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Abstract

Realistic workloads are essential in evaluating middleware for
computational grids. One important component is the raw grid
itself: a network topology graph annotated with the hardware
and software available on each node and link. This paper defines
our requirements for grid generation and presents GridG, our
extensible generator. We describe GridG in two steps: topology
generation and annotation. For topology generation, we have
both model and mechanism. We extend Tiers, an existing tool
from the networking community, to produce graphs that obey
recently discovered power laws of Internet topology. We also
contribute to network topology theory by illustrating a contra-
diction between two laws and proposing a new version of one of
them. For annotation, GridG captures intra- and inter-host cor-
relations between attributes using conditional probability rules.
We construct a set of rules, including one based on empirical
evidence of OS concentration in subnets, that produce sensible
host annotations.

1 Introduction

The goal of grid computing [17, 18] is to give users easy
access to arbitrary amounts of computational power, con-
nectivity, storage, and services within large wide-area
distributed computing environments. Middleware such
as Globus [16] and Legion [20] simplify using remote
resources within a computational grid. To help users
find resources, these systems typically provide some
form of a grid information service (GIS) such as Globus
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MDS [9]. Resource monitoring tools such as NWS [35],
Remos [10], Wren [23], or RPS [12] can be used to gauge
the dynamic availability of found resources.

Designing and evaluating such grid middleware demands
realistic workloads. For example, we are in the process of
designing and building a grid information service based
on the relational data model [11, 13]. In this system, users
are able to pose complex compositional queries that re-
semble decision support queries. A typical query might
look for a group of machines that use the same OS, to-
gether have a certain amount of memory, and that the sub-
set of the network connecting them have some bisection
bandwidth. To make these queries fast, we implement
them using stochastic search, allowing us to trade off be-
tween the number of nondeterministically chosen results
returned by the query and the amount of work done in
support of it. This tradeoff depends strongly on the struc-
ture of the grid: the network topology and the character-
istics of the hosts, routers, and links within the topology.

While Smith, et al [30] studied the update and query pro-
cesses on such grid information, there is no extant work
and limited available data on the structure of computa-
tional grids. We examined the contents of several run-
ning GIS systems. The largest dataset we have found,
generously provided by Smith, contains fewer than one
thousand nodes. Given the limited data sets, a synthetic
grid generator is a necessity. Furthermore, even as more
data becomes available, it will continue to be useful to
have a parametric source of grids. For example, such
grids could be used with simulation toolkits such as Grid-
Sim [6], Simgrid [8], MicroGrid [31] and Bricks [1]. to
study the benefits of different scheduling techniques. Un-
fortunately, no such generator currently exists. Synthetic
grids could also be useful in simulation studies of overlay
networks and peer-to-peer systems [29, 4]. Although the
correctness of such protocols do not depend on the under-
lying topology, their efficiency does depend on topology
and on the performance of the end-systems.

In response to this need, we have built GridG, a grid
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generator. Our definition of a grid is an annotated di-
rected graph in which the nodes represent hosts, routers,
switches, and hubs, and the edges represent network
links. The graph is thus a network topology that extends
to the level of hosts. In addition, each node or edge is
annotated with information relevant to its use as a part of
a computational grid. A grid generator, such as GridG,
produces a grid of a given number of hosts. It must meet
the following requirements:

• It must produce a realistic network topology. Much
is known about the properties of real network
topologies: they are connected, and they have hi-
erarchical structures. Furthermore, wide-area net-
work topologies, including the Internet, have re-
cently been found to follow certain topological
power laws [15]. A good generator will provide
both structure and follow the power laws [32].

• It must generate realistic annotations for hosts and
network components. For a host, it should at least
provide the architecture type, processor type and
speed, number of processors, memory size, disk
size, hardware vendor, operating system, and avail-
able software. For a link, it should provide the
hardware bandwidth and latency. For routers and
switches, it should specify the aggregate back-
plane or switching fabric throughput and latency.
It should capture correlations between different at-
tributes (for example, we might expect that mem-
ory size increases with processor speed with high
probability), and between nearby components (for
example, a high speed router is unlikely to be con-
nected only to a few slow links).

The networking community has produced a wide range
of topology generators, including random Waxman [33],
Tiers [14, 7], Inet [21, 34], etc. These generators ei-
ther meet the structure requirement or they meet the
power-law requirement. GridG starts with the output of
a structure-oriented topology generator (we currently use
Tiers) and adds redundancy to it in such a way as to make
it conform to the power laws. As far as we are aware, this
makes it the first topology generator that provides struc-
tured topologies that obey the power laws.

GridG in fact directly enforces only one power law, the
so-called outdegree exponent power law. Its outputs,
however, show obedience to all the other laws as well.
In studying the unreasonable effectiveness of the outde-
gree law, we discovered a new fact: it is either the case

that the so-called rank exponent power law is not actually
a power law, or that it is more significant than the others.
We believe that the former is actually the case, but that
over the typical range that is considered, a power law is a
useful approximation. At this point, we believe the out-
degree law is more significant and that the other power
laws can be derived from it.

