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SYSTEM AND METHOD FOR
CONTROLLING POWER CONSUMPTION IN
A COMPUTER SYSTEM BASED ON USER
SATISFACTION

CROSS-REFERENCE TO RELATED
APPLICATIONS/INCORPORATION BY
REFERENCE

This patent application makes reference to, claims priority
to and claims benefit from U.S. Provisional Application Ser.
No. 61/185,381 which was filed on Jun. 9, 2009; and U.S.
Provisional Application Ser. No. 61/185,365 which was filed
on Jun. 9, 2009.

This patent application is related to U.S. Provisional Appli-
cation Ser. No. 61/185,372 which was filed on Jun. 9, 2009.

The above-referenced applications are hereby incorpo-
rated herein by reference in their entirety.

FEDERALLY SPONSORED RESEARCH OR
DEVELOPMENT

This invention was made with government support under
grant nos. CNS-0720691; CNS-0721978; CNS-0715612;
CNS-0551639; (CNS-0347941; CCF-0541337; CCF-
0444405, CCF-0747201; 1IS-0536994; 11S-0613568; ANI-
0093221; ANI-0301108; and EIA-0224449 awarded by the
National Science Foundation. The government has certain
rights in the invention.

This invention was made with government support under
grant nos. DE-FGO02-05ER25691 and DE-ACOS5-
000R22725 awarded by the Department of Energy. The gov-
ernment has certain rights in the invention.

MICROFICHE/COPYRIGHT REFERENCE

[Not Applicable].

FIELD OF THE INVENTION

The present invention relates to architectural optimization
and, in particular, architectural optimization aimed at user
satisfaction.

BACKGROUND OF THE INVENTION

Modern architectures execute with no knowledge about the
individual user.

Accordingly, there is a need for architectures that are user-
aware and that determine whether their users are satisfied.
There is also a need for architectural optimization that aims at
user satisfaction.

BRIEF SUMMARY OF THE INVENTION

Some embodiments according to the present invention may
provide, for example, systems and methods for controlling
power consumption in a computer system are disclosed. The
computer system may be trained, for example, to determine
relationship information between user satisfaction and dis-
crete frequencies at which a processor of the computer system
runs. The determined relationship can distinguish between
different users and different interactive applications. A fre-
quency may be selected from the discrete frequencies at
which the processor of the computer system runs based on the
determined relationship information for a particular user and
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2

a particular interactive application running on the processor
of'the computer system. The processor may be adapted to run
at the selected frequency.

Some embodiments according to the present invention pro-
vide for determining a relationship between hardware perfor-
mance counter (HPC) readings and individual satisfaction
levels reported by users for representative applications. The
relationship may be, for example, an artificial neural network
that models functions from HPCs to user satisfaction for
individual users. The artificial neural network can be used
online, for example, to predict user satisfaction and to set the
frequency level accordingly.

Some embodiments according to the present invention pro-
vide for a human and application driven frequency scaling for
processor power efficiency (HAPPE) that can, for example,
adapt voltage and frequency to the performance requirement
of the current user and current application.

Some embodiments according to the present invention
minimize power consumption without degrading user-per-
ceived performance.

Some embodiments according to the present invention pro-
vide for the consideration of user satisfaction to control a
power state.

These and other advantages, aspects and novel features of
the present invention, as well as details of an illustrated
embodiment thereof, will be more fully understood from the
following description and drawings.

BRIEF DESCRIPTION OF SEVERAL VIEWS OF
THE DRAWINGS

FIG. 1 shows a framework of a predictive user-aware
power management according to some embodiments of the
present invention.

FIG. 2 shows frequency traces using iDVFS and Windows
XP DVFS schemes for (a) Java Game and (b) Video according
to some embodiments of the present invention.

FIG. 3 shows a Windows XP DVFS algorithm according to
some embodiments of the present invention.

FIG. 4 shows user satisfaction and dynamic power reduc-
tion for iDVFS compared to a Windows XP DVFS scheme
according to some embodiments of the present invention. In
the graphs, the individual users are plotted on the horizontal
axis. The left vertical axis reflects the reported satisfaction for
iDVFS and Windows XP DVEFS;, and the right vertical axis
reports the percentage reduction in dynamic power of iDVFS
compared to Windows XP DVFS.

FIG. 5 shows an improvement in energy consumption, user
satisfaction, and energy-satisfaction product for the Shock-
wave application according to some embodiments of the
present invention.

FIG. 6 shows a system power measurement setup accord-
ing to some embodiments of the present invention.

FIG. 7 shows satisfaction rating and CPU utilization of 10
users at 5 different frequency levels according to some
embodiments of the present invention.

FIG. 8 shows a setup for power measurements according to
some embodiments of the present invention.

FIG. 9 shows a screenshot including a battery life indicator
according to some embodiments of the present invention.

FIG. 10 shows an exemplary HAPPE training phase
according to some embodiments of the present invention.

FIG. 11 shows a comparison of HAPPE with Linux Onde-
mand frequency controller according to some embodiments
of the present invention.
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FIG. 12 shows variation among users with respect to power
consumption and satisfaction according to some embodi-
ments of the present invention.

FIG. 13 shows variation among different applications for
the same user according to some embodiments of the present
invention.

FIG. 14 shows an aggregated histogram of key presses
according to some embodiments of the present invention.

DETAILED DESCRIPTION OF THE INVENTION

One of the goals of computer design is to satisfy the end
user. In particular computing domains such as interactive
applications, for example, there exists a variation in user
expectations and user satisfaction relative to the performance
of existing computer systems.

Some embodiments according to the present invention
contemplate leveraging this variation to develop more effi-
cient architectures that are customized to end users. We first
investigate the relationship between microarchitectural
parameters and user satisfaction. Specifically, we analyze the
relationship between hardware performance counter (HPC)
readings and individual satisfaction levels reported by users
for representative applications. Our results show that the sat-
isfaction of the user is strongly correlated to the performance
of the underlying hardware. Furthermore, the results show
that user satisfaction is highly user-dependent. To take advan-
tage of these observations, some embodiments according to
the present invention provide a framework called Individual-
ized Dynamic Voltage and Frequency Scaling (iDVFS). We
study a group of users to characterize the relationship
between the HPCs and individual user satisfaction levels.
Based on this analysis, some embodiments according to the
present invention use artificial neural networks to model the
function from HPCs to user satisfaction for individual users.
The model is then used online to predict user satisfaction and
set a frequency level accordingly. A second set of user studies
demonstrates that iDVFS reduces the CPU power consump-
tion by over 25%, for example, in representative applications
as compared to the Windows XP DVFS algorithm.

Architectural optimization in, for example, performance,
power, reliability, security, etc. aims at satisfying the end user
in some embodiments according to the present invention.
However, understanding the happiness of the user during the
run of an application can be complicated. Although it may be
possible to query the user frequently, such explicit interaction
may annoy most users. Therefore, it would be beneficial to
estimate user satisfaction using implicit metrics in accor-
dance with some embodiments of the present invention. Tra-
ditionally, computer architects have used implicit metrics
such as instructions retired per second (IPS), processor fre-
quency, or the instructions per cycle (IPC) as optimization
objectives. The assumption behind these metrics is that they
relate ina simple way to the satisfaction of the user. When two
systems are compared, it is assumed, for example, that the
system providing a higher IPS will result in higher user sat-
isfaction. For some application domains, this assumption is
possibly correct. For example, the execution time of a long
running batch application is largely determined by the IPS of
the processor. Hence, increasing IPS will result in an increase
in user satisfaction. However, some embodiments according
to the present invention contemplate that the relationship
between hardware performance and user satisfaction is com-
plex for interactive applications and an increase in a metric
like IPS, for example, does not necessarily result in an
increase in user satisfaction. Furthermore, some embodi-
ments according to the present invention contemplate that the
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relationship between hardware performance and user satis-
faction is highly user-dependent. Hence, some embodiments
according to the present invention contemplate the feasibility
of estimating individual user satisfaction from hardware met-
rics, develop accurate non-linear models to do so, and use
these models for run-time power management.

Driving architectural decisions from estimates of user sat-
isfaction has several advantages in accordance with some
embodiment of the present invention. First, user satisfaction
is highly user-dependent. For example, an expert gamer will
likely demand considerably more computational power than
a novice user. In addition, each user has a particular “taste”
such as, for example, a preference for prolonging battery life,
or a preference for higher performance. If we know the indi-
vidual user’s satisfaction with minimal perturbation of pro-
gram execution, we will be able to provide a better experience
for the user in accordance with some embodiments of the
present invention. Second, when a system optimizes for user
satisfaction, the system automatically customizes for each
application. Specifically, a system that knows the user’s sat-
isfaction for a particular application will provide the neces-
sary performance to the user. For interactive applications, this
may result in significant advantages such as power savings
and/or increased lifetime reliability. For example, one of our
target applications exhibits no observable change in perfor-
mance when the frequency of the processor is set to its lowest
level. In this case, our system drastically reduces the power
consumption compared to traditional approaches without
sacrificing user satisfaction in accordance with some embodi-
ments of the present invention.

Some embodiments according to the present invention
contemplate mapping microarchitectural information to user
satisfaction. Such a map can then be used to understand how
changes in microarchitectural metrics affect user satisfaction.
Modern microprocessors include integrated hardware perfor-
mance counters (HPCs) that count architectural events (e.g.,
cache misses) as well as a variety of events related to memory
and operating system behavior. Some embodiments accord-
ing to the present invention provide a mapping from the HPC
readings to user satisfaction. We first show that there is a
strong correlation between the HPCs and user satisfaction in
accordance with some embodiments of the present invention.
However, some embodiments according to the present inven-
tion contemplate that the relationship between the two is often
non-linear and user-dependent.

