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Abstract A collection of virtual machines (VMs) intercon-
nected with an overlay network with a layer 2 abstraction
has proven to be a powerful, unifying abstraction for adap-
tive distributed and parallel computing on loosely-coupled
environments. It is now feasible to allow VMs hosting high
performance computing (HPC) applications to seamlessly
bridge distributed cloud resources and tightly-coupled su-
percomputing and cluster resources. However, to achieve the
application performance that the tightly-coupled resources
are capable of, it is important that the overlay network not
introduce significant overhead relative to the native hard-
ware, which is not the case for current user-level tools, in-
cluding our own existing VNET/U system. In response, we
describe the design, implementation, and evaluation of a
virtual networking system that has negligible latency and
bandwidth overheads in 1–10 Gbps networks. Our sys-
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tem, VNET/P, is directly embedded into our publicly avail-
able Palacios virtual machine monitor (VMM). VNET/P
achieves native performance on 1 Gbps Ethernet networks
and very high performance on 10 Gbps Ethernet networks.
The NAS benchmarks generally achieve over 95 % of their
native performance on both 1 and 10 Gbps. We have fur-
ther demonstrated that VNET/P can operate successfully
over more specialized tightly-coupled networks, such as In-
finiband and Cray Gemini. Our results suggest it is feasi-
ble to extend a software-based overlay network designed for
computing at wide-area scales into tightly-coupled environ-
ments.

Keywords Overlay networks · Virtualization · HPC ·
Scalability

1 Introduction

Cloud computing in the “infrastructure as a service” (IaaS)
model has the potential to provide economical and effective
on-demand resources for high performance computing. In
this model, an application is mapped into a collection of vir-
tual machines (VMs) that are instantiated as needed, and at
the scale needed. Indeed, for loosely-coupled applications,
this concept has readily moved from research [8, 44] to prac-
tice [39]. As we describe in Sect. 3, such systems can also be
adaptive, autonomically selecting appropriate mappings of
virtual components to physical components to maximize ap-
plication performance or other objectives. However, tightly-
coupled scalable high performance computing (HPC) appli-
cations currently remain the purview of resources such as
clusters and supercomputers. We seek to extend the adaptive
IaaS cloud computing model into these regimes, allowing an
application to dynamically span both kinds of environments.
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The current limitation of cloud computing systems to
loosely-coupled applications is not due to machine vir-
tualization limitations. Current virtual machine monitors
(VMMs) and other virtualization mechanisms present neg-
ligible overhead for CPU and memory intensive work-
loads [18, 37]. With VMM-bypass [34] or self-virtualizing
devices [41] the overhead for direct access to network de-
vices can also be made negligible.

Considerable effort has also gone into achieving low-
overhead network virtualization and traffic segregation
within an individual data center through extensions or
changes to the network hardware layer [12, 25, 38]. While
these tools strive to provide uniform performance across a
cloud data center (a critical feature for many HPC applica-
tions), they do not provide the same features once an appli-
cation has migrated outside the local data center, or spans
multiple data centers, or involves HPC resources. Further-
more, they lack compatibility with the more specialized in-
terconnects present on most HPC systems.

Beyond the need to support our envisioned computing
model across today’s and tomorrow’s tightly-coupled HPC
environments, we note that data center network design and
cluster/supercomputer network design seem to be converg-
ing [1, 13]. This suggests that future data centers deployed
for general purpose cloud computing will become an in-
creasingly better fit for tightly-coupled parallel applications,
and therefore such environments could potentially also ben-
efit.

The current limiting factor in the adaptive cloud- and
HPC-spanning model described above for tightly-coupled
applications is the performance of the virtual network-
ing system. Current adaptive cloud computing systems use
software-based overlay networks to carry inter-VM traffic.
For example, our VNET/U system, which is described in
more detail later, combines a simple networking abstrac-
tion within the VMs with location-independence, hardware-
independence, and traffic control. Specifically, it exposes a
layer 2 abstraction that lets the user treat his VMs as being
on a simple LAN, while allowing the VMs to be migrated
seamlessly across resources by routing their traffic through
the overlay. By controlling the overlay, the cloud provider or
adaptation agent can control the bandwidth and the paths be-
tween VMs over which traffic flows. Such systems [43, 49]
and others that expose different abstractions to the VMs [56]
have been under continuous research and development for
several years. Current virtual networking systems have suf-
ficiently low overhead to effectively host loosely-coupled
scalable applications [7], but their performance is insuffi-
cient for tightly-coupled applications [40].

In response to this limitation, we have designed, imple-
mented, and evaluated VNET/P, which shares its model and
vision with VNET/U, but is designed to achieve near-native
performance in the 1 Gbps and 10 Gbps switched networks

common in clusters today, as well as to operate effectively
on top of even faster networks, such as Infiniband and Cray
Gemini. VNET/U and our model is presented in more detail
in Sect. 3.

VNET/P is implemented in the context of our publicly
available, open source Palacios VMM [30], which is in
part designed to support virtualized supercomputing. A de-
tailed description of VNET/P’s design and implementation
is given in Sect. 4. As a part of Palacios, VNET/P is publicly
available. VNET/P could be implemented in other VMMs,
and as such provides a proof-of-concept that overlay-based
virtual networking for VMs, with performance overheads
low enough to be inconsequential even in a tightly-coupled
computing environment, is clearly possible.

The performance evaluation of VNET/P (Sect. 5) shows
that it is able to achieve native bandwidth on 1 Gbps Ether-
net with a small increase in latency, and very high bandwidth
on 10 Gbps Ethernet with a similar, small latency increase.
On 10 Gbps hardware, the kernel-level VNET/P system pro-
vides on average 10 times more bandwidth and 7 times less
latency than the user-level VNET/U system can.

In a related paper from our group [5], we describe addi-
tional techniques, specifically optimistic interrupts and cut-
through forwarding, that bring bandwidth to near-native lev-
els for 10 Gbps Ethernet. Latency increases are predomi-
nantly due to the lack of selective interrupt exiting in the
current AMD and Intel hardware virtualization extensions.
We expect that latency overheads will be largely ameliorated
once such functionality become available, or, alternatively,
when software approaches such as ELI [11] are used.

Although our core performance evaluation of VNET/P is
on 10 Gbps Ethernet, VNET/P can run on top of any de-
vice that provides an IP or Ethernet abstraction within the
Linux kernel. The portability of VNET/P is also important
to consider, as the model we describe above would require
it to run on many different hosts. In Sect. 6 we report on
preliminary tests of VNET/P running over Infiniband via
the IPoIB functionality, and on the Cray Gemini via the
IPoG virtual Ethernet interface. Running on these platforms
requires few changes to VNET/P, but creates considerable
flexibility. In particular, using VNET/P, existing, unmodi-
fied VMs running guest OSes with commonplace network
stacks can seamlessly run on top of such diverse hardware.
To the guest, a complex network of commodity and high-
end networks looks like a simple Ethernet network. Also in
Sect. 6, we describe a version of VNET/P that has been de-
signed for use with the Kitten lightweight kernel as its host
OS. Kitten is quite different from Linux—indeed the com-
bination of Palacios and Kitten is akin to a “type-I” (un-
hosted) VMM—resulting in a different VNET/P architec-
ture. This system and its performance provide evidence that
the VNET/P model can be successfully brought to different
host/VMM environments.

Our contributions are as follows:
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– We articulate the benefits of extending virtual networking
for VMs down to clusters and supercomputers with high
performance networks. These benefits are also applicable
to data centers that support IaaS cloud computing.

– We describe the design and implementation of a virtual
networking system, VNET/P, that does so. The design
could be applied to other VMMs and virtual network sys-
tems.

– We perform an extensive evaluation of VNET/P on 1 and
10 Gbps Ethernet networks, finding that it provides per-
formance with negligible overheads on the former, and
manageable overheads on the latter. VNET/P generally
has little impact on performance for the NAS benchmarks.

