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Abstract

We are developing a grid information service, RGIS, that is
based on the relational data model. RGIS supports complex
queries written in SQL that search for compositions (using joins)
of resources. For example, we might ask it to find a Linux cluster
with a certain bisection bandwidth and total memory. Such queries
can be expensive to execute, however, and so we have developed
several approaches that leverage our GIS schema to let us trade
off between the number of results returned and the execution time.
In this paper, we describe two of them: scoped queries and ap-
proximate queries. Scoped queries constrain search to a network
neighborhood, returning all matching results in the neighborhood.
Approximate queries reduce the number of joins done by replac-
ing collective constraints with constraints on individual resources,
returning a subset of all the possible results in the grid. Scop-
ing, approximation, and nondeterminism (described elsewhere),
can be combined. In this paper, we describe scoped and approxi-
mate queries, how they are implemented, and present performance
evaluations for two examples. The evaluation suggests that scop-
ing and approximation can greatly reduce query times while still
returning a useful number of results.

1 Introduction

Grid technologies strive to enable large-scale sharing
of computing resources and services. A central role is
that of Grid Information Services (GIS), which provide re-
source discovery and monitoring. GISes store information
about the resources available within a wide area distributed
computing environment, such as hosts, clusters, switches,
routers, links, services, sensors, available software, and ser-
vices. A GIS consists of a set of objects representing the
resources and their relationships, and programs that query
and update the objects. Each object has a unique identifier,
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a timestamp, and a set of attributes. The GIS makes up-
dates (inserts, deletes, and changes of objects) available to
queries as soon as possible. It also manages access to the
objects, making sure that they are updated and read by au-
thorized users only. As grids become larger and more pow-
erful, the number of objects grows, as does the complexity
of the queries over them. A more detailed description of
this view of a GIS is available elsewhere [9].

We are developing a distributed GIS system, RGIS, that
is based on the relational data model. RGIS servers are im-
plemented on top of a RDBMS and use SQL as their query
language. They push updates to each other using a content
delivery network. The RGIS schema focuses on modeling
the hardware and software resources of a distributed com-
puting environment. While most computational grids today
are relatively small, we intend RGIS to scale to very large
grids, and possibly even to the scale of the Internet. An in-
depth description of the merits of a relational approach to
GIS systems is available elsewhere [2], as is a more detailed
description of the system [3].

A powerful feature of RGIS is that users can write
queries in SQL to search for complex compositions of re-
sources. However, these queries can be extremely expen-
sive to execute because they often involve large numbers of
joins. In response, we have introduced the concept of non-
deterministic queries [3], which allow the user (and RGIS)
to trade off between the running time of a query (and the
load it places on an RGIS server) and the number of results
returned. The result set returned is a random subset of the
full result set.

In this paper, we describe two additional techniques for
making complex RGIS queries fast: scoped queries and ap-
proximate queries. In a scoped query, the query, with all its
joins, is limited to a neighborhood in the network, exploit-
ing the network topology captured in the RGIS schema. In
approximate queries, the number of joins is reduced by re-
placing them with constraints on individual objects and the
simplified query is run against the entire network. In both
cases a deterministic subset of the full result set is returned.
In essence, both involve a more tightly constrained version
of the original query. Scoping, approximation, and nonde-
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Figure 1. Schematic of query semantics.

terminism are orthogonal and can be combined. Figure 1
schematically illustrates the nature of these techniques.

Notice that with each technique it is possible that the
query returns no results although results do exist for the
full query. Scoped and approximate queries will always re-
turn the same results, while the nondeterministic query re-
turns different results each time with high probability. Of
course, any query involving scoping can also be iterated
with randomly chosen scopes. Scoping is easy to imple-
ment, either by the system or the user, since it involves
only the addition of constraints to the given query. Non-
determinism is relatively straightforward to implement by
equijoining additional tables and placing constraints on val-
ues on those tables. Approximation involves a much more
complex query rewrite because aggregate constraints must
be translated into constraints on individual objects. How-
ever, because it eliminates joins, it has very dramatic effects
on query time. RGIS uses methods as appropriate. RGIS
also can hard-limit the running time of any query simply by
killing it.