A good estimate of user satisfaction derived from microar-
chitectural metrics can be used to minimize power consump-
tion while keeping users satisfied in accordance with some
embodiments of the present invention. Although utilizing
user satisfaction in making architectural decisions can be
employed in many scenarios, some embodiments according
to the present invention employ dynamic voltage and fre-
quency scaling (DVFS), which is a power reduction tech-
niques used in modern processors. DVFS make decisions
online to change microprocessor frequency and voltage
according to processing needs. Existing DVFS techniques in
high-performance processors select an operating point (e.g.,
CPU frequency and voltage) based on the utilization of the
processor. Like many other architectural optimizations,
DVFS is pessimistic about user satisfaction and assumes that
the maximum processor frequency is necessary for every
process that has a high CPU utilization. We show that incor-
porating user satisfaction into the decision making process
can improve the power reduction yielded by DVFS in accor-
dance with some embodiments of the present invention.

Some embodiments according to the present invention use
the strong relationship between HPCs and user satisfaction
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for interactive applications. This relationship is often non-
linear, complex, and highly user-dependent.

Some embodiments according to the present invention
accurately predict individual user satisfaction using neural
network models.

Some embodiments according to the present invention use
Individualized Dynamic Voltage and Frequency Scaling (iD-
VFS), which may employ user satisfaction predictions in
making decisions about the frequency of the processor. In
some embodiments according to the present invention,
iDVFS is implemented and evaluated on Windows with user
studies that show it reduces power consumption compared to
Window DVFS, for example.

Some embodiments according to the present invention pro-
vide for microprocessors that include integrated hardware
performance counters (HPC) for non-intrusive monitoring of
a variety of processor and memory system events. HPCs
provide low-overhead access to a wealth of detailed perfor-
mance information related to CPU’s functional units, caches,
main memory, etc. Even though this information is generally
statistical in nature, it does provide a window into certain
behaviors that are otherwise impractical to observe. For
example, these events include various counts of instructions,
cache activity, branch mispredictions, memory coherence
operations, and functional unit usage. Several tools and
microprocessors have extended this functionality beyond
simple event counting. For example, Intel’s Itanium proces-
sors have features that allow monitoring specific events based
on an instruction or data address range, a specific instruction
opcode, or execution at specific privilege levels.

Some embodiments according to the present invention pro-
vide for microprocessors that support a limited number of
HPCs. For example, the 1A-64 architectures only support
counting four events at a time. In our experiments, we use the
Pentium M processor which only supports two counters at a
time. As a result, it is not possible to collect all hardware
information simultaneously, although the present invention is
not so limited. Some embodiments according to the present
invention using a workaround in which sets of counters are
time multiplexed and then the values scaled appropriately. It
has been shown that time multiplexing up to 10 sets of
counters provides statistically significant counter values.
Despite this limitation, the low-overhead access to low-level
architectural information provided by HPCs is very useful
and may be leveraged in run-time profiling and optimization
systems.

Some embodiments according to the present invention use
WinPAPI, the Windows variant of PAPI, to access the HPCs
present in the processor. Some embodiments according to the
present invention use at least the nine specific performance
metrics listed in Table 1. These counters may be manually
selected as a representative set of the HPCs available on the
Pentium M. The choice of using only nine counters is due to
a WinPAPI limitation, but the present invention need not be so
limited. We collect counter values every 100 ms. WinPAPI
automatically time multiplexes and scales the nine event
counters.

TABLE 1

HPCs used in experiment;

PAN counter Description

Instructions issued
Cycles stalled on any resource
Total cycles

PAPI_TOT_INS
PAPI_RES_ STL
PAPI_TOT_CYC
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6
TABLE 1-continued

HPCs used in experiment;

PAN counter Description

Level 2 cache misses

Branch target address cache misses
Conditional branches mispredicted
Hardware interrupts

Level 1 data cache accesses

Level 1 instruction cache accesses

PAPI_L2_TCM
PAPI_BTAC_M
PAPI_BR_MSP
PAPI_HW__INT
PAPI_LI_DCA
PAPI_LI_ICA

Some embodiments according to the present invention
contemplate the relationships between different microarchi-
tectural parameters and user satisfaction. In one or more of
the embodiments according to the present invention, we con-
duct two sets of studies with 20 users, for example. Our
experiments are done using, for example, an IBM Thinkpad
T43p with a 2.13 GHz Pentium M-770 CPU and 1 GB
memory running Microsoft Windows XP Professional SP2.
The laptop is tethered to the power outlet during all experi-
ments. Although eight different frequency levels can be set on
the Pentium M-770 processor, only six can be used due to
limitations in the SpeedStep technology. For both user stud-
ies, we experiment with three types of applications: a 3D
Shockwave animation, a Java game, and high-quality video
playback. The details of these applications follow:

Shockwave: Watching a 3D Shockwave animation using
the Microsoft Internet Explorer web browser. The user
watches the animation and is encouraged to press the number
keys to change the camera’s viewpoint. The animation is
stored locally. Shockwave options are configured so that ren-
dering is done entirely in software on the CPU.

Java Game: Playing a Java based First Person Shooter
(FPS). The users have to move a tank and destroy different
targets to complete a mission. The game is CPU-intensive

Video: Watching a DVD quality video using Windows
Media Player. The video uses high bandwidth MPEG-4
encoding.

Since some embodiments according to the present inven-
tion focus on the CPU, we picked three applications with
varying CPU requirements: the Shockwave animation is very
CPU-intensive, the Video places a relatively low load on the
CPU, and the Java game falls between these extremes.

Our user studies are double-blind, randomized, and inter-
vention-based. We developed a user pool by advertising our
studies within Northwestern University. While many of the
participants were CS, CE, or EE graduate students, our users
included inexperienced computer users as well.

An objective of our first user study is to explore the corre-
lation between HPCs and user satisfaction in accordance with
some embodiments of the present invention. The monitored
hardware counters are listed in Table 1. In this first set of
experiments, the users are asked to carry out the three appli-
cation tasks as described above. During execution, we ran-
domly change the frequency and ask the users to verbally rank
their experience on a scale of 1 (e.g., discomfort) to 10 (e.g.,
very comfortable). Users typically provided a satisfaction
rating within 5-10 seconds. These satisfaction levels are then
recorded along with the HPC readings and analyzed as
described below in accordance with some embodiments of
the present invention. Then we compute the maximum, mini-
mum, average, range, and the standard deviation of the
counter values for up to 5 seconds within the given interval.
The end result is a vector of 45 metrics for each satisfaction
level reported by the user. Note that since we have performed
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the user studies with 20 users and three applications, we
collected 360 user satisfaction levels.

We then find the correlation of the 45 metrics to the user
satisfaction rating by using the formula:

NY = (D)

VINE 2 - (Z 22 INE 2 - (5 7]

Txy =

Pearson’s Product Moment Correlation Coefficient (r)
determines a correlation among two data series (e.g.,x and y)
and results in a value between -1 and 1. If the correlation is
negative, the series have a negative relationship; if the corre-
lation is positive, the series have a positive relationship. The
closer the coefficient is to either -1 or 1, the stronger the
correlation between the variables. Thus, the magnitude of
these correlations allows us to compare the relative value of
each independent variable in predicting the dependent vari-
able in accordance with some embodiments of the present
invention.

The correlation factors for each of the 45 parameters and
the user rating are presented in Table 2 in accordance with
some embodiments of the present invention.

TABLE 2

Correlation between the hardware performance
counters and user satisfaction

Performance Metrics Correlation
PAPI BTAC_M-avg 0.771
PAPI L1 _ICA-avg 0.770
PAPI_L1_ICA-stdev 0.770
PAPI_BTAC_M-stdev 0.770
PAPI_L1_DCA-stdev 0.768
PAPI_TOT_INS-avg 0.768
PAPI_TOT_CYC-avg 0.767
PAPI L1 _DCA-max 0.767
PAPI_TOT_CYC-stdev 0.767
PAPI_TOT_INS-stdev 0.766
PAPI L.1_DCA-avg 0.766
PAPI RES_STL-avg 0.761
PAPI_RES_STL-stdev 0.761
PAPI_TOT_CYC-max 0.756
PAPI L1 _ICA-max 0.749
PAPI RES_STL-max 0.738
PAPI BTAC_M-max 0.733
PAPI_TOT_INS-max 0.729
PAPI L2 TCM-avg 0.722
PAPI_L1_DCA-range 0.721
PAPI 1.2 TCM-stdev 0.709
PAPI RES_STL-min 0.694
PAPI_TOT_CYC-min 0.689
PAPI_RES_STL-range 0.684
PAPI_L1_ICA-min 0.682
PAPI L1 _ICA-range 0.675
PAPI BR_MSP-avg 0.662
PAPI_BTAC_M-range 0.653
PAPI_TOT_CYC-range 0.644
PAPI_BR_MSP-stdev 0.638
PAPI_TOT_INS-range 0.625
PAPI_TOT_INS-min 0.603
PAPI L1 _DCA-min 0.528
PAPI 1.2 TCM-max 0.525
PAPI_BR_MSP-min 0.503
PAPI L2 TCM-range 0.497
PAPI L2 TCM-min 0.495
PAPI_BR_MSP-max 0.379
PAPI_BR_MSP-range 0.360
PAPI_BTAC_M-min 0.289
PAPI_ HW_INT-max 0.131
PAPI_HW_INT-range 0.119
PAPI_ HW_INT-min 0.112

10

20

25

30

35

40

45

50

55

60

65

8
TABLE 2-continued

Correlation between the hardware performance
counters and user satisfaction

Performance Metrics Correlation
PAPI_HW_INT-stdev 0.094
PAPI_HW_INT-avg 0.048

In summary, we observe a strong correlation between the
hardware metrics and user satisfaction rating: there are 21
parameters that correlate with the user satisfaction rating by a
factor above 0.7 (e.g., these 21 parameters have a factor
ranging between 0.7 and 0.8) and there are 35 parameters with
factors exceeding 0.5. On one hand, some of the results
appear to be intuitive; it is believable that, for example, met-
rics representing processor performance relate to user satis-
faction. On the other hand, observing the link between such a
high-level quantity as measured user satisfaction and such
low-level metrics as level 2 cache misses is intriguing.