GridG provides mechanisms for annotating each node
and edge. These mechanisms are currently based on user-
supplied empirical distributions and conditional probabil-
ity rules. The rules enforce correlations between differ-
ent attributes on the same graph element and correlations
between different graph elements that are close to each
other. Distributions and rules can be determined by mea-
surement. For example, we discovered OS concentrations
on all the class C IP subnets we probed with nmap—
most subnets appear to have a dominant operating sys-
tem. These kinds of clustered attributes are very impor-
tant for Grid modeling, resource allocation and schedul-
ing research, because much of the resource allocation
and scheduling work that has proved successful depends
on clustered homogeneity of such attributes. We added
this optional rule to GridG as an example of capturing
correlation between attributes on nearby graph elements.
We also added optional rules correlating the different at-
tributes of a host that are not measurement based, but re-
flect the sensible beliefs most people have of how ma-
chines are configured.

Unfortunately, very little is known about the characteris-
tics of a grid or network that are represented by the an-
notations. We point to the information that we think is
necessary to develop models of these little studied net-
work and host characteristics. The successful collection
of this kind of data, and the models that could be devel-
oped from it are a very exciting research opportunity.

In the following, we begin by presenting the overall archi-
tecture of GridG in Section 2. While GridG can apply any
number of transformations to produce a grid, there are
two core steps: topology generation and annotation. In
Section 3, we describe how topology generation is done
and demonstrate that GridG conforms to the power laws
of Internet topology. Section 4 discusses our insights into
those laws, including the apparent contradiction between
two of them. Section 5 describes the GridG mechanisms
for annotation, outlines the requirements of a model for
annotation, discusses the OS concentration phenomenon,
and describes the open research questions posed by the
need for such a model and how we are attempting to ad-
dress them. Finally, Section 6 concludes the paper.
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GridG version 1.0 is available online at the following
URL: http://www.cs.northwestern.edu/vurgis/GridG.

2 Architecture

GridG is implemented as a sequence of transformations
on a text-based representation of an annotated graph. The
transformations are generally written in Perl, although
this is not a requirement. Figure 1 illustrates how these
transformations are composed to generate a grid. Cur-
rently, we begin with a structured graph without redun-
dancy that is generated by the Tiers topology generator.
The number of networks at each level of the topology is
the primary input. This also indirectly specifies the num-
ber of hosts. The first transformation enforces the power
laws by adding extra links to the graph. The outdegree
exponent is main input. The next transformation anno-
tates the graph according to user-defined empirical distri-
butions on and correlations over attributes such as mem-
ory and CPU. Additional transformations can be added.
For example, we can add clusters to sites on the grid. The
final output can then be visualized with DOT, used for
GIS evaluation, or for other purposes.

3 Topology

GridG generates topologies comprised of hosts, routers,
and IP layer links. In GridG’s graphs, nodes in WANs
and MANs are routers while nodes in LANs are hosts.
Routers have switching capability and several IP inter-
faces while hosts have computing and storage resources.

Recent research [5, 3, 22] shows that many natural and
artificial networks follow the so-called outdegree power
law, including such examples as molecules in a cell, the
power grid, the World Wide Web, species in an ecosys-
tem, and people in a social group. In particular, recent
work [15, 28] show that not only does the Internet topol-
ogy [15] follow this power law, but also the peer-to-peer
sharing overlay network Gnutella [28]. Like the Gnutella
network, future grids will be embedded in the Internet
topology and thus will likely follow its rules.

3.1 Power laws of Internet topology
Faloutsos, et al [15] identified three power laws and one
approximation in their influential 1999 paper. Figure 2
summarizes these laws. (Figure 3 summarizes the sym-
bols used in this paper.) The rank exponent law says that
the outdegree, dv , of a node v, is proportional to the rank

Rank exponent dv ∝ rR
v

Power Laws Outdegree exponent fd ∝ dO

Eigen exponent λi ∝ iε

Approximation Hop-plot exponent P (h) ∝ hH

Figure 2: Power laws of Internet topology.

of the node, rv , raised to the power of a constant R. In
our examples and evaluation, we choose to parameterize
our power laws according to the router-level data in the
Faloutsos paper. The parameterized rank exponent law is

dv = βrR

v = exp(4.395) ∗ r−0.49
v (1)

The omitted constant term does not affect our results and
is commonly dropped [2]. Another useful form of the
rank exponent power law is

rv = (
dv

β
)

1
R (2)

The outdegree exponent law says that the frequency, fd,
of an outdegree d, is proportional to the outdegree raised
to the power of a constant O. Parameterizing the law
using the Faloutsos router-level data, we have

fd = αdO = exp(8.52) ∗ d−2.49 (3)

A node’s ranking is defined in the following way, con-
forming with the Faloutsos paper. We do a topologi-
cal sort of the nodes in decreasing order of outdegree.
We then assign ranks according to this ordering and
the number of nodes in each equivalence class. All n1

nodes in the class with largest outdegree are assigned
rank rv = 1. All n2 nodes in the class with the sec-
ond largest outdegree are assigned rank rv = 1 + n1.
This accumulation continues such that all nodes in the
class with the kth largest outdegree are assigned rank
rv = 1 + n1 + n2 + . . . + nk−1. For example, if there
are 1000 nodes with outdegree larger than 3, and there
are 100 nodes with outdegree 3, then the nodes with out-
degree 2 will be ranked 1101. All nodes with same out-
degree have the same ranking.

