and the low-level
run-time contains all of the machine specific code. There is
a separate low-level implementation called the shared low-
level run-time. This is the low-level layer implemented for
shared memory machines. As we are interested in single-
node performance, we naturally focused our efforts on the
shared low-level Legion run-time. All of our modifications to
Legion when porting it to Nautilus were made to the shared
low-level component. Outside of optimizations using hard-
ware access, and understanding the needs of the run-time,
the port was fairly straight-forward.

Legion, in its default user-level implementation, uses pthreads
as representations of logical processors, so the low-level run-
time makes fairly heavy use of the pthreads interface. In or-
der to transform Legion into a kernel-level HRT, we simply
had to provide a similar interface in Nautilus. The amount
of code added to Nautilus was less than 800 lines, and is
described in Figure 10. After porting Legion into Nautilus,
we then began to explore how Legion could benefit from
unrestricted access to the machine.

We now evaluate our transformation of the user-level Le-
gion run-time into a kernel using Nautilus, highlighting the
realized and potential benefits of having Legion operate as
an HRT. Our port is based on Legion as of October 14, 2014,

specifically commit €22962dbc05e52897a3c699085df9ad19590453a

which can be found via the Legion project web site.?

The Legion distribution includes numerous test codes, as
well as an example parallel application that is a circuit sim-
ulator. We used the test codes to check the correctness of
our work and the circuit simulator as our initial performance
benchmark. Legion creates an abstract machine that con-
sists of a set of cooperating threads that execute work when
it is ready. These are essentially logical processors. The
number of such threads can vary, representing an abstract
machine of a different size.

We ran the circuit simulator with a medium problem size
(100000 steps) and varied the number of cores Legion used

http:/ /legion.stanford.edu

'Nautilus —©—
Linux - El-

Speedup
©

. . . .
2 4 8 16 32 62
Legion Processors (threads)

Figure 12: Speedup of Legion (normalized to 2 Legion pro-
cessors) circuit simulator running on Linux and Nautilus as
a function of Legion processor (thread) count.

5%

45%

4%

3.5%

3%

25%

Speedup

2%

15%
q

1%

0.5% 1 1 1 1 1
2 4 8 16 32 62

Figure 13: Speedup of Legion circuit simulator comparing
the baseline Nautilus version and a Nautilus version that
executes Legion tasks with interrupts off.

to execute Legion tasks. Figure 11 shows the results. The
x-axis shows the number of threads/logical processors. The
thread count only goes up to 62 because the Linux version
would hang at higher core counts, we believe due to a live-
lock situation in Legion’s interaction with Linux. Notice
how closely, even with no hardware optimizations, Nautilus
tracks the performance of Linux. The difference between the
two actually increases when scaling the number of threads.
They are essentially at parity, even though Nautilus and the

"Legion port to it are still in their early stages. Nautilus is

slightly faster at 62 cores.

The speedup of the circuit simulator running in Legion as
a function of the number of cores is shown in Figure 12.
Speedups are normalized to Legion running with two threads.
The circuit simulator is largely CPU-bound and spends 99%
of its time in a loop computing a stencil approximation for
a PDE. We suspect that the benefits of running in an HRT
would be magnified in a more memory-bound code or one
that stresses the system primitives (see Section 3).

To experiment with hardware functionality in the HRT model,
we wanted to take advantage of a capability that normally
isn’t available in Linux at user-level. We decided to use the
capability to disable interrupts. In the Legion HRT, there

Language | SLOC
Compiler

Lisp | 11005
Run-time

C 8853

lex 230

yacc 461

Figure 14: Source lines of code for NESL. The run-time
consists of the VCODE interpreter and the CVL implemen-
tation we use.

are no other threads running besides the threads that Legion
creates, and so there is really no need for timer interrupts
(or device interrupts). Observing that interrupts can cause
interference effects at the level of the instruction cache and
potentially in task execution latency, we inserted a call to
disable interrupts when Legion invokes a task (in this case
the task to execute a function in the circuit simulator). Fig-
ure 13 shows the results, where the speedup is over the base-
line case where Legion is running in Nautilus but without
any change in the default interrupt policy. While this ex-
tremely simple change involved only adding two short lines
of code, we can see a measurable benefit that scales with the
thread count, up to 5% at 62 cores.

We believe that this is a testament to the promise of the
HRT model. While the Legion port to Nautilus is still in
its early stages, there is a large opportunity for exploring
other potential hardware optimizations to improve run-time
performance.