– We describe our experiences with running the VNET/P
implementation on Infiniband and Cray Gemini networks.
VNET/P allows guests with commodity software stacks
to leverage these networks.

– We describe the design, implementation, and evaluation
of a version of VNET/P for lightweight kernel hosts, par-
ticularly the Kitten LWK.

Through the use of low-overhead overlay-based virtual
networking in high-bandwidth, low-latency environments
such as current clusters and supercomputers, and future data
centers, we seek to make it practical to use virtual network-
ing at all times, even when running tightly-coupled applica-
tions on such high-end environments. This would allow us
to seamlessly and practically extend the already highly ef-
fective adaptive virtualization-based IaaS cloud computing
model to such environments.

This paper is an extended version of a previous confer-
ence publication [57]. Compared to the conference paper, it
provides an extended presentation of the core design aspects
of VNET/P as well as descriptions of implementations of
VNET/P for Infiniband and Cray Gemini. It also includes
initial performance evaluations on these platforms.

2 Related work

VNET/P is related to NIC virtualization, overlays, and vir-
tual networks, as we describe below.

NIC virtualization There is a wide range of work on pro-
viding VMs with fast access to networking hardware, where
no overlay is involved. For example, VMware and Xen sup-
port either an emulated register-level interface [47] or a par-
avirtualized interface to guest operating system [36]. While
purely software-based virtualized network interface has high
overhead, many techniques have been proposed to support
simultaneous, direct-access network I/O. For example, some
work [34, 41] has demonstrated the use of self-virtualized
network hardware that allows direct guest access, thus pro-
vides high performance to untrusted guests. Willmann et al

have developed a software approach that also supports con-
current, direct network access by untrusted guest operating
systems [45]. In addition, VPIO [59] can be applied on net-
work virtualization to allow virtual passthrough I/O on non-
self-virtualized hardware. Virtual WiFi [58] is an approach
to provide the guest with access to wireless networks, in-
cluding functionality specific to wireless NICs. In contrast
with such work, VNET/P provides fast access to an over-
lay network, which includes encapsulation and routing. It
makes a set of VMs appear to be on the same local Ethernet
regardless of their location anywhere in the world and their
underlying hardware. Our work shows that this capability
can be achieved without significantly compromising perfor-
mance when the VMs happen to be very close together.

Overlay networks: Overlay networks implement ex-
tended network functionality on top of physical infrastruc-
ture, for example to provide resilient routing (e.g, [3]), mul-
ticast (e.g. [17]), and distributed data structures (e.g., [46])
without any cooperation from the network core; overlay net-
works use end-systems to provide their functionality. VNET
is an example of a specific class of overlay networks, namely
virtual networks, discussed next.

Virtual networking: Virtual networking systems provide
a service model that is compatible with an existing layer 2
or 3 networking standard. Examples include VIOLIN [21],
ViNe [52], VINI [4], SoftUDC VNET [23], OCALA [22],
WoW [10], and the emerging VXLAN standard [35]. Like
VNET, VIOLIN, SoftUDC, WoW, and VXLAN are specif-
ically designed for use with virtual machines. Of these,
VIOLIN is closest to VNET (and contemporaneous with
VNET/U), in that it allows for the dynamic setup of an ar-
bitrary private layer 2 and layer 3 virtual network among
VMs. The key contribution of VNET/P is to show that this
model can be made to work with minimal overhead even in
extremely low latency, high bandwidth environments.

Connections: VNET/P could itself leverage some of the
related work described above. For example, effective NIC
virtualization might allow us to push encapsulation directly
into the guest, or to accelerate encapsulation via a split scat-
ter/gather map. Mapping unencapsulated links to VLANs
would enhance performance on environments that support
them. There are many options for implementing virtual net-
working and the appropriate choice depends on the hardware
and network policies of the target environment. In VNET/P,
we make the choice of minimizing these dependencies.

3 VNET model and VNET/U

The VNET model was originally designed to support adap-
tive computing on distributed virtualized computing re-
sources within the Virtuoso system [6], and in particular to
support the adaptive execution of a distributed or parallel
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computation executing in a collection of VMs potentially
spread across multiple providers or supercomputing sites.
The key requirements, which also hold for the present pa-
per, were as follows.

– VNET would make within-VM network configuration the
sole responsibility of the VM owner.

– VNET would provide location independence to VMs, al-
lowing them to be migrated between networks and from
site to site, while maintaining their connectivity, without
requiring any within-VM configuration changes.

– VNET would provide hardware independence to VMs, al-
lowing them to use diverse networking hardware without
requiring the installation of specialized software.

– VNET would provide minimal overhead, compared to na-
tive networking, in the contexts in which it is used.

The VNET model meets these requirements by carrying
the user’s VMs’ traffic via a configurable overlay network.
The overlay presents a simple layer 2 networking abstrac-
tion: a user’s VMs appear to be attached to the user’s local
area Ethernet network, regardless of their actual locations
or the complexity of the VNET topology/properties. Further
information about the model can be found elsewhere [49].

The VNET overlay is dynamically reconfigurable, and
can act as a locus of activity for an adaptive system such
as Virtuoso. Focusing on parallel and distributed applica-
tions running in loosely-coupled virtualized distributed en-
vironments (e.g., “IaaS Clouds”), we demonstrated that the
VNET “layer” can be effectively used to:

1. monitor application communication and computation be-
havior [14, 15]),

2. monitor underlying network behavior [16],
3. formulate performance optimization problems [48, 51],

and
4. address such problems through VM migration and over-

lay network control [50], scheduling [32, 33], network
reservations [31], and network service interposition [27].

These and other features that can be implemented within the
VNET model have only marginal utility if carrying traffic
via the VNET overlay has significant overhead compared to
the underlying native network.

The VNET/P system described in this paper is com-
patible with, and compared to, our previous VNET imple-
mentation, VNET/U. Both support a dynamically config-
urable general overlay topology with dynamically config-
urable routing on a per MAC address basis. The topology
and routing configuration is subject to global or distributed
control (for example, by the VADAPT [50]) part of Virtu-
oso. The overlay carries Ethernet packets encapsulated in
UDP packets, TCP streams with and without SSL encryp-
tion, TOR privacy-preserving streams, and others. Because
Ethernet packets are used, the VNET abstraction can also

easily interface directly with most commodity network de-
vices, including virtual NICs exposed by VMMs in the host,
and with fast virtual devices (e.g., Linux virtio network de-
vices) in guests.

While VNET/P is implemented within the VMM,
VNET/U is implemented as a user-level system. As a user-
level system, it readily interfaces with VMMs such as
VMware Server and Xen, and requires no host changes to
be used, making it very easy for a provider to bring it up
on a new machine. Further, it is easy to bring up VNET
daemons when and where needed to act as proxies or way-
points. A VNET daemon has a control port which speaks
a control language for dynamic configuration. A collection
of tools allows for the wholesale construction and teardown
of VNET topologies, as well as dynamic adaptation of the
topology and forwarding rules to the observed traffic and
conditions on the underlying network.

The last reported measurement of VNET/U showed it
achieving 21.5 MB/s (172 Mbps) with a 1 ms latency over-
head communicating between Linux 2.6 VMs running in
VMware Server GSX 2.5 on machines with dual 2.0 GHz
Xeon processors [27]. A current measurement, described in
Sect. 5, shows 71 MB/s with a 0.88 ms latency. VNET/U’s
speeds are sufficient for its purpose in providing virtual net-
working for wide-area and/or loosely-coupled distributed
computing. They are not, however, sufficient for use within
a cluster at gigabit or greater speeds. Making this basic VM-
to-VM path competitive with hardware is the focus of this
paper. VNET/U is fundamentally limited by the kernel/user
space transitions needed to handle a guest’s packet send or
receive. In VNET/P, we move VNET directly into the VMM
to avoid such transitions.

