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Abstract

Remogrovidesresouce informationto distributedap-
plications. Its designgoals of scalability, flexibility, and
portability are achievedthroughan architectuse thatallows
component$o be positionedacrossthe network,ead col-
lectinginformationaboutits local network.To collectinfor-
mation from differenttypesof networksand from hostson
thosenetworks Remogprovidesseveral collectorsthat use
differenttechnologies sud as SNMPor bentimarking By
matding the appropriate collectorto ead particular net-
work ervironmentand by providingan architectuie for dis-
tributing the outputof thesecollectorsacrossall querying
ervironmentsRemo<ollectsappropriately detailedinfor-
mationat ead site and distributesthis informationwhee
neededn a scalablemanner Prediction servicesare in-
tegratedat the userlevel, allowing history-basedlata col-
lectedacrossthe networkto beusedto geneatethepredic-
tions neededoy a particular user Remoshasbeenimple-
mentedandtestedin a variety of networksandis in usein
a numberof differentervironments.

1 Intr oduction

TheRemossystemwasdesignedo provide resourcen-
formationto distributedapplications.While designingRe-
mos, we consideredhe needsof mary differentapplica-
tionsandthecapabilitiesof arangeof networkingandcom-
puting ervironments. In this paper we presentthe archi-
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tectureof the Remossystemanddescribenow it addresses
theseproblems. The ability of Remosto supportresource
measuremerih a variety of ervironmentsandfor avariety
of applicationsmakesit an appropriateneasurementool
for Grid ervironments.

Thedesignandimplementatiorof Remosaddressethe
issuesof scalability flexibility and portability neededto
supportapplicationsn avariety of ervironments.

e Scalability: Resourcemonitoringin distributed sys-
temsnecessarilynvolvesmary machinesa large net-
work infrastructure,and mary users. Beyond that,
however, is the questionof scaleof a system. To
supportapplicationghathave wide-areaequirements,
high-performancelusterrequirementspr somecom-
binationof both,Remosmustbeableto provideanap-
propriatelevel of detailto meetthe informationneeds
of the applicationwithout swampingthe application
with informationunnecessartp its requirements.

o Flexibility: Differentusersrequiredifferenttypesof
information. For example,synchronousnultiprocess-
ing, real-timevideo, and bulk datatransferhave dis-
tinctly differentbandwidth lateng, andlossrequire-
ments, and require that information acrossdifferent
timescales.

o Portability: Thevariety of operatingsystemsnetwork
architecturesandhardwardoundin differenterviron-
mentsmandates portablesolutionthatis not specific
to ary onetechnology Even standardizedneasure-
menttechniqguesnay requirealternatveswhenthose
techniquesrenot supported.

Remosis being usedin on a regular basisby several
groups:the Aura Project(CMU), QuO (BBN), the HiPer
D Testbed(NSWC and S/TDC), CACTUS (University of
Arizona),andthe DesiderataProject(Ohio University). A
numberof othersitesarealsoexploring the useof Remos.
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Figure 1. Overview of the components in the
Remos architecture .

Theseprojectsare quite diverse,both with respectto the
networksthey useand the applicationinformation needs.
Our evaluationalongthe “portability” and“flexibility” di-
mensionis in partbasedn interactionswith theseusers.

Thispaperdescribefiow thedesignof Remosaddresses
thesechallenges.In Section2, we describehe generalar-
chitectureof Remos. Section3 describeghe techniques
usedby Remogo implementhearchitectureSectiord de-
scribesotherwork relatedo Remosanddiscusse®emosn
termsof the Grid Monitoring Architectureproposedy the
Grid Forum. Section5 evaluateshow the designandimple-
mentatiorof Remosameettheoriginaldesigngoals.Finally,
Section6 discusseshe lessondearnedin the development
of Remosaswell asissueghatstill requirefurtherwork.

2 Architecture

An overview of the Remosarchitectures presentedn
Figure 1. The Remosarchitecturedivides the services
neededbetweencollectors modelersandpredictors The
RemosAPI, which is exposedto applications,is imple-
mentedonly in the Modeler This designallows consid-
erableflexibility in varyingthe designof the othercompo-
nents.

2.1 Collectors
The collectorsareresponsibldor acquiringandconsol-

idating theinformationneededy the application. Collec-
torscanusea variety of method=f collectinginformation,

e.g. they mayincorporateor control sensorghat perform
the actual measurementdyut from an architecturalview
they have a single function: collect information and for-
wardit on to the Modelet For scalabilityreasonscollec-
tors canbe organizedin a hierarchicalfashion(Figure 1).
At the lowestlevel, collectorsare responsiblégor collect-
ing information aboutspecificnetworks. For example, a
local collectoris responsibldor obtainingperformancen-
formationaboutits LAN. Globalcollectorsareresponsible
for obtainingperformanceanformationaboutthe networks
connectind ANs. Localor globalcollectorsatremotesites
canbe contactedo obtaininformationaboutthoseremote
sites.

The MasterCollectoris responsibldor gatheringinfor-
mationfrom differentcollectorsandcoalescingt into are-
sponseo a modelers query The MasterCollectormain-
tains a databaseof the locationsof other collectorsand
the portion of the networkfor which they areresponsible.
When a requestcomesfrom a modeley the Master Col-
lector queriesthe appropriatecollectorsand replies with-
out revealingthatthe responsavasobtainedfrom multiple
collectors.Usingthis techniqueijt is possibleto build sev-
erallayersof collectors.For example,the remotecollector
in Figure1 might be anotherMasterCollectorthatin turn
contactsa variety of local collectorswhenqueriedaboutits
network.