5. EXAMPLE: NESL

NESL [10] is a highly influential implementation of nested
data parallelism developed at CMU in the ’'90s. Very re-
cently, it has influenced the design of parallelism in Man-
ticore [30, 29], Data Parallel Haskell [19, 20], and arguably
the nested call extensions to CUDA [44]. NESL is a func-
tional programming language, using an ML-style syntax that
allows the implementation of complex parallel algorithms
in a very compact and high level way, often 100s or 1000s
of times more compactly than using a low-level language
such as C4+OpenMP. NESL programs are compiled into ab-
stract vector operations known as VCODE through a pro-
cess known as flattening. An abstract machine called a
VCODE interpreter then executes these programs on phys-
ical hardware. Flattening transformations and their ability
to transform nested (recursive) data parallelism into “flat”
vector operations while preserving the asymptotic complex-
ity of programs is a key contribution of NESL [11] and very
recent work on using NESL-like nested data parallelism for
GPUs [7] and multicore [6] has focused on extending flat-
tening approaches to better match such hardware.

As a proof of concept, we have ported NESL’s existing VCODE

interpreter to Nautilus, allowing us to run any program com-
piled by the out-of-the-box NESL compiler in kernel mode
on x86_64 hardware. We also ported NESL’s sequential im-
plementation of the vector operation library CVL, which we
have started parallelizing. Currently, point-wise vector op-
erations execute in parallel. The combination of the core
VCODE interpreter and a CVL library form the VCODE
interpreter for a system in the NESL model.

Language | SLOC
Compiler

Perl 2000

lex 82

yacc 236
Run-time

C 2900

C++ 93

x86 assembly 477

Figure 15: Source lines of code for NDPC. The run-time
counts include code both for use on Nautilus and for user-
level use.

While this effort is a work in progress, it gives some insights
into the challenges of porting this form of language imple-
mentation to the kernel level. In summary, such a port is
quite tractable. A detailed breakdown of the source code
in NESL as we use it is given in Figure 14. Compared to
the NESL source code release®, our modifications currently
comprise about 100 lines of Makefile changes and 360 lines
of C source code changes. About 220 lines of the C changes
are in CVL macros that implement the point-wise vector
operations we have parallelized. The remainder (100 Make-
file lines, 140 C lines) reflect the amount of glue logic that
was needed to bring the VCODE interpreter and the serial
CVL implementation into Nautilus. The hardest part of this
glue logic is assuring that the compilation and linking model
match that of Nautilus, which is reflected in the Makefile
changes. The effort took about one quarter to complete.

6. EXAMPLE: NDPC

We have created a different implementation of a subset of
the NESL language which we refer to as “Nested Data Paral-
lelism in C/C++” (NDPC). This is implemented as a source-
to-source translator whose input is the NESL subset and
whose output is C++ code (with C bindings) that uses
recursive fork/join parallelism instead of NESL’s flattened
vector parallelism. The C++ code is compiled directly to
object code and executes without any interpreter or JIT. Be-
cause C/C++ is the target language, the resulting compiled
NDPC program can easily be directly linked into and called
from C/C++ codebases. NDPC’s collection type is defined
as an abstract C++ class, which makes it feasible for the
generated code to execute over any C/C++ data structure
provided it exposes or is wrapped with the suitable interface.
We made this design decision to further facilitate “dropping
into NDPC” from C/C++ when parallelism is needed. In
the context of Figure 1(c), we plan that the run-time pro-
cessing of a call to an NDPC function will include crossing
the boundary between the general purpose and specialized
portions of the hybrid virtual machine.

Figure 15 breaks down the NDPC implementation in terms
of the languages used and the size of the source code in each.
The NDPC compiler is written in Perl and its code breaks
down evenly between (a) parsing and name/type unification,
and (b) code generation. The code generator can produce
sequential C++4 or multithreaded C++4. The generated code
uses a run-time that is written in C, C++, and assembly that
provides preemptive threads and simple work stealing.