In the following, we first briefly describe the RGIS
architecture and work related to it. Then we describe
scoped and approximate queries in greater detail. Finally,
we evaluate the performance of scoped, approximate, and
scoped+approximate queries on two example queries.

2 Related work

The grid computing community has seen an explosion
of work on GIS systems. The most relevant systems to this
work are Globus MDS2 [1], the Condor Matchmaker [11],
Redline [7], and R-GMA [6].

MDS2 is based on LDAP and defines a schema (the at-
tribute types) that can be associated with nodes in an LDAP
tree. Queries are scoped to subtrees. In contrast, RGIS uses
a relational data model with scoping possible with respect
to the network topology that is modeled.

The Condor Matchmaker provides bi-partite matching of
requests and offers, and was recently extended to support

gang-matching [12] or more complex queries. Recently,
Liu and Foster have proposed a matchmaking scheme and
developed a system, Redline, in which the language for
constraints enables the definition of constraint satisfaction
problems (CSPs) [7].

R-GMA [6] is closest to our work in that it also pro-
poses a relational data model for GIS systems. However,
R-GMA currently focuses on dynamic properties of re-
sources (e.g., load), while RGIS focuses currently on rel-
atively static properties (e.g., memory). Both systems are
evolving to unify static and dynamic information, however.
Our second difference is RGIS’s support for nondeterminis-
tic, scoped, and approximate queries, as described here and
in an earlier paper [3].

Interestingly, by enabling what we call compositional
queries, the Condor Matchmaker with gang-matching, Red-
line, R-GMA, and RGIS run into the same problem: the
exploding cost of query execution. Each system deals with
this problem in a different, heuristic manner. This paper
describes and evaluates scoping and approximation, two of
RGIS’s approaches to this problem.

3 RGIS system architecture

An RGIS server is built around an RDBMS system. At
the present time, we use Oracle 9i Enterprise Edition, but
our system could also be based on other RDBMS systems.
RGIS includes a type system to identify a wide range of
components including hosts, routers, switches and hubs at
layers 2 and 1, links at layers 3 through 1, paths at layer 3,
benchmarks, operating systems, operating system vendors
and versions, switches, switch vendors, software modules,
running software, and communication endpoints. The RGIS
schema includes the sequences, tables, constraints, triggers,
and indices that represent our grid modeling efforts. Given
transactional updates, the constraints and triggers are de-
signed to keep the database in a consistent state.

Layered on top of the RDBMS front-end is a query man-
ager/rewriter, and an update manager, which provide the
core interfaces to the system. The goal of the query man-
ager/rewriter is to shape the query workload so that it can
be effectively executed by the RDBMS. It is here that non-
deterministic, scoped, and approximate queries are imple-
mented.

An RGIS server serves a site and can be scaled by using
more powerful implementations of the underlying RDBMS
and the hardware it runs on. A site’s RGIS server is respon-
sible for the query workload produced by the site and for
maintaining a replica of information about friendly remote
sites so that queries can also be posed against those sites.
To make this this possible, each RGIS server pushes locally
occurring updates to friendly remote RGIS servers, provid-
ing weak consistency among mutually friendly servers. A
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SELECT [APPROXIMATELY]
h1.distip, h2.distip 