One importantadwantageof this architectureis that it
blurs the line betweeninter- and intra-sitemeasurements.
Becausehe collectorsassumeesponsibilityfor contacting
remotesitesand for aggrgatingall available information
into a singleresponseneitherthe Modelernor the applica-
tion mustdeterminewhetherthe query concernsnodesat
a singlesite or at remotesitesor considerthe mostappro-
priatemeasuremertechnique.f the WAN link is theonly
bottleneckalongthe pathof the query thentheappropriate
measuremenwill automaticallybereturned.

2.2 Modelers

Modelersprovide the RemosAPI to the applicationand
communicatevith a collectorto obtaininformationneeded
to respondto queriesmadethroughthe API. Becausehe
collectorsexist only to obtain network resourceinforma-
tion, the Modeleris responsibldor the processingheces-
saryto convertthisinformationinto aform of interesto the
application. For example,the available bandwidthalonga
pathmay be provided by the collector as several separate
measurementsut the Modelerreportsonly the bottleneck
availablebandwidthto the application. Similarly, if anap-
plicationmakesatopologyquery theModelerperformsad-
ditionalprocessin@nthetopologyreturnedoy thecollector
to eliminateunnecessariynformationandpresenthetopol-
ogyto theapplicationin amoremanageablérm.



If a predictionis neededthe Modeleralso actsasthe
intermediarybetweerthe collectorsandthe predictionser
vice.

2.3 Predictors

Predictorareresponsibléor turningameasuremertis-
tory into a predictionof futurebehaior. Predictorsanop-
eratein a client-serer mode,turning a vectorof measure-
mentsinto a singlevectorof predictions,or in a streaming
mode transforminga streanof measuremeniato a stream
of (vectorvalued)predictions.The adwvantageof theclient-
sener form is thatit is statelesswhile theadwantageof the
streamingmodeis thata singlemodelfitting operationcan
be amortizedover multiple predictions. The trade-ofs be-
tweenthe two modesare complex and both are usefulin
practice.

Figure 1 shawvs how client-serer predictorsfit into the
Remosarchitecture This locationis the appropriatechoice
for severalreasonsFirst, becausé&kemoscollectsinforma-
tion on acomponenbasisandlaterassembleg into a sin-
gle responsepredictionoften cannotbe doneat the lower
layers. For example,if the behaior of differentresources
werecorrelated as might commonlybe found amongnet-
working componentsthen predictingtheir behaior inde-
pendentlybefore aggreating the resultwould lose infor-
mation. Secondly becausaet is possibleto specify differ-
ent optionsfor prediction, suchas the amountof history
to considefy the time granularity or time in the future for
whichapredictionis neededit is sometimesglifficult to per
form predictionsatalowerlayerbeforetheapplicationsre-
guestis known. Finally, predictioncanrequirea substantial
amountof computationalpower, and this architectureal-
lows usto placetheburdenof performingthesepredictions
nearthe particularapplicationrequestinghe prediction.

For ervironments where predictions can be shared,
streamingpredictorsoffer the ability to amortizethe cost
of prediction over several consumers. Streamingpredic-
torsoperatdn tandemwith collectors.For example,a col-
lector may periodicallymeasurdoad on a particularhost,
choosingits samplingrate asappropriatefor the dynamics
of the host. As eachsamplebecameavailable,it would be
fed to a directly attachedstreamingpredictor The collec-
tor wouldthenmakethesepredictionsavailableto modelers
thatwereinterested Althoughthis aspecis notintegrated
into thecurrentRemosmplementationbeingableto chose
betweenclient-serer and streamingpredictorsmay be a
significantfeaturefor supportingbotha variety of applica-
tionsandminimizingunnecessanyork whereappropriate.

3 Implementation in Remos

The currentimplementatiorof Remosds diagrammedn
Figure2. This figureillustrateshow the variouscollectors
usedby Remosinteractwhenusedin a grid-like erviron-
ment.In theremaindenf thissectiorwe discusgtheRemos
componentin moredetail.

3.1 Collectors

Themotivationanddesignof the overall collectorarchi-
tectureis describedn apapetby Miller andSteenkistg¢19].
In this sectionwe briefly describethe mainfeaturesof the
differentRemoscollectors.

Collectorscanbeclassifiedalongthreeprimaryaxis:

e How they collect information. Collectorsin Remos
eitheruse SNMP to collectinformationdirectly from
routersandswitches,or they useexplicit benchmark-

ing.

¢ Thetype of networkthey are responsiblgor. Remos
hascollectorsfor local-areaand wide-areanetworks,
and a collector for wirelessLANs (802.11)is under
development.The networktypeaffectscritical param-
eterssuchaswhatwhatinformationis interestinge.g.
lateng is rarely of interestin a LAN), level of traffic
aggregation(canaffect prediction),andadministratve
privilegesof thecollector(canlimit theuseof SNMP).

e How the collector opemates. Thetwo primary modes
areon-demandj.e. the collectsinformationwhenit
receves a request,or periodic,i.e. the collector col-
lectsinformationat periodicintervals. We expectall
collectorsto aggressiely cacheinformationto reduce
overhead.Remoscollectorstypically operatein peri-
odic mode,sincethis offersbetteruserresponseime.

3.1.1 SNMP Collector

The SNMP Collectoris thebasiccollectoruponwhich Re-
mosreliesfor mostof its networkinformation. SNMPis a
databaserotocoldesignedo provide networkadministra-
torswith directaccessindcontroloverthestatusof network
devices. Thesefeaturecanalsobeusedto obtainnetwork-
level informationabouttopologyand performancelirectly
from routersand switches. Becausehe SNMP Collector
hasdirectaccesso theinformationthenetworkitself stores,
this collectoris capableof answeringheflow andtopology
gueriesthat requirean understandingf the detailsof the
network’s structureg/19]. The SNMP Collectoroperate®n
routednetworks(level 3).