4 Design and implementation

We now describe how VNET/P has been architected and im-
plemented in the context of Palacios as embedded in a Linux
host. Section 6.3 describes how VNET/P is implemented in
the context of a Kitten embedding. The nature of the embed-
ding affects VNET/P primarily in how it interfaces to the un-
derlying networking hardware and networking stack. In the
Linux embedding, this interface is accomplished directly in
the Linux kernel. In the Kitten embedding, the interface is
done via a service VM.

4.1 Palacios VMM

VNET/P is implemented in the context of our Palacios
VMM. Palacios is an OS-independent, open source, BSD-
licensed, publicly available embeddable VMM designed as
part of the V3VEE project (http://v3vee.org). The V3VEE
project is a collaborative community resource development

http://v3vee.org
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Fig. 1 VNET/P architecture

project involving Northwestern University, the University of
New Mexico, Sandia National Labs, and Oak Ridge Na-
tional Lab. Detailed information about Palacios can be found
elsewhere [28, 30]. Palacios is capable of virtualizing large
scale (4096+ nodes) with < 5 % overheads [29]. Palacios’s
OS-agnostic design allows it to be embedded into a wide
range of different OS architectures.

The Palacios implementation is built on the virtualization
extensions deployed in current generation x86 processors,
specifically AMD’s SVM [2] and Intel’s VT [53]. Palacios
supports both 32 and 64 bit host and guest environments,
both shadow and nested paging models, and a significant set
of devices that comprise the PC platform. Due to the ubiq-
uity of the x86 architecture Palacios is capable of operating
across many classes of machines. Palacios has successfully
virtualized commodity desktops and servers, high end In-
finiband clusters, and Cray XT and XK supercomputers.

4.2 Architecture

Figure 1 shows the overall architecture of VNET/P, and il-
lustrates the operation of VNET/P in the context of the Pala-
cios VMM embedded in a Linux host. In this architecture,
guests run in application VMs. Off-the-shelf guests are fully
supported. Each application VM provides a virtual (Ether-
net) NIC to its guest. For high performance applications, as
in this paper, the virtual NIC conforms to the virtio inter-
face, but several virtual NICs with hardware interfaces are
also available in Palacios. The virtual NIC conveys Ether-
net packets between the application VM and the Palacios
VMM. Using the virtio virtual NIC, one or more packets
can be conveyed from an application VM to Palacios with
a single VM exit, and from Palacios to the application VM
with a single VM exit+entry.

The VNET/P core is the component of VNET/P that is
directly embedded into the Palacios VMM. It is responsi-
ble for routing Ethernet packets between virtual NICs on

Fig. 2 VNET/P core’s internal logic

the machine and between this machine and remote VNET
on other machines. The VNET/P core’s routing rules are dy-
namically configurable, through the control interface by the
utilities that can be run in user space.

The VNET/P core also provides an expanded interface
that the control utilities can use to configure and manage
VNET/P. The VNET/P control component uses this inter-
face to do so. It in turn acts as a daemon that exposes a
TCP control port that uses the same configuration language
as VNET/U. Between compatible encapsulation and com-
patible control, the intent is that VNET/P and VNET/U be
interoperable, with VNET/P providing the “fast path”.

To exchange packets with a remote machine, the VNET/P
core uses a VNET/P bridge to communicate with the physi-
cal network. The VNET/P bridge runs as a kernel module in
the host kernel and uses the host’s networking facilities to in-
teract with physical network devices and with the host’s net-
working stack. An additional responsibility of the bridge is
to provide encapsulation. For performance reasons, we use
UDP encapsulation, in a form compatible with that used in
VNET/U. TCP encapsulation is also supported. The bridge
selectively performs UDP or TCP encapsulation for pack-
ets destined for remote machines, but can also deliver an
Ethernet packet without encapsulation. In our performance
evaluation, we consider only encapsulated traffic.

The VNET/P core consists of approximately 2500 lines
of C in Palacios, while the VNET/P bridge consists of about
2000 lines of C comprising a Linux kernel module. VNET/P
is available via the V3VEE project’s public git repository, as
part of the “devel” branch of the Palacios VMM.

4.3 VNET/P core

The VNET/P core is primarily responsible for routing and
dispatching raw Ethernet packets. It intercepts all Ethernet
packets from virtual NICs that are associated with VNET/P,
and forwards them either to VMs on the same host machine
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or to the outside network through the VNET/P bridge. Each
packet is routed based on its source and destination MAC
addresses. The internal processing logic of the VNET/P core
is illustrated in Fig. 2.

Routing: To route Ethernet packets, VNET/P maintains
routing tables indexed by source and destination MAC ad-
dresses. Although this table structure only provides linear
time lookups, a hash table-based routing cache is layered on
top of the table, and the common case is for lookups to hit
in the cache and thus be serviced in constant time.

A routing table entry maps to a destination, which is ei-
ther a link or an interface. A link is an overlay destination—
it is the next UDP/IP-level (i.e., IP address and port) des-
tination of the packet, on some other machine. A special
link corresponds to the local network. The local network
destination is usually used at the “exit/entry point” where
the VNET overlay is attached to the user’s physical LAN.
A packet routed via a link is delivered to another VNET/P
core, a VNET/U daemon, or the local network. An interface
is a local destination for the packet, corresponding to some
virtual NIC.

For an interface destination, the VNET/P core directly
delivers the packet to the relevant virtual NIC. For a link des-
tination, it injects the packet into the VNET/P bridge along
with the destination link identifier. The VNET/P bridge de-
multiplexes based on the link and either encapsulates the
packet and sends it via the corresponding UDP or TCP
socket, or sends it directly as a raw packet to the local net-
work.

Packet processing: Packet forwarding in the VNET/P
core is conducted by packet dispatchers. A packet dispatcher
interacts with each virtual NIC to forward packets in one of
two modes: guest-driven mode or VMM-driven mode. The
operation of these modes is illustrated in the top two time-
lines in Fig. 3.

The purpose of guest-driven mode is to minimize latency
for small messages in a parallel application. For example,
a barrier operation would be best served with guest-driven
mode. In the guest-driven mode, the packet dispatcher is in-
voked when the guest’s interaction with the NIC explicitly
causes an exit. For example, the guest might queue a packet
on its virtual NIC and then cause an exit to notify the VMM
that a packet is ready. In guest-driven mode, a packet dis-
patcher runs at this point. Similarly, on receive, a packet dis-
patcher queues the packet to the device and then immedi-
ately notifies the device.

The purpose of VMM-driven mode is to maximize
throughput for bulk data transfer in a parallel application.
Unlike guest-driven mode, VMM-driven mode tries to han-
dle multiple packets per VM exit. It does this by having
VMM poll the virtual NIC. The NIC is polled in two ways.
First, it is polled, and a packet dispatcher is run, if needed,
in the context of the current VM exit (which is unrelated to

Fig. 3 The VMM-driven and guest-driven modes in the virtual NIC.
Guest-driven mode can decrease latency for small messages, while
VMM-driven mode can increase throughput for large messages. Com-
bining VMM-driven mode with a dedicated packet dispatcher thread
results in most send-related exits caused by the virtual NIC being elim-
inated, thus further enhancing throughput

Fig. 4 VNET/P running on a multicore system. The selection of how
many, and which cores to use for packet dispatcher threads is made
dynamically

the NIC). Even if exits are infrequent, the polling and dis-
patch will still make progress during the handling of timer
interrupt exits.

The second manner in which the NIC can be polled is in
the context of a packet dispatcher running in a kernel thread
inside the VMM context, as shown in Fig. 4. The packet dis-
patcher thread can be instantiated multiple times, with these
threads running on different cores in the machine. If a packet
dispatcher thread decides that a virtual NIC queue is full, it
forces the NIC’s VM to handle it by doing a cross-core IPI to
force the core on which the VM is running to exit. The exit
handler then does the needed event injection. Using this ap-
proach, it is possible to dynamically employ idle processor
cores to increase packet forwarding bandwidth. Combined
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Fig. 5 Early example of scaling of receive throughput by executing the
VMM-based components of VNET/P on separate cores, and scaling
the number of cores used. The ultimate on-wire MTU here is 1500
bytes

with VMM-driven mode, VNET/P packet processing can
then proceed in parallel with guest packet sends, as shown
in the bottommost timeline of Fig. 3.