FROM 
hosts h1, hosts h2, iplinks l1, iplinks l2, routers r 

WHERE 
h1.mem_mb+h2.mem_mb>=1024 
and h1.os='linux' and h2.os='linux' 
and ((l1.src=r.distip and l2.src=r.distip

and l1.dest=h1.distip and l2.dest=h2.distip) 
or (l1.dest=r.distip and l2.dest=r.distip

and l1.src=h1.distip and l2.src=h2.distip)) 
and h1.distip<>h2.distip 

[SCOPED BY r.distip=X]
WITHIN 
100 seconds; Original

SELECT [APPROXIMATELY]
h1.distip, h2.distip 

FROM 
hosts h1, hosts h2, iplinks l1, iplinks l2, routers r 

WHERE 
h1.mem_mb+h2.mem_mb>=1024 
and h1.os='linux' and h2.os='linux' 
and ((l1.src=r.distip and l2.src=r.distip

and l1.dest=h1.distip and l2.dest=h2.distip) 
or (l1.dest=r.distip and l2.dest=r.distip

and l1.src=h1.distip and l2.src=h2.distip)) 
and h1.distip<>h2.distip 

[SCOPED BY r.distip=X]
WITHIN 
100 seconds; Original

SELECT 
H1.DISTIP, H2.DISTIP 

FROM 
HOSTS H1, HOSTS H2, IPLINKS L1, IPLINKS L2, ROUTERS R  

WHERE 
H1.MEM_MB+H2.MEM_MB>=1024  
AND H1.OS='LINUX' AND H2.OS='LINUX' 
AND  ((L1.SRC=R.DISTIP  AND  L2.SRC=R.DISTIP  

AND  L1.DEST=H1.DISTIP  AND  L2.DEST=H2.DISTIP) 
OR (L1.DEST=R.DISTIP  AND  L2.DEST=R.DISTIP  

AND  L1.SRC=H1.DISTIP  AND  L2.SRC=H2.DISTIP))  
AND  H1.DISTIP<>H2.DISTIP 
AND L1.BW_MBS >= 100  AND L2.BW_MBS >= 100  
AND R.DISTIP = X; Scoped

SELECT 
H1.DISTIP, H2.DISTIP 

FROM 
HOSTS H1, HOSTS H2, IPLINKS L1, IPLINKS L2, ROUTERS R  

WHERE 
H1.MEM_MB+H2.MEM_MB>=1024  
AND H1.OS='LINUX' AND H2.OS='LINUX' 
AND  ((L1.SRC=R.DISTIP  AND  L2.SRC=R.DISTIP  

AND  L1.DEST=H1.DISTIP  AND  L2.DEST=H2.DISTIP) 
OR (L1.DEST=R.DISTIP  AND  L2.DEST=R.DISTIP  

AND  L1.SRC=H1.DISTIP  AND  L2.SRC=H2.DISTIP))  
AND  H1.DISTIP<>H2.DISTIP 
AND L1.BW_MBS >= 100  AND L2.BW_MBS >= 100  
AND R.DISTIP = X; Scoped

SELECT  
R.DISTIP, H1.DISTIP 

FROM 
HOSTS H1, IPLINKS L1, ROUTERS R 

WHERE 
H1.MEM_MB>=512 AND H1.OS='LINUX' 
AND L1.BW_MBS >= 100 
AND ((L1.SRC=R.DISTIP AND L1.DEST=H1.DISTIP) 

OR (L1.DEST = R.DISTIP AND L1.SRC=H1.DISTIP))
AND R.DISTIP IN 

(SELECT 
R.DISTIP FROM HOSTS H1, IPLINKS L1, ROUTERS R 

WHERE  
H1.MEM_MB>=512 AND H1.OS='LINUX' 
AND L1.BW_MBS>=100 
AND ((L1.SRC=R.DISTIP AND L1.DEST=H1.DISTIP) 

OR (L1.DEST = R.DISTIP AND L1.SRC=H1.DISTIP))
GROUP BY 
R.DISTIP 

HAVING COUNT(*) >= 2) 
ORDER BY 

R.DISTIP; Approximate

SELECT  
R.DISTIP, H1.DISTIP 

FROM 
HOSTS H1, IPLINKS L1, ROUTERS R 

WHERE 
H1.MEM_MB>=512 AND H1.OS='LINUX' 
AND L1.BW_MBS >= 100 
AND ((L1.SRC=R.DISTIP AND L1.DEST=H1.DISTIP) 