3http:/ /www.cs.cmu.edu/~scandal /nesl /nesl3.1.html

Code generation is greatly simplified because the run-time
supports a thread_fork() primitive. The run-time guar-
antees that a forked thread will terminate at the point it
attempts to return from the current function. The NDPC
compiler guarantees the code it generates for the current
function will only use the current caller and callee stack
frames, that it will not place pointers to the stack on the
stack, and that the parent will join with any forked children
before it returns from the current function. The run-time’s
implementation of thread fork() can thus avoid complex
stack management. Furthermore, it can potentially provide
very fast thread creation, despite the fork() semantics, be-
cause it can avoid most stack copying as only data on the
caller and callee stack frames may be referenced by the child.
In some cases, the compiler can determine the maximum
stack size (e.g., for a leaf function), and supply this to the
run-time, further speeding up thread creation.

We also note that the compiler knows exactly what parts of
the stack can be written, and it knows that the lifetime of
a child thread nests within the lifetime of its parent. This
knowledge could be potentially leveraged at the kernel level
by maintaining only a single copy of read-only data on the
parent stack and the child stacks.

Two user-level implementations of threading are included in
the run-time, one of which is a veneer on top of pthreads,
while the other is an implementation of user-level fibers that
operates similarly to a kernel threading model. The kernel-
level implementation, for Nautilus, consists of only 150 lines
of code, as Nautilus supports this threading model inter-
nally. It is important to point out that the thread fork ca-
pability was quite natural to add to Nautilus, but somewhat
painful to graft over pthreads. Even for user-level fibers, the
thread fork capability requires somewhat ugly trampoline
code which is naturally avoided in the kernel.

As with the NESL VCODE port (Section 5) the primary
challenges in making NDPC operate at kernel-level within
Nautilus have to do with assuring that the compilation and
linking models match those of Nautilus. An additional chal-
lenge has been dealing with C++ in the kernel, although the
C++ feature set used by code generated by NDPC is con-
siderably simpler than that needed by Legion. Currently,
we are able to compile simple benchmarks such as nested
data parallel quicksort into Nautilus kernels and run them.
NDPC is a work in progress, but the effort to bring it up in
Nautilus in its present state required about a week.

7. RELATED WORK

The design of Nautilus was heavily influenced by early re-
search on microkernels [40, 9, 8] and even more by Engler
and others’ work on exokernels [26, 27]. Like Nautilus, ex-
okernel promotes an extremely thin kernel layer that only
serves to provide isolation and basic primitives. Higher-
level abstractions are delegated to user-mode library OSes.
Nautilus can be thought of as a kind of library OS for a
parallel run-time, but we shed the notion of privilege lev-
els for the sake of functionality and performance. Other
important OS projects in the vain of very thin kernel lay-
ers include KeyKOS [12], ADEOS [52], and the Stanford
Cache Kernel [24]. In many cases this idea has become in-
tertwined with modern virtualization [16]. More recently

there has been a resurgence of ideas from exokernel. Dune
uses hardware virtualization support to allow applications
to have access to a certain protected hardware features [5].
Arrakis leverages virtualized 1/O devices in a similar vain
in order to allow hardware access [46]. OSv [35], Uniker-
nels [42], and the Drawbdridge and Bascule 1ibOSes [47, 4]
also use virtualization to shed more light on the potential
of the exokernel idea. Nautilus is unique, however, in that
it is designed to support the hybrid run-time model, giving
the run-time unfettered access to the full feature set of the
machine.

There is also more evidence in the HPC community that
the OS can “get in the way”. Ferreira and Hoefler both ex-
plored the performance impact of OS noise on large-scale
parallel applications [28, 32]. Light-weight kernels such as
Kitten [38] are one solution to this problem. Current efforts
are underway to address this issue and work towards a so-
lution at the OS level [51], but granting access to run-times
is not one of the solutions explored.

The HPC community has had a decades-long interest in
bridging the gap between complex hardware and the pro-
grammer through languages and run-time systems. This is
now becoming a serious challenge at the node level for ex-
ascale, a challenge that was the focus of the SC 2013 panel
on “Exascale Run-time Systems”. The SC 2014 panel on
“Changing Operating Systems is Harder than Changing Pro-
gramming Languages” followed the earlier discussion. Lan-
guages and language implementations coming from the HPC
community, such as OpenARC [39], Chapel [21], UPC [18],
CoArray Fortran [25], and X10 [22] have the potential for
bridging this gap and could be users of the hybrid run-time
concept. As a specific example, consider the Swift language
and run-time [36], which seeks to support a programming
model in which there are many tiny tasks. Starting a task
must have extremely low overhead, kernel-level operation
could bolster. Another common thread in bridging the gap
between complex hardware and the programmer is to en-
hance program and run-time execution by manipulating the
system from user level. COSMIC [17], for example, targets
the Intel Phi, while Juggle [33] targets NUMA machines.
The HRT model would allow direct control of decisions that
systems like these can only encourage indirectly.

