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Abstract

Approaches to making cloud operation more efficient,

for example through scheduling and power management,

largely assume that the workload offered from mobile,

user-facing applications is a given and that the cloud

must simply adapt to it. We flip this assumption 180

degrees and ask to what extent can we instead shape

the user-centric workload into a form that would ben-

efit such approaches. Using a toolchain that allows us

to interpose on frontend/backend interactions in popular

Android applications, we add the ability to introduce de-

lays and collect information about user satisfaction. We

conduct an “in the wild” user study using this capability,

and report on its results. Delays of up to 750 ms can be

introduced with little effect on most users, although this

is very much user and application dependent. Finally,

given our study results, we consider reshaping the appli-

cation requests by selective delays to have exponential

interarrival times (Poisson arrivals), and find that we are

often able to do so without exceeding the user’s delay

tolerance.

1 Introduction

Policies for scheduling, mapping, resource alloca-

tion/reservation, power management, and similar mech-

anisms are generally designed with the assumption that

the offered workload itself is sacrosanct. Even for closed

systems, we hope that the system will have minimal ef-

fect on the offered workload. For the present paper, we

consider three parts of this assumption: (1) the work-

load’s statistical properties are a given, (2) the overall

offered load is a given, and (3) the performance require-

ments are uniform across users. The design of a policy

typically is then focused on the goal of minimizing cost,

power, energy, latency, etc. given these.

As an example, consider making a modern user-facing

cloud application such as Pinterest, Pandora, or Google

Translate more energy or economically efficient. The

application consists of a user interface (the “frontend”),

for example an app on a smartphone, that communi-

cates with the core application and systems software (the

“backend”). The backend runs in the remote data centers

and the network that are the physical underpinnings of

the cloud. User interactions with the frontend result in re-

quests to the backend. The data center brings up or shuts

down hardware to accommodate the offered load of the

requests from the application’s users. The assumption

given above puts major constraints on the possible poli-

cies to drive these mechanisms and what they can do. It

is clear that a given offered load combined with with uni-

form performance requirements will place a lower limit

on how many machines need to be active, regardless of

policy. Less obviously, the properties of the requests,

for example the interarrival time distribution, request size

distribution, and any correlations will affect the dynam-

ics of the request stream and thus how much headroom

(additional active hardware) the policy needs to preserve.

In this paper, we consider the prospects for relaxing

the assumption. Instead of studying how the cloud or

datacenter might respond better to a sacrosanct offered

workload, we turn the problem around 180 degrees and

consider a model in which the backend determines its de-

sired workload characteristics and the frontend, or load

balancer, enforces these characteristics. In effect, we

consider shaping the user-driven workload analogously

to how a packet stream might be shaped at entry to a net-

work. We think this can be done by taking advantage of

the variation in tolerance for a given level of performance

that exists among individual users. We have found that

such variation exists in many other contexts [13, 23, 32,
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17, 24], and that its is possible to take advantage of it in

those contexts [18, 19, 20, 21, 22, 29, 36, 16, 17, 31, 30].

We leverage a toolchain that lets us interpose on ex-

isting popular Android applications taken directly from

the Google Play store. Using this toolchain, we modify

a set of such applications so that their frontend/backend

interaction passes through code that can selectively delay

the interaction. Our additions to the applications also in-

clude mechanisms for user feedback about satisfaction

with performance. This allowed us to conduct a user

study where we introduced varying amounts of delay to

the user experience and collected both the user feedback

and the individual requests going from the frontend to the

backend. A core outcome of the study is that it is possi-

ble to introduce up to 750ms of delay without a change

in user satisfaction (to within 10% with > 95% confi-

dence) for our test applications. We also observed that

user satisfaction with specific amounts of delay varied

considerably.

We then consider a system which selectively delays re-

quests going from frontends to the backend so as to shape

the arrival process at the backend as Poisson arrivals (ex-

ponentially distributed interarrival times). This is a well-

known arrival process particularly suitable for leveraging

classic queuing analysis in the design of scheduling sys-

tems. The system we consider also can limit the overall

arrival rate (throttling). We simulate this system using

the traces acquired from the user study. These traces also

allow us to determine the likely effect on per-user satis-

faction of our introduced delays. From this, we can eval-

uate the trade-off between our backend-centric goals for

introducing the delays (Poisson arrivals, rate limits) and

our frontend-centric goals (maintaining user satisfaction

with performance). There exist trade-off points where we

can make the arrival process considerably more Poisson

while not introducing delay that leads to dissatisfaction.