OR (L1.DEST = R.DISTIP AND L1.SRC=H1.DISTIP))
AND R.DISTIP IN 

(SELECT 
R.DISTIP FROM HOSTS H1, IPLINKS L1, ROUTERS R 

WHERE  
H1.MEM_MB>=512 AND H1.OS='LINUX' 
AND L1.BW_MBS>=100 
AND ((L1.SRC=R.DISTIP AND L1.DEST=H1.DISTIP) 

OR (L1.DEST = R.DISTIP AND L1.SRC=H1.DISTIP))
GROUP BY 
R.DISTIP 

HAVING COUNT(*) >= 2) 
ORDER BY 

R.DISTIP; Approximate

SELECT 
H1.DISTIP 

FROM 
HOSTS H1, IPLINKS L1, ROUTERS R

WHERE 
H1.MEM_MB>=512  AND H1.OS='LINUX' 
AND  L1.BW_MBS >= 100 
AND  ((L1.SRC=R.DISTIP AND L1.DEST=H1.DISTIP) 

OR (L1.DEST = R.DISTIP AND L1.SRC=H1.DISTIP))
AND R.DISTIP=X
AND ROWNUM <=2 Scoped+Approximate

SELECT 
H1.DISTIP 

FROM 
HOSTS H1, IPLINKS L1, ROUTERS R

WHERE 
H1.MEM_MB>=512  AND H1.OS='LINUX' 
AND  L1.BW_MBS >= 100 
AND  ((L1.SRC=R.DISTIP AND L1.DEST=H1.DISTIP) 

OR (L1.DEST = R.DISTIP AND L1.SRC=H1.DISTIP))
AND R.DISTIP=X
AND ROWNUM <=2 Scoped+Approximate

Figure 2. Cluster finder query and its im-
plementation as a scoped, approximate, and
scoped approximate queries.

more detailed description of the distributed RGIS system
architecture is available [3].

Like nondeterministic queries, scoped queries return a
subset of all possible results. We also exploit the network
structure by approximating large joins with complex con-
straints with smaller joins and simpler constraints. Approx-
imate queries return a set of results that overlaps with the set
of all possible results. The remainder of this paper focuses
on scoped and approximated queries.

4 Scoped and approximate queries

Parallel and distributed applications are often not inter-
ested in individual resources per se, but rather in composi-
tions of them. For example, suppose a data parallel program
has been compiled to run on two processors. At startup, it
will want to ask questions such as “find me a Linux clus-
ter of two machines with a total memory of at least 1 GB,
all with at least 100 mbit links to a common router”. Such
questions can be readily posed to RGIS using SQL SELECT
statements, as can be seen by the upper left query shown
in Figure 2. This cluster finder query answers the above
question and it can be mechanically extended to search for
N -host clusters.

In general, SQL lets the application or user combine
multiple resources in arbitrary ways because it essentially
provides set (bag) operations. Unfortunately, such queries
can be very expensive to execute. In the worst case, the
query cost can grow exponentially with the number of joins.
Notice that the two-host cluster finder query involves a
five-way join. In general, an N -host version of the query

would involve (2N + 1)-way join. Not only must individ-
ual queries execute in short periods of time, an RGIS server
must also be able to handle the query workload of a whole
site. If we support such queries directly, we would quickly
start to disappoint users and would also overload the RGIS
server.

Scoped queries

It is a common misconception that, unlike hierarchical
data models, it is impossible to scope queries in the rela-
tional data model. In actuality, it is schema-dependent. Be-
cause the RGIS schema models the network, it is possible
to scope queries with respect to the network of the grid, ei-
ther by prefix-matching against IP addresses or by rooting
the query at a router or switch. As shown in the query in the
lower left of Figure 2, scoping is achieved by constraining
the choice of router to one particular router.