Some embodiments according to the present invention
classify the metrics (and their correlations with user satisfac-
tion) based on their statistical nature (e.g., mean, maximum,
minimum, standard deviation, and range). The mean and
standard deviation of the hardware counter values, for
example, have the highest correlation with user satisfaction
rating. A t-test analysis shows with over 85% confidence that
mean and standard deviation both have higher r values when
compared to the minimum, maximum, and range of the HPC
values.

Some embodiments according to the present invention ana-
lyze the correlations between the satisfaction results and user.
Note that the r value might not be used for this purpose, as the
user numbers are not independent. Instead, some embodi-
ments according to the present invention repeatedly fit neural
networks to the data collected for each application, attempt-
ing to learn the overall mapping from HPCs to user satisfac-
tion. As the inputs to the neural network, some embodiments
according to the present invention use the HPC statistics
along with a user identification for each set of statistics. The
output is the self-reported user satisfaction rating. In each
fitting, some embodiments according to the present invention
begin with a three-layer neural network model using 50 neu-
rons in the hidden layer (neural networks are further
described below). After each model is trained in accordance
with some embodiments of the present invention, a sensitivity
analysis is performed to find the effect of each input on the
output. Sensitivity analysis consists of making changes at
each of the inputs of the neural network and observing the
corresponding effect on the output. The sensitivity to an input
parameter is measured on a 0 to 1 scale, called the relative
importance factor, with higher values indicating higher sen-
sitivity. By performing sensitivity analysis in accordance
with some embodiments of the present invention, the input
parameters that are most relevant in determining an output
parameter, e.g., user satisfaction, can be determined. During
this process in accordance with some embodiments of the
present invention, we consistently find that the user number
input has, by far, the highest relative importance factor. Aver-
aging across all of our application tasks, the relative impor-
tance factor of the user number is 0.56 (e.g., more than twice
as high as the second factor). This strongly demonstrates that
the user is one of the most important factors in determining
the rating.

Finally, to understand the nature of the relationship
between the HPCs and the user satisfaction, some embodi-
ments according to the present invention analyze the trends
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for different functions for user satisfaction as provided by the
user at each of the processor frequencies.

TABLE 3

10

user satisfaction is often non-linear; and user satisfaction is
both application dependent and user dependent.

User trend categorization, the number of users in each category for each application

Constant

Table 3 summarizes the trends observed among different
users for our three applications in accordance with some
embodiments of the present invention. The first row shows the
trend curves when user satisfaction is plotted against the
different frequencies (e.g., along x-axis). Most of the trends
can be placed in four major categories:

Constant—User satisfaction remains unchanged with fre-
quency. As a result, it is not affected by frequency setting.

Linear—User satisfaction increases linearly with proces-
sor frequency.

Step—User satisfaction is the same for a few high frequen-
cies but then plummets suddenly for the remaining lower
ones.

Staircase—User satisfaction takes on discrete values that
monotonically increase with increasing frequency.

User satisfaction functions that do not match any of the
above categories are labeled Other. Usually, this is due to user
feedback which provides a non-monotonic function.

These results reveal several important trends. First, some
embodiments according to the present invention contemplate
that user satisfaction is often non-linearly related to processor
frequency. The majority of users provide functions that are
categorized as Constant, Step, or Staircase. Note that
although Constant is a linear function, it does not follow the
regular assumption that an increase in a given metric results in
an increase in user satisfaction. Second, some embodiments
according to the present invention contemplate that user sat-
isfaction is application-dependent. For example, for the Video
application, almost all of the users report a Constant function.
On the other hand, the trends for the Java game are distributed
among various categories. Finally, some embodiments
according to the present invention contemplate that user sat-
isfaction is user-dependent. For example, in both the Java
game, and the Shockwave animation, users specify utility
functions that span multiple categories. This shows that dif-
ferent users have significantly different expectations for the
system.

As we will discuss below, these observations have a useful
effect on the modeling technique used for learning and pre-
dicting user satisfaction in accordance with some of the
embodiments of the present invention.

Some embodiments according to the present invention
contemplate one or more of the following: hardware counters
have a strong correlation with user satisfaction; the individual
user is one of the most important factors in determining user
satisfaction; the relation between hardware performance and
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Based on these observations, we design, implement, and
evaluate a DVFS scheme that is based on individual user
preferences in accordance with some embodiments of the
present invention.

Based, at least in part, on the initial user study results
presented above, a power management scheme is developed
that sets the frequency of the processor based on estimates of
user satisfaction in accordance with some embodiments of
the present invention. Some embodiments according to the
present invention provide for a predictive user-aware power
management scheme, called Individualized Dynamic Fre-
quency and Voltage Scaling (iDVFES). To implement iDVFS
in accordance with some embodiments of the present inven-
tion, a system is built that is capable of predicting a user’s
satisfaction based on interaction with the system. As illus-
trated in FIG. 1, the system may include, for example, a
learning stage and a runtime power management stage.

Learning Stage—The system is initially trained based on
reported user satisfaction levels and HPC statistics as
described above. Machine learning models, e.g., artificial
neural networks, are trained offline to learn the function from
HPC values to user satisfaction.

Runtime Power Management—DBefore execution, the
learned model is loaded by the system. During run time, the
HPC values are sampled, entered into the predictive model,
and then the predicted user satisfaction is used to dynamically
set the processor frequency.

In its learning stage, our algorithm builds a predictive
model based on individual user preferences in accordance
with some embodiments of the present invention. The model
estimates user satisfaction from the HPCs. In this stage, the
user is asked to give feedback (e.g., provide user satisfaction
level) while the processor is set to run at different frequency
levels. The nature of this training stage is similar to the user
study described above. In some embodiment according to the
present invention, the user study and its survey are repeated
for each application. While a user study runs, the nine perfor-
mance counters are collected and the 45 statistical metrics
computed from them are extracted. The combination of these
values and the user feedback are used to build the model that
will later be used online in accordance with some embodi-
ments of the present invention.

In the learning stage in accordance with some embodi-
ments of the present invention, data is gathered that associates
an individual user’s satisfaction with different hardware per-
formance counter readings and statistics. These instances are
then used to build a predictive model that estimates the satis-
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faction of a particular user from the HPCs. Some embodi-
ments according to the present invention use neural networks
to learn this model. Some embodiments according to the
present invention use regression models and decision trees.
However, the neural networks may provide the highest accu-
racy.

Some embodiments according to the present invention use
an artificial neural network (NN) that is an interconnected
group of artificial neurons that uses a mathematical or com-
putational model for information processing based on a con-
nectionist approach to computation. The NN maps a set of p
input variables x,, . . ., X, to a set of q response variables
Yis - - - » ¥, It works by simulating a large number of inter-
connected simple analog processing units that resemble
abstract versions of a neuron. Each processing unit (or neu-
ron) computes a weighted sum of its input variables. The
weighted sum is then passed through the sigmoid function to
produce the units output. Some embodiments according to the
present invention use a three-layer NN model with one input
layer, one hidden layer, and one output layer. The Backpropa-
gation algorithm is used to train the neural network from
instance data. In the Backpropagation algorithm, the weights
between the neurons begin as random values. During the
learning phase in accordance with some embodiments of the
present invention, training inputs are provided to the NN and
the associated output errors are used to adjust neuron weight
functions to reduce error.

Our experiments represent a very interesting case for
machine learning. Typically, machine learning algorithms are
extensively trained using very large data sets (e.g., thousands
of labeled training inputs). In accordance with some embodi-
ments of the present invention, we would like to use NN for
their ability to learn complex non-linear functions, but do not
have a very large data set. For each application-user pair, we
only have six training inputs; one for each processor fre-
quency. A training input includes a set of HPC statistics and a
user-provided satisfaction label. When we first began build-
ing NN models with all 45 inputs (e.g., 9 HPC counters with
5 statistics each), we noticed that our models were overly
conservative, only predicting satisfaction ratings within a
narrow band of values. We used two training enhancements to
permit the construction of accurate NN models. First, we
simplified the NN by limiting the number of inputs. Large
NNs require large amounts of training data to sufficiently
learn the weights between neurons. To simplify the NN, we
used the two counters that had the highest correlation, spe-
cifically PAPI_BTAC_M-avg and PAPI_TOT_CYC-avg
(see, e.g., Table 2). Second, we repeatedly created and trained
multiple NNs, each beginning with different random weights.
After 30 seconds of repeated trainings, we used the most
accurate NN model. These two design decisions were advan-
tageous in allowing us to build accurate NN models.

Some embodiments according to the present invention pro-
vide for iDVFS that uses NN models to determine the fre-
quency level. The decision is governed by the following vari-
ables: f, the current CPU frequency; |1, 5, the user satisfaction
prediction for the last 500 ms of execution as predicted by the
NN model; p, the satisfaction tradeoff threshold; a,; a per-
frequency threshold for limiting the decrease of frequency
from the current f, M, the maximum user comfort level; and
T,, the time period for re-initialization.

Some embodiments according to the present invention pro-
vide for iDVFS that employs a greedy approach to determine
the operating frequency. At each interval, if p, is within oLp
of M, iDVFS predicts that the frequency is in a satisfactory
state. If . s—1, the previously predicted user comfort, is also
within o .p of M, the system determines that it may be good to
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decrease the processor frequency; if not, then the system
maintains the current frequency. If 1, is not within o p of M,
then the system determines that the current performance is
not satisfactory and increases the operating frequency. iDVFS
uses the o thresholds as a hysteresis mechanism to eliminate
the ping-pong effect between two states. If the processor
rapidly switches between two states N times in a short time
interval, the appropriate o threshold is decreased to make it
harder to decrease to the lower frequency level. This feature
of the algorithm ensures that iDVFS can adjust to a set of
operating conditions very different from those present at ini-
tialization but at a rate that is maximally bounded by T,. The
constant parameters (p=0.15, N=3, p=20 seconds) were set
based on the experience of the authors using the system. .
thresholds are initialized to one for each of the frequency level
and is decremented by 0.1 at each frequency boost.