Influenced by Sidecore [26], an additional optimization
we developed was to offload in-VMM VNET/P processing,
beyond packet dispatch, to an unused core or cores, thus
making it possible for the guest VM to have full use of its
cores (minus the exit/entry costs when packets are actually
handed to/from it). Figure 5 is an example of the benefits of
doing so for small MTU communication.

VNET/P can be configured to statically use either VMM-
driven or guest-driven mode, or adaptive operation can be
selected. In adaptive operation, which is illustrated in Fig. 6,
VNET/P switches between these two modes dynamically
depending on the arrival rate of packets destined to or from
the virtual NIC. For a low rate, it enables guest-driven mode
to reduce the single packet latency. On the other hand, with
a high arrival rate it switches to VMM-driven mode to in-
crease throughput. Specifically, the VMM detects whether
the system is experiencing a high exit rate due to virtual NIC
accesses. It recalculates the rate periodically. The algorithm
employees simple hysteresis, with the rate bound for switch-
ing from guest-driven to VMM-driven mode being larger
than the rate bound for switching back. This avoids rapid
switching back and forth when the rate falls between these
bounds.

For a 1 Gbps network, guest-driven mode is sufficient to
allow VNET/P to achieve the full native throughput. On a
10 Gbps network, VMM-driven mode is essential to move
packets through the VNET/P core with near-native through-
put. Generally, adaptive operation will achieve these limits.

Fig. 6 Adaptive mode dynamically selects between VMM-driven and
guest-driven modes of operation to optimize for both throughput and
latency

4.4 Virtual NICs

VNET/P is designed to be able to support any virtual Ether-
net NIC device. A virtual NIC must, however, register itself
with VNET/P before it can be used. This is done during the
initialization of the virtual NIC at VM configuration time.
The registration provides additional callback functions for
packet transmission, transmit queue polling, and packet re-
ception. These functions essentially allow the NIC to use
VNET/P as its backend, instead of using an actual hardware
device driver backend.

Linux virtio virtual NIC: Virtio [42], which was recently
developed for the Linux kernel, provides an efficient abstrac-
tion for VMMs. A common set of virtio device drivers are
now included as standard in the Linux kernel. To maximize
performance, our performance evaluation configured the ap-
plication VM with Palacios’s virtio-compatible virtual NIC,
using the default Linux virtio network driver.

MTU: The maximum transmission unit (MTU) of a net-
working layer is the size of the largest protocol data unit
that the layer can pass onwards. A larger MTU improves
throughput because each packet carries more user data while
protocol headers have a fixed size. A larger MTU also
means that fewer packets need to be processed to transfer a
given amount of data. Where per-packet processing costs are
significant, larger MTUs are distinctly preferable. Because
VNET/P adds to the per-packet processing cost, supporting
large MTUs is helpful.

VNET/P presents an Ethernet abstraction to the applica-
tion VM. The most common Ethernet MTU is 1500 bytes.
However, 1 Gbit and 10 Gbit Ethernet can also use “jumbo
frames”, with an MTU of 9000 bytes. Other networking
technologies support even larger MTUs. To leverage the
large MTUs of underlying physical NICs, VNET/P itself
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supports MTU sizes of up to 64 KB.1 The application
OS can determine the virtual NIC’s MTU and then trans-
mit/receive accordingly. VNET/P advertises the appropriate
MTU.

The MTU used by virtual NIC can result in encapsu-
lated VNET/P packets that exceed the MTU of the under-
lying physical network. In this case, fragmentation has to
occur, either in the VNET/P bridge or in the host NIC (via
TCP Segmentation Offloading (TSO)). Fragmentation and
reassembly is handled by VNET/P and is totally transpar-
ent to the application VM. However, performance will suf-
fer when significant fragmentation occurs. Thus it is impor-
tant that the application VM’s device driver select an MTU
carefully, and recognize that the desirable MTU may change
over time, for example after a migration to a different host.
In Sect. 5, we analyze throughput using different MTUs.

4.5 VNET/P bridge

The VNET/P bridge functions as a network bridge to direct
packets between the VNET/P core and the physical network
through the host NIC. It operates based on the routing de-
cisions made by the VNET/P core which are passed along
with the packets to be forwarded. It is implemented as a ker-
nel module running in the host.

When the VNET/P core hands a packet and routing di-
rective up to the bridge, one of two transmission modes will
occur, depending on the destination. In a direct send, the
Ethernet packet is directly sent. This is common for when
a packet is exiting a VNET overlay and entering the phys-
ical network, as typically happens on the user’s network. It
may also be useful when all VMs will remain on a common
layer 2 network for their lifetime. In an encapsulated send
the packet is encapsulated in a UDP packet and the UDP
packet is sent to the directed destination IP address and port.
This is the common case for traversing a VNET overlay link.
Similarly, for packet reception, the bridge uses two modes,
simultaneously. In a direct receive the host NIC is run in
promiscuous mode, and packets with destination MAC ad-
dresses corresponding to those requested by the VNET/P
core are handed over to it. This is used in conjunction with
direct send. In an encapsulated receive UDP packets bound
for the common VNET link port are disassembled and their
encapsulated Ethernet packets are delivered to the VNET/P
core. This is used in conjunction with encapsulated send.
Our performance evaluation focuses solely on encapsulated
send and receive.

4.6 Control

The VNET/P control component allows for remote and lo-
cal configuration of links, interfaces, and routing rules so

1This may be expanded in the future. Currently, it has been sized to
support the largest possible IPv4 packet size.

that an overlay can be constructed and changed over time.
VNET/U already has user-level tools to support VNET, and,
as we described in Sect. 3, a range of work already exists on
the configuration, monitoring, and control of a VNET over-
lay. In VNET/P, we reuse these tools as much as possible by
having the user-space view of VNET/P conform closely to
that of VNET/U. The VNET/P configuration console allows
for local control to be provided from a file, or remote control
via TCP-connected VNET/U clients (such as tools that au-
tomatically configure a topology that is appropriate for the
given communication pattern among a set of VMs [50]). In
both cases, the VNET/P control component is also responsi-
ble for validity checking before it transfers the new configu-
ration to the VNET/P core.

4.7 Performance-critical data paths and flows

Figure 7 depicts how the components previously described
operate during packet transmission and reception. These
are the performance critical data paths and flows within
VNET/P, assuming that virtio virtual NICs (Sect. 4.4) are
used. The boxed regions of the figure indicate steps intro-
duced by virtualization, both within the VMM and within
the host OS kernel. There are also additional overheads in-
volved in the VM exit handling for I/O port reads and writes
and for interrupt injection.

Transmission: The guest OS in the VM includes the de-
vice driver for the virtual NIC. The driver initiates packet
transmission by writing to a specific virtual I/O port after it
puts the packet into the NIC’s shared ring buffer (TXQ). The
I/O port write causes an exit that gives control to the virtual
NIC I/O handler in Palacios. The handler reads the packet
from the buffer and writes it to VNET/P packet dispatcher.
The dispatcher does a routing table lookup to determine the
packet’s destination. For a packet destined for a VM on some
other host, the packet dispatcher puts the packet into the re-
ceive buffer of the VNET/P bridge and notify it. Meanwhile,
VNET/P bridge fetches the packet from the receive buffer,
determines its destination VNET/P bridge, encapsulates the
packet, and transmits it to the physical network via the host’s
NIC.

Note that while the packet is handed off multiple times,
it is copied only once inside the VMM, from the send buffer
(TXQ) of the receive buffer of the VNET/P bridge. Also note
that while the above description and the diagram suggest se-
quentiality, packet dispatch can occur on a separate kernel
thread running on a separate core, and the VNET/P bridge it-
self introduces additional concurrency. From the guest’s per-
spective, the I/O port write that initiated transmission returns
essentially within a VM exit/entry time.