A scoped query may return no results if the router does
not have a set of machines that meets the constraints. The
user may issue the query iteratively with a list of routers
known to him, or have the system issue it repeatedly with
randomly chosen routers until a match is found.

Approximate queries

The main idea behind approximate queries is to mini-
mize the number of joins by rewriting SQL queries with
tighter constraints which return a result set that is a deter-
ministic subset of the full result set. Consider an exam-
ple query in which we seek to find N machines with total
memory greater than or equal to m MB. In this simple ex-
ample the original SQL query will execute a N way join.
A valid approximation of this query is to find N machines
each with memory greater than or equal to m/N MB. The
approximation is valid in that those N machines must also
be a row of the result set of the original query. It is an ap-
proximation in that the constraints are stronger. A solution
in which N/2 machines have 4m/3N MB and N/2 have
2m/3N would be found by the original query but not by
the approximate query. Also note that we must know the
semantics of the particular resource (hosts and their mem-
ory) to know whether the transformed query makes sense.
The upshot is that we can quickly compute a result set that
is a deterministic subset of that of the original query with-
out any join operations. This makes the query much faster
and improves the scalability of the system.

The upper right hand query in Figure 2 shows an exam-
ple of an approximate query. Notice that the number of ta-
bles joined is three (with an additional 3-way join in the sub
select). This is fixed regardless of the number of hosts in
size of the cluster. A cluster finder query that looks for 64
machines would also involve the same joins. In the query,
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the sub select returns those routers that have at least N = 2
appropriate machines attached to them, and the main select
returns all those machines ordered by their router.

Scoped approximate queries

Scoping and approximation are orthogonal and can be
combined, as they are in the lower right query of Figure 2.
In this query, the entire sub select of the approximate query
is replaced by the router to which the query is scoped. The
query now involves only a three-way join. Instead of look-
ing for two machines with total memory of 1GB, the ap-
proximation query looks for two machines that each have
memory bigger than half of a GB, which is a determinis-
tic subset of the original query results. This query can be
extended to N host clusters in the following way.

To find a cluster of N qualified machines that are con-
nected to one router, we first randomly choose a router (or
iterate through a list provided by the user). We then perform
the three-way join query, with ROWNUM<=N , to find possi-
ble combinations of hosts in the LAN. This process repeats
until we find a router with N appropriate hosts attached, we
run out of routers with no results found, or we run out of
time. Notice that for any arbitrary N , the query remains
a fixed three-way join. With the original SQL query, we
would need a 2N + 1-way join to find a N machine cluster,
which is of course extremely expensive. If random routers
are chosen, then we essentially randomly sample the result
set of the approximate query (upper right), which is itself a
deterministic subset of the full result set.

It is important to note that query time is largely depen-
dent on the number of routers (or LANs) that we must
search before we find one with enough appropriate hosts,
which in turn is affected by the distribution of machine and
network characteristics in the database. The query itself is
also a factor. Query times will also vary based on the size of
the cluster requested and the required resources on each of
the hosts of the cluster. In what follows, we attempt to es-
timate the expected number of LANs that must be searched
in order to obtain an appropriate result.

We would like to know the expected number of LANs
that must be searched in order to find a cluster of N hosts in
an M host LAN. As an example, suppose that we want each
host to have at least 512 MB of memory, run the operating
system Linux, and have a link bandwidth of at least 100
Mbps. To find the expected number of LANs searched, we
must first know the a-priori probabilities of matching the
memory size, operating systems and link bandwidth con-
straints. We can perform online queries to estimate these
probabilities. We assume that these probabilities are inde-
pendent, an assumption that is basically true in our database
but may not be valid in all cases. We can find the probability

that a host meets the constraints by

Pmo = P (mem ≥ 512)P (OS = LINUX)P (BW ≥ 100)
(1)

To find N qualified hosts in an M host LAN, we use the
Bernoulli process:

P (num = N) = (M

N )P N

mo(1 − Pmo)
M−N (2)

To find the probability that there are more than N qualified
hosts in the LAN we sum up the probabilities from N to M
as these satisfy our query:

Plan =
M∑

num=N

P (num = N) (3)

The expected number of LANs we need to search is then
given by

ExpectNum =
1

Plan

(4)

We believe that the assumptions and model are reasonable
in most cases, but some tests show discrepancy. The dis-
crepancy is likely caused by the assumption that the prob-
abilities of meeting constraints are independent. There can
be weak dependences among them. We are currently in the
process of improving the model.

Nondeterministic scoped approximate queries

In addition to scoping and approximation, nondetermin-
ism can also be used orthogonal. Our proposed extended
query syntax is as follows:

select
[nondeterministically]
[approximately]
result_spec

from
join_spec

where
where_clause

[scoped by scope_clause]
[within x seconds]

In Section 5, we evaluate the performance of scoped, ap-
proximate, and scoped approximate queries and show that
they can quickly return useful results in situations where
the full query cannot be executed in a reasonable amount of
time.

Time-bounded queries

In our current implementation, we can time-bound
queries posed to the system. The query manager/rewriter
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SELECT APPROXIMATELY 
h1.distip, h2.distip 

FROM
hosts h1, hosts h2 

WHERE 
h1.mem_mb+h2.mem_mb>=1024 and 
h1.disk_gb+ h2.disk_gb>=160 and
h1.insertid<>h2.insertid 

WITHIN
1 seconds;

SELECT 
H1.DISTIP 

FROM 
HOSTS H1 

WHERE 
H1.MEM_MB>=512 AND 
H1.DISK_GB>=80 AND
ROWNUM<=2; 

Figure 3. Non-network query and implemen-
tation as a scoped approximate query.

starts the query as a child process, and is allowed to run un-
til the deadline is exceeded. If the query completes before
that time, it returns the result set to the parent which then
forwards the results to the caller. If it runs out of time, it is
killed and no result set is returned.

Non-network example

Figure 3 shows a second example. Here we search for
two machines with a total memory size greater than or equal
to 1 GB and a total disk size greater than or equal to 160
GB. Since there is no network constraint, the scoped ap-
proximate query boils down to finding the first two hosts
that meet the individual constraints. No joins at all are in-
volved.

Limitations of scoped and approximate queries

There are mainly two limitations of scoped and approx-
imate queries. The first is that the returned results are a
subset of the original query. Thus, it is possible to return no
results while in fact results exist for the given query. This
possibility depends heavily on the query itself and the dis-
tribution of host attributes inside the database. Second, not
all queries can be approximated or scoped. In other words,
there certainly are situations in which there is no way to
avoid or minimize the use of joins. Nonetheless, many
queries can have their running times dramatically reduced
through combinations of scoping, approximation, nonde-
terminism, and, of course, time-bounding. One proposed
strategy is to first apply scoping, if possible, then rewrite
the query to an approximate form, if possible. If the ap-
proximate query runs for too long or returns no results, step
back and apply nondeterminism to it. If there are no results,
apply nondeterminism to the original or scoped query.

5 Experimental Results and Evaluation

The goal of the experiments is to evaluate how the per-
formance of scoped, approximate, and scoped approximate

Hosts α O NW NM NL SW SM SL
9.8K 8.915 -2.49 1 7 7 40 30 200

101.2K 8.915 -2.49 1 23 22 40 30 200
980K 8.915 -2.49 1 70 70 40 30 200

Figure 4. Parameters passed to GridG to gen-
erate 3 different sizes of synthetic grids.

queries on RGIS depends on the database size, the com-
plexity of the query, and the load on the server. We use two
different queries in our evaluation, the cluster-finder and
non-network queries in the previous section. The first looks
for sets of Linux hosts meeting total memory and individ-
ual link bandwidth requirements that are all connected to a
common router. The second query looks for groups of hosts
that meet a total memory and disk requirement. Similar to
earlier GIS evaluation work [14], our evaluation metric is
the average response time from the users perspective.