An SNMP Collectoris assignedo monitor a particular
network, generallyan IP domain correspondingo a uni-
versity or departmentBecauseSNMP agentsarenormally
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Figure 2. A detailed illustration of how the components of the Remos architecture are connected.
Shown here are applications running at CMU and ETH making use of resour ces at CMU, ETH, and
BBN. Each application is using prediction services to provide information about the future network
availability . The applications at CMU are using machines at CMU and BBN, and the application at
ETH is using machines at ETH and BBN. The benchmark measurements sent across the Internet are
shown, but, for clarity, the connections between the SNMP and Bridge Collector s, and the network
components they monitor are not shown.



only accessiblérom local IP addresseghis providesa nat-
ural partitioningfor thelocationof the SNMP Collectors.

The SNMP Collectorinitially monitorsthe networkon
anon-demandasis.It waitsfor queriesthenexploresand
beagins monitoring the network componentsieededo re-
spondto thatquery Onceit begins monitoringpartsof the
network,it will continuewith periodic monitoringto col-
lect historyof thatnetworkfor usein predictions A logical
extensionfor the collectorwould beto configureit to begin
monitoring specificresourcest startup,for usein a com-
putationalcenter etc.

The first and most complex stepthe SNMP Collector
musttakeuponreceving aqueryis topologydiscovery. Us-
ing thelP addressesf thenodesn thequeryandtherouters
they are configuredto use,the collectorfollows the route
hop-to-hopbetweeneachpair of nodesin the query The
collector cachespreviously discorered routes, so it must
only follow new routesuntil it reachesipreviously explored
route.

Oncethe collector hasdiscovered the routesusedbe-
tweenthe nodesijt queriegheroutersalongthe pathfor the
link bandwidthbetweeneachpair of routers. It then peri-
odically monitorsthe utilization of eachsegmentby query-
ing the octetcounterdor eachinterfaceon the routers.By
default,the utilization is monitoredevery five secondsal-
thoughthisis a configurablgparameter

Thefinal responsibilityof the SNMP Collectoris repre-
sentingthe networkwith a virtual topology graph. When
the collectordiscorers nodesconnectedo a sharedether
net, or connectedo routersit cannotaccessit represents
their connectiorwith avirtual switch. In the caseof shared
Ethernet this switch canbe annotatedvith the bandwidth
capacityand utilization of a sharedEthernet,representing
its functionalitywith a standardyraphformat.

The SNMP Collectoris implementedvith Java threads,
soit is capableof monitoringa numberof routersandre-
spondingo mary queriessimultaneously

3.1.2 Bridge Collector

The SNMP Collector by itself is only capableof moni-
toring level 3 routednetworks. While mary researchet-
works, as well as campushetworksare connectedusing
only routers,the majority of LANs areimplementedising
level 2 switchedEthernet. Although the techniquesused
by the SNMP Collector for monitoring link capacityand
utilization are identical on routersand switches,Ethernet
switchesto not provide explicit topologyinformationasis
provided by the IP routing tables. To collectthis informa-
tion, the Bridge Collectoris usedto determinethe topol-
ogy of theEthernet_ AN throughqueriego theforwarding
databasé the Bridge-MIB of eachbridgeor switch[18].
At startup,the Bridge Collectorqueriesall components

of abridgedEtherneto determindts topology, thenstores
thisinformationin adatabaseWhena queryis madeto the
SNMP Collectot the Bridge Collectorprovidesit with the
portion of the level 2 topologythatis neededo fulfill the
guery suchasproviding the pathbetweerpairsof nodespr
betweena nodeandthe edgerouterof the EthernetLAN.
Onceit hasthetopologyinformation,the SNMP Collector
cancollectdynamicinformationfrom theswitchesandwill
cachethetopologyof thatportion of the Etherneinetwork.

In general bridgedEthernetnetworkshave fairly static
topologies.However, over the lifetime of the network,we
expectthat new nodesmight be addedto the network, or
existing nodesmay move. Extremelyrarely a switch may
be moved or an additionalswitch added. In wirelessnet-
works,however, amobilenodemaymove betweerbasesta-
tionsmuchmorefrequently which will changets location
in the topology To accountfor this nodemaovement,the
Bridge Collectormustmonitorthelocationof nodeson the
networkcontinuously The locationof a hostcanbe moni-
toredmerelyby checkingits forwardingentryin the bridge
to whichit is connected.Verifying the locationof bridges
and switchesis somevhat more difficult, however, we do
not anticipatebridgesor switchesbeing moved frequently
in typical networks.

3.1.3 Benchmark Collector

While SNMP offers excellent information, Remosgener
ally cannotobtainSNMP accesso networkinformationfor
WANSs or other networkswherethe Remosadministrator
doesnot have an accounton a machine. In that case,we
fall backon a BenchmarlCollector, thatdoesexplicit test-
ing to determinghe performanceharacteristicsf the net-
work. A BenchmarkCollectoris run at eachsite wherean
SNMP Collectoris. Whena measuremeraf performance
betweermultiple sitesis neededthe BenchmarkCollector
exchangegdatawith the BenchmarkCollector running at
the other site of interest. By measuringhhe rate at which
the datatravels acrosghe network,the BenchmarkCollec-
tors determinethe performanceof the links connectinghe
networkandreportthisinformationto theMasterCollector
Detailsandanalysisof thisimplementationin particulay is
describedoy Miller andSteenkistg19]. This techniques
similar to thetechniquesisedby NWS[33].