Reception: The path for packet reception is essentially
symmetric to that of transmission. The host NIC in the host
machine receives a packet using its standard driver and de-
livers it to the VNET/P bridge. The bridge unencapsulates
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Fig. 7 Performance-critical
data paths and flows for packet
transmission and reception.
Solid boxed steps and
components occur within the
VMM itself, while dashed
boxed steps and components
occur in the host OS

the packet and sends the payload (the raw Ethernet packet)
to the VNET/P core. The packet dispatcher in VNET/P core
determines its destination VM and puts the packet into the
receive buffer (RXQ) of its virtual NIC.

Similar to transmission, there is considerably concur-
rency in the reception process. In particular, packet dispatch
can occur in parallel with the reception of the next packet.

4.8 Performance tuning parameters

VNET/P is configured with the following parameters:

– Whether guest-driven, VMM-driven, or adaptive mode is
used.

– For adaptive operation, the upper and lower rate bounds
(αl, αu) for switching between guest-driven, and VMM-
driven modes, as well as the window size ω over which
rates are computed.

– The number of packet dispatcher threads ndispatchers that
are instantiated.

– The yield model and parameters for the bridge thread, the
packet dispatch threads, and the VMM’s halt handler.

The last of these items requires some explanation, as it
presents an important tradeoff between VNET/P latency and
CPU consumption. In both the case of packets arriving from
the network and packets arriving from the guest’s virtual
NIC, there is, conceptually, a thread running a receive op-
eration that could block or poll. First, consider packet re-
ception from the physical network. Suppose a bridge thread
is waiting for UDP packet to arrive. If no packets have ar-
rived recently, then blocking would allow the core on which
the thread is running to be yielded to another thread, or for
the core to be halted. This would be the ideal for minimizing
CPU consumption, but on the next arrival, there will be a de-
lay, even if the core is idle, in handling the packet since the
thread will need to be scheduled. There is a similar tradeoff
in the packet dispatcher when it comes to packet transmis-
sion from the guest.

A related tradeoff, for packet reception in the guest, ex-
ists in the VMM’s model for handling the halt state. If the

guest is idle, it will issue an HLT or related instruction. The
VMM’s handler for this case consists of waiting until an in-
terrupt needs to be injected into the guest. If it polls, it will
be able to respond as quickly as possible, thus minimizing
the packet reception latency, while if it blocks, it will con-
sume less CPU.

For all three of these cases VNET/P’s and the VMM’s
yield strategy comes into play. Conceptually, these cases are
written as polling loops, which in their loop bodies can yield
the core to another thread, and optionally put the thread to
sleep pending a wake-up after a signaled event or the pas-
sage of an interval of time. Palacios currently has selectable
yield strategy that is used in these loops, and the strategy has
three different options, one of which is chosen when the VM
is configured:

– Immediate yield. Here, if there is no work, we immedi-
ately yield the core to any competing threads. However,
if there are no other active threads that the core can run,
the yield immediately returns. A poll loop using the im-
mediate yield has the lowest latency while still being fair
to competing threads.

– Timed yield: Here, if there is no work, we put the thread
on a wake up queue and yield CPU. Failing any other
event, the thread will be awakened by the passage of
time Tsleep. A poll loop using the timed yield strategy
minimizes CPU usage, but at the cost of increased la-
tency.

– Adaptive yield: Here, the poll loop reports how much time
has passed since it last did any work. Until that time ex-
ceeds a threshold Tnowork, the immediate yield strategy is
used, and afterwards the timed yield strategy is used. By
setting the threshold, different tradeoffs between latency
and CPU usage are made.

In our performance evaluations, we use the parameters
given in Table 1 to focus on the performance limits of
VNET/P.
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Table 1 Parameters used to configure VNET/P in our performance
evaluation

Parameter Value

Mode Adaptive

αl 103 packets/s

αu 104 packets/s

ω 5 ms

ndispatchers 1

Yield strategy Immediate yield

Tsleep Not used

Tnowork Not used

5 Performance evaluation

The purpose of our performance evaluation is to determine
how close VNET/P comes to native throughput and latency
in the most demanding (lowest latency, highest through-
put) hardware environments. We consider communication
between two machines whose NICs are directly connected
in most of our detailed benchmarks.

In the virtualized configuration the guests and perfor-
mance testing tools run on top of Palacios with VNET/P
carrying all traffic between them using encapsulation. In the
native configuration, the same guest environments run di-
rectly on the hardware.

Our evaluation of communication performance in this en-
vironment occurs at three levels. First, we benchmark the
TCP and UDP bandwidth and latency. Second, we bench-
mark MPI using a widely used benchmark. Finally, we eval-
uated the performance of the HPCC and NAS application
benchmarks in a cluster to see VNET/P’s impact on the per-
formance and scalability of parallel applications.

5.1 Testbed and configurations

Most of our microbenchmark tests are focused on the end-
to-end performance of VNET/P. Therefore our testbed con-
sists of two physical machines, which we call host machines.
Each machine has a quadcore 2.4 GHz X3430 Intel Xeon
processor, 8 GB RAM, a Broadcom NetXtreme II 1 Gbps
Ethernet NIC (1000BASE-T), and a NetEffect NE020 10
Gbps Ethernet fiber optic NIC (10GBASE-SR) in a PCI-e
slot. The Ethernet NICs of these machines are directly con-
nected with twisted pair and fiber patch cables.

A range of our measurements are made using the cycle
counter. We disabled DVFS control on the machine’s BIOS,
and in the host Linux kernel. We also sanity-checked the
measurement of larger spans of time by comparing cycle
counter-based timing with a separate wall clock.

All microbenchmarks included in the performance sec-
tion are run in the testbed described above. The HPCC and

NAS application benchmarks are run on a 6-node test cluster
described in Sect. 5.4.

We considered the following two software configura-
tions:

– Native: In the native configuration, neither Palacios nor
VNET/P is used. A minimal BusyBox-based Linux en-
vironment based on an unmodified 2.6.30 kernel runs di-
rectly on the host machines. We refer to the 1 and 10 Gbps
results in this configuration as Native-1G and Native-10G,
respectively.

– VNET/P: The VNET/P configuration corresponds to the
architectural diagram given in Fig. 1, with a single guest
VM running on Palacios. The guest VM is configured
with one virtio network device, 2 cores, and 1 GB of
RAM. The guest VM runs a minimal BusyBox-based
Linux environment, based on the 2.6.30 kernel. The ker-
nel used in the VM is identical to that in the Native con-
figuration, with the exception that the virtio NIC drivers
are loaded. The virtio MTU is configured as 9000 Bytes.
We refer to the 1 and 10 Gbps results in this configuration
as VNET/P-1G and VNET/P-10G, respectively.

To assure accurate time measurements both natively and
in the virtualized case, our guest is configured to use the
CPU’s cycle counter, and Palacios is configured to allow the
guest direct access to the underlying hardware cycle counter.
Our 1 Gbps NIC only supports MTUs up to 1500 bytes,
while our 10 Gbps NIC can support MTUs of up to 9000
bytes. We use these maximum sizes unless otherwise speci-
fied.

5.2 TCP and UDP microbenchmarks

Latency and throughput are the fundamental measurements
we use to evaluate the VNET/P system performance. First,
we consider these at the IP level, measuring the round-trip
latency, the UDP goodput, and the TCP throughput between
two nodes. We measure round-trip latency using ping by
sending ICMP packets of different sizes. UDP and TCP
throughput are measured using ttcp-1.10.