Some embodiments according to the present invention use
contemplate empirically evaluating the sensitivity of iDVFS
performance to the selected parameters. However, such a
study would have real users in the loop, and thus might be
slow. Testing four values of four parameters on 20 users
would last 256 days (e.g., based on 20 users/day and 25
minutes/user). For at least this reason, some embodiments
according to the present invention provide for parameters that
are chosen based on a qualitative evaluation and then “close
the loop” by evaluating the whole system with the choices.

FIG. 2 illustrates the performance of the iDVFS algorithm
for two of the three applications in our study in accordance
with some embodiments of the present invention. Each graph
shows, as a function of time, the CPU frequency for a ran-
domly-selected user when playing the Java Game and watch-
ing the Video. First, note that the frequency transitions in the
two example traces differ greatly from the decisions that
Windows XP DVFS makes. The reason is that Windows XP
DVFS alters frequency based upon CPU utilization while
iDVFS alters frequency based upon predicted user satisfac-
tion. iDVFS reduces the frequency significantly in the Video
application. In this case, the user has indicated high satisfac-
tion with all levels of performance. As shown in Table 3, the
Video has the least variation in user satisfaction values at
lower frequencies. As a result the iDVFS algorithm can
reduce CPU frequency without affecting user satisfaction. In
both cases, the frequency level follows the satisfaction levels
reported by the user and minimizes power consumption with
little impact on satisfaction. These traces show that iDVFS
can successfully adjust the clock frequency throttle according
to the user satisfaction derived from the HPCs. For a highly
compute-intensive application (e.g., such as the Java Game),
the reduction in the frequency is minimal because any change
in frequency causes a significant reduction in user-perceived
performance. For other applications (e.g., such as the Video),
frequency can be drastically reduced without affecting user
satisfaction.

Some embodiments according to the present invention
contemplate integrating iDVFS with the operating system
(OS), while other embodiments according to the present
invention do not contemplate integrating iDVFS with the OS.
Some embodiments according to the present invention imple-
ment client software that runs as a Windows toolbar task, and
manually activate iDVFES for our user studies. The client is
implemented in a manner that is similar to profile-directed
optimization. An initial calibration stage is used for building
a model that is used to predict user satisfaction during run
time. Some embodiments according to the present invention
use direct user feedback in a calibration stage for each user
and each application, while others do not use direct user
feedback in the calibration stage for each user and each appli-
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cation. While using direct user feedback in a calibration stage
for each user and each application may be cumbersome, there
are two points we would like to make. First, we believe that
the current system is practical for some users (e.g., heavy
gamers will not mind a few minutes of calibration). Second,
we argue that explicit user feedback is a viable option. How-
ever, some embodiments according to the present invention
contemplate limiting the feedback and learning effectively
from explicit/implicit mechanisms will allow such schemes
to be deployed widely.

iDVFS has a few limitations that can be eliminated once
iDVFS is integrated into the OS. First, we provide the client
software with per-user, per-application neural network mod-
els tailored to the application we are about to invoke. Second,
iDVFS is intended for interactive applications, although the
present invention need not be so limited. Some embodiments
according to the present invention provide for an OS that has
knowledge of users and applications (e.g., active applica-
tions) and that automatically loads the appropriate prediction
models for interactive applications during context switches.

Some embodiments according to the present invention pro-
vide for WinPAPI that supports system-wide HPC sampling;
this includes other programs, background processes, and ker-
nel execution. For our study, we run a single workload on the
machine at a time; hence HPC samples correlate to the work-
load directly. Some embodiments according to the present
invention contemplate that the HPC interface would include
thread-specific information as well as distinguish between
user level and kernel level applications. Other HPC interfaces
(e.g., perfmon?2 for Linux) may also include this support.

The performance of iDVFS may largely be dependent upon
good user input. However, the user is free to provide new
ratings and recalibrate iDVFS if the resulting control mecha-
nism causes dissatisfaction.

Below, we evaluate the predictive user-aware power man-
agement scheme in accordance with some embodiments of
the present invention with a user study, as described above.
We compare iDVFS with the native Windows XP DVFS
scheme and report reductions in CPU dynamic power, as well
as changes in measured user satisfaction. This is followed by
a trade-off analysis between user satisfaction and system
power reduction. We report the effect of iDVF'S on the power
consumption and user satisfaction.

We compare iDVFS to Windows Adaptive DVFS, which
determines the frequency largely based on CPU usage level.
A burst of computation due to, for example, a mouse or
keyboard event brings utilization quickly up to 100% and
drives frequency, voltage, power consumption, and tempera-
ture up along with it. CPU-intensive applications cause an
almost instant increase in operating frequency and voltage
regardless of whether this change will impact user satisfac-
tion. Windows XP DVFS uses six of the frequency states in
the Enhanced Intel Speedstep technology, as mentioned
above. Performance requirements are determined using heu-
ristics based on metrics such as processor utilization, current
battery level, use of processor idle states, and inrush current
events. In the Windows native adaptive DVFS scheme, deci-
sions are made according to the algorithm described in FIG. 3.

To analyze the effect of iDVFS on system power consump-
tion, we perform a second set of user studies in which the
users are asked to carry out the tasks described above. This
time, the durations of the applications are increased: the Java
Game is executed for 2.5 minutes; Shockwave and Video are
executed for 1.5 minutes each. The user is asked to execute the
application twice, once for Windows XP DVFS and once for
iDVFS, which loads the individual neural network model for
the user/application before the start of the execution. Once the
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execution completes, the users are asked to rate their satisfac-
tion with each of the systems on a scale of 1 (e.g., very
dissatisfied) to 5 (e.g., very satisfied).

During these experiments, we log the frequency over time.
We use these frequency logs to derive CPU power savings for
iDVFS compared to the default Windows XP DVFS strategy.
We have also measured the online power consumption of the
entire system and provide a detailed discussion and analysis
of trade-ofts between power consumption and user satisfac-
tion.

The dynamic power consumption of a processor is directly
related to frequency and supply voltage and can be expressed
using the formula P=V>CF, which states that power is equal to
the product of voltage squared, capacitance, and frequency.
By using the frequency traces and the nominal voltage levels
on our target processor, we calculated the relative dynamic
power consumption of the processor. FIG. 4 presents the CPU
dynamic power reduction achieved by the iDVFS algorithm
compared to the Windows XP DVFS algorithm for the indi-
vidual users for each application in accordance with some
embodiments of the present invention. It also presents their
reported satisfaction levels. To aid in understanding FIG. 4,
consider a group of three bars for a particular user. The first
two bars represent the satisfaction levels for the users for the
iDVFS (gray) and Windows (white) schemes, respectively.
The third bar (black) shows the power saved by iDVFS for
that application compared to the Windows XP DVFS scheme
(for which the scale is on the right of FIG. 4).

On average, our scheme reduces the power consumption by
8.0% (Java Game), 27.9% (Shockwave), and 45.4% (Video)
compared to the Windows XP DVFS scheme in accordance
with some embodiments of the present invention. A one-
sample t-test of the iDVFS power savings shows that for
Shockwave and Video, iDVFS decreases dynamic power with
over 95% confidence. For the Java game, there are no statis-
tically-significant power savings. Correspondingly, the aver-
age user satisfaction level is reduced by 8.5% (Java Game),
17.0% (Shockwave), and remains the same for Video. A two-
sample paired t-test comparing the user satisfaction ratings
from iDVFS and Windows XP DVFS indicates that for Java
and Video, there is no statistical difference in user satisfaction
when using iDVFS. For Shockwave, we reduce user satisfac-
tion with over 95% confidence.

The combined results show that for Java, iDVFS is no
different than Windows XP DVFS, for Shockwave, iDVFS
trades off a decrease in user satisfaction for a decrease in
power consumption, and for the Video, iDVFS significantly
decreases power consumption while maintaining user satis-
faction.

An analysis of the results quickly reveals that the average
satisfaction levels are strongly influenced by a few excep-
tional cases. We have analyzed the cases where there is a
difference of more than 1 step between the user ratings.
Among these, we found six cases that require special atten-
tion. For the Java Game, the training inputs of Users 3, 6, and
13 (solid rectangles in FIG. 4) significantly mismatched the
performance levels of the processor. Specifically, these users
have given their highest ratings to one of the lowest frequency
levels. As a result, iDVFS performs as the user asks and
reduces the frequency, causing dissatisfaction to the user. The
cause of dissatisfaction for User 4 (dotted rectangle in FI1G. 4)
was different. Our neural network for that user did not match
the training ratings and thus the user was dissatisfied. Simi-
larly, for the Shockwave application, Users 6 and 10 (dashed
rectangle in FIG. 4) provided a roughly constant user satis-
faction across the various frequencies. During the user study,
however, these Shockwave users highlighted their dissatis-
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faction when they were able to compare the performance of
iDVFS to the Windows scheme, which keeps the processor at
the highest frequency at all times

It is important to note that such exceptional cases are rare;
only 10% of'the cases (6 out of 60) fall into this category. Such
exceptional cases can be easily captured during a learning
phase and eliminated by forcing the user to retake the survey
and re-train the model, e.g., training can be repeated until
successful. In addition, any dissatisfied user can retrain until
a satisfactory performance level is reached. However, our
results reveal that such cases will be rare.

We also analyzed the performance of iDVFS without con-
sidering these extreme cases. Overall, iDVFS reduces power
consumption by 5.2% (Java Game), 24.0% (Shockwave), and
45.4% (Video). User satisfaction levels were increased by
4.8% (Java Game), reduced by 13.9% (Shockwave), and
remained identical for Video (where there were no excep-
tional cases).

User 16°s results are likely to be caused by noise and
provide a good example of the intricacies of dealing with real
users. This user rated iDVFS two steps lower than the Win-
dows scheme for Shockwave. At the same time, he/she rated
iDVFS two grades higher for the Java Game application even
though iDVFS used a lower frequency throughout execution.

These initial results provide strong evidence that a highly-
effective individualized power management system can be
developed in accordance with some embodiments of the
present invention.

Specifically, the results from our user study reveal that:

there exist applications (e.g., Video) for which providing
customized performance can result in significant power sav-
ings without impacting user satisfaction;

there exist applications (e.g., Shockwave) for which the
users can trade off satisfaction level with power savings; and

there exist applications (e.g., Java Game) for which tradi-
tional metrics in determining the satisfaction is good and
iDVFS will provide the same performance level and user
satisfaction.