The contributions of our work are:

• We introduce the concept of shaping user-driven re-

quests originating from the frontend of a mobile ap-

plication and going to the cloud backend to meet

goals established by the backend. We refer to this

concept as user traffic shaping.

• We show, via a user study involving 30 users run-

ning 5 popular Android applications on their mobile

phones over a period of a week, that there is room

to do user shaping by introducing delays in the re-

quest stream. The tolerance for introduced delay

exists across the whole subject group, and it varies

across individuals.

• We describe a potential system that uses this room

and varying tolerance to introduce delays that shape

the user request stream so that it is closer to a Pois-

son process, and can be rate limited.

• We evaluate this system, in trace-based simulation,

and find that there exist trade-off points where we

are able to more closely match the Poisson arrival

and rate limiting goals, while not reducing user sat-

isfaction in a significant way.

2 Related Work

Achieving an effective and responsive user experience is

critical to the success of cloud applications, but at the

same time there is a growing interest in making the data

centers that their backends run on more efficient and sus-

tainable. By late 2011, Google’s data center operation

involved 260 megawatts of continuous power, with an

individual search costing 0.3 watt-hours of energy [12]

while a single circa 2009 Amazon data center operated at

15 megawatts [14]. The EPA estimated in 2007 that data

centers consumed 61 terawatt-hours of energy in 2006,

1.5% of the total U.S. consumption, that data centers

were the fastest growing electricity consumers, and that

an additional 10 power plants would be required for this

growth by 2011 [33]. Research studies and reports dat-

ing back to the early 1990s (e.g., [25]) have consistently

shown low server utilization, with recent reports placing

it in the 10–30% ballpark (e.g., [3]). This low utilization

feeds into the very public “cloud factories” charge [11]

that clouds are bad for the environment and unsustain-

able. The proposed work hopes to address these issues

by incorporating the individual user.

Numerous approaches to making data centers more

energy efficient have been proposed. The example ap-

proach of dynamically choosing the number of servers

that are powered up is that has been under investigation

for some time. AutoScale [9] is arguably the state of the

art here, and the AutoScale paper has a detailed survey

of prior work. Given an offered workload, an SLA, and

the time needed to bring up/down a server, AutoScale

dynamically chooses to bring up or down servers with

minimal headroom (additional active servers) and min-

imal chance of violating the SLAs. Other examples of

adapting, in an energy efficient manner, to the offered

workload include dynamic voltage and frequency scal-

ing (DVFS) for servers [6], coordinated decisions across

the data center [26, 8], and consolidation within the data-

center [34]. The proposed work is likely to be applicable

to these and other approaches in that it offers the orthog-

onal capability of changing the offered workload.
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SleepServer [1] is a proxy architecture that allows a

host to enter low power sleep modes more frequently and

opportunistically. A SleepServer machine maintains the

network presence of a host and wakes it only when re-

quired. Another work [27] simplifies the overall archi-

tecture by using a client-side agent. Such proxies are a

potential venue for user-centric traffic shaping.

Traffic shaping has had its greatest success in com-

puter networks. It originated in ATM networks [15, 28]

and then expanded widely [10, 7], for example into Diff-

Serve [4], and today is widely deployed. The proposed

user-centric traffic shaping concept is named by analogy,

but an important distinction is that we focus on shaping

the users’ offered workload to the cloud, as well as shap-

ing the users’ perception of the performance that work-

load receives.

3 Frontend augmentation

Our user study is based on popular Android Java applica-

tions that are available only in object code form, gener-

ally from the Google store. We modify these application

frontends to add the following functionality, all within

the mobile phone.

1. The ability to introduce delays to the frontend’s net-

work requests. Delays are selectively introduced ac-

cording to testcases loaded onto the phone.

2. Continuous measurement of the phone’s environ-

ment. This includes CPU load, network characteri-

zation (RSSI), which radio is in use, ambient light,

screen backlight setting, and others.

3. An interface by which the user can supply feedback

about performance. A user can supply feedback at

any time, but is also can be prompted to do so by a

testcase.

The specific choice of applications, testcases, arrival pro-

cess for testcases, and users is the basis of a study.