The collectors’ Java implementationsandtheir reliance
on the SNMP standardand simplebenchmark$iave made
themvery portable runningonawide variety of hostarchi-
tecturesandsupportingmostnetworkcomponents.

3.1.4 Master Collector

BecauseSNMP and BenchmarkCollectorsmonitoronly a
particularportion of the network, distributed applications



cannotobtainall of their informationfrom thesecollectors.
TheMasterCollectoris designedo solve this problem.De-
spitethe name a differentMasterCollectoris usedin each
networkwhereRemosapplicationsarerunning.

The Modelerusedby the Remosapplicationsubmitsa
gueryto its MasterCollector. Thefirst taskfor the Master
Collectorto solwe is identifying the IP networksand sub-
netsneededo answerthe query alongwith the associated
SNMP andBenchmarkCollectorsfor thosenetworks.The
Master Collector identifiesthe networkscontaininghosts
usedin the query aswell asary interveningnetworkscon-
nectingthosewith thehosts.Thedatabaseseds verysimi-
larto theSLPdirectory andSLPmaybeusedby theMaster
Collectorin the nearfuture [29].

Once the relevant networks have beenidentified, the
MasterCollectordivides up the query and passeghe rel-
evantportionto the collectorsresponsibldor theidentified
networks.Whentheresponsearereceved from thosecol-
lectors,theMasterCollectorcombinegheminto onesingle
responsandreturnsthatresponsé¢o theModelerthatmade
thequery

3.2 Modeler

TheModelerprovidesthe API to theuserandcommuni-
cateswith thelocal MasterCollectorto obtaintheinforma-
tion neededo answettheusers query It is single-threaded
andcommunicatewith theCollectoroveraTCPsocketus-
ing a simpleASCII protocol. Onceit recevestheresponse
from a collector it is alsoresponsibldor insertingvirtual
switchesto simplify the topologiesreturnedby the collec-
tor. Becausecurrently only topologiesare exchangede-
tweenthe Modelerandcollector theModeleralsoperforms
max-minflow calculationson the Collector'stopologiesto
determinesolutionsto flow queries.By connectinca differ-
ent Modelerto eachapplication,the modelerarchitecture
providesthe flexibility neededo supportthe information
needof differentapplicationdy allowing the information
obtainedfrom the Collectorto be interpretedandpredicted
in differentmannersccordingo theapplication. TheMod-
eleris implementedn bothC andJava.

3.3 Predictor

If predictionsare necessarythe ModelerusesDinda’s
RPSToolkit [9]. TherelationshipbetweerRPSandRemos
is somavhat compl&, as eachis an independensystem.
In this context, RPSprovides predictionservicesand host
measuremerservicegso Remoswhile Remogrovidesnet-
work measuremergerviceso RPS.RemoscanuseRPS5
client-serer interfacefor generalpurposepredictions,and
its streamingnterfacefor predictionsabouthostsandflows
for which streamingpredictorshave beeninstantiated.

In the currentimplementation,Remosrelies on RPS
collecting dataitself to establishthe performancehistory
neededo makepredictions.RPSdoesthis througha host
loadsensomlnda networkflow bandwidthsensoxthelatter
is itself a Remosapplication).This is dueto a limitation in
thefirst protocol designedor usewith the collectors. We
aretransitioningto an XML over HTTP protocolthat will
allow the modelerto querythe collectorsfor a history of
resourcemeasurementdn this architecturethe collectors
will beresponsibldor maintaininghistoryinformationfor
eachcomponenthey monitor, andwill thusbeableableto
useRPS5 client-sererinterfaceaswell.

Currently RPS5s time seriespredictionlibrary includes
the Box-Jenkinslinear time series models (AR, MA,
ARMA, ARIMA), afractionallyintegratedARIMA model
whichis usefulfor modelinglong-rangedependencdepen-
dencesuchasarisedrom self-similarsignals a“last value”
model, a windowed averagemodel, a long term average
model,and a templatethat createsa periodically re-fitting
versionof ary model. More detailson theimplementation
and performancecharacteristicef thesemodelsare avail-
ableelsavhere[9].

While RPS5 modelselectionis quite extensie, cover
ing almostall approachewo lineartime seriesprediction,it
doesnot yet includenonlinearmodelssuchasTARs. The
choiceof models(systemidentification)is a comple topic
in general4, 5, 1, 28] andalsowithin the context of dis-
tributedsystemsWe have found AR modelsof order16 or
betterto beappropriatdor predictionof hostload[10], de-
spiteload’s complex behaior [8]. Othershave alsofound
that simple modelsare sufiicient for hostload[32]. Once
amodelhasbeenchosenfitted to historicaldata,andis in
use,its error mustbe monitoredto verify thatthe fit con-
tinuesto hold. In RPS,this continuoudesting(doneby the
evaluator)is usedto decidewhenthe modelmustbe refit.
In contrastthe NetworkWeatheiServiceusessimilarfeed-
backto decidewhich of asetof modelsto usenext in avari-
antof themultiple expertmachindearningapproact31].

4 The Grid and relatedwork

Grid-basedlistributedcomputinghasbroughtaboutthe
needfor systemahat monitor andpredictboth application
andresourcenformation. In additionto Remosanumber
of systemshave beendevelopedthataddressariousinfor-
mationneedsof grid applicationgd31, 26, 21, 27]. Oneof
theprincipledifferencedbetweerRemosandthesesystems
is that Remoswas intendedto provide applicationswith
end-to-endlataderivedfrom componensensorsacrosshe
network,andintegratethesemeasurementsith traditional
sensoibaseddataandend-to-endenchmarks.