We have presented experimental results indicating the user
satisfaction and the power consumption for three applica-
tions. For two applications (Video and the Java Game), we
determined that the iDVFS users are at least as satisfied as
Windows XP DVES users. However, for the Shockwave
application, we observed that although the power consump-
tion is reduced, this is achieved at the cost of a statistically
significant reduction in average user satisfaction. Therefore, a
designer needs to be able to evaluate the success ofthe overall
system. To analyze this trade-oft, we developed a new metric
called the energy-satisfaction product (ESP) that works in a
similar fashion to popular metrics such as energy-delay prod-
uct. Specifically, for any system, the ESP per user/application
can be found by multiplying the energy consumption with the
reported satisfaction level of the user in accordance with
some embodiments of the present invention.

To make a fair comparison using the ESP metric, we col-
lected the total system energy consumption during the run of
the application. To extract these values, we replay the traces
from the user studies above. The laptop is connected to a
National Instruments 6034E data acquisition board attached
to the PCI bus of a host workstation running Windows (and
the target applications), which permits us to measure the
power consumption of the entire laptop (including other
power consuming components such as memory, screen, hard
disk, etc.). The sampling rate is set to 10 Hz. FIG. 6 illustrates
the experimental setup used to measure the system power in
accordance with some embodiments of the present invention.
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Once the system energy measurements are collected (for
both Windows XP DVFS and iDVFS), the ESP for each user
is determined by multiplying their reported satisfaction levels
and the total system energy consumption. The results of this
analysis are presented in FIG. 5. FIG. 5 illustrates the reduc-
tion in system energy consumption, increase in user satisfac-
tion, and change in ESP for each user. Hence, the higher
numbers correspond to improvement in each metric, whereas
negative numbers mean that the Windows XP DVFS scheme
performed better. Although the ESP improvement varies from
user to user, the iDVFS improves the ESP product by 2.7%,
averaged over all users. Thus, Windows XP DVFS and iDVFS
provide comparable ESP levels for this particular application.
In other words, the reduction in user satisfaction is offset at a
significant benefit in terms of power savings.

Dynamic voltage and frequency scaling (DVFS) is an
effective technique for microprocessor energy and power
control for most modern processors. Energy efficiency has
traditionally been a major concern for mobile computers. An
energy-aware dynamic software management framework has
been proposed that improves battery utilization for mobile
computers. However, this technique is only applicable to
highly adaptive mobile applications. Researchers have pro-
posed algorithms based on workload decomposition, but
these tend to provide power improvements only for memory-
bound applications. A design framework for a run-time DVFS
optimizer in a general dynamic compilation system has been
presented. The Razor architecture dynamically finds the
minimal reliable voltage level. An adaptive voltage scaling
technique that uses a closed-loop controller targeted towards
standard-cell ASICs has been proposed. Intel Foxton technol-
ogy provides a mechanism for select Intel [tanium 2 proces-
sors to adjust core frequency during operation to boost appli-
cation performance. However, none of the previous DVFS
techniques appear to consider the user satisfaction prediction.

Other DVFS algorithms use task information, such as mea-
sured response times in interactive applications as a proxy for
the user. Vertigo monitors application messages and can be
used to perform the optimizations implemented in our study.
However, compared to Vertigo, our approach provides a met-
ric/framework that is much easier to use. Schemes minimiz-
ing energy consumption in real-time embedded systems that
execute variable workloads have been proposed. However,
they try to adapt to the variability of the workload rather than
to the users. A high variation in user tolerance for perfor-
mance in the scheduling context has been demonstrated,
variation that may hold for power management as well.

Ithas been shown that it is possible to utilize user feedback
to control a power management scheme, e.g., allow the user to
control the performance of the processor directly. However,
the system uses constant feedback from the user. Our scheme
correlates user satisfaction with low level microarchitectural
metrics. In addition, some embodiments according to the
present invention use a learning mechanism to eliminate user
feedback to make long-term feedback unnecessary. The con-
cept of a control parameter that could be used by the user have
been discussed. However, they focus on the wireless network-
ing domain, not the CPU. Second, they do not propose or
evaluate a user interface.

A novel DVFS method based on statistical analysis of
performance counters has been proposed. However, the tech-
nique use compiler support to insert code for performance
prediction. Furthermore, the technique does not consider user
satisfaction while setting the frequency. One of the contribu-
tions of our work is to establish the correlation between
hardware counters and user satisfaction and utilize this cor-
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relation to develop a user-aware DVFS technique in accor-
dance with some embodiments of the present invention.

Some embodiments according to the present invention pro-
vide for a strong, albeit usually nonlinear, link between low-
level microarchitectural performance metrics, as measured
by hardware performance counters (e.g., “close to the metal”
numbers), and user satisfaction (e.g., “close to the flesh”
numbers) for interactive applications. The link is highly user-
dependent. This variation in user satisfaction indicates poten-
tial for optimization. Using neural networks in accordance
with some embodiments of the present invention, per-user
per-application functions (which might be called “metal to
flesh functions™) are learned that map from the hardware
performance counters to individual user satisfaction levels.
This result in a computer system that can uses small amounts
of explicit user feedback, and then implicitly learns from the
feedback to make online predictions of user satisfaction. We
demonstrate the utility of this implicit feedback by employing
it in a user-aware DVFS algorithm. Experimental results, and
analysis of user studies, show that there are interactive appli-
cations for which knowledge of user satisfaction permits
power consumption savings. Others present an interesting
trade-off between user satisfaction and power savings.
According to some embodiments of the present invention, our
system reduces the power consumption of Windows XP
DVFES by over 25%, while only affecting user satisfaction in
one application.

Some embodiments according to the present invention pro-
vide support for dynamic voltage and frequency scaling in
processors used in battery-powered portable systems. Typical
dynamic CPU frequency scaling techniques generally use
high CPU utilization as an indication of the requirement to
increase CPU frequency. These techniques ignore at least one
of'the goals of any computer system, which to satisfy its users.
In reality, performance requirements vary among users and
applications. For many interactive applications, perceived
performance is highly dependent upon the user, and is not
linearly related to CPU utilization. This observation reveals
an opportunity for reducing power consumption in accor-
dance with some embodiments of the present invention.

Some embodiments according to the present invention pro-
vide for Human and Application driven frequency scaling for
Processor Power Efficiency (HAPPE). In some embodiment
according to the present invention, HAPPE comprises an
adaptive user-and-application-aware dynamic CPU fre-
quency scaling technique. HAPPE adapts processor fre-
quency to the performance requirement of the current user
and application.

In accordance with some embodiments of the present
invention, we have evaluated HAPPE on a Linux-based lap-
top, and have conducted user studies with 24 users and four
interactive applications. Compared to the default Linux CPU
frequency controller, HAPPE provides the same satisfaction
level to users but reduces measured system wide power con-
sumption by 25% on average.

Power efficiency is a technology driver in the area of bat-
tery-powered mobile and embedded systems such as, for
example, mobile phones, personal digital assistants, MP3
players, and laptops. Processor power consumption has a
substantial impact on the power consumption of high-perfor-
mance portable systems, which tend to include multiple pro-
cessors and coprocessors. Our measurements indicate that
reducing the processor power consumption in accordance
with some embodiments of the present invention can save, for
example, up to 40% of the overall system power consumption
on a modern laptop.
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Some embodiments according to the present invention pro-
vide for dynamic frequency and voltage scaling (DVFS) as a
power reduction technique for a processor. DVFS changes the
frequency and voltage of a processor at runtime to trade off
power consumption and performance. Most existing DVFS
techniques such as those used in the Linux and Windows
operating systems determine the appropriate processor fre-
quency based on current CPU utilization. These approaches
use CPU utilization as a measure of required performance.
Therefore, to guarantee high performance, they only allow a
decrease in frequency when CPU utilization is below a certain
threshold, e.g., 80%.

These traditional approaches ignore one of the goals of any
computer system which is to satisfy its users, not to deliver a
particular required processor performance (e.g., the number
of instructions executed per second). Although CPU utiliza-
tion is a good indication of processor performance, the actual
perceivable performance is highly dependent upon individual
users and applications, and is not linearly related to the CPU
utilization level. We conducted a study on 10 users with four
interactive applications and found that for some applications,
some users are satisfied with the system performance when
the processor is at the lowest frequency, while other users may
not be satisfied even when it operates at the highest frequency.
We also found that users may be insensitive to the perfor-
mance at different frequency levels for one application, but
may be very sensitive to performance differences for another
application. Traditional DVFS policies that consider only
CPU utilization or other user-oblivious performance metrics
are usually too pessimistic about user performance require-
ments, and are generally forced to use a high performance
level in order to satisfy all users, resulting in wasted power.

Some embodiments according to the present invention pro-
vide HAPPE that is a new CPU DVFS technique that adapts
voltage and frequency to the performance requirement of the
current user and application. HAPPE associates individual
users and applications at different CPU utilization levels with
the lowest frequency that satisfies the user. HAPPE decides
user satisfaction, for example, by taking direct user keyboard
input. However, it does not require continuous explicit user
feedback, and uses a short training period the first time a user
runs an application. Then, for each user and application,
HAPPE saves the required CPU frequency at different utili-
zation levels, and automatically loads this information upon
later invocation of the application. After the training period,
the user is not required to provide additional feedback, but
may occasionally send new inputs to change the control
policy, if desired.