UDP and TCP with a standard MTU: Fig. 8 shows the
TCP throughput and UDP goodput achieved in each of our
configurations on each NIC. For the 1 Gbps network, host
MTU is set to 1500 bytes, and for the 10 Gbps network,
host MTUs of 1500 bytes and 9000 bytes are both tested.
For 1 Gbps, we also compare with VNET/U running on the
same hardware with Palacios. Compared to previously re-
ported results (21.5 MB/s, 1 ms), the combination of the
faster hardware we use here, and Palacios, leads to VNET/U
increasing its bandwidth by 330 %, to 71 MB/s, with a 12 %
reduction in latency, to 0.88 ms. We also tested VNET/U
with VMware, finding that bandwidth increased by 63 % to
35 MB/s, with no change in latency. The difference in per-
formance of VNET/U on the two VMMs is due to a custom



Cluster Comput

Fig. 8 End-to-end TCP throughput and UDP goodput of VNET/P on 1 and 10 Gbps network. VNET/P performs identically to the native case for
the 1 Gbps network and achieves 74–78 % of native throughput for the 10 Gbps network

tap interface in Palacios, while on VMware, the standard
host-only tap is used. Even with this optimization, VNET/U
cannot saturate a 1 Gbps link.

We begin by considering UDP goodput when a standard
host MTU size is used. For UDP measurements, ttcp was
configured to use 64000 byte writes sent as fast as possi-
ble over 60 seconds. For the 1 Gbps network, VNET/P eas-
ily matches the native goodput. For the 10 Gbps network,
VNET/P achieves 74 % of the native UDP goodput.

For TCP throughput, ttcp was configured to use a 256
KB socket buffer, and to communicate 40 MB writes were
made. Similar to the UDP results, VNET/P has no diffi-
culty achieving native throughput on the 1 Gbps network.
On the 10 Gbps network, using a standard Ethernet MTU,
it achieves 78 % of the native throughput. The UDP good-
put and TCP throughput that VNET/P is capable of, us-
ing a standard Ethernet MTU, are approximately 8 times
those we would expect from VNET/U given the 1 Gbps re-
sults.

UDP and TCP with a large MTU: We now consider TCP
and UDP performance with 9000 byte jumbo frames our 10
Gbps NICs support. We adjusted the VNET/P MTU so that
the ultimate encapsulated packets will fit into these frames
without fragmentation. For TCP we configure ttcp to use
writes of corresponding size, maximize the socket buffer
size, and do 4 million writes. For UDP, we configure ttcp to
use commensurately large packets sent as fast as possible for
60 seconds. The results are also shown in the Fig. 8. We can
see that performance increases across the board compared to
the 1500 byte MTU results. Compared to the VNET/U per-
formance we would expect in this configuration, the UDP
goodput and TCP throughput of VNET/P are over 10 times
higher.

Latency: Fig. 9 shows the round-trip latency for different
packet sizes, as measured by ping. The latencies are the av-
erage of 100 measurements. While the increase in latency
of VNET/P over Native is significant in relative terms (2×
for 1 Gbps, 3× for 10 Gbps), it is important to keep in mind
the absolute performance. On a 10 Gbps network, VNET/P
achieves a 130 µs round-trip, end-to-end latency. The la-
tency of VNET/P is almost seven times lower than that of
VNET/U.

5.3 MPI microbenchmarks

Parallel programs for distributed memory computers are
typically written to the MPI interface standard. We used
the OpenMPI 1.3 [9] implementation in our evaluations. We
measured the performance of MPI over VNET/P by em-
ploying the widely-used Intel MPI Benchmark Suite (IMB
3.2.2) [20], focusing on the point-to-point messaging perfor-
mance. We compared the basic MPI latency and bandwidth
achieved by VNET/P and natively.

Figures 10 and 11(a) illustrate the latency and bandwidth
reported by Intel MPI PingPong benchmark for our 10 Gbps
configuration. Here the latency measured is the one-way,
end-to-end, application-level latency. That is, it is the time
from when an MPI send starts on one machine to when its
matching MPI receive call completes on the other machine.
For both Native and VNET/P, the host MTU is set to 9000
bytes.

VNET/P’s small message MPI latency is about 55 µs,
about 2.5 times worse than the native case. However, as
the message size increases, the latency difference decreases.
The measurements of end-to-end bandwidth as a function
of message size show that native MPI bandwidth is slightly



Cluster Comput

Fig. 9 End-to-end round-trip latency of VNET/P as a function of ICMP packet size. Small packet latencies on a 10 Gbps network in VNET/P are
∼130 µs

Fig. 10 One-way latency on 10 Gbps hardware from Intel MPI Ping-
Pong microbenchmark

lower than raw UDP or TCP throughput, and VNET/P per-
formance tracks it similarly. The bottom line is that the cur-
rent VNET/P implementation can deliver an MPI latency of
55 µs and bandwidth of 510 MB/s on 10 Gbps Ethernet hard-
ware.

Figure 11(b) shows the results of the MPI SendRecv mi-
crobenchmark in which each node simultaneously sends and
receives. There is no reduction in performance between the
bidirectional case and the unidirectional case. For both fig-
ures, the absolute numbers are shown, but it is important to
note that the overhead is quite stable in percentage terms
once the message size is large: beyond 256K, the one-way
bandwidth of VNET/P is around 74 % of native, and the
two-way bandwidth is around 62 % of native. A possible
interpretation is that we become memory copy bandwidth
limited.

5.4 HPCC benchmarks on more nodes

To test VNET/P performance on more nodes, we ran the
HPCC benchmark [19] suite on a 6 node cluster with 1 Gbps
and 10 Gbps Ethernet. Each node was equipped with two
quad-core 2.3 GHz 2376 AMD Opterons, 32 GB of RAM,
an nVidia MCP55 Forthdeth 1 Gbps Ethernet NIC and a Net-
Effect NE020 10 Gbps Ethernet NIC. The nodes were con-
nected via a Fujitsu XG2000 10 Gb Ethernet Switch. Simi-
lar to our A range of our measurements are made using the
cycle counter. We disabled DVFS control on the machine’s
BIOS, and in the host Linux kernel. We also used the cycle
counter on these machines, and we applied the same tech-
niques (deactivated DVFS, sanity-checking against an ex-
ternal clock for larger time spans) described in Sect. 5.1 to
ensure accurate timing.

The VMs were all configured exactly as in previous tests,
with 4 virtual cores, 1 GB RAM, and a virtio NIC. For the
VNET/P test case, each host ran one VM. We executed tests
with 2, 3, 4, 5, and 6 VMs, with 4 HPCC processes per
VM (one per virtual core). Thus, our performance results
are based on HPCC with 8, 12, 16, 20 and 24 processes for
both VNET/P and Native tests. In the native cases, no VMs
were used, and the processes ran directly on the host. For 1
Gbps testing, the host MTU was set to 1500, while for the
10 Gbps cases, the host MTU was set to 9000.

Latency-bandwidth benchmark: This benchmark consists
of the ping-pong test and the ring-based tests. The ping-
pong test measures the latency and bandwidth between all
distinct pairs of processes. The ring-based tests arrange
the processes into a ring topology and then engage in col-
lective communication among neighbors in the ring, mea-
suring bandwidth and latency. The ring-based tests model
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Fig. 11 Intel MPI PingPong microbenchmark showing (a) one-way bandwidth and (b) bidirectional bandwidth as a function of message size on
the 10 Gbps hardware

the communication behavior of multi-dimensional domain-
decomposition applications. Both naturally ordered rings
and randomly ordered rings are evaluated. Communication
is done with MPI non-blocking sends and receives, and MPI
SendRecv. Here, the bandwidth per process is defined as to-
tal message volume divided by the number of processes and
the maximum time needed in all processes. We reported the
ring-based bandwidths by multiplying them with the num-
ber of processes in the test.

Figure 12 shows the results for different numbers of test
processes. The ping-pong latency and bandwidth results are
consistent with what we saw in the previous microbench-
marks: in the 1 Gbps network, bandwidth are nearly iden-
tical to those in the native cases while latencies are 1.2–2
times higher. In the 10 Gbps network, bandwidths are within
60–75 % of native while latencies are about 2 to 3 times
higher. Both latency and bandwidth under VNET/P exhibit
the same good scaling behavior of the native case.