While other projectshave developedtechniquedo de-
rive Internettopology[11, 24, 15, 20], Remosis the first



to integrate LAN topology informationwith performance
measurementsBecausehe link-sharingfound on LANs
canhave a profoundinfluenceon an applications perfor
mance providing thisinformationaswell assite-to-sitgper
formancemeasurementhas proven useful for predicting
applicationperformance.

Researchnto resourceprediction has focusedon de-
termining appropriatepredictve modelsfor host beha-
ior [10, 32, 227], andnetworkbehaior [30, 2,12]. TheRPS
toolbox usedby Remosincorporatesmary of the models
studiedby this research.RPSis alsoavailableasaninde-
pendentool for otherresearchiequiringpredictve models.

Oneof the productsof the Grid Forumis the Grid Mon-
itoring Architecture[25], which is beingdevelopedby the
performancevorking group. In this architectureeachCol-
lectoris a producer The MasterCollectoris a joint con-
sumer/producelsits responsibilityis to contactthe other
collectorsasa consumerbeforeaggregating the informa-
tion togetherand providing it to anotherlayer. Although
we view the Modelerasa consumerit could also be an-
other joint consumer/produceproviding end-to-endper
formancepredictionsusing the componentdata available
from the collectorsasa serviceto otherapplicationsin the
Remosarchitecturethecollectorsalsoimplementa limited
form of directoryserviceto locateeachother The direc-
tory serviceof the GMA would be naturalto usefor this
purpose.

Overall, we find that the Remosarchitectureis quite
compatiblewith the GMA, and should interoperatewell
with other monitoring systemsonceappropriateénterfaces
aredesigned. The biggestchallengepresentecdby Remos
is describingthe informationavailablethroughit in the di-
rectoryservice. BecauseRemosprovidesend-to-enddata
derived from component-leel data,it would be difficult to
describeaall possiblemeasuremergairsin thedirectoryser
vice. However, several solutionsto this problemhave been
discussedy theGrid Performancé&roupandothersthere-
fore we areconfidentthatthe GMA's directoryservicewill
supportRemoswell whenfully developed.

Associatedwith the format of the GMA is the method
usedto storegrid informationin thefirst place. Significant
discussioris ongoingaboutthe advantagesand disadwan-
tagesof a hierarchicalapproachsuchasMDS-2 [6], or a
relationalapproachi7]. Both proposalgpresenmodelsthat
arecapableof associatindRemoswith theresources mon-
itors, which is the fundamentatequiremenRemaoshasfor
adirectoryservice.

5 Evaluation

The flexibility and portability aspectsof Remoshave
been discussedin other Sections, especially Section 3.
Here,we discussscalabilityandfunctionalityresultsfor the

- Cold —e— Part-Warm —— Warm-Bridge —— Warm

450
400-
350

©,300+

[
£ 250+
2200
[}

& 150

100
50

0 —— _=- - * b T T T T
16 32 64 96 128 256 512 10241280
Number of nodes

Figure 3. LAN collector response time

differentRemoscomponentandthe systemasawhole.
5.1 LAN scalability

In afirst setof experimentswe look attheresponséime
of the SNMP Collectordeployedin the local areanetwork
in the Schoolof ComputerScienceat CMU. The network
is avery large bridgednetworkandin the experimentsthe
Bridge Collectoris alreadyrunningandthe SNMP Collec-
tor periodicallycollectsdynamicinformationfor all nodes
in its cachewith a periodof 5 seconds.

Figure3 shovs how theresponséime increasesvith the
numberof nodesspecifiedin the query For all measure-
ments,mostof the elapsedime is spentin the SNMP Col-
lector. Therearethreescenarios:

¢ Coldcate the SNMP Collectorhasjust startedup so
it hasno informationon eitherthe statictopology or
thedynamicperformancenetrics.

¢ Mixed the SNMPCollectorhassomecachednforma-
tion, namelythe resultfrom the previous query (typi-
cally about1/2 or 1/3 of the data).

¢ Warm cache the SNMP Collectorhasboththe static
anddynamicdatain its cache.

We canmakea numberof obsenations.First, it clearly
paysoff to cacheinformation. The warm-cacheesultsare
a factor of three or more better than the cold cachere-
sults. Second,the worst casecostof a cold cachequery
is O(N?). However, we implementeda numberof opti-
mization that reducethe cost, especiallyfor large N; the
measurementshav the effect. Finally, the costof warm-
cachequeriesshouldbe O(N). We seethatthe costactu-
ally grows faster probablybecausef increasingmemory
requirementsvhich reduceexecutionefficiency.
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5.2 SNMP Collector accuracy

We rananexperimenton our privatenetworkingtestbed
to determinethe accurag of the SNMP Collectorin track-
ing changesn networkbandwidth.We used\etperfto gen-
erateburstsof TCP traffic of varyinglengthsbetweentwo
endpointn our testbed.The endpointavereseparatedy
two 933MHz routersrunning FreeBSD.The SNMP Col-
lector was set up to gatherdataaboutthe links between
thesehostsat several differentsamplingintervals: 5 sec-
onds, 2 secondsand one second. Figure 4 compareshe
end-to-endbandwidthreportedby Netperfwith the band-
width reportedby the SNMP Collectormeasuredn 2 sec-
ondintervals. Figure5 shavs Netperfbandwidthcompared
to bandwidthmeasuredby the SNMP Collectorat5 second
intervals.

Thereis a fairly good matchbetweenthe results. The
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Figure 6. CPU usage of RPS-based host load
prediction system as a function of measure-
ment rate. The appropriate AR(16) predictive
model is being used.

expenseof trackingbandwidthmoreclosely cancreatein-
consistenciesn the dataand put addedstrain on network
routers.In practice we've foundthata samplinginterval of
5 secondseemgo bea gooddefaultfor mostapplications.