Our first step is to populate the database. We do this with
GridG [8], a tool for generating realistic synthetic comput-
ing grids. GridG generates a grid as an annotated graph in
which hosts, routers and other network devices are repre-
sented as nodes. The topology has a hierarchical structure
but also conforms to the power laws that have been found
in the Internet topology [5]. Annotations include memory,
clock speed, cpu type, number of CPUs, operating system
type, link bandwidths, router bandwidths, etc.

GridG network topologies are configured using eight pa-
rameters. Six determine the hierarchical structure of the
generated grid (these are passed to the underlying Tiers gen-
erator [4]) and the remaining two determine the parameters
of outdegree power law of the Internet topology (our ex-
tension). The eight parameters are: α (constant in outde-
gree law), O (outdegree exponent), NW (maximum number
of WANs), NM (maximum number of MANs per WAN),
NL (maximum number of LANs per MAN), SW (maxi-
mum number of nodes per WAN), SM(maximum number
of nodes per MAN), and SL (maximum number of nodes
per LAN). Figure 4 shows the specific parameters used to
generate the three synthetic grids used in our experiments.
The hierarchical parameters are based on requirements for
the total number of hosts. The values of α and O in the ta-
ble are from a measured router-level Internet topology dis-
cussed by Faloutsos, et al [5]. Memory size distributions
are determine from Smith, et al’s MDS data [13].

Unless otherwise noted, our experimental infrastructure
is based on Oracle 9i Enterprise Edition running Red Hat
Linux 7.1 on a dedicated Dell PowerEdge 4400 server. The
server has two 1 GHz Xeon processors, 2 GB of main mem-
ory, and a PERC3DI RAID controller producing about 240
GB of RAID 5 storage over eight 36 GB U3 SCSI disks.
Each test is performed 25 or 100 times and we provide the
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Technique
Cluster Standard Scoped Approx Scoped +
Size SQL query query query Approx query
2 21.44 2.27 7.62 1.16
4 >7200 2047.93 7.48 1.32
8 >9000 >3600 7.46 1.43
16 N/A >3600 7.51 1.45
32 N/A >3600 7.65 5.96
64 N/A >3600 >120 9.58

Figure 5. Cluster finder query times in sec-
onds for the four query techniques for a
database populated with 9.8K hosts. In the
figure, N/A represents those tests that were
not run due to expected extremely long query
times.

average behavior. We limit all the tests to return one set of
results to keep conformity between each of the experiments.

Cluster finder

In this experiment, we measured the response time of
original, scoped, approximate, and scoped approximate ver-
sions of the cluster-finder query as a function of database
size and query complexity (number of hosts). Because of
time limitations, our data compares all versions on the small
grid (9.8K hosts), but only the original (slowest) and scoped
approximate (fastest) versions on the larger grids.

For each database size, cluster finder searches for an N
host Linux cluster with link bandwidths ≥ 100 Mbps, and
total memory ≥ 512N . In our database each LAN is rep-
resented as a star with a router located at the center and the
LAN links are full duplex. Given this, the link constraint is
equivalent to a bisection bandwidth constraint of ≥ 100N
Mbps.

Figure 5 shows a table of the average response times for
each of the different versions of the query run on the small
grid. Each query type that produce results, either an average
or a limit, was run twenty-five times and an average value
computed over the runs. When going from standard SQL
queries to scoping, there is not much performance gain in
terms of response time due to the presence of N-way joins in
each. When moving to the approximate-only query without
scoping, the queries scale well with increased cluster size.
Only after the 32 node cluster search does the response time
become unscalable. When mixing the scoped and approxi-
mate techniques, as shown in the last column of the table, it
is seen that this provides not only the greatest gain in terms
of response time, but scales extremely well as the cluster
size increases. We can readily see that as cluster size grows,
the spread between the techniques grows dramatically, with
the ranking from slowest to fastest being: original, scoped,
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Figure 6. Cluster finder query time vs. cluster
size with 9.8K hosts (scoped approximate).
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Figure 7. Cluster finder query time vs. cluster
size with 101K hosts (scoped approximate).

approximate, and scoped+approximate. In the remainder
of this Section, we concentrate on the performance of the
scoped approximate query (fastest).