Some embodiments according to the present invention pro-
vide HAPPE as a user-space CPU frequency governor for
Linux. We compared it to the Linux default ondemand fre-
quency governor. To find out whether HAPPE can save more
power, but still satisfy the user, we conducted a study on 24
users with four representative interactive applications for por-
table systems such as smart phones and laptops. All these
applications are highly CPU intensive. We averaged the mea-
sured system power consumptions and user satisfaction rat-
ings for all users and applications. Compared to the onde-
mand governor, HAPPE in accordance with some
embodiments of the present invention reduced the overall
system power consumption, for example, by 25% without
degrading user satisfaction. This reduction is substantial, con-
sidering that the highest possible system-wide power reduc-
tion by constantly scaling frequency from the highest level to
the lowest level is 40.63%, when the CPU utilization is above
80% (the average for our testing applications).
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Some embodiments according to the present invention pro-
vide for DVFS as a power reduction technique for processors.
Traditional DVFS policies use CPU utilization as the metric
to determine when to change frequency. It has been proposed
to use other hardware performance information available to
the operating system to make frequency decisions. [thas been
proposed to change CPU frequency based on workload
decomposition, which tends to provide power improvements
only for memory-bound applications. A design framework
has been proposed for a run-time DVFS optimizer in a general
dynamic compilation system. A DVFS scheme has been pro-
posed that captures the variability of workloads by the prob-
ability distribution of the computational requirement of each
task in the system. However, none of these techniques con-
sidered user satisfaction to control power state as contem-
plated by some embodiments of the present invention. How-
ever, several other techniques proposed to consider user
perception in DVES policy. There are, in general, three types
of approaches.

Explicitly obtaining user input, e.g., by monitoring mouse
movement or keyboard events: It has been found that different
types of user interface events such as mouse movements,
mouse clicks, and keystrokes trigger tasks with significantly
different CPU requirements, suggesting that DVFS algo-
rithms should adjust speeds based on interface events. A
DVFS scheme has been proposed that controls processor
frequency by monitoring continuous explicit user input via
keyboard events. This simple control policy is completely
user-driven and does not make use of any CPU performance
information. It does not learn user preferences for particular
applications, and requires ongoing explicit feedback from
users to maintain adequate performance, which may eventu-
ally annoy users, thereby preventing practical use.

Implicitly estimating user perception by measuring met-
rics such as the response latency in interactive applications as
a proxy for the user: Application messages have been moni-
tored to measure user-perceived latency. The delay between
user input and computer response has been defined as a mea-
sure of user-perceived latency. Measurements of variations in
the rate of change of video output have been used to estimate
user-perceived performance. These techniques ignore the
variation among users and applications: they use the same
threshold for all users and applications. A DVFS scheme has
been proposed that uses a neural network model to predict
user satisfaction by hardware performance counter readings.
This technique uses an off-line training stage for each user
and each application, which runs the application at different
frequency level and asks the user for a verbal satisfaction
rating.

Implicitly inferring user satisfaction by monitoring the
status of biometric sensors on the user: The addition of bio-
metric input devices for gathering information about user
physiological traits have been proposed. On average, an
aggressive version of this DVFS scheme, PTP, reduces the
total system power consumption of a laptop by 18.1% and a
conservative version reduces the total system power con-
sumption by 11.4%. This approach requires specially
designed biometric sensors to be put on the users and it
remains to be seen how easily these sensors can be integrated
into computer systems and normal workflows. In contrast,
HAPPE requires no additional hardware and improves sys-
tem power consumption by 25%.

CPU utilization has been used as a proxy for required
performance. In traditional CPU DVES policies, it is used as
the metric to determine CPU frequency. To guarantee high
processor performance, these policies only decrease fre-
quency when CPU utilization is below a certain threshold,
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e.g., 80%. However, processor performance is not identical to
user-perceived performance. Do different users have the
same performance requirement for the same application?
Does one user have the same performance requirement for
different applications? To find out, we conducted a user study
with 10 users on a Lenovo Thinkpad T61 laptop, which has an
Intel Core 2 Duo processor, 2 GB memory, and runs Open-
Suse 10.3 and Linux 2.6.22 kernel. Linux supports five fre-
quencies for this processor: 0.8 GHz, 1.2 GHz, 1.6 GHz, 2.2
GHz, and 2.3 GHz, and scales voltage automatically with
frequency. The scale of this first user study was kept small
because each evaluation took about one hour. We conducted a
larger scale second study with 24 users to evaluate HAPPE,
which is presented below.

We used four Linux interactive games as our testing appli-
cations: Torcs, a 3D car racing game; Quake3, a 3D shooting
game; Glest, a 3D real-time strategy game; and Trackballs, a
3D ball maze game. We chose to use these games as our
testing applications because they represent typical interactive
applications on portable systems and they are usually CPU
intensive with high power consumptions.

In the user study, each user played these games at all five
frequency levels. The user studies were double-blind and
randomized, e.g., the order of frequencies was randomized to
eliminate any possible “first-time execution” impact. Each
play lasted for at least 2 minutes, and users were permitted to
play as long as they desired to evaluate the responsiveness/
performance of the system. After each play, users were
prompted to enter their “satisfaction level with the system
responsiveness/performance on a scale of 1 to 5, where 5 is
the most satisfied and 1 is the least satisfied.” While users
were playing the game, a program ran in the background to
sample utilization level for both CPUs on the laptop. Because
our test platform has two CPUs, in all user studies the testing
application being evaluated is scheduled to run on CPUO
using the Linux taskset utility.

FIG. 7 illustrates (1) the satisfaction ratings of 10 users at
five frequency levels, where level 1 represents the lowest
frequency (0.8 GHz) and level 5 represents the highest (2.3
GHz), and (2) the average utilization of CPUO (the CPU that
is actually running the task), obtained by sampling the CPU
utilization every second during the user study for each user.
As shown in FIG. 7, all four applications are CPU intensive.
In general, CPU utilization decreases as frequency increases;
user satisfaction appears to be a monotonic function of fre-
quency. However, this function is non-linear, and differs
greatly among users and applications. Our results provide
evidence that conventional DVFS policies that only use CPU
utilization as the control metric, ignoring variation among
users and applications, are likely to either annoy users or
waste power.

An objective of HAPPE is to minimize power consumption
without degrading user-perceived performance in accordance
with some embodiments of the present invention. For user-
interactive systems in accordance with some embodiments of
the present invention, an optimal frequency for a current
application at a current CPU utilization level is a lowest
frequency necessary to satisfy a current user. To approximate
the optimal frequency, HAPPE learns user preferences and
obtains user feedback by monitoring key-press events for two
special keys: the performance key and the power key, which
can be mapped to any two keys or key combinations on the
keyboard. Users may press the performance key when the
responsiveness/performance of the system does not meet
their requirements. They may also press the power key when
they are satisfied with performance and want to save power.
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Algorithm 1 HAPPE frequency scaler (1) and w_map function (r)

for each sample period P; do Input: user, app, T, @il

next)

e = feur map[user][app][ 7] = £,
if performance key pressed then for all u > 7 do
fpent = fer + 1 if mapuser][app][u] <
w_map(user, app, .., #il) -
else if power key pressed then then
fpewt = feur = 1 map[user][app][u] =
w_map(user, app, £, 4 et
else end if
end for

f,.., = r_map(user, app, #il)

L next

end i for all u <% do
if .., = f_,, then if map[user][app][u] >

set_freq(f,...) Text
end if then

end for mapl[user][app][u] =
next
end if
end for

For each user in accordance with some embodiments of the
present invention, HAPPE creates a user application fre-
quency profile for every interactive application the user
executes. The frequency profile distinguishes between appli-
cations as well as users. Consider the example of user 6 in
FIG. 7. If the frequency profile for Quake3, for which the
lowest frequency satisfies the user, is used for Torcs or Track-
balls, the user will be very unsatisfied.

We indicate the highest CPU frequency with f,, ., the cur-
rent frequency with f_,, and the current CPU utilization with
util. A normalized CPU utilization may be defined as follows:

ﬁi.illy =util-/f,,,.. The user application frequency profile
divides the normalized CPU utilization into ten discrete lev-
els, e.g., 6%-10%, 10%-20%, and maps a user-satisfactory
frequency to each level. The frequencies at all normalized
utilization levels are initialized to the lowest frequency. Then,
every sample period (P), e.g., one second, HAPPE refreshes
the frequency for the next sample period (f,,.,), and updates
the corresponding frequency profile if necessary.

The detailed algorithm HAPPE uses to control processor
frequency is presented in Algorithm 1. HAPPE determines
f ... by checking user feedback in the last sample period and
looking up the corresponding frequency profile entry (the
r_map function) based on normalized CPU utilization

5?/7 current user (user), and current application of focus
(app). If neither performance key nor power key was pressed
in the last sample period, HAPPE uses the frequency profile
to determine the frequency that previously satisfied the user at
the current normalized utilization level, and adjusts the CPU
voltage and frequency appropriately. If HAPPE detects that
the performance key was pressed in the last sample period, it
increases CPU frequency by one level. Otherwise, if HAPPE
detects that the power key was pressed in the last sample
period, it decreases CPU frequency by one level. Then,
HAPPE updates the corresponding frequency profile entry
using the w_map function presented in Algorithm 1. Based on
the data presented above, we assume that for the same user
and application, lower CPU utilization levels require equal or
lower CPU frequencies. Therefore, HAPPE not only updates
the current normalized utilization level, but also checks to
make sure that all utilization levels that are higher than the
current level have at least the same frequency, and that all
utilization levels that are lower than the current level have at
most the same frequency.
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Unlike previous work that requires continuous explicit user
feedback, some embodiments of the present invention pro-
vide for HAPPE that uses a short, implicit, training period the
first time a user runs an application. This training period is not
separated from normal application use: users may actively
use the application during training and need not restart the
application when training is finished. During the training
period, the user need only use a few keystrokes to find the
satisfactory frequency level.

Then, in accordance with some embodiments of the present
invention, for each user and application, HAPPE learns the
user required CPU frequencies at different utilization level
using the frequency profile, and automatically loads the pro-
file upon later invocation of the application. After the training
period, the user is not required to provide additional input, but
is permitted to do so if desired.

Some embodiments of the present invention implement
HAPPE as a user-space CPU frequency governor for Linux.
The governor program uses Pthreads to create two threads: T,
and T,. The first thread (T,) polls CPU utilization every
second, checks for user input signals from the second thread
(T,), and scales frequency and updates the user application
frequency profile when necessary. T, monitors keyboard
events, and sends a signal to T, when the performance key or
power key is pressed.