The Eigen exponent power law says that the eigenvalues,
λi, of a graph are proportional to the order, i, raised to
the power of a constant ε. Here, the topology graph is
represented as an adjacency matrix and its eigenvectors
and eigenvalues are found. The eigenvalues represent the
contribution of each eigenvector to the graph, in decreas-
ing order.
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Figure 1: GridG Architecture.

Symbol Description Typical Values or Constraints

R Rank exponent ≈ −0.488 at router level
O Outdegree exponent ≈ −2.487 at router level
ε Eigen exponent ≈ −0.177 at router level
H Hop-plot exponent ≈ 2.84 at router level
dv Outdegree of node v 1 ≤ dv ≤ MaxD

MaxD Theoretical maximum outdegree MaxD = e−
log α

O

rv Ranking of node v All nodes with same outdegree have same ranking
fd Frequency of outdegree d Number of nodes with outdegree d, fd ≥ 1
h Number of hops
λi The ith biggest eigenvalue of the graph
P (h) Total number of pairs of nodes within h hops
N Total number of nodes in the graph
β Constant in equation 1 ≈ exp(4.395) at router level
α Constant in equation 3 ≈ exp(8.52) at router level

Figure 3: Symbols used in this paper.

The hop-plot exponent law is listed as an approximation
by Faloutsos, et al. It says that the total number of pairs of
nodes, P (h), within h hops, is proportional to the number
of hops raised to the power of a constant, H .

3.2 Current graph generators
There are mainly three types of topology generators in
use: random [33], hierarchical, and degree-based. De-
bates as to which type is better for Internet graph gen-
eration have persisted over a long period of time [32].
Our belief is that a good graph generator should pro-
duce a clear hierarchy that also follows the discovered
power laws. Hierarchical generators such as Tiers [7, 14]
and Transit-Stub [7] can generate a clear hierarchical net-
work, but the graphs don’t follow the power laws by na-
ture. The degree-based generators, such as Inet [21, 34],
Brite [24], the CMU power law graph generator [27] and
PLRG [2], generate graphs that follow the power laws,but
have no clear hierarchical structure. The topologies gen-
erated by GridG follow the power laws and have a clear
three-level hierarchy.

3.3 Algorithms
GridG takes the output of a basic graph generated by
Tiers as its input. This input graph has no redundant links.

GridG adds links to the graph according to the outdegree
power law. Hence, the graphs generated by GridG have
a clear three-level hierarchical structure and follow the
power laws. The following is a more detailed descrip-
tion.

1 Generate a basic graph without any redundant links
using Tiers. Tiers itself has several parameters,
specifically the number of nodes and networks at each
level of hierarchy. Translate the graph into GridG’s
native format. This basic graph has three levels of
hierarchy: WAN, MAN, and LAN. At each level, the
nodes are connected by a minimum spanning tree. Each
lower level network is connected to one node on the
higher level network. The graph is guaranteed to be
connected.

2 Assign each node an outdegree at random using the
outdegree power law as the distribution. The probability
P (k) that a vertex in the network interacts with k other
nodes decays as a power law. This probability is
scale-free, meaning that we can extend graphs of any
size in this manner [5]. Nodes of outdegree one deviate
from the power law as described by Faloutsos, et al [15,
Figure 6(b)]. We set f1 = f2 as this is the case for real
router level data. Given outdegree d = 2, 3 . . . MaxD,
we calculate the corresponding frequencies according to
fd = exp(8.9)d−2.486

v , where 8.9 and −2.486 are the
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Internet Routers GridG Tiers

Rank exponent -0.49 -0.51 -0.18
R2 0.94 0.89
Outdegree exponent -2.49 -2.63 -3.4
R2 0.97 0.55
Eigen exponent -0.18 -0.24 -0.23
R2 0.97 0.97
Hop-plot exponent 2.84 2.88 1.64
R2 0.99 0.99

Figure 4: GridG topology generator evaluation.

defaults for parameters given a configuration file.
N =

P

MaxD

i=1
fi, where N is the total number of nodes

in the graph. We then generate a random number x

between 1 and N for each node, if x ≤ f1, the node is
assigned outdegree 1; if f1 < x ≤ f1 + f2, the node is
assigned outdegree 2; if f1 + f2 < x ≤ f1 + f2 + f3,
the node is assigned outdegree 3, etc.

3 Calculate the remaining outdegree of each node after
taking the links of the minimum spanning tree into
consideration.

4 Add redundant links to the graphs by randomly
choosing pairs of nodes with remaining outdegree > 0.
Nodes at higher levels (e.g., WAN) are given priority
over nodes at lower levels (e.g., MAN). Continue to add
more redundant links until no pairs of nodes with
positive outdegree can be found.

3.4 Evaluation
In this section, we show that the graphs generated by
GridG follow the power laws. For comparison, the ba-
sic graph generated by Tiers is also shown in our figures.
The basic graph was generated by “Tiers 1 50 10 500 40
5 1 1 1 1 1”, meaning one WAN containing 50 MANs,
each containing 10 LANs. The WAN contains 500 nodes,
while the MANs and LANs contain 40 and 5 nodes, re-
spectively. This is similar to the parameters used in other
evaluations [32].