Figures 6, 7 and 8 show the average response time, aver-
age number of LANs searched, and average time to search
a LAN versus the size of cluster requested for the three dif-
ferent grid sizes. The scoped approximate queries always
perform a three-way join, while the original queries per-
form a 2N + 1-way join. The bigger the cluster size, the
more benefit we get from scoped approximate queries.

An interesting trend in the Figures is that as the grid
grows in size, the expected number of LANs that must be
searched decreases. In addition, the average request time
per LAN scales relatively linearly as the cluster size in-
creases. In the worst case we studied (64 node cluster, 980K
hosts) the average time of the request is less than 70 sec-
onds, which is remarkably faster than the >> 2000 second
times seen by the original query.
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Figure 8. Cluster finder query time vs. cluster
size with 980K hosts (scoped approximate).
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Figure 9. Non-network query response time
vs. number of hosts with 9.8K hosts (scoped
approximate).

Non-network example

Here we evaluate the performance of original and scoped
approximate versions of a query that searchs for N hosts
with a total memory ≥ 512N MB and total disk ≥ 80N ,
Figure 3. The same grids are used as before. Figures 9,
10 and 11 show the average response time of both versions
of the query for all three grid sizes. With the scoped ap-
proximate query, we have entirely elliminated all joins for
this query, hence the performance is virtually constant with
increasing numbers of hosts. In contrast, the original query
can potentially scale exponentially.

Queries with multiple users and update load

GIS systems must scale in the presence of multiple
concurrent users and under update load [10]. Hence we
seek here to understand how multiple scoped approximate
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Figure 10. Non-network query response time
vs. number of hosts with 101K hosts (scoped
approximate).
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Figure 11. Non-network query response time
vs. number of hosts with 980K hosts (scoped
approximate).

queries interact with each other and with updates. To study
this we used the small grid (9.8K hosts) with update load
that consists of a process continusly doing transactional up-
dates of the disk size of randomly selected hosts.

In Figure 12, multiple users are iteratively issuing scoped
approximate cluster finder queries that are each searching
for Linux clusters with 64 nodes, link bandwidths of ≥ 100
Mbps, and a total memory of 512 ∗ 64 MB. We plot their
average response time as a function of the number of con-
current users. Figure 13 is identical except here we run
the non-network query trying to find N hosts with a total
memory ≥ 64 ∗ 512 MB. We observe that the updating pro-
cess can slow down the information server, but the effect is
stable and no worse than a 10 percent degradation in most
circumstances. How well multiple queries scale depends
very much on their nature. The case of the non-network
query, no joins are being done, which we expect dramati-
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Figure 12. Cluster finder with multiple concur-
rent users and update load (scoped approxi-
mate).
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Figure 13. Non-network query with multiple
concurrent users and update load (scoped
approximate).

cally increases performance because the entire result table
can probably be cached.

6 Conclusions

We have described and evaluated scoping and approx-
imation, two techniques to reduce the running time of
queries in the RGIS system. Scoping adds additional con-
straints to queries relative to the network topology and other
relationships in the schema, while approximation replaces
joins with tighter constraints on individual objects. In both
cases there is a tradeoff: a subset of the full result set is
quickly returned. Response time and server load can be
dramatically reduced. These techniques are complementary
to each other and to RGIS’s nondeterministic queries. The

three techniques help to make a relational approach to GIS
feasible.
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