Our application augmentation framework is based on

Dpartner [37] and DelayDroid [5]. Dpartner is a gen-

eral framework for decomposing a compiled Java appli-

cation into its constituent parts, adding interposition, in-

strumentation, and other elements, repartioning the ele-

ments differently (for example, across the client/server

boundary), and then reassembling the applications. It

is intended to support various kinds of experimentation

with existing, binary-only, distributed applications.

DelayDroid leverages Dpartner to augment mobile

Android Java applications with support for communica-

tion delays and batching, for example to allow study of

Android OS 
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Figure 1: Run-time architecture on the frontend.

policies to make 3G/4G radio operation more efficient by

reducing tail times. We use DelayDroid specifically to

gain the delay capability. DelayDroid effectively intro-

duces an proxy into the application through which high-

level (e.g. HTTPWebkit) and low-level (e.g. TCPSocket)

network requests pass. The framework interposes the de-

laying proxy on 110 networking-related functions from

five categories within the Android API: HTTPWebkit,

HTTPApache, HTTPJavaNet, TCPSocket, and UDP-

Socket. The proxy can delay requests through all of these

interfaces according to our testcase. If no delay is to be

introduced (for example, no testcase is being run or the

current testcase indicates zero delay), the overhead of the

proxy is negligible. The application binary DelayDroid

produces is only about 1-2% larger than the original bi-

nary.

In addition to the augmented application, our frame-

work introduces a separate component, the Feedback

Collector (FB Collector) that is responsible for coordi-

nating among augmented applications on the phone, and

collecting user feedback.

Figure 1 illustrates the run-time architecture of our

system when deployed in a user study. The phone con-

tains multiple augmented applications. For each aug-

mented application, our framework has modified or in-

troduced four kinds of classes:

• Refactored network-relevant classes are those that

send network requests, which we interpose on.

• Refactored context-relevant classes are those that

we interpose on to track context.

• DelayDroid run-time classes are those that we add

in order to inject delay to network requests at run-

time.

• Unchanged classes.

The DelayDroid run-time consists of ContextService,

DelayController and Rate-Message Receiver. Con-
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Figure 2: Rating overlay in its active state, as hovering

over Pinterest.

textService collects and provides information about the

context, such as the network status, screen brightness,

and CPU usage. DelayController is in charge of intro-

ducing additional delays into the network requests. De-

layController chooses testcases randomly from within a

global pool. Operationally, when any network send re-

quest occurs, control flow is detoured through DelayCon-

troller. DelayController then delays the request accord-

ing to the testcase. Rate-Message Receiver interacts with

FB Collector, and its operation is explained below.

FB Collector is a separate application that collaborates

with augmented applications by sending and receiving

Android broadcast messages. This is also the user-visible

portion of the system. A Likert scale overlay, as seen in

Figure 2, hovers over the application. The user can at any

time select a rating. 1 indicates complete dissatisfaction

with performance, and 5 indicates complete satisfaction

with it. Additionally, a shake detector is included, allow-

ing the user to indicate dissatisfaction with device per-

formance by shaking it. In addition to unprompted feed-

back, the user interface also supports prompted feedback.

When we want to prompt feedback, we make the inter-

face blink.

In typical operation as in our user study, DelayCon-

troller at random times will select a random testcase.

The testcase will indicate that network requests should

be delayed by a given amount over a given interval. This

testcase applies to all augmented applications. Delay-

Controller will then apply this delay to all requests that

the refactored network-relevant classes route to it. When

the testcase is over, DelayController sends a message to

FBCollector 1©, which is received by the Blink Message

Receiver 2©, which causes the overlay to blink to prompt

the user 3©. When feedback is received, FB Collector

notifies 4© the Rate-Message Receiver component of the

augmented application 5© which in turn logs the feed-

back and all information about the testcase and context.

The log files produced by the system include the fol-

lowing information:

• Timestamp.

• User feedback (via the floating interface), if any,

and whether feedback is prompted or unprompted.

• Shake detection status.

• Testcase, if any.

• Arrival time and duration of each network request.

• Foreground application.

• Ambient light level.

• Screen state (on/off, and brightness).

• OS metrics including CPU utilization and load, the

percentage of memory free, frequency of each core,

and battery percentage.

• Network metrics including type of network (WiFi or

cellular), signal strength, and the numbers of pack-

ets and bytes sent, received, and dropped.