Nautilus also bears some similarity to other single address
space OSes (SASOSes), including Opal [23], Singularity [34],
Scout [43], and Nemesis [48]. The design choice of a single
address space for Nautilus was made mostly for simplicity,
but we plan to explore other alternatives in future work.

Nautilus targets single-node performance, particularly for
many-core machines. We therefore drew inspiration from
some notable projects with similar goals, including Bar-
relfish [3], Tesselation OS [41], Corey [13], K42 [37], and,
of course, work on scaling Linux [14]. None of this work,
however, explicitly shapes an OS around the needs of paral-
lel run-time systems. As far as we are aware, this is a unique
property of Nautilus.

8. CONCLUSIONS AND FUTURE WORK

We have made the case for transforming parallel run-times

into operating system kernels, forming hybrid run-times (HRT').

The motivations for HRT's include the increasing complex-
ity of hardware, the convergence of parallel run-time con-
cerns and abstractions in managing such hardware, and the
limitations of executing the run-time at user-level, both in
terms of limited hardware access and limited control over
kernel abstractions. We presented and evaluated Nautilus,
a prototype kernel framework to facilitate the construction
of HRTs. Using Nautilus, we were able to successfully trans-
form three very different run-times into HRTs. For the Le-
gion run-time, we were able to exceed Linux performance
with simple techniques that can only be done in the ker-
nel. Building Nautilus was a six person-month effort, while
porting the run-times was a four person-month effort. It is
somewhat remarkable that even with a fairly nascent kernel
framework, just by dropping the run-time down to kernel
level and taking advantage of a kernel-only feature in two
lines of code, we can exceed performance on Linux, an OS
that has undergone far more substantial development and
tuning effort.

In this paper, we have motivated HRT's, demonstrated tools
to make them a reality, and made several HRTs. We are
currently investigating other run-times, other architectures
(particularly Intel Phi), and are examining the use of other
kernel-only hardware features. A subtle point is that the
run-times we have ported thus far still bear much resem-
blance to their original userspace counterparts—that is, they
are ports instead of new designs developed without the con-
straints of userspace. We also note that the performance
results given Section 4 are limited to a specific parallel appli-
cation. It will be interesting to see how well a broad range of
parallel applications perform in the HRT model. We plan to
explore more parallel applications such as bulk-synchronous
parallel applications and applications that rely heavily on
message passing. We also plan to explore workloads that
are largely memory-bound or I/O-bound.

9. REFERENCES

[1] T. E. Anderson, B. N. Bershad, E. D. Lazowska, and
H. M. Levy. Scheduler activations: Effective kernel
support for the user-level management of parallelism.
In Proceedings of the 13" ACM Symposium on
Operating Systems Principles (SOSP 1991), pages
95-109, Oct. 1991.

[2] M. Bauer, S. Treichler, E. Slaughter, and A. Aiken.
Legion: Expressing locality and independence with
logical regions. In Proceedings of Supercomputing (SC
2012), Nov. 2012.

[3] A. Baumann, P. Barham, P. E. Dagand, T. Harris,
R. Isaacs, S. Peter, T. Roscoe, A. Schiipbach, and
A. Singhania. The Multikernel: A new OS architecture
for scalable multicore systems. In Proceedings of the
22"% ACM Symposium on Operating Systems
Principles (SOSP 2009), pages 29-44, Oct. 2009.

[4] A. Baumann, D. Lee, P. Fonseca, L. Glendenning,

J. R. Lorch, B. Bond, R. Olinsky, and G. C. Hunt.
Composing OS extensions safely and efficiently with
Bascule. In Proceedings of the 8" ACM European
Conference on Computer Systems (EuroSys 2013),
pages 239-252, Apr. 2013.

[5] A. Belay, A. Bittau, A. Mashtizadeh, D. Terei,

D. Mazieres, and C. Kozyrakis. Dune: Safe user-level
access to privileged CPU features. In Proceedings of

[6]

[7]

8]

[9]

(10]

(11]

(12]

(13]

(14]

(16]

the 108" USENIX Conference on Operating Systems
Design and Implementation (OSDI 2012), pages
335-348, Oct. 2012.