Figure 4 shows that the exponents of the topology gener-
ated by GridG match router level data from the Faloutsos
paper much better than those of the basic Tiers graph. The
coefficients of determination, R2, represent how well a
power law fits the generated data. We can see that GridG
produces R2 values close to 1, the ideal. The exponents
in Figure 4 are the slopes in Figures 5, 6, 7, and 8.

Figure 5 is a log-log plot of outdegree versus ranking.
We can see that a linear fit on this graph explains the rela-
tionship for GridG’s topology very well. The divergence
at small ranks is quite interesting and shows up in studies
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Figure 5: Log-log plot of Outdegree vs. Ranking.
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Figure 6: Log-log plot of Frequency vs. Outdegree.

of real topologies including Faloutsos, et al [15, Figure
4(b)] and Medina, et al [25, Figure 6]. Removing the
three diverging datapoints from Figure 5 increases R2 to
0.99. In Section 4, we will describe a potential new rank
law that models this divergence and can be derived from
the outdegree law.

Figure 6 shows a log-log plot of frequency versus outde-
gree. GridG follows the outdegree exponent power law
very well except when outdegree equals 1, which is not
plotted in the graphs. We have already noted that this
divergence is intentionally induced to better match real
topologies.

Figure 7 is a log-log plot of the number of pairs nodes
within h hops versus number of hops h. Clearly, GridG’s
topology conforms to this power law.

Figure 8 is a log-log plot of the eigenvalues in decreasing
order. We can see that GridG agrees very well with this
power law, though our exponents deviate slightly from
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Figure 8: Log-log plot of eigenvalues in decreasing order.

the data given by Faloutsos, et al [15].

4 Relationships among power laws

Several recent graph generators [21, 34, 2, 27] and GridG
generate graphs according to the outdegree law only.
However, the generated graphs follow all four power
laws! Why is this possible? A possible reason is that
the power laws (Figure 2) are closely interrelated. A re-
cent paper [5] proposed incremental growth and preferen-
tial connectivity to explain the phenomenon and origin of
the outdegree law. Medina, et al found that the hop and
eigenvalue power laws were followed by all the topolo-
gies they considered [25]. Mihail and Papadimitriou have
shown that the eigenvalue law follows from the outdegree
law [26].

In the following, we show that the outdegree law follows
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Figure 9: Log-log plot of derived f-d law.

from the rank law. It does not appear, although we can
not prove, that the rank law follows from the outdegree
law. This suggests one of several possibilities:

• The rank law is strictly more descriptive than the
outdegree law.

• The rank law is wrong.

• The outdegree law is wrong.

The evidence against the first and third possibilities is the
unreasonable effectiveness of using the outdegree law to
generate graphs that appear to follow all of the laws. Fur-
thermore, as we noted earlier, the rank/outdegree rela-
tionship diverges from a strict power law in actual topolo-
gies at small ranks. Finally, earlier work has shown that
the eigenvalue law follows from the outdegree law and
that most networks exhibit the eigenvalue and hop-plot
laws.

Our belief is that the second possibility is the case.
We show that it is possible to derive a power law
like rank law from the outdegree law that captures
the divergence seen in real topologies and gives the
appearance of a power law over much of its range.
This also would explain the surprising effectiveness of
only using the outdegree law in graph generation. We
advocate the following relationship among the laws:

New rank law ⇐⇒ Outdegree law =⇒ Eigenvalue law.

4.1 Rank law =⇒ outdegree law
Starting from the rank law, we derive a form of the outde-
gree law. Let fd be the frequency of nodes with outdegree
equal to d, or the number of nodes with outdegree d. Let
rd be the ranking of the nodes with outdegree d. Simi-
larly, let rd−1 be the ranking of the nodes with outdegree
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equal to d− 1. Given the outdegrees d and d− 1, and the
ranking of nodes with those outdegrees, the frequency of
outdegree d is

fd = rd−1 − rd (4)

Now, substitute for rd−1 and rd their values according to
the rank law (Equation 2). This gives

fd = (
dv − 1

β
)

1
R − (

dv

β
)

1
R (5)

To simplify further,

fd = β−
1
R [(dv − 1)

1
R − d

1
R

v ] (6)

This relationship is itself a power law that associates fre-
quency and outdegree. Figure 9 shows the log-log plot of
this derived outdegree law (Equation 6). We have derived
an outdegree power law from the rank power law.

4.2 Outdegree law ⇐⇒ new rank law
Starting from the outdegree law, we attempted to derive
a power law for the rank-outdegree relationship. Our end
result is a rank law which is not a power law. If our rea-
soning is correct, then this shows that the rank law can not
be derived from the outdegree law. As discussed earlier,
we believe that the new rank law, which we derive from
the outdegree law, is more accurate than the original rank
law in that it fits actual topology data better.