4 User study

The goal of our user study is to understand the conse-

quences for user satisfaction with performance of delay-

ing network requests from the frontend to the backend.

Simply put, how much delay can we introduce before

ordinary users employing popular applications become

dissatisfied? To answer this and related questions, we

leveraged the framework of Section 3 to give us access to

popular applications. We then designed a study in which
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App Req. Rate [req/s] Computation

MapQuest 0.89 Low

Pandora 0.38 Low

Pinterest 1.63 Medium

WeatherBug 1.09 Low

Google Translate 0.46 High

Figure 3: Applications in our study.

existing users of these applications could participate on

their own phones in their normal environments.

Applications We chose five of the most popular appli-

cations from the Google Play Store, applications where

we believed we would have no trouble recruiting existing

users. We also wanted to test applications that had vary-

ing request rates as well as varying amounts of “com-

putation” that would likely be done on the datacenter.

Figure 3 enumerates the chosen applications, with aver-

age request rates having been calculated from traces col-

lected during the study.

Subjects Our study was IRB approved1 , which al-

lowed us to recruit participants from the broad North-

western University community. We advertised our study

by poster at several locations on campus, and also adver-

tised by email. Our selection criteria was that the subject

had to own and regularly use a mobile phone capable of

running our augmented applications, and the subject had

to self-identify has a regular user of at least one of our ap-

plications. We selected the first 30 respondents who met

these criteria for our study. As part of the study, each sub-

ject also filled in a questionnaire about their familiarity

with phones, specific applications, etc. Each was given a

$40 gift certificate at the end of their participation.

Our 30 subjects have the following demographics:

• 12 females, 18 males.

• 25 were age 17–25 age, 5 were age 25–35 age range.

• 16 were in the engineering school, 10 were in the

liberal arts school, 3 were in the journalism school,

and one was in the education school.

• 25 had used a modern smartphone for at least 6

months, with 21 of these had used one for 2 or more

years.

• MapQuest: 7 indicated a familiarity of 7 or greater

(on a scale from 1 to 10).

1Northwestern IRB Project Number STU00093881.

• Pandora: 23 indicated a familiarity of 7 or greater.

• Pinterest: 11 indicated a familiarity of 7 or greater.

• WeatherBug: 8 indicated a familiarity of 7 or

greater.

• Google Translate: 17 indicated a familiarity of 7 or

greater.

Testcases We designed testcases—randomly selected

periods of randomly selected additional delay—with an

eye to inducing perceptibly different levels of perfor-

mance in our applications as we ourselves perceived

them. Although we used three kinds of testcases (vary-

ing delay, sudden delay, and uniform delay), we use only

uniform delay in this paper. In a uniform delay testcase,

each network request that occurs during a testcase is de-

layed by a fixed amount. Our testcases all had a duration

of one minute, and their delays were 0, 50, 250, 500, and

750 ms. Users were prompted for feedback in the middle

of the testcase (30 seconds in). Testcases themselves ar-

rived randomly, with a user prompted an average of 152

times over the course of the study (one week). About

20% of prompts resulted in a response.

The only indication the subject had that a testcase was

running was being prompted, but the subject was also

so prompted during the zero delay testcase. Neither the

subject nor the proctor were aware of which testcase is

run and when until after the subject completed the study.

Methodology The subject used his or her own personal

smartphone for the duration of the study, albeit with our

augmented test applications replacing the original appli-

cations. All logs were kept on the subject’s smartphone,

and were removed at the conclusion of the study, along

with the augmented applications. The duration of the

study was one week.

When a subject first arrived, we had them fill out a

questionnaire designed to determine their level of knowl-

edge and comfort with a modern mobile device, as well

as collecting demographic information. During this time

we installed the augmented applications on their device.

The subject was then instructed how to use the user in-

terface for the duration of the study. This was done with

a written document that was identical for all subjects.2

The document stressed that our interest was in the level

of performance of the applications and not in their con-

tent. It did not indicate to the subject how performance

might change. We indicated that it was important to pro-

vide feedback about performance whenever the interface

2Study materials will be made available in the final paper.
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Average Average Change p-value for Comparison

Delay [ms] Satisfaction in Satisfaction to No Delay

No Delay 4.0773 0 n/a

50 4.1000 0.0227 0.002

250 4.1233 0.0460 0.001

500 3.9408 0.1725 0.022

750 4.1975 0.1202 0.005

Figure 4: User satisfaction is largely unaffected by the introduction of delays of up to 750 ms into network requests

made from Pandora, Pinterest, WeatherBug, and Google Translate. The p-values indicate that there was no statistically

significant change in user satisfaction as request delay was added. The threshold here is 0.5 (10% of the rating scale).

flashed, and we described the intent of the scale as “1 be-

ing completely dissatisfied, 5 being the most satisfied,

and 3 being neutral [with/about performance]”. The sub-

ject would then leave the lab, and use their phone as they

normally would for one week, answering rating prompts

when appropriate.