L. Bergstrom, M. Fluet, M. Rainey, J. Reppy,

S. Rosen, and A. Shaw. Data-only flattening for nested
data parallelism. In Proceedings of the 18th ACM
SIGPLAN Symposium on Principles and Practice of
Parallel Programming (PPoPP 2013), Feb. 2013.

L. Bergstrom and J. Reppy. Nested data-parallelism
on the gpu. In Proceedings of the 17th ACM
SIGPLAN International Conference on Functional
Programming (ICFP 2012), Sept. 2012.

B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer,

M. E. Fiuczynski, D. Becker, C. Chambers, and

S. Eggers. Extensibility, safety and performance in the
SPIN operating system. In Proceedings of the 15"
ACM Symposium on Operating Systems Principles
(SOSP 1995), pages 267-283, Dec. 1995.

D. L. Black, D. B. Golub, D. P. Julin, R. F. Rashid,
R. P. Draves, R. W. Dean, A. Forin, J. Barrera,

H. Tokuda, G. Malan, et al. Microkernel operating
system architecture and Mach. In Proceedings of the
USENIX Workshop on Micro-Kernels and Other
Kernel Architectures, pages 11-30, Apr. 1992.

G. E. Blelloch, S. Chatterjee, J. Hardwick,

J. Sipelstein, and M. Zagha. Implementation of a
portable nested data-parallel language. Journal of
Parallel and Distributed Computing, 21(1):4-14, Apr.
1994.

G. E. Blelloch and J. Greiner. A provable time and
space efficient implementation of NESL. In
Proceedings of the International Conference on
Function Programming (ICFP), May 1996.

A. C. Bomberger, W. S. Frantz, A. C. Hardy,

N. Hardy, C. R. Landau, and J. S. Shapiro. The
KeyKOS nanokernel architecture. In Proceedings of
the USENIX Workshop on Micro-kernels and Other
Kernel Architectures, pages 95—-112, Apr. 1992.

S. Boyd-Wickizer, H. Chen, R. Chen, Y. Mao,

F. Kaashoek, R. Morris, A. Pesterev, L. Stein, M. Wu,
Y. Dai, Y. Zhang, and Z. Zhang. Corey: An operating
system for many cores. In Proceedings of the 8"
USENIX Conference on Operating Systems Design and
Implementation (OSDI 2008), pages 43-57, Dec. 2008.
S. Boyd-Wickizer, A. T. Clements, Y. Mao,

A. Pesterev, M. F. Kaashoek, R. Morris, and

N. Zeldovich. An analysis of Linux scalability to many
cores. In Proceedings of the 9" USENIX Conference
on Operating Systems Design and Implementation
(OSDI 2010), Oct. 2010.

R. Brightwell, R. Oldfield, D. Bernholdt, A. Maccabe,
E. Brewer, P. Bridges, P. Dinda, J. Dongarra,

C. Tancu, M. Lang, J. Lange, D. Lowenthal,

F. Mueller, K. Schwan, T. Sterling, and P. Teller.
Hobbes: Composition and virtualization as the
foundations of an extreme-scale OS/R. In Proceedings
of the 3rd International Workshop on Runtime and
Operating Systems for Supercomputers (ROSS 2013),
June 2013.

E. Bugnion, S. Devine, and M. Rosenblum. Disco:
Running commodity operating systems on scalable
multiprocessors. In Proceedings of the 16" Symposium

[18]

[19]

[20]

[21]

[22]

[24]

[25]

[26]

[27]

[28]

[29]

on Operating Systems Principles (SOSP 1997), pages
143-156, Oct. 1997.

S. Cadamb, G. Coviello, C.-H. Li, R. Phull, K. Rao,
M. Sankaradass, and S. Chakradhar. Cosmic:
Middleware for high performance and reliable
multiprocessing on intel manycore coprocessors. In
Proceedings of the 22nd ACM Symposium on
High-performance Parallel and Distributed Computing
(HPDC 2013), June 2013.

W. Carlson, J. Draper, D. Culler, K. Yelick,

E. Brooks, and K. Warren. Introduction to upc and
language specification. Technical Report
CCS-TR-99-157, IDA Center for Computing Sciences,
May 1999.

M. Chakravarty, G. Keller, R. Leshchinskiy, and

W. Pfannenstiel. Nepal—nested data-parallelism in
haskell. In Proceedings of the 7th International
Euro-Par Conference (EUROPAR), Aug. 2001.