First, note that
MaxD∑

d=1

fd = N (7)

where N is the total number of nodes in the graph,
MaxD is the maximum outdegree and fd is the number
of nodes with outdegree d, or the frequency of outdegree
d. The minimum frequency is 1, so we must make sure
that fd = αdO ≥ 1 (Equation 3). Substituting, we see
that

MaxD = e−
log α

O (8)

From the definitions of rank and frequency, we get

rv = 1 +

MaxD∑

d=dv+1

fd (9)

That is, the rank of the nodes with outdegree v is equal to
one plus the total number of nodes with outdegree bigger
than dv. Using the outdegree law (Equation 3), we get

rv = 1 + α

MaxD∑

d=dv+1

dO = 1 + N − α

dv∑

d=1

dO (10)
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Figure 10: Log-log plot of derived d-r law.
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Figure 11: Log-log plot of derived d-f law using the new d-r
law.

If we assume that O is a negative rational number, as
shown in paper [15], we can then derive the following
relationship between rank and outdegree:

rv = 1 + N − α[ζ(−O) − ζ(−O, 1 + dv)] (11)

Here, ζ(t) =
∑

∞

n=1

1

nt is the Riemann Zeta function, and
ζ(−O, 1 + dv) =

∑
∞

n=1+dv
nO .

Figure 10 is a log-log plot of this derived rank law. Sur-
prisingly, this derived law is not an ideal power law—it
is far from a straight line. If our derivation is correct, it
is clear that the rank law does not follow from the outde-
gree law. Furthermore, our derived law is a better fit to
the actual observed topologies than the rank law. A close
look at Figure 10 shows that when rank r >≈ 37, the
relationship between log rank and log outdegree is nearly
a straight line, giving the appearance of a power law re-
lationship. The divergence for r ≤≈ 37 is similar to that
shown for the actual router level topology in Faloutsos, et
al [15, Figure 6(b)].

Figure 11 shows the log-log plot of the outdegree and
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frequency relationship that can be derived from the new
rank law (Equation 11) and Equation 4.

5 Annotations

In addition to producing a realistic topology that extends
to the level of hosts, a grid generator must also anno-
tate the topology with the attributes of its links, routers,
switches, and hosts.

As to the network link bandwidth and latency, we can
rely on the output of the underlying structure graph gen-
erator, leveraging work in the networking community as
discussed earlier. As an alternative, we have also built
into GridG an optional feature to explicitly generate net-
work link bandwidth and latency. We assume that these
distributions are different at the WAN, MAN and LAN
levels, and give the user a mechanism to supply them.
Similarly, the distributions of the switching bandwidth of
routers are specified by the user in a configuration file.
GridG then selects randomly based on the supplied dis-
tributions.

Host characteristics are considerably more complex. Our
initial approximation is to treat each attribute of a host in-
dependently. The user supplies an empirical distribution
for the attribute, and we select randomly based on that
distribution. Host attributes are not independent, how-
ever. This oversimplified approach can generate unrea-
sonable results. Figure 12 shows examples of silly combi-
nations of host configurations that can result. These hosts
appear silly because they violate our expectations about
how the attributes of an individual machine are likely to
be related. For example, we expect that most buyers will
scale the memory of a machine with the number of CPUs,
and that software vendors rarely sell their competitor’s
OS.

There also exist correlations between the attributes of ma-
chines that are near each other in the network topology.
The obvious example is a cluster, in which tightly cou-
pled machines have identical attributes. While we can
support clusters via an additional graph transformation
that explicitly creates them, there are other examples:
servers in the same machine room are likely to have more
in common with each other than with the client hosts that
use them.

To capture such intra-host and inter-host attribute correla-
tions, we extended GridG’s annotator with a general en-
gine that supports user-supplied conditional probability

rules. For example, the user can assert that hosts with
four or more processors have at least 4 GB of memory. In
the following, we describe the engine, a set of core “com-
mon sense” intra-host rules used to prevent silly hosts,
an inter-host OS concentration rule for subnets derived
from measurement, and show examples of sensible anno-
tations. More rules are necessary and need to be derived
from measurement. We describe our efforts to capture
sufficient measurements to do so.

5.1 Annotation algorithm
Given a model of the distributions and correlations of
host characteristics, it would be relatively straightforward
to generate realistic host attribute information. How-
ever, at the present time we do not have such a complete
model because of the difficulties in collecting a sufficient
amount of data from which to infer the model. We ap-
pear to be the first to need to do this, and we have tried a
number of techniques to acquire data, which we discuss
later.

In light of the limited data, we have made GridG annota-
tions conform to user-supplied rules and created a set of
common-sense rules. In this way, the current generated
host attribute information is reasonable on its face, and
as new distributions and correlations are discovered, the
user can add rules to GridG to make the generated grids
conform. In the current implementation, user rules take
the form of Perl functions. Frames for those functions are
given to which the user can simply add their rules. For
example, Figure 13 shows a function frame governing
the correlation among CPU architecture, OS, the num-
ber of CPUs and CPU clock rate. Figure 14 shows two
example rules added to this frame. The first rule says
that Intel 32 and 64 bit architecture machines support no
more than 4 CPUs, while the second rule says that for
any architecture, the maximum number of CPUs per host
is 1024. Figure 15 presents GridG’s default rules in En-
glish. These rules can be removed or enhanced by the
user and new rules can be added.