At the conclusion of the week, the subject returned

to the lab, and filled out an exit questionnaire. As they

filled this out, we connected to their smartphone, down-

load the study data, and removed the test applications

from their phone, replacing them with the original appli-

cations. Other than our interaction with them, and the

user interface of Figure 2, changes to their normal ex-

perience of the applications was intentionally kept to a

minimum.

5 Study results

Our study produced usable data from 27 of our 30 sub-

jects. Recall that the form of the logged data (Section 3)

includes both unlabeled and labeled data, where the la-

bels are the satisfaction the user indicates via the inter-

face. The labels may be prompted (during the middle

of a testcase) or unprompted. In the following, we con-

sider the prompted, labeled data only. That is, we con-

sider only user satisfaction during randomly selected one

minute windows of time during which we intervene by

delaying all network requests by a given amount, includ-

ing zero. 30 seconds into each window, we prompt the

user for a rating from 1 to 5.

Given these constraints, our study produced 850 data

points, each of which is the outcome of an intervention

(the application of a testcase) that resulted in a prompted

response from the user. Given this number, as we de-

compose the results, for example by application or user,

it is important that we highlight which conclusions have

strong statistical support from the data. Hence, when we

present p-values, we bold those that have p < 0.05 (95%

confidence level).

To account for any anchoring effect due to user-based

interpretation of satisfaction, we did our analysis based

on the differences in satisfaction between delayed and

undelayed application ratings for each user individually.

In this way the comparisons that we make should be im-

mune to differences in how users define their satisfaction

levels.

5.1 Users tolerate significant additional de-

lay

If we look across all of our users and applications, we

see the results of Figure 4. Here we record the average

satisfaction for each level of delay, the average change in

satisfaction compared to that of the zero delay level, and

a p-value. In aggregate, the data seems to be telling us

that it is possible to introduce up to 750 ms of additional

delay without having a significant effect on user satisfac-

tion. The p-values reported are for a two one-sided t-test

(TOST), which measures how easily we can discard the

null hypothesis that the mean satisfaction at a given de-

lay level is different from the mean satisfaction at a de-

lay of zero. In all cases, we can discard this hypothesis

with at least 97% confidence. In such comparisons, the

threshold of difference is also important to consider. The

results in the figure are for a threshold of 0.5, or 10% of

the 0..5 Likert rating scale we use. Given no other infor-

mation, it appears very clear that we can add up to 750

ms of delay without changing the rating by more than

10%.

5.2 User tolerance for additional delay

varies by application

We also considered the effects of introducing delay into

individual applications, while still grouping all users to-

gether. Once again, we used TOST tests to identify

where user satisfaction changed significantly compared
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App 50ms 250ms 500ms 750ms

MapQuest 0.591 0.731 n/a 0.268

Pandora 0.133 0.127 0.034 0.291

Pinterest 0.131 0.025 0.101 0.356

WeatherBug 0.303 0.254 0.158 0.289

Google Translate 0.576 0.217 0.646 0.000

Figure 5: TOST apps, threshold = 0.5, p-values for test-

ing that average satisfaction is no different for the given

delay value and a delay of zero. Bold values are < 0.05.

App 50ms 250ms 500ms 750ms

MapQuest 0.488 0.416 n/a 0.127

Pandora 0.000 0.004 0.000 0.002

Pinterest 0.011 0.000 0.003 0.034

WeatherBug 0.105 0.071 0.023 0.055

Google Translate 0.155 0.003 0.292 0.000

Figure 6: TOST apps, threshold = 1.0, p-values for test-

ing that average satisfaction is no different for the given

delay value and a delay of zero. Bold values are < 0.05.

to the no-delay case. These results are shown in Fig-

ures 5 (threshold of 0.5) and 6 (threshold of 1.0).