There are a few additional details that may be noteworthy
when implementing HAPPE:

Some users may send a burst of key presses when they are
unsatisfied with performance, without waiting to
observe performance improvement. This would result in
moving to the highest frequency, which may not be
necessary to satisfy the user. To prevent this, some
embodiments of the present invention treat all series of
key presses within intervals smaller than one second as a
single key press.

For multiprocessor systems, some embodiments of the
present invention provide that HAPPE manages each
CPU individually if its frequency can be changed inde-
pendently. If the processors must share the same fre-
quency due to hardware limitation, some embodiments
of the present invention provide that HAPPE manages
the frequency of the group based on the highest utiliza-
tion within it.

For multi-process systems, some embodiments of the
present invention provide that HAPPE monitors the cur-
rent interactive application of focus, e.g., the current
active X-window application, and updates this applica-
tion’s frequency profile. Some embodiments of the
present invention provide that HAPPE guarantees that at
any time CPU frequency satisfies the user running the
current interactive application.

For portable systems such as laptops and smart phones, it is
unlikely that multiple users would be running CPU
intensive applications on the system simultaneously.
However, if this occurs, some embodiments of the
present invention provide that HAPPE follows the same
policy and creates a frequency profile for each user and
application combination. At any given time, for
example, some embodiments of the present invention
provide that HAPPE sets the highest frequency neces-
sary to satisfy all current users.

To evaluate the use of HAPPE in accordance with some
embodiments of the present invention, we conducted a study
on 24 users running the four Linux interactive games
described above. We compare the power savings achieved by
HAPPE with that of the Linux ondemand governor and show
that the user satisfaction is almost identical. We also present
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extensive analysis on user and application variations, and
discuss the impact of providing users feedback on power
consumption.

All our experiments were performed on the Lenovo Think-
pad T61 laptop described above. The frequencies of the two
cores in this laptop must scale together. We connected the
T61’s DC power supply in series with a 100 mQ Ohmite
Lo-Mite 15FR025 molded silicone wire element current
sensing resistor. Then we measured the voltage across the
resistor to obtain the current of the laptop, using a National
Instruments 6034E data acquisition board attached to the PCI
bus of a host workstation running Linux. This allows us to
measure the power consumption of the entire system (includ-
ing other components such as memory, graphic card, LCD
display, and hard disk). Our power measurement setup is
illustrated in FIG. 8. During all experiments, the back-light of
the LCD display is set to maximum brightness. Although our
technique focuses on reducing CPU power consumption, we
measured the power consumption of the whole system,
because one of the objectives of some of the embodiments of
the present invention is to improve the battery life for portable
systems, which is decided by the overall system power con-
sumption, not the CPU power consumption alone. In addi-
tion, reduced processor frequency can reduce the demands on
other devices, and therefore their power consumptions.

When the performance key is pressed, the user receives
almost immediate positive feedback via change in perfor-
mance. However, when the power key is pressed, the user
does not normally receive feedback on benefits for a long
period of time: the positive effect is increased battery life. In
real-world scenarios, users have an incentive to save power
when their laptops or other portable devices are running on
battery, but the benefits come at a longer time scale (many
hours before the impact on battery life is known) than prac-
tical in a user study (2 minutes for each evaluation). It has
been found that making battery life information visible to end
users has a strong impact on power management for mobile
devices.

In our user studies, to allow feedback on both performance
and power consumption, we designed a graphical battery life
indicator in accordance with some embodiments of the
present invention, which is displayed in the bottom-left cor-
ner of the screen, as shown in FIG. 9. To approximate the
real-world scenario, we control the indicator with simulated
battery that is designed to last for approximately two hours
when the processor is at the lowest frequency and approxi-
mately 70 minutes when the processor is at the highest fre-
quency. The indicator displays the remaining operating time
based on current battery energy and power consumption,
obtained from an on-line power model based on the measured
power consumption in Table 4.

TABLE 4
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Note that HAPPE does not require the use of the battery life
indicator. In our evaluation, we tested HAPPE both with and
without using the battery life indicator to find out how pro-
viding feedback of power to users changes their power man-
agement decisions in accordance with some embodiments of
the present invention.

The 24 users are graduate and undergraduate university
students; they span a wide range of professional backgrounds,
races, ages, and computer and gaming experience levels.
Each user evaluation lasted about 40 minutes. Prior to each
evaluation, the user was asked to fill out a questionnaire
indicate a level of experience with computers and computer
games using one of the following levels: beginner, moderate,
and master. Then the user read a handout with the instructions
for the experiment. The users were also shown how the games
are played, and were permitted to practice until they were able
to play on their own.

In the user study, each user plays each of the four games
four times, denoted as ondemand, T-HAPPE, 0-HAPPE, and
B-HAPPE. Each time, the game is played for two minutes and
then exits automatically. Afterwards, the users are prompted
to enter their “satisfaction level with the computer perfor-
mance/responsiveness on a scale of 1 to 5, where 5 is the most
satisfied and 1 is the least satisfied”. During the first run, users
play the game normally. CPU frequency is controlled by the
Linux ondemand frequency controller, with the sample_rate
set to 80,000 and the up_threshold set to 80%. During next
three runs, HAPPE is used to control CPU frequency. Users
may press a green-colored key to require higher performance
or better responsiveness, or press a yellow-colored key to save
power when they are satisfied with the current performance.
Note that users are not required to press either key.

The differences between the three phases are described
below.

T-HAPPE is the training phase. During this phase, the
frequencies at all utilization levels are initialized to the lowest
level and adjusted when the two special keys are pressed. This
phase is separated from the following phase to determine
whether more frequent feedback during this phase annoys
users.

During O-HAPPE, HAPPE loads the user application fre-
quency profile created during T-HAPPE and controls fre-
quency accordingly. The user may still press the two keys to
adjust performance. However, the frequency of user interac-
tion is likely to be lower, and better approximate HAPPE in
normal use.

During B-HAPPE, the user is provided with a battery life
indicator to get feedback on energy use. It is otherwise
equivalent to O-HAPPE.

To illustrate dynamic system behavior and user interaction
with HAPPE, FIG. 10 shows the time series data of a ran-

SYSTEM-WIDE POWER CONSUMPTION OF T61 AT DIFFERENT

CPU UTILIZATION LEVELS AND FREQUENCIES

Power Consumption (Watts)

0% 10% 20% 30% 40% 50% 60% 70% 80%

90%

100%

0.8 GHz 2440 24.80 25.22 25.03 25.37 25.81 25.81 26.41 26.60
1.2GHz 25.73 26.02 26.34 2595 2692 2740 27.80 27.92 2794
1.6 GHz 26.14 26.73 27.30 27.93 28.55 29.51 29.86 30.00 30.50
22GHz 29.35 30.01 30.81 31.91 32.77 33.79 34.87 36.00 37.25
23 GHz 30.72 32.01 33.07 34.75 35.55 36.78 39.06 40.52 42.24

26.69
28.15
31.19
38.52
43.62

26.74
28.55
32.27
40.18
45.04
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domly-selected user playing the Torcs car racing game under
the control of HAPPE during the training phase in accordance
with some embodiments of the present invention. FIG. 10
shows the utilization of both CPUs, the frequency sampled
every second, and key press events. When the user started
playing the game, frequency was set to the lowest level: 0.8
GHz. After 16 seconds, the user pressed the performance key.
HAPPE increased the frequency to 1.2 GHz, and recorded the
frequency requirement of the user at this utilization level in
the frequency profile. Then, the user pressed the performance
key again at 22 seconds and 43 seconds, further increasing the
frequency to 2.2 GHz. At 67 seconds, the user pressed the
power key and presumably soon realized that the resulting
degradation in performance was not tolerable. The user there-
fore pressed the performancekey after 7 seconds. Afterwards,
frequency stayed at 2.2 GHz for high CPU utilization levels,
and 1.2 GHz for low CPU utilization levels.

FIG. 11 illustrates the aggregated power consumption and
satisfaction ratings across all users for each tested applica-
tion, comparing HAPPE with the Linux ondemand frequency
controller. For each user, each application, and each tech-
nique (ondemand, T-HAPPE, 0-HAPPE, and B-HAPPE), we
obtain the average power consumption during the two min-
utes the user plays the game.

We note the following observations:

Compared to the Linux ondemand governor, across all four
applications, the average reduction in power consump-
tion is 28.50% during the HAPPE training phase,
24.39% during the HAPPE operating phase without the
battery indicator, and 26.56% during the HAPPE oper-
ating phase with the battery indicator in accordance with
some embodiments of the present invention. These
results are expected, because (1) during the training
phase, the frequency starts low and only increases
gradually when the user requires higher performance,
and (2) the battery indicator, which provides a feedback
on the long-term battery life benefits of pressing the
power key, gives the user more incentive to save power.

Across all four applications, the average user satisfaction is
4.61 with the ondemand governor, 4.55 during the
HAPPE training phase, 4.69 during the HAPPE operat-
ing phase without the battery indicator, and 4.63 during
the HAPPE operating phase with the battery indicator in
accordance with some embodiments of the present
invention. These results indicate that users are in general
slightly less satisfied during the training phase, and more
satisfied during the operating phase. In addition, the
battery indicator can motivate users to save power by
pressing the power key, but this appears to very slightly
reduce their satisfaction. Nonetheless, compared to the
default ondemand governor, during the HAPPE operat-
ing phase, users satisfaction actually increases slightly.
This improvement could be noise, or might be due to the
fact that users are happier when they feel they have
control over the computer, e.g., when they press the
performance button, they see an instant improvement in
the performance/responsiveness. We considered the
possibility of hardware thermal emergency throttling.
However, we ruled out that explanation based on the
dynamic frequency, temperature, and power consump-
tion measurements obtained during the user studies.

We consider the full-system power reduction relative to the
default ondemand controller achieved by HAPPE to be sub-
stantial. Table 4 presents the measured results of average
system power consumption of the laptop at all five frequen-
cies and ten CPU utilization levels derived by running a

20

25

30

35

40

45

50

55

60

65

26

testing application that allows fine-grained CPU utilization
control. CPU frequency was kept static during the experi-
ments.