We believe that there are at least two types of correlations
among the host’s attributes. The first type is the correla-
tions among the different attributes of an individual host,
namely, correlations among the number of CPUs, CPU
clock rate, memory size, disk size, etc. We can easily
imagine important correlations of this type. For example,
we assume a positive correlation between the number of
CPUs and the total memory, and that machines with more
CPUs are less likely to run a version of Windows. These
assumptions appear in our default rules as shown in Fig-
ure 15. Some of those correlations are deterministic (e.g.,
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Host CPUS CPU MHZ Memory (MB) Disk (GB) Arch OS OS vendor Current Load

1 512 1200 256 40 IA32 DUX Sun 0
2 16 1000 512 800 PARISC NetBSD Microsoft 3
3 4 1600 512 160 SPARC32 DUX RedHat 1
4 1 1800 65536 400 IA32 Solaris Microsoft 2

Figure 12: Silly host configurations generated by the initial GridG annotator.

sub ARCHandOSandCPUrule {
my ($arch, $OS, $numcpu, $cpuspeed) = @_;
#add rules here

#rules end here
return 1;

}

Figure 13: Rule frame governing the correlation among CPU
architecture, OS, number of CPUs, and CPU clock
rate.

sub ARCHandOSandCPUrule {
my ($arch, $OS, $numcpu, $cpuspeed) = @_;
#add rules here
#example rule: Intel arch can't support more than 4 CPU/host
if(($arch eq "IA32") || ($arch eq "IA64")){

if($numcpu > 4) {
return 0;

}
}
#example rule: Max num of CPU is 1024
if($numcpu > 1024) {

return 0;
}
#rules end here
return 1;

}

Figure 14: Example rules.

a machine with 16 CPUs can’t run windows as its operat-
ing system), and others are probabilistic (e.g., a machine
with 32 CPUs is likely to have more memory per CPU
than a 2 CPU machine, but not necessarily.)

The second type is a correlation between the attributes of
machines that are near each other in the network topol-
ogy, namely, correlations such as OS concentration on
IP subnets as described in Section 5.2 and shown in Fig-
ure 23. This type of correlation is mostly probabilistic.

To make the GridG annotator conform to the first type of
correlations, we assume a dependence tree as shown in

1. One CPU will have at least 64M memory.

2. One CPU will have at most 4G memory.

3. More CPUs, more likely to have bigger memory.

4. One CPU will have at least 10G disk.

5. More CPUs, more likely to have bigger disk.

6. More memory, more likely to have bigger disk.

7. More disk, more likely to have more memory.

8. Intel&Windows box will have at most 4 CPUs, 

other type may have up to 1024 CPUs.

9. Intel Arch and other Arch have different distributions 

of CPU MHZ.

10. Host load is not correlated to any other attributes.

Figure 15: Default rules.

Arch

CPU Mhz

Memory

Load

OS vendor

OS Num of CPUs

disk

Figure 16: Dependence tree.

Figure 16. Host load is independent of other attributes in
our model. Architecture is the root of the tree on the as-
sumption that it is the most significant attribute, and that
it largely decides what OSes can run on a host and how
many CPUs it is likely to have. Clearly the OS vendor de-
pends on the OS. We believe that memory and disk size
is likely to grow with the number of CPUs on a machine.

With this dependence tree, we can make GridG con-
form to correlations by applying conditional probabil-
ity, choosing the distribution of an attribute based on at-

9



P{mem=1024} 

P{mem=1024 | numcpu=2, arch=MIPS}

Figure 17: Example of conditional probability.

tributes picked before it. For example, we would first pick
the architecture, then the number of CPUs based on that
choice, and finally the amount of memory based on those
two choices, as shown in Figure 17. This approach ap-
pears to work well in practice, generating sensible hosts.
In the following, we present in detail the algorithm used
to annotate the hosts on a LAN. This process is repeated
for each LAN in the topology. To make the description
easier to understand, we present the flow chart of the al-
gorithm in Figure 18.

1. If the OS concentration feature (Section 5.2) is
turned on, then, for each IP subnet (generated LAN
in our topology) , select the OS concentration per-
centage P from the user configuration file. Next,
select the dominant architecture for the subnet ac-
cording to the user configuration file. Select the
dominant OS according to the dominant architec-
ture for the LAN. There is one dominant architec-
ture and OS for each LAN.

2. For each host, generate architecture for the host ac-
cording to distribution specified in the user config-
urable file. If the OS concentration feature is turned
on, change the host architecture to the dominant ar-
chitecture with probability P .

3. Architecture is subdivided into several groups,
such as the Intel Architecture family, MIPS, etc.
Each group has its own specified distribution for
OS, number of CPUs and CPU clock rate in the
configure file. Using the distributions, generate the
OS according to the architecture type. If the OS
concentration feature is turned on and the architec-
ture has been changed to the dominant architecture,
also change the generated OS to the dominant OS.

4. Using the distributions, generate CPU clock rate
and the number of CPUs according to the archi-
tecture type.

5. Apply the user rule governing the correlation
among architecture, OS, number of CPUs and CPU
clock rate. If the rule is not satisfied, go back to the
last step.