5.3 RPSevaluation

The RPS prediction error is highly dependenbn the
characteristicof the datathat is to be predictedand the
predictionhorizon. For hostload, AR(16) predictorspro-
duceone-second-aheaaror varianceghat are 70% lower
thanraw signalvarianceandprovide benefitooutto atleast
30 seconds.Much more detail on hostload predictionis
available elsavhere[10]. RPSalso characterizedts own
predictionerror, and that characterizations usually quite
accurataegardlesf thedata. Thisin large partdueto the
feedbackn thesystem.

RPS prediction systemshave quite low latenciesand
overheadsand canoperateat high rates. The RPS-based
hostload predictionsystemthat the RemosModeler cur
rently interfaceswith hasa lateny from measuremento
predictionof 1-2 ms and can operateat a rate in excess
of 700 Hz on a 500 MHz 21164 Alpha machine. Fig-
ure6 shavs CPUusageof thissystemusingtheappropriate
AR(16) model,asafunctionof the measuremermrate. At 1
KHz the CPU is saturatecandthe lateny grows. At the
normall Hz rate, CPUandnetworkusagss najligible.

In a separatexperiment,we wereableto run a Remos
gueryfor asingleflow atabout14 Hz usingthe SNMP Col-
lector, whichitself typically makesSNMP queriesata 1/5
Hz rate. At suchratestheoverheadf RPSwith anAR(16)
or similar predictve modelis in the noise.
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Figure 7. CPU time needed to fit/init and

step/predict different RPS predictive models.

However, the resourcedemand=f an RPSsystemare
drasticallyaffectedby the modelusedin prediction.RPSs
modelsvary over four ordersof magnituddn their compu-
tationalcosts.Figure7 shavsthe costsinvolvedwith using
someof thedifferentmodels.Thesearebrokendown into a
“fit/init” cost,whichisthecostto fit themodelto asequence
of sampleg600),anda“step/predict’cost,whichis thecost
to pushonenew samplehroughthefitted model,producing
onesetof predictions.Thevariationin costis importantbe-
causethe appropriatepredictve modelsfor otherkinds of
resourcegnetworkbandwidth,for example)are unknaovn
atthistime.

In a streamingmplementationsuchasin the hostload
prediction system,the fit/init costcan be amortizedover
multiple samples. However, to do this RPS must keep
aroundperstreamstate,andmustpaythe step/predictost
every time a nev measuremerbbecomesvailable. In the
client-sererinterfacethatRPSalsoprovidesto Remosthe
fit/init andstep/predictostsarepaid every time a queryis
made. However, the RPSrequest-respongaredictionsys-
temis stateles@ndcomputatiorhappen®nly in directre-
sponsdo queries.A moredetailedevaluationof the over
headof RPSis availableelsevhere[9].

5.4 Mirr oredserverexperiment

Onesimpleuseof Remosis to help applicationschoose
aremotesener basedn availablenetworkbandwidth.We
have writtenasimpleapplicationthatreadsa 3MB file from
asener afterusingnetworkinformationobtainedrom Re-
mosto choosehebestsener from a setof replicag[19].

We ran two setsof mirror experiments: one that used
remotesiteswith goodnetworkbandwidthandanotherex-
perimentusingsiteswith poorbandwidth.For thefirst ex-
periment,we ran the applicationat Carngie Mellon and
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seners at Harnvard, I1SI, NorthwesternUniversity (NWU),
andETH. Averagedover all 108trials, we obsered an av-
eragethroughputof 2.03 Mbps from Harvard, 2.15 Mbps
from ISI, 4.11 Mbps from NWU, and 1.99 Mbps from
ETH. For the secondexperiment,we ranthe applicationat
Carngjie Mellon andthe senersatthe Universityof Coim-
bra, Portugal(averagethroughput0.25 Mbps), the Univer
sity of Valladolid, Spain(averagethroughput1.02 Mbps),
andthethird senerwasrunonamachindn Pittshurghcon-
nectedviaaDSL link with amaximumupstreanbandwidth
of 0.08 Mbps. We ran 72 trials usingthe poorly connected
sites.

In orderto be ableto evaluatethe quality of the Remos
information, we modified the applicationto readthe file
from all threeseners,startingwith the sener that, accord-
ing to Remoshasthe bestnetworkconnectity. In thefirst
experimentusingwell connectedites,Remoschosethere-
motesitethatendedup having thefastestransferate83%
of thetime. Figure8 shavsthedifferencan throughpube-
tweenthe 1st placesite Remoschoseandthe other3 sites.
The left half of the graphshaws the throughputwhenRe-
moschosehebestsite,andtheright half of thegraphshows
thethroughputwhenRemosdid not choosehefastestsite.
Thesecondarin eachgroupshaws effective bandwidthfor
the site Remoschose. This bandwidthincludesthe time it
tookto getananswetbackfrom the Remossystem.

In the secondxperimentwhich usedsitesthatwerenot
well connectedo CMU, Remoschosethe remotesite that
endedup having the fastesttransferrate 82% of the time.
Figure9 shavsthedifferencan throughpubetweerthe 1st
placesiteRemoschoseandtheother2 sites.As in Figure8,
theleft half of thegraphshavs throughpufor whenRemos
chosethe bestsite, andthe right half shavs throughputfor
whenit didn’'t. The secondbarin eachgroup onceagain
shavsthe effective bandwidthfor the site Remoschose.

We included the effective bandwidthmeasuremento
shav thateventhoughit takessometime to consultRemos
to choosea sener, performancés still betterthanchoosing
oneof the slower sites. Theseexperimentsalsoshawv that
usingRemosto pick a siteis effective evenwhenall of the
siteshave poorconnectvity.