M. Chakravarty, R. Leshchinskiy, S. P. Jones,

G. Keller, and S. Marlow. Data parallel haskell: A
status report. In Proceedings of the Workshop on
Declarative Aspects of Multicore Programming, Jan.
2007.

B. Chamberlain, D. Callahan, and H. Zima. Parallel
programmability and the chapel langauge.
International Journal of High Performance Computing
Applications, 21(3):291-312, Aug. 2007.

P. Charles, C. Donawa, K. Ebicioglu, C. Grothoff,

A. Kielstra, C. von Praun, V. Saraswat, and V. Sarkar.
X10: An object-oriented approach to non-uniform
cluster computing. In Proceedings of the Conference
on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA), Oct. 2005.
J. S. Chase, J. S. Chase, H. M. Levy, H. M. Levy,

M. J. Feeley, M. J. Feeley, E. D. Lazowska, and E. D.
Lazowska. Sharing and protection in a single address
space operating system. ACM Transactions on
Computer Systems, 12(4):271-307, Nov. 1994.

D. R. Cheriton and K. J. Duda. A caching model of
operating system kernel functionality. In Proceedings
of the 15 USENIX Symposium on Operating Systems
Design and Implementation (OSDI 2004), pages
14:1-14:15, Nov. 1994.

Y. Dotsenko, C. Coarfa, and J. Mellor-Crummey. A
multi-platform co-array fortran compiler. In
Proceedings of the 13th International Conference on
Parallel Architectures and Compilation Techniques,
Sept. 2004.

D. R. Engler and M. F. Kaashoek. Exterminate all
operating system abstractions. In Proceedings of the
5" Workshop on Hot Topics in Operating Systems
(HotOS 1995), pages 78-83, May 1995.

D. R. Engler, M. F. Kaashoek, and J. O’Toole, Jr.
Exokernel: An operating system architecture for
application-level resource management. In Proceedings
of the 15" ACM Symposium on Operating Systems
Principles (SOSP 1995), pages 251-266, Dec. 1995.
K. B. Ferreira, P. Bridges, and R. Brightwell.
Characterizing application sensitivity to OS
interference using kernel-level noise injection. In
Proceedings of Supercomputing (SC 2008), Nov. 2008.
M. Fluet, M. Rainey, J. Reppy, and A. Shaw.

(30]

(31]

32]

33]

(34]

(35]

(36]

37]

(38]

(39]

(40]

(41]

Implicitly threaded parallelism in manticore. In
Proceedings of the 13th ACM SIGPLAN International
Conference on Functional Programming (ICFP), Sept.
2008.

M. Fluet, M. Rainey, J. Reppy, A. Shaw, and Y. Xiao.
Manticore: A heterogeneous parallel language. In
Proceedings of the Workshop on Declarative Aspects of
Multicore Programming, January 2007.

K. C. Hale and P. A. Dinda. Guarded modules:
Adaptively extending the VMM'’s privilege into the
guest. In Proceedings of the 111" International
Conference on Autonomic Computing (ICAC 2014),
pages 85-96, June 2014.

T. Hoefler, T. Schneider, and A. Lumsdaine.
Characterizing the influence of system noise on
large-scale applications by simulation. In Proceedings
of Supercomputing (SC 2010), Nov. 2010.

S. Hofmeyr, J. A. Colmenares, C. lancu, and

J. Kubiatowicz. Juggle: Proactive load balancing on
multicore computers. In Proceedings of the 20th ACM
Symposium on High-performance Parallel and
Distributed Computing (HPDC 2011), June 2011.

G. C. Hunt and J. R. Larus. Singularity: Rethinking
the software stack. SIGOPS Operating Systems
Review, 41(2):37-49, Apr. 2007.

A. Kivity, D. Laor, G. Costa, P. Enberg, N. Har’El,
D. Marti, and V. Zolotarov. OSv—optimizing the
operating system for virtual machines. In Proceedings
of the 2014 USENIX Annual Technical Conference
(USENIX ATC 2014), June 2014.

S. Krieder, J. Wozniak, T. Armstrong, M. Wilde,

D. Katz, B. Grimmer, I. Foster, and I. Raicu. Design
and evaluation of the GeMTC framework for
gpu-enabled many-task computing. In Proceedings of
the 23rd ACM Symposium on High-performance
Parallel and Distributed Computing (HPDC 2014),
June 2014.