6. The number of CPUs is subdivided into several
groups, such as the number of CPUs, n ≤ 4,
4 < n ≤ 32, 32 < n ≤ 128, etc. Each group has
its own memory and disk size distribution speci-
fied in the configuration file. The configuration is
such that a group with a large number of CPUs has
distributions for memory and disk size that are of
higher mean than those for a group with a small
number of CPUs. Within each group, we apply
a promotion probability function and and a pro-
motion rate function so that a machine with larger
number of CPUs is more likely to increase its mem-
ory and disk. Optionally, we apply a degradation
probability function and degradation rate function
so that a machine with smaller number of CPUs is
more likely to decrease its memory and disk, which
is a strengthening mechanism for promotion prob-
ability and rate functions. We discuss these func-
tions in more detail below.

7. Apply the user rule governing the correlation
among the number of CPUs, memory size, disk
size, and OS, architecture, and CPU clock rate. If
the correlations are not satisfied, go back to last
step.

8. Generate OS vendor according to its OS.

9. Apply the user rules governing the correlation be-
tween OS and OS vendor. If the correlation is not
satisfied, go back to last step.

10. Generate a load value for the host according to the
specified distribution in user configuration file.

11. Apply the user rule governing the correlation be-
tween load and other attributes. If it is not satisfied,
go back to last step.

12. Apply the overall user rule governing architecture,
OS, number of CPUs, CPU clock rate, memory
size, disk size, OS vendor and load of the host, if it
is not satisfied, go back to step 4.

13. If all the hosts on the LAN are annotated, go to next
step, otherwise, go to step 2.

14. Terminate.

The promotion probability function and the degradation
probability function map from the number of CPUs to
a probability PP , the probability that memory and disk
size will be increased (promotion) or decreased (degra-
dation) based on a host’s number of processors. A larger
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Is OS concentration on?

Select OS concentration 
percentage P.           
Select dominant Arch and proper 
dominant OS for the LAN.

Select Architecture  for the  host 
on the LAN. 

Select OS according to its arch for 
each host. 

Yes

Is OS concentration on?

Is OS concentration on?

change the selected host 
Arch to dominant Arch 
with the probability P.

If the host arch has been changed 
to dominant arch, change the 
host OS to dominant OS.

Is user rule satisfied?

Select number of CPUs, CPU 
clock rate according to arch for 
the host.

Select memory and disk size 
according to number of CPUs.
Apply promotion probability and 
rate functions.

Is user rule satisfied?

Select OS vendor according to its 
OS for the host. 

Is user rule satisfied?

Select Load value for the host.

Is user rule satisfied?

Is overall user rule satisfied?

Start

End

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Finished annotating all hosts 
on the LAN?

Yes

Figure 18: Flow chart of the algorithm.

sub promotionProb

{

my($numcpu, $maxcpu, $mincpu) = @_;

my $pp100;

$pp100=100*($numcpu-$mincpu)/($maxcpu-$mincpu);  

return $pp100;

}

Figure 19: Linear promotion probability function.

number of processors leads to an increased promotion
and a decreased degradation probability. Paired with
these are the promotion and degradation rate functions,
which determine the extent to which memory and disk
size will be changed. The default rate function dou-

sub promotionProb

{

my($numcpu, $maxcpu, $mincpu) = @_;

my $pp100;

$pp100=100*sqrt(($numcpu-$mincpu)/($maxcpu-$mincpu));  

return $pp100;

}

Figure 20: Power promotion probability function.

Promotion function Correlation coefficient

None 0.69
Linear 0.73
Power 0.76

Figure 21: Influence of promotion probability and rate func-
tions on correlation coefficient between number of
CPUs and memory or disk.

bles/halves the memory and disk size, but user can spec-
ify their own rate and promotion/degradation functions.
Figure 19 shows a linear promotion probability function,
while Figure 20 shows a power function where the prob-
ability of promotion increases faster with the number of
CPUs.

Together, the promotion/degradation probability and rate
functions control the correlation coefficient between
number of CPUs and memory or disk sizes. Shown in
Figure 21 is the influence of promotion probability and
rate functions. If stronger correlations are required, both
promotion and degradation probability and rate functions
are chosen to increase faster with the number of proces-
sors.

This algorithm and the default rules work well and gen-
erate results that are sensible. More rules can be added
as they are discovered. Figure 22 shows a few reasonable
hosts generated by the current GridG implementation.

5.2 OS concentration rule
The nmap port-scanning tool [19] has the ability to deter-
mine a host’s operating system based on how its TCP/IP
implementation behaves. We used nmap to scan 10 dif-
ferent class C IP networks, both at Northwestern and be-
longing to a company that maintains a popular web site.
In each subnet we oberved OS concentration to various
degrees, that is, there was typically one dominant operat-
ing system.
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Host CPUS CPU MHZ Memory (MB) Disk (GB) Arch OS OS vendor Current Load

1 512 1200 65536 10240 MIPS FreeBSD FreeBSD 9
2 16 1000 8192 800 PARISC NetBSD NetBSD 4
3 4 1600 1024 160 SPARC32 Solaris Sun 1
4 1 1800 512 80 IA32 Win2k Microsoft 3

Figure 22: Sensible hosts generated by current GridG annotator.