5.5 Application Experiment—Video transfer

In thepreviousexample,Remosusedthe availableband-
width asa metric. This metric, however, doesnot always
directly correspondo the metricin which the application
is interested.For example,the quality of a videoapplica-
tion that downloadsand playsthe video in real time may
be ratedby the numberof correctlyreceved framesat the
client[14]. This experimentshavs how the Remosmetric
correspond$o suchanapplication-definednetric.

For the experiment,the video client is locatedat ETH.
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average | standard
Sener Location bandwidth | deviation
ETH Zurich 63.1 5.61
EPFLLausanne 3.03 0.17
CMuU 0.50 0.28
Universityof Valladolid, Spain 0.37 0.28
Universityof Coimbra,Portugal 0.18 0.07

Number of correctly received frames

Table 1. Server location, the available band-
width and the standar d deviation, measured
by Remos.
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Figure 10. Server picked according to the
measured bandwidth (large circle) and the
number of correctl y received frames in the
following download.

Seners from which the videos can be downloadedare
placedat differentlocationsin Europeandthe U.S (seeTa-
ble1). Thevideoseneris ableto adaptthe outgoingvideo
streamto the availablebandwidthby intelligently dropping
framesof lowerimportancg14]. It therebymaximizesthe
numberf framesthataretransmitteccorrectly

Thebandwidthof thelocal sener at ETH is anorderof
magnitudehigherthan EPFL, which in turnis an order of
magnituddargerthantheothers.

Beforedownloadinga video, the client issuesa Remos
gueryto measurehe availablebandwidthto all seners. It
thendownloadshemovie from thesenerwith thebestcon-
nectvity. To comparethe results,the client subsequently
alsodownloadsthe samevideo from all othersitesin the
decreasingrderof the available bandwidth. This experi-
mentwasrun several timeswithin 24 hourswith different
movies.

Figure10showvsthenumberof correctlyrecevedframes
for eachexperiment.Thesenerthatis selectedirst accord-
ing to the bandwidthmeasurementsy Remosis indicated
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Figure 11. The bandwidth measured by the
application, averaged over different time in-
tervals, and the bandwidth reported by Re-
mos.

by a largecircle. Thefigure excludesthe resultsfrom ETH

andEPFL becausehe bandwidthis alwayshigherthatthe
bandwidthrequiredby the application.If ETH is included,
theclientalwayspicksthe sener at ETH. Thedownloaded
video doesnot lose ary frames. If ETH is excluded,the
systemalwaysselectEPFLandalsogetsthevideowithout
droppedframes. If both ETH andEPFL areexcluded,the
client-percered quality correspondso the reportedband-
width in 90% of the casesij.e. the clientrecevesthe most
framescorrectly from the sener with the highestband-
width. In the 2 caseswherethe bestsener is not picked,
aninspectionshavs thatthe sener only sentabouthalf of

thepacketsprobablydueto ahighloadonthe sener.

The resultsshav that the available bandwidth corre-
spondswell to the application-perceied quality. However,
thetwo wrongpicksindicatethatthe bandwidthalonedoes
not guaranteea good video download. Other parameters
may influencethedownloadaswell andmustbetakeninto
account.

Figure 11 shavs 2 experimentsin detail. The same
movie is downloadedrom 2 differentseners,alocalsener
with a high- bandwidthconnectity andthe remotesener
with a limited bandwidth. Eachpacketthat arrives at the
client is timestampedand the application-perceied band-
width is calculatedasthe averageover 3 differenttime in-
tervals: 1,2 and10 seconds.

Thedownloadfrom thelocal seneris not limited by the
bandwidth.Theaverageover smallintervalsshows thatthe
bandwidthrequirementsary over time. Thesefluctuations
canbeexplainedby the variationof the movie content.Av-
eragingthe bandwidthover a larger interval smoothsthe
variations.

For the remotesener experiment,the bandwidthmea-
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suredby Remaosis the horizontalline at 0.15Mbps. This
line correspondsvell to bandwidthmeasuredy the appli-
cationif it is averagedver alargeinterval. The10 seconds
interval correspondgo the time interval that Remosuses
to measurdahe available bandwidth. Calculatingthe aver
ageover smallerintervals shows higherfluctuations. The
reportedbandwidthdoesnot correspondvell to the band-
width of thesesmallintervals.

This experimentdemonstrateshat optimal resultscan
only be achieved when not only the metric of Remosand
the applicationcorrespondbut alsowhenthe interval over
which the bandwidthis reportedmatcheghevaryingneeds
of theapplication.AlthoughRemoss not currentlyableto
fully addresgshesepoints, this experimentstill shavs that
Remosdswell ableto provide usefulguidanceo thistypeof
application.It canhelpthevideoclientto selectthesener.
In addition,it mightsimilarly beusedto determinelternate
senersandroutesfor a dynamicvideohandof [16].

6 Reflections

In this sectionwe try to capturewhatwe learnedabout
resourcemonitoringsystemsn the lastfour years. While
thesecommentsareof coursequite subjective, we hopeour
thoughtswill helpothersworkingin the samearea.

6.1 What worked

The first stepin the Remosdevelopmentwasthe defi-
nition of the RemosAPI [17]. The API supportsopology
gueriesthatprovide userswith networkutilizationinforma-
tion in the form of a virtual topology andflow queriesthat
return predictionsof the performancehat a new flow can
expect. While the API supportsseveral performancemet-
rics, our initial implementatiorfocusedon bandwidth.Our
experiencesuggestghat thesewerethe right designdeci-
sions.The API providesa goodbalancebetweersimplicity
andamountof informationprovided. The API worksfor all
the networkswe have encounteredofar, i.e. it is network
independentFinally, bandwidthis by far the mostimpor-
tantmetricfor mostapplications.