5.5 Application benchmarks

We evaluated the effect of a VNET/P overlay on applica-
tion performance by running two HPCC application bench-
marks and the whole NAS benchmark suite on the cluster
described in Sect. 5.4. Overall, the performance results from
the HPCC and NAS benchmarks suggest that VNET/P can
achieve high performance for many parallel applications.

HPCC application benchmarks: We considered the two
application benchmarks from the HPCC suite that exhibit
the large volume and complexity of communication: MPI-
RandomAcceess and MPIFFT. For 1 Gbps networks, the dif-
ference in performance is negligible so we focus here on 10
Gbps networks.

In MPIRandomAccess, random numbers are generated
and written to a distributed table, with local buffering. Per-
formance is measured by the billions of updates per second

(GUPs) that are performed. Figure 13(a) shows the results
of MPIRandomAccess, comparing the VNET/P and Native
cases. VNET/P achieves 65–70 % application performance
compared to the native cases, and performance scales simi-
larly.

MPIFFT implements a double precision complex one-
dimensional Discrete Fourier Transform (DFT). Figure 13(b)
shows the results of MPIFFT, comparing the VNET/P and
Native cases. It shows that VNET/P’s application perfor-
mance is within 60–70 % of native performance, with per-
formance scaling similarly.

NAS parallel benchmarks: The NAS Parallel Benchmark
(NPB) suite [54] is a set of five kernels and three pseudo-
applications that is widely used in parallel performance eval-
uation. We specifically use NPB-MPI 2.4 in our evalua-
tion. In our description, we name executions with the format
“name.class.procs”. For example, bt.B.16 means to run the
BT benchmark on 16 processes with a class B problem size.

We run each benchmark with at least two different scales
and one problem size, except FT, which is only run with 16
processes. One VM is run on each physical machine, and it
is configured as described in Sect. 5.4. The test cases with 8
processes are running within 2 VMs and 4 processes started
in each VM. The test cases with 9 processes are run with
4 VMs and 2 or 3 processes per VM. Test cases with 16
processes have 4 VMs with 4 processes per VM. We report
each benchmark’s Mop/s total result for both native and with
VNET/P.

Figure 14 shows the NPB performance results, compar-
ing the VNET/P and Native cases on both 1 Gbps and 10
Gbps networks. The upshot of the results is that for most
of the NAS benchmarks, VNET/P is able to achieve in ex-
cess of 95 % of the native performance even on 10 Gbps
networks. We now describe the results for each benchmark.

EP is an “embarrassingly parallel” kernel that estimates
the upper achievable limits for floating point performance. It
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Fig. 12 HPCC Latency-bandwidth benchmark for both 1 Gbps and
10 Gbps. Ring-based bandwidths are multiplied by the total number of
processes in the test. The ping-pong latency and bandwidth tests show

results that are consistent with the previous microbenchmarks, while
the ring-based tests show that latency and bandwidth of VNET/P scale
similarly to the native cases

does not require a significant interprocessor communication.
VNET/P achieves native performance in all cases.

MG is a simplified multigrid kernel that requires highly
structured long distance communication and tests both short
and long distance data communication. With 16 processes,
MG achieves native performance on the 1 Gbps network,
and 81 % of native performance on the 10 Gbps network.

CG implements the conjugate gradient method to com-
pute an approximation to the smallest eigenvalue of a large
sparse symmetric positive definite matrix. It is typical of un-
structured grid computations in that it tests irregular long
distance communication, employing unstructured matrix
vector multiplication. With 16 processes, CG achieves na-
tive performance on the 1 Gbps network and 94 % of native
performance on the 10 Gbps network.

FT implements the solution of partial differential equa-
tions using FFTs, and captures the essence of many spectral

codes. It is a rigorous test of long-distance communication
performance. With 16 nodes, it achieves 82 % of native per-
formance on 1 Gbps and 86 % of native performance on 10
Gbps.

IS implements a large integer sort of the kind that is
important in particle method codes and tests both integer
computation speed and communication performance. Here
VNET/P achieves native performance in all cases.

LU solves a regular-sparse, block (5 × 5) lower and up-
per triangular system, a problem associated with implicit
computational fluid dynamics algorithms. VNET/P achieves
75 %–85 % of native performance on this benchmark, and
there is no significant difference between the 1 Gbps and 10
Gbps network.

SP and BT implement solutions of multiple, independent
systems of non diagonally dominant, scalar, pentadiagonal
equations, also common in computational fluid dynamics.
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Fig. 13 HPCC application benchmark results. VNET/P achieves reasonable and scalable application performance when supporting communica-
tion-intensive parallel application workloads on 10 Gbps networks. On 1 Gbps networks, the difference is negligible

Mop/s Native-1G VNET/P-1G VNET/P−1G
Native−1G

(%) Native-10G VNET/P-10G VNET/P−10G
Native−10G

(%)

ep.B.8 103.15 101.94 98.8 % 102.18 102.12 99.9 %
ep.B.16 204.88 203.9 99.5 % 208 206.52 99.3 %
ep.C.8 103.12 102.1 99.0 % 103.13 102.14 99.0 %
ep.C.16 206.24 204.14 99.0 % 206.22 203.98 98.9 %

mg.B.8 4400.52 3840.47 87.3 % 5110.29 3796.03 74.3 %
mg.B.16 1506.77 1498.65 99.5 % 9137.26 7405 81.0 %

cg.B.8 1542.79 1319.43 85.5 % 2096.64 1806.57 86.2 %
cg.B.16 160.64 159.69 99.4 % 592.08 554.91 93.7 %

ft.B.16 1575.83 1290.78 81.9 % 1432.3 1228.39 85.8 %

is.B.8 78.88 74.61 94.6 % 59.15 59.04 99.8 %
is.B.16 35.99 35.78 99.4 % 23.09 23 99.6 %
is.C.8 89.54 82.15 91.7 % 132.08 131.87 99.8 %
is.C.16 84.76 82.22 97.0 % 77.77 76.94 98.9 %

lu.B.8 6818.52 5495.23 80.6 % 7173.65 6021.78 83.9 %
lu.B.16 7847.99 6694.12 85.3 % 12981.86 9643.21 74.3 %

sp.B.9 1361.38 1215.85 89.3 % 2634.53 2421.98 91.9 %
sp.B.16 1489.32 1399.6 94.0 % 3010.71 2916.81 96.9 %

bt.B.9 3423.52 3297.04 96.3 % 5229.01 4076.52 78.0 %
bt.B.16 4599.38 4348.99 94.6 % 6315.11 6105.11 96.7 %

Fig. 14 NAS Parallel Benchmark performance with VNET/P on 1
Gbps and 10 Gbps networks. VNET/P can achieve native performance
on many applications, while it can get reasonable and scalable per-

formance when supporting highly communication-intensive parallel
application workloads
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Fig. 15 Preliminary results for the HPCC latency-bandwidth benchmark, comparing the fully virtualized environment using VNET/P running on
IPoIB with the purely native environment using IPoIB. Ring-based bandwidths are multiplied by the total number of processes in the test

The salient difference between the two is the communication
to computation ratio. For SP with 16 processes, VNET/P
achieves 94 % of native performance on 1 Gbps and around
97 % of native on 10 Gbps. For BT at the same scale, 95 % of
native at 1 Gbps and 97 % of native at 10 Gbps are achieved.

It is worth mentioning that in microbenchmarking we
measured throughput and latency separately. During the
throughput microbenchmarking, large packets were contin-
uously sent, saturating VNET/P. On the other hand, for the
application benchmarks, the network communication con-
sisted of a mixture of small and large packets, and so their
performance was determined both by throughput and la-
tency. Recall that the latency overhead of VNET/P is on
the order of 2–3×. This may explain why some application
benchmarks cannot achieve native performance even in the
1 Gbps case (e.g. LU, FT) despite VNET/P achieving na-
tive throughput in the microbenchmarks. This also suggests
that in order to gain fully native application performance, we
need to further reduce the small packet latency. In a sepa-
rate paper from our group [5], we have described additional
techniques to do so, resulting in microbenchmark latency
overheads of 1.2–1.3×. This results in the latency-limited
application benchmarks achieving > 95 % of native perfor-
mance.