To approximate the scenarios in the user study, we sub-
jected CPUO to 10 different load levels at each frequency
level, for one minute each. To approximate the graphic pro-
cessing unit (GPU) load conditions during the user study, we
also ran a 3D GPL screen saver that stresses the GPU but not
the CPU. We measured the power consumption of the whole
system using the data acquisition card. As shown in the table,
when CPU utilization is above 80%, the highest possible
reduction in system-wide power consumption by decreasing
CPU frequency from the highest level to the lowest level is
40.63%. However, this brute-force strategy is very likely to
annoy the user because it does not consider any performance
impact, whereas some embodiments according to the present
invention provide that HAPPE greatly reduce power con-
sumption without degrading user satisfaction.

FIG. 12 shows the variation among users by presenting the
power consumptions and satisfaction ratings of all 24 users,
comparing O-HAPPE to ondemand. For each user, we
present the average power consumption and average satisfac-
tion ratings for the four test applications, and show the stan-
dard deviations using error bars. As shown in the figures, there
is significant variation among users. Some users are very
sensitive to performance changes at different frequencies,
and require high frequencies to be satisfied, resulting in high
power consumption (e.g., user 10); others are less sensitive to
the performance difference, and are satisfied at lower fre-
quencies, resulting in lower power consumption (e.g., user 7).

We present the variation among the performance require-
ments for different applications from the same user. FIG. 13
illustrates a randomly-selected user playing Torcs (car racing
game), and Quake3 (shooting game), under the control of
ondemand and O-HAPPE. Under the control of HAPPE,
when playing Torcs, the user pressed the performance key
once at 20 seconds, and presumably became satisfied with the
resulting 1.6 GHz frequency. Therefore, HAPPE set the CPU
frequency to 1.6 GHz at high utilization levels and 1.2 GHz at
low utilization levels. On the contrary, when playing Quake3,
the same user was satisfied with the lowest frequency, and did
not press the performance key at all. Therefore, HAPPE set
the CPU frequency to 0.8 GHz at all times. The ondemand
governor did not distinguish between the two applications,
and decided frequency using only CPU utilization. Because
both applications are CPU-intensive, the frequency stayed at
the highest level most of the time, wasting power without an
impact on user satisfaction in accordance with some embodi-
ments of the present invention.

To create the user application frequency profile in accor-
dance with some embodiments of the present invention,
HAPPE may use, for example, user input via the performance
and power keys during the training phase. After the training
phase, user input is not required, but is still permitted. There-
fore, if the user’s performance requirements at different CPU
utilization levels for this application do not change, the user
never needs to send HAPPE inputs again. Table 5 presents the
number of key presses during the training phase and the
operating phase, averaged over all users. There are usually
more performance key presses and fewer power key presses
during the training phase than the operating phase. On aver-
age, less than two performance key presses per minute were
used by users to adapt to a desired frequency, during the first
few minutes of the training phase.
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TABLE §
AVERAGE NUMBER OF KEY
PRESSES PER MINUTE
Training Operating
App. Perf. Power Perf. Power
Tores 1.13 0.40 0.46 0.27
Glest 0.36 0.23 0.19 0.34
Trackballs 0.69 0.14 0.14 0.16
Quake3 0.13 0.38 0.11 0.38

We compare the average number of user inputs of HAPPE
to that of UDFS. UDFS requires 5.73 key presses per minute,
averaged across all three evaluated applications and all 20
users. In contrast, HAPPE requires 0.86 key presses per
minute during the training phase and 0.51 key presses during
the operating phase, averaged across all four evaluated appli-
cations and all 24 users. Furthermore, UDFS always slowly
decreases frequency unless the user expresses discomfort via
key presses. Although UDFS adapts the rate of frequency
decrease to user input, users are never free of key presses, i.e.,
after a certain time period, they must press the key again to
change to a desirable frequency. In contrast, once a user is
satisfied with the performance and frequency profile, HAPPE
does not require key presses again. FIG. 14 illustrates the
frequency of key presses as a function of time, averaged over
all users for each of the four testing applications. The x-axis
represents elapsed time after the first key press, and the y-axis
represents the average number of key presses in every 10-sec-
ond interval. As shown in FIG. 14, the training phase gener-
ally requires more key presses. However, as time goes by, the
number ofkey presses decreases dramatically during both the
training phase and the operating phase.

For CPU-intensive interactive applications, traditional
DVFES policies that use CPU utilization as the only metric to
decide frequency usually result in unnecessarily-high fre-
quency and therefore wasted power.

Some embodiments according to the present invention pro-
vide HAPPE, a dynamic CPU DVFS controller that adapts
CPU voltage and frequency to the performance requirements
of individual users and applications. Some embodiments
according to the present invention provide that HAPPE uses a
learning algorithm that creates a profile for each user and
application. In accordance with some embodiments of the
present invention, for each CPU utilization level, HAPPE
learns the frequency that satisfies the user. Some embodi-
ments according to the present invention provide that the
learning algorithm trains the profile by accepting user key-
press inputs during the first few minutes the first time the user
runs the application. In accordance with some embodiments
of'the present invention, after the training phase, HAPPE does
not require continued user input.

We evaluated HAPPE with a study on 24 users and four test
applications. Compared to the Linux default ondemand fre-
quency governor, HAPPE reduces system-wide power con-
sumption by 25% on average, without degrading user satis-
faction.

Some embodiments of the present invention may be real-
ized in hardware, software, or a combination of hardware and
software. Some embodiments of the present invention may be
realized in a centralized fashion in at least one computer
system, or in a distributed fashion where different elements
are spread across several interconnected computer systems.
Any kind of computer system or other apparatus adapted for
carrying out the methods described herein is suited. A typical
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combination of hardware and software may be a general-
purpose computer system with a computer program that,
when being loaded and executed, controls the computer sys-
tem such that it carries out the methods described herein.

Some embodiments of the present invention may also be
embedded in a computer program product, which comprises
all the features enabling the implementation of the methods
described herein, and which when loaded in a computer sys-
tem is able to carry out these methods. Computer program in
the present context means any expression, in any language,
code or notation, of a set of instructions intended to cause a
system having an information processing capability to per-
form aparticular function either directly or after either or both
of the following: a) conversion to another language, code or
notation; b) reproduction in a different material form.

While some embodiments of the present invention have
been described with reference to certain embodiments, it will
be understood by those skilled in the art that various changes
may be made and equivalents may be substituted without
departing from the scope ofthe present invention. In addition,
many modifications may be made to adapt a particular situa-
tion or material to the teachings of the present invention
without departing from its scope. Therefore, it is intended that
the present invention not be limited to the particular embodi-
ment disclosed, but that the present invention will include all
embodiments falling within the scope of the appended claims.

What is claimed is:

1. A method for controlling power consumption in a com-
puter system, comprising:

for each of a plurality of interactive applications:

changing a discrete frequency at which a processor of the

computer system runs;

receiving an indication of user satisfaction in response to

the changed discrete frequency;

training the computer system to determine a relationship

information between the changed discrete frequency
and the user satisfaction of the interactive application,
wherein the determined relationship distinguishes
between different users and different interactive appli-
cations; and

storing the determined relationship information;

selecting a frequency of the discrete frequencies at which

the processor of the computer system runs based on the
determined relationship information for a particular user
and a particular interactive application running on the
processor of the computer system; and

adapting the processor of the computer system to run at the

selected frequency.

2. The method according to claim 1, wherein the deter-
mined relationship is stored in a user application frequency
profile.

3. The method according to claim 1, wherein the selected
frequency is a highest frequency of the discrete frequencies to
satisfy concurrent users of the computer system.

4. The method according to claim 1, wherein the deter-
mined relationship distinguishes between different combina-
tions of concurrently running interactive applications.

5. The method according to claim 1, wherein the deter-
mined relationship is stored in a user application frequency
profile that divides normalized CPU utilization into a plural-
ity of discrete levels.

6. The method according to claim 5, wherein normalized
CPU utilization is normalized by a maximum frequency of
the discrete frequencies.

7. The method according to claim 5, wherein, during the
training, a user satisfaction frequency is determined for each
of the discrete levels of the normalized CPU utilization.
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8. The method according to claim 5, wherein the computer
system learns a least a respective frequency that satisfies a
corresponding user for different discrete levels of the normal-
ized CPU utilization for a particular interactive application.

9. The method according to claim 8, comprising:

automatically loading the determined relationship when

upon later invocation of the particular interactive appli-
cation.

10. The method according to claim 1, comprising:

minimizing power consumption of the processor without

degrading user-perceived performance.

11. The method according to claim 1, wherein the training
comprises monitoring key-press events to determine an opti-
mal frequency for a particular user and a particular interactive
application.

12. The method according to claim 11, wherein the moni-
toring comprises monitoring a performance key and a power
key.

13. The method according to claim 1, wherein the training

5

comprises building a correlation network based on a counter 20

statistics and user feedback.

14. The method according to claim 1, wherein the training
comprises counting by hardware performance counters.

15. The method according to claim 14, wherein the hard-
ware performance counters count respective types of events.

30

16. The method according to claim 15, wherein the types of
events comprise one or more of the following: instructions
issued, cycles stalled on any response, total cycles, level 2
cache misses, branch target address cache misses, conditional
branches mispredicted, hardware interrupts, level 1 data
cached accesses, and level 1 instruction cache accesses.

17. The method according to claim 16, wherein the training
comprises determining correlations based on the user satis-
faction and counts on the hardware performance counters.

18. The method according to claim 1, wherein the training
comprises modeling a user-aware performance prediction
model based on at least the determined correlations.

19. The method according to claim 18, wherein the training
comprises training an artificial neural network that can pre-
dict the user satisfaction for particular operating conditions as
indicated by hardware performance counters.

20. The method according to claim 19, comprising:

predicting, for a particular user and a particular interactive

application, the user satisfaction for particular current
operating conditions as indicated by current hardware
performance counters,

wherein the selecting of the frequency is based on the

predicted user satisfaction.
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