Organization Subnet Dominant OS Percentage of concentration Percentage of recognized OS

CS 1 Windows 79/95 = 83.2% 78%
Department 2 Windows 31/37 = 83.8% 81%

3 Linux 40/40 = 100% 100%
ECE 4 Solaris 67/76 = 88.2% 65%
Department 5 Solaris 41/41 = 100% 94%

6 Solaris 21/21 = 100% 96%
7 FreeBSD 214/214 = 100% 87%

A popular 8 FreeBSD 187/187 = 100% 89%
web site 9 FreeBSD 191/192 = 99% 92%

10 FreeBSD 72/73 = 99% 91%
Total machines 976

Figure 23: OS concentration observed in IP subnets.

Figure 23 shows the data for all the 10 subnets. Nmap
couldn’t recognize every host’s OS from its TCP/IP fin-
gerprints because nmap doesn’t have fingerprints for all
versions of every OS. However, notice that even if we as-
sume that all the unrecognized OSes were of a type other
than the dominant OS, we can still assert that OS concen-
tration exists in all 10 subnets. Subnet 3 is known to be a
Linux cluster but there is no cluster in subnet 4, 5 and 6.

People are very sensitive to the port scanning and there-
fore we have had to limit our activity. However, given
this sample of 976 machines and 10 subnets, it seems
likely that such OS concentrations occur on many sub-
nets. It also appears sensible given that subnets are owned
by individual organizations, and many organizations have
standardized operating systems and even machines. An-
other factor is the existence of clusters in which every
node has identical hardware and software. We have added
this OS concentration behavior to the GridG rulebase as
an optional feature.

5.3 Measurements for more rules
To add more rules to GridG, we need a large random sam-
ple of hosts on the Internet or from a representative grid
environment. For each host, we need information about
its hardware and software resources, and a description of
where it is on the network topology captured in the sam-
ple. We have considered the following ways of acquiring
such a sample:

• Examine the contents of existing grid information
service systems. We studied the (anonymized)
dumps from several large grids and the dataset col-
lected by Smith, et al [30], which was collected
when there was a single MDS server. Smith’s
dataset was by far the largest, but it contained fewer
than 1000 machines. Our conclusion is that ex-
isting systems don’t contain enough data for our
needs.

• Use SNMP scans. The default SNMP MIB pro-
vides almost all the information we need. How-
ever, most users have turned off SNMP on their
hosts due to security concerns. This results in a
small and biased sample.

• Use DMI/IPMI/OpenManage/etc. These are
BIOS-level distributed management tools for PCs.
The prospects here are not clear yet, but even if
they could be used, they would provide a sample
biased towards PCs.

• Write a virus. An innocuous virus that reported
back host data and deleted itself after infecting sev-
eral other machines would be highly effective, al-
though the sample would be biased towards ma-
chines exhibiting the exploits used. We discarded
this idea because of its ethical implications.

• Use hardware vendor sales data. If we knew of
new machines being sold and attached to the net-
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work, we could at least derive distributions of their
attributes. We attempted to acquire sales data from
IBM, Dell, and HP, but were unsuccessful. These
companies regard even aggregated sales data as
proprietary information.

• Use OS vendor registration data. Hooking into the
processes of OS registration would provide very
detailed, if OS-biased information. We attempted
to establish a relationship with Microsoft and with
Red Hat, but were unable to do so.

• Use open source peer-to-peer software such as
Gnutella. Gnutella has a large number of users, so
we might expect that we could use it to acquire in-
formation about the host machines. Unfortunately,
Gnutella doesn’t expose any machine configuration
data that would be of use to us.

• Continue to use network exploration tools such as
nmap. While this was very successful in finding the
OS concentration property, it is unclear how much
more data it can produce. Also unfortunate, run-
ning such tools to explore a remote network is of-
ten perceived as a hostile act.

We continue to explore new ways to collect data to ex-
pand our rulebase.

6 Conclusion

We have presented GridG, a tool for synthesizing realistic
computational grids. GridG produces structured network
topologies that obey the power laws of Internet topology.
While developing GridG’s topology generator, we found
that two of the power laws (rank and outdegree exponent
laws) are in conflict. We derived a new rank law from
the outdegree law that conforms well with published data
on actual topologies and has a power law like range. We
speculate that this new law is a better approximation of
rank behavior.

The topology annotation component of GridG can an-
notate the network according to user supplied empiri-
cal distributations and user conditional probability rules.
Two kinds of correlations among hosts attributes are con-
sidered and built into GridG: correlations between an
individual host’s attributes and correlations between at-
tributes on nearby hosts. We developed a basic set of
rules that capture common sense intra-host correlations.

Through nmap based measurement, we observed OS con-
centrations in all the IP subnets we probed. We added this
as an inter-host rule.

Developing additional rules will require more host mea-
surement data to analyze. We have tried a number of
techniques for acquiring such data and have been largely
unsuccessful. We continue to explore ways to acquire a
rich set of measurements from which to derive a larger
rulebase for GridG annotations.

GridG version 1.0 is available online at the following
URL: http://www.cs.northwestern.edu/vurgis/GridG.
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