6 VNET/P portability

We now describe our experiences in running the Linux-
based VNET/P on alternative hardware, and a second im-
plementation of VNET/P for a different host environment,
the Kitten lightweight kernel. These experiences are in sup-
port of hardware independence, the 3rd goal of VNET artic-

ulated in Sect. 3. Regardless of the underlying networking
hardware or host OS, the guests see a simple Ethernet LAN.

6.1 Infiniband

Infiniband in general, and our Mellanox hardware in partic-
ular, supports IP over Infiniband (IPoIB) [24]. The IPoIB
functionality of the device driver, running in the host, al-
lows the TCP/IP stack of the host to use the NIC to transport
IP packets. Because VNET/P sends UDP packets, it is triv-
ial to direct it to communicate over the IB fabric via this
mechanism. No code changes to VNET/P are needed. The
primary effort is in bringing up the Infiniband NICs with IP
addresses, and establishing routing rules based on them. The
IP functionality of Infiniband co-exists with native function-
ality.

It is important to point out that we have not yet tuned
VNET/P for this configuration, but we describe our current
results below. On our testbed the preliminary, “out of the
box” performance of VNET/P includes a ping latency of
155 µs and a TTCP throughput of 3.6 Gbps. We also ran
the HPCC benchmarks on a 6-node cluster with the same
configuration as in Sect. 5.4, comparing the performance of
VNET/P on IPoIB with native performance on IPoIB.

Figure 15 shows the results for the HPCC latency-
bandwidth benchmark with different numbers of test pro-
cesses. In the pingpong test, VNET/P on IPoIB can achieve
70–75 % of native bandwidth, while its latencies are about 3
to 4 times higher. In the ring-based tests, VNET/P on IPoIB
can achieve on average 50–55 % of the native bandwidth,
while the latency is on average about 2.5 to 3 times higher.

Figure 16 shows the results of two HPCC application
benchmarks comparing the VNET/P and native cases. For
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Fig. 16 Preliminary results for HPCC application benchmarks, comparing the fully virtualized environment using VNET/P over IPoIB with the
purely native environment using IPoIB

MPIRandomAccess, VNET/P on IPoIB achieves 75–80 %
of the native application performance, and performance
scales similarly. On the other hand, the results of MPIFFT
show that VNET/P’s achieve bout 30–45 % of the native
performance, similar performance scaling.

Note also that there are two overheads involved in this
form of mapping, the VNET/P overhead, and the IPoIB
overhead. We have not yet determined the relative sizes of
these overheads.

6.2 Cray Gemini

As a proof-of-concept we have brought Palacios and VNET/P
up on a Cray XK6, the Curie testbed at Sandia National
Labs. Curie consists of 50 compute nodes that each com-
bine an AMD Opteron 6272, an nVidia Tesla M2090, and
32 GB of RAM. The nodes communicate using the Gemini
network, which is a three dimensional torus. The Gemini
NIC connects to a node via a HyperTransport 3 link. The
theoretical peak inter-node latency and bandwidth are 1.5 µs
and 5 GB/s (40 Gbps). Measured MPI throughput for large
(64 KB) messages is about 4 GB/s (32 Gbps). Vaughan et
al [55] give a more detailed description of Gemini in the
context of a large installation.

Although the XK6 runs Cray Compute Node Linux as its
host OS, the changes to Palacios needed to support this con-
figuration have proven to be relatively minor. Gemini sup-
ports an “IPoG” layer. This creates a virtual Ethernet NIC
abstraction on top of the underlying Gemini NIC, and this
abstraction then supports the host OS’s TCP/IP stack. Given
this, VNET/P maps its encapsulated UDP traffic straight-
forwardly, simply by using the IP addresses assigned to the
relevant Gemini NICs. Except for talking to the IPoG layer

instead of talking to an Ethernet NIC, the architecture of
VNET/P on Gemini is identical to that shown in Fig. 1.

We are in the process of tuning VNET/P in this environ-
ment. Our preliminary results show VNET/P achieves a TCP
throughput of 1.6 GB/s (13 Gbps). We are currently address-
ing a likely precision-timing problem that is limiting perfor-
mance. We have not yet determined the relative overheads
of VNET/P and IPoG.

6.3 VNET/P for Kitten

The VNET/P model can be implemented successfully in
host environments other than Linux. Specifically, we have
developed a version of VNET/P for the Kitten Lightweight
Kernel. This version focuses on high performance Infini-
band support and leverages precision timing and other func-
tionality made possible by Kitten.

Figure 17 shows the architecture of VNET/P for Kit-
ten and can be compared and contrasted with the VNET/P
for Linux architecture shown in Fig. 1. While the architec-
tures are substantially different, the abstraction that the guest
VMs see is identical: the guests still believe they are con-
nected by a simple Ethernet network.

Kitten has, by design, a minimal set of in-kernel ser-
vices. For this reason, the VNET/P Bridge functionality is
not implemented in the kernel, but rather in a privileged ser-
vice VM called the Bridge VM that has direct access to the
physical Infiniband device. In place of encapsulating Eth-
ernet packets in UDP packets for transmission to a remote
VNET/P core, VNET/P’s for InfiniBand on Kitten simply
maps Ethernet packets to InfiniBand frames. These frames
are then transmitted through an InfiniBand queue pair ac-
cessed via the Linux IPoIB framework.
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Fig. 17 The architecture of VNET/P for Kitten running on InfiniBand.
Palacios is embedded in the Kitten lightweight kernel and forwards
packets to/receives packets from a service VM called the bridge VM

We conducted preliminary performance tests of VNET/P
for Kitten on InfiniBand using 8900 byte TCP payloads
running on ttcp on a testbed similar to the one described
in Sect. 5.1. Here, each node was a dual quad-core 2.3
GHz 2376 AMD Opteron machine with 32 GB of RAM
and a Mellanox MT26428 InfiniBand NIC in a PCI-e slot.
The Infiniband NICs were connected via a Mellanox MTS
3600 36-port 20/40 Gbps InfiniBand switch. This version
of VNET/P is able to achieve 4.0 Gbps end-to-end TCP
throughput, compared to 6.5 Gbps when run natively on top
of IP-over-InfiniBand in Reliable Connected (RC) mode.

The Kitten version of VNET/P described here is the ba-
sis of VNET/P+, which is described in more detail else-
where [5]. VNET/P+ uses two techniques, optimistic inter-
rupts and cut-through forwarding, to increase the throughput
and lower the latency compared to VNET/P. Additionally,
by leveraging the low-noise environment of Kitten, it is able
to provide very little jitter in latency compared to the Linux
version. When run with a 10 Gbps Ethernet network, native
throughput is achievable. We are currently back-porting the
VNET/P+ techniques into the Linux version.

7 Conclusion and future work

We have described the VNET model of overlay network-
ing in a distributed virtualized computing environment and
our efforts in extending this simple and flexible model to
support tightly-coupled high performance computing appli-
cations running on high-performance networking hardware
in current supercomputing environments, future data cen-
ters, and future clouds. VNET/P is our design and imple-
mentation of VNET for such environments. Its design goal
is to achieve near-native throughput and latency on 1 and

10 Gbps Ethernet, InfiniBand, Cray Gemini, and other high
performance interconnects.

To achieve performance, VNET/P relies on several key
techniques and systems, including lightweight virtualization
in the Palacios virtual machine monitor, high-performance
I/O, and multicore overlay routing support. Together, these
techniques enable VNET/P to provide a simple and flexible
level 2 Ethernet network abstraction in a large range of sys-
tems no matter what the actual underlying networking tech-
nology is. While our VNET/P implementation is tightly in-
tegrated into our Palacios virtual machine monitor, the prin-
ciples involved could be used in other environments as well.

We are currently working to further enhance VNET/P’s
performance through its guarded privileged execution di-
rectly in the guest, including an uncooperative guest.
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