As one might expect, some applications experience

more detrimental effects from introduced delays than

others. For Pandora and Pinterest, we find that for a

threshold of 1.0 (that is, 1 satisfaction rating) there is no

statistically significant change in satisfaction caused by

injecting delays (p < 0.05). For Google Translate more

variation occurs, and for WeatherBug and MapQuest we

can see that these applications are much more sensitive

to additional delays. If we lower the TOST threshold to

0.5, we see have less confidence that there is no change

to satisfaction, although this may be simply due to the

relatively small amount of data we were able to collect at

this granularity.

5.3 User tolerance for additional delay

varies across users

Figure 7 shows variance of user-perceived satisfaction

for each of the delay levels. Recall that our testcases are

randomly chosen and arrive at random times. What we

are resolving here is that a given level of delay is likely to

affect different users differently, and also the same user

differently across time.

Figure 8 illustrates this further. Here, for each ap-

plication, we computed the variance of satisfaction for

each individual user, aggregating over the different de-

lays (which have equal probability). We then present

Users sorted by variance→

Figure 8: Variance of satisfaction for each user (horizon-

tal axis), ranked by variance.

each user’s satisfaction variance, sorted by variance. We

see that, for example, user 11 has the highest variance

for MapQuest and Pandora, but is second or third in the

rankings for the other applications. The number of users

varies because we only consider those users for whom

there are at least 3 data points represented in their vari-

ance calculation.

Since the tolerance for additional delay varies across
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App 0ms 50ms 250ms 500ms 750ms

MapQuest 0.91 2.25 1.39 0.00 0.25

Pandora 1.10 0.96 1.22 1.08 0.88

Pinterest 1.08 1.49 0.95 0.89 2.06

WeatherBug 0.88 1.96 1.65 1.41 1.64

Google Translate 0.14 1.69 0.54 1.86 0.07

Figure 7: User satisfaction varies considerably across users. Rating variance across users for each combination of

application and delay.

applications, and users, it is seems natural that a real sys-

tem should try to identify the more delay-tolerant users

as particular opportunities for improving the request pro-

cess.

6 User traffic shaping

We now consider shaping the user traffic by introduc-

ing delays. We simulate a system that attempts to limit

the arrival rate (keeping load < 1) and to shape the ar-

rivals at any rate to have exponentially distributed inter-

arrival times. Conceptually, our system is a middlebox

interposed between the frontend and the backend of the

application. The box accepts user arrivals of network

requests from the mobile application frontend(s), modu-

lates these arrivals by selectively delaying them, and then

produces system arrivals for the backend.

Our simulation is based on the logs produced by our

study, which in addition to user satisfaction information,

also include the arrival time of each request. Our logs

contain tuples of the form:

{time,appName,user, totalTime,extraDelay, testCase}

Recall that each testcase ran for a minute, and during

that time delayed all network requests. For this reason,

we have considerably more requests than testcases. Our

simulations make use of 140,401 records of the above

form. We can take a stream of requests of this form,

whether from a single user or aggregates of users, and

apply delays to each in turn to achieve the system’s goals.

Given the delay we introduced to a request, we can then

use the results of Section 4 to estimate the likely impact

of the introduced delay on user satisfaction. The general

rule we apply here is to keep the additional delays below

the 750ms limit we found previously.

6.1 Algorithm

Given a desired system arrival rate, we attempt to delay

each request coming in from the user such that the re-

sulting interarrivals of the shaped traffic will appear to be

1: procedure PI(t)

2: return Kp× err(t)+Ki×
∫ t

0 err(τ)dτ

3: end procedure

Figure 10: PI controller

more like those drawn from an exponential distribution,

while also obeying the system arrival rate. Such Poisson

arrivals are a desirable property both in terms of enhanc-

ing the analyzability of systems via queuing theory, and

because they are less prone to the Noah Effect [35] in

which traffic bursts aggregate across multiple timescales.

We think of our system in terms of load, by which

we mean the relationship of the arrival rate of the user

arrivals and the arrival rate of the system arrivals, as de-

sired by the backend. The load is the ratio of these two.

When the load is less than one, the dominant effect of

our system is shaping arrivals to be more Poisson, while

when the load is greater than one, the dominant effect is

to limit the arrival rate at the backend.

Our algorithm is shown in pseudocode in Figure 9.