O. Krieger, M. Auslander, B. Rosenburg, R. W.
Wisniewski, J. Xenidis, D. Da Silva, M. Ostrowski,

J. Appavoo, M. Butrico, M. Mergen, A. Waterland,
and V. Uhlig. K42: Building a complete operating
system. In Proceedings of the 15" ACM European
Conference on Computer Systems (EuroSys 2006),
pages 133-145, Apr. 2006.

J. Lange, K. Pedretti, T. Hudson, P. Dinda, Z. Cui,
L. Xia, P. Bridges, A. Gocke, S. Jaconette,

M. Levenhagen, and R. Brightwell. Palacios and
kitten: New high performance operating systems for
scalable virtualized and native supercomputing. In
Proceedings of the 24th IEEE International Parallel
and Distributed Processing Symposium (IPDPS 2010),
Apr. 2010.

S. Lee and J. Vetter. OpenARC: Open accelerator
research compiler for directive-based, efficient
heterogeneous computing. In Proceedings of the 23rd
ACM Symposium on High-performance Parallel and
Distributed Computing (HPDC 2014), June 2014.

J. Liedtke. On micro-kernel construction. In
Proceedings of the 15" ACM Symposium on Operating
Systems Principles (SOSP 1995), pages 237-250, Dec.
1995.

R. Liu, K. Klues, S. Bird, S. Hofmeyr, K. Asanovi¢,

[42]

[43]

[44]

[45]

[46]

and J. Kubiatowicz. Tessellation: Space-time
partitioning in a manycore client OS. In Proceedings of
the 15 USENIX Conference on Hot Topics in
Parallelism (HotPar 2009), pages 10:1-10:6, Mar.
20009.

A. Madhavapeddy, R. Mortier, C. Rotsos, D. Scott,
B. Singh, T. Gazagnaire, S. Smith, S. Hand, and

J. Crowcroft. Unikernels: Library operating systems
for the cloud. In Proceedings of the 18" International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS 2013),
pages 461-472, Mar. 2013.

A. B. Montz, D. Mosberger, S. W. O’Malley, L. L.
Peterson, and T. A. Proebsting. Scout: A
communications-oriented operating system. In
Proceedings of the 5" Workshop on Hot Topics in
Operating Systems (HotOS 1995), pages 5861, May
1995.

NVIDIA Corporation. Dynamic parallelism in CUDA,
Dec. 2012.

J. Oayang, B. Kocoloski, J. Lange, and K. Pedretti.
Enabling multi-stack software on partitioned hardware
for exascale systems. In Proceedings of the 29th IEEE
International Parallel and Distributed Processing
Symposium (IPDPS 2015), May 2015.

S. Peter and T. Anderson. Arrakis: A case for the end
of the empire. In Proceedsings of the 14*" Workshop
on Hot Topics in Operating Systems (HotOS 2013),
pages 26:1-26:7, May 2013.

[47]

(48]

(49]

[50]

[51]

[52]

D. E. Porter, S. Boyd-Wickizer, J. Howell, R. Olinsky,
and G. C. Hunt. Rethinking the library OS from the
top down. In Proceedings of the 16'" International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS 2011),
pages 291-304, Mar. 2011.

T. Roscoe. Linkage in the Nemesis single address
space operating system. ACM SIGOPS Operating
Systems Review, 28(4):48-55, Oct. 1994.

S. Treichler, M. Bauer, and A. Aiken. Language
support for dynamic, hierarchical data partitioning. In
Proceedings of the 2013 ACM SIGPLAN International
Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA
2013), pages 495-514, Oct. 2013.

K. B. Wheeler, R. C. Murphy, and D. Thain.
Qthreads: An API for programming with millions of
lightweight threads. In Proceedings of the 22™¢
International Symposium on Parallel and Distributed
Processing (IPDPS 2008), Apr. 2008.

R. W. Wisniewski, T. Inglett, P. Keppel, R. Murty,
and R. Riesen. mOS: An architecture for
extreme-scale operating systems. In Proceedings of the
4" International Workshop on Runtime and
Operating Systems for Supercomputers (ROSS 2014),
pages 2:1-2:8, June 2014.

K. Yaghmour. Adaptive domain environment for
operating systems.
http://www.opersys.com/ftp/pub/Adeos/adeos.pdf.