The system uses EWMA filters to estimate both the cur-

rent user arrival rate and the current system arrival rate

it is providing to the backend. Global feedback is used

to compare this current system arrival rate to the desired

backend system arrival rate. This error is then fed to a

proportional-integrative (PI) controller (Figure 10) that

in turn computes a correction. This correction is in the

form of the mean of an exponential distribution, the con-

trol variable of this system. We then draw from this ex-

ponential distribution and use the result as a delay for the

current user arrival with respect to the previous system

arrival we produced. That is, the system arrivals at the

output of our box operate in terms of the controlled ex-

ponential distribution. However, these outputs are also

constrained by the user arrivals at the input—we never

emit a system arrival before its user arrival shows up.
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1: procedure SHAPE(u, load,α)

2: u← user arrivals

3: interu← mean(di f f (u)) ⊲ compute user interarrivals

4: interdesired ← interu× load ⊲ compute desired interarrivals for given load

5: interout ← interu

6: s1← u1

7: for i in u do ⊲ iterate over arrivals

8: interu← α× interuα +(1−α)× (ui+1−ui) ⊲ update user interarrival estimate

9: m← max(interu, interdesired) ⊲ limit to server-selected interarrival

10: err← interdesired− interout ⊲ estimate error between server-selected interarrival and system interarrival

11: f ← PI(err) ⊲ estimate correction via PI controller

12: m← max(0.0001,m+ f )
13: delay← exprnd(m) ⊲ generate corrective exponential delay

14: si+1← si +delay ⊲ delay user arrival with corrective exponential delay

15: if ui+1 > si+1 then ⊲ but only if possible (system arrival must occur after user arrival)

16: si+1← ui+1

17: end if

18: interout ← α× interout +(1−α)× (si+1− si) ⊲ update system interarrival estimate

19: end for

20: end procedure

Figure 9: Traffic shaping algorithm

ΣΣ P Kp*e(t)

Ki*∫0
t e(τ)dτI 

user

process

Shape
+

+

λ

rate

estimation

Goal
+

-

shaped

process

delay

Figure 11: Traffic shaping system used to simulate the effect of shaping user traces with our algorithm. PI controller

biases the mean of the exponential used to delay requests, creating the shaped process.
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6.2 Evaluation

We simulated the proposed system separately on each

user trace collected during the user study. For each user,

the trace was segmented into “sessions”, where a session

was defined to be any section of network requests—that

is, application activity—where no interarrival was longer

than 10 seconds. The algorithm was applied to each ses-

sion, resulting in a shaped user trace. We consider the ef-

fect of different system arrival rates by varying the load,

allowing us to compare across users. Note that our al-

gorithm itself is driven by a random process (the expo-

nential random number generator), as is our evaluation

of how close our output is to having exponential interar-

rivals. For each trace, we execute the algorithm 100s of

times, with different seeds, to attempt to estimate the en-

semble average behavior, which is what we report. The

entire simulation system is shown in Figure 11

In all cases, we are able to achieve the rate-limiting

goal of our system, and, as expected, delays introduced

grow as we approach a load of 1.0. We also want to

evaluate “how much more Poisson” our system’s output

is. To do so, we consider quantile-quantile plots (QQ

plots) comparing our system’s input (the user arrivals)

and output (the system arrivals) with actual Poisson ar-

rivals. Figure 12 shows an example. The desired shape

of data on these QQ plots is that of the dotted line. If

all data points followed the dotted line, we would con-

sider the distributions matched. Notice that the shaped

system arrivals (right graph) are closer to this than the

unshaped user arrivals (left graph). We fit a line to each

graph and quantify this fit with its R2 value. We can then

compare the unshaped and shaped arrivals by the differ-

ence in their R2 values, which we denote ∆R2. Here, the

unshaped user arrivals have R2 = 0.5982, the shaped sys-

tem arrivals have R2 = 0.8319, and thus ∆R2 = 0.2337.

Recall that R2 ranges from -1 to 1, so this example shows

shaped system arrivals that are considerably more Pois-

son than their corresponding unshaped user arrivals.

As system load increases, we have more opportunity

to slow down requests, so we would expect that ∆R2 will

grow with increasing load. On the other hand, increas-

ing load will also mean we will need to introduce larger

amounts of delay, as well as more opportunities for one

request’s delay to bleed into the next’s, compounding its

delay. Hence, the system will need to trade off between

∆R2 (how much more Poisson the system arrivals are

than the user arrivals) and the delays the user sees. If

we increase delay too much, user satisfaction will drop.

Figure 13 shows ∆R2 and the added delay across all

of our traces. Delay is considered both in terms of the

average, and the 90th and 95th percentiles. Recall that

Load ∆R2 Avg Delay 95 %ile 90 %ile

0.1 0.00053 0.00355 0.00000 0.00000

0.2 0.00063 0.01273 0.00000 0.00000

0.3 0.01409 0.11179 0.00000 0.00000

0.4 0.01948 0.37374 1.61987 0.00000

0.5 0.03440 0.79270 4.87666 0.69274

0.6 0.05372 1.50162 9.11135 4.07337

0.7 0.08436 2.63141 18.22722 8.58257

0.8 0.10060 5.16139 28.00491 14.96098

0.9 0.12190 9.57013 38.44012 30.49053

1.0 0.14322 18.72321 53.37096 48.03965

Figure 13: Ability to make traffic more Poisson increases

with necessity to introduce delay, Kp = 0.9,Ki = 0.5,α =
0.8. Within the 750ms bound of Section 4 a load of

0.4 to 0.5 can be supported while keeping delays low

enough that they do not change user satisfaction with per-

formance.

our user study suggested that most users are largely un-

perturbed by delays up to 750ms. We see that our shap-

ing algorithm is able to introduce appropriate delays for

a load of 0.4 while keeping the introduced delay below

this threshold for 95% of requests. A load of 0.5 can

be supported while keeping delay within this bound for

90% of requests. The R2 fit is improved by 0.01948 and

0.03440, respectively.

7 Conclusions

Conventional approaches to configuring datacenter back-

ends of mobile applications rely on the assumption that

the workload generated by the frontend of the application

being sacrosanct, and responding to changes primarily at

the datacenter. Performance requirements are assumed

to be uniform across all users, and once again the data-

center is tasked to respond to generated workloads and

satisfy them for this uniform performance. In this work,

we consider that users may have both varied expectations

and tolerances for the performance of request fulfillment,

and that we can use this to our advantage to shape traf-

fic at the user/frontend level, in order to provide a more

beneficial workload at the datacenter.

We conducted an “in the wild” user-study, which pro-

vided users with augmented versions of 5 popular An-

droid applications, that would introduce delays into the

network requests being made by those applications, and

query the subject for their satisfaction with the perfor-

mance of the application. We found that on average, for

all of our test applications, subjects were not adversely

affected by introduced delays of up to 750ms. When an-
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Figure 12: Example QQ plot for user 1, comparing interarrivals of the user arrival process (left) and the interarrivals

of the system arrival process (right). The shaping algorithm improved exponential fit by ∆R2 = 0.2337.

alyzing individual applications, we found that certain ap-

plications were more sensitive to delays, suggesting an

opportunity for a class of applications to have their re-

quests delayed, making the workload at those datacenters

more beneficial. By analyzing user reactions, we noticed

that certain users were much more sensitive to introduced

delay, which both bolsters our original thought that per-

formance requirements needn’t be uniform across users,

and presents an opportunity to delay some users more

than others, which would lessen an aggregate workload

while affecting users satisfaction less overall.

We developed a traffic shaping algorithm that would

introduce exponential delays to network requests, and

simulated the effects of applying it by shaping user re-

quest traces that we had collected during the user study.

We found that we could skew the interarrival process of

user traces to look more like a Poisson process by a fac-

tor of ∆R2 = 0.01948 while delaying 95% of requests

within user tolerance, and by ∆R2 = 0.03440 while de-

laying 90% of requests within user tolerance.

Future Work In this paper we have identified the op-

portunity for shaping the workload generated by end-

users using mobile applications. We would like to extend

our user study to study more applications, more users,

and collect more data in order to gain even better in-

sights into how users react to introduced delays. With

more user data, we would like to build user models to

evaluate how our traffic shaping is likely to affect each

specific user, and leverage individual variations in toler-

ance to introduce as much delay as possible to each user

without detrimentally affecting their satisfaction.

We would also like to simulate the effect of the ag-

gregate of shaped user workloads at the datacenter—our

idea is that by shaping user traffic to appear more like

a Poisson process, the aggregate user traffic will both be

more predictable and have a lower rate. We would like to

study how real datacenter load balancers react to shaped

traffic vs real life collected traces.
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