Underneathhe fixed API, we decidedto usea systems
architecturghat was modularandextensible. This choice
alsoworkedwell. Our initial systemconsistedof just an
SNMPCollector andlaterwewereableincorporatéBench-
mark, Bridge, and Master Collectors,without changego
the API. Becausef the modulardesign we werealsoable
to usedifferentdatagatheringtechniquedor differentnet-
works. While benchmarksrean effective way of collect-
ing bandwidthinformation,it is too expensve andintrusive
for mary typesof networks,and we needto utilize more
lightweighttechniqguesuchasthe SNMP Collector



Finally, our experiencewith hostload predictionsug-
gestghatit paysoff to build on rigoroustime seriespredic-
tiontheory Thiseffort notonly allowedusto leveragesxist-
ing experienceandtools,but it alsohadmoreconcreteben-
efits. For example,we cancharacterizerariancewhich ap-
plicationsneedto makedecisionsasedn the predictions.
Onecatchis thatapplyingtime seriesmodelsrequirescol-
lecting periodic measurementsyhich is sometimeshard.
We are continuingto evaluatesimilar techniquedor net-
work load.

6.2 What needsmore work

We discoreredthat one of the mostdifficult challenges
in building aresourcemonitoringsystems makingthesys-
temeasilyportableandrobustacrosgliverseenvironments.
Our goalis thatRemosmustbe ableto reportresourcen-
formationfor ary networkedervironment,with minimal, if
ary, manualconfiguration.In practice ,we discoveredthat
bringingup Remosin a new ervironmentcanbe challeng-
ing. Problemgangefrom: networkfeatureghatwe hadnot
encounteredefore(e.g. VLANS), and network elements
thatweremisconfiguredr have non-standardeatureqe.g.
non-standarcSNMP implementations). To someextend,
theseportability problemsshouldnot be a surprise:there
aremary networkvendorsand mary waysto configurea
network,sothis problemis inherentlyhard. A relatedissue
is thatRemoscurrentlyassumeafairly staticernvironment,
sonetworkfailuresandhostmovementcanconfuseRemos.
Improving therobustnessndportability of Remosds anon-
goingeffort.

Remos currently relies on SNMP MIB and bench-
mark information. Many other sourcesof information
couldbetappedjncludingmeasuremeniollectedby ISPs
for traffic engineeringourposesapplication-leel informa-
tion [23], and network information that is collectedin
vendorspecificways. Also, for certaintypesof networks,
suchasshared=thernetsywe needbettertechniquegor per
formanceprediction.

Therearemary waysin which the Remossystemcould
be improved. We are currently working on updatingthe
communicationbetweenRemoscomponents. The initial
implementationuseda simple text format that we would
like to replacewith anXML formatusingHTTP asa com-
municationprotocol. Thischangevouldgive usmuchmore
flexibility in the kinds of datawe can exchangebetween
componentsand it would also allow new collectorsand
other piecesto be addedmore easily In particular the
XML formatwill enableusto sendanentirehistoryof net-
work measurementt the RPS subsystenfor prediction
purposes.

As networktechnologyadvanceswe mustmodify exist-
ing collectorsor addnew collectorsto discover information
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in networkswith new kinds of protocolsandhardware.In

particular we areworking on a new collectorfor wireless
networks,andimproving our existing collectorsto support
mobile hosts. A relatedextensionis to allow the systemto

operatethoughit maynotknow how to handleall thecom-
ponentsn a network.

Our BenchmarkCollectorcouldbe improved by adding
supportfor otherkinds of benchmarkingorograms,espe-
cially thosethat put aslittle load on the networkas possi-
ble,andthosethatdo notrequirebotha sourceanda sinkto
measurenetworkinformation. We would alsolike to pro-
vide information aboutmetrics other than bandwidth,for
examplenetworkjitter, which couldbenefitmultimediaap-
plications.

The currentRemossystemis ableto provide a wealth
of informationat a ratethat suficesfor mary applications.
However, asprocessoandnetworkspeedsmprove, appli-
cationsmaydemandnorefrequentupdate®nthechanging
ervironment.An issuethathasnotyetbeenexploredis how
farthisarchitecturescalesn theperformancelomain—how
high arateof requestxouldbe satisfied.

Finally, thereare a numberof issuesthat we have not
lookedat in depth,including an evaluationof techniques
for cachingandsharingof predictionresults,dealingwith
non-TCPtraffic (that claimsto be “TCP-friendly”), and a
characterizatiorof non-networkeffects that influenceap-
plicationnetworkperformance.

6.3 Whenis Remosmostuseful?

Mary applications(e.g., video streaming)only care
aboutthe performanceof a singleflow betweernwo nodes
that are currently exchangingdata. In suchcasesRemos
is probablyoverkill, becausehe applicationcangetthere-
quired information more cheaplyand more accuratelyby
monitoringits own performancg3]. However, for applica-
tionsthathave to selecta sener from a setof options,that
haveto selectandassigrasetof computenodeswith certain
connectvity propertiespr thathave to makecritical config-
urationdecisionge.g. to useremoteor local execution,to
usevideo plus audio, or audio only), Remosprovides ex-
plicit connectity informationthat would be difficult and
expensve to collectotherwisg13].

We endup with a modelof an adaptve applicationthat
combineswo typesof adaptatiorusingdifferentinforma-
tion sources.The applicationperformsnodeand network
selection,and high-level self-configurationbasedon ex-
plicit, Remos-preided resourceinformation. This type of
decisionis typically madewhenthe applicationstartsup,
or, for long running applications periodically during exe-
cution. During execution,the applicationcanfine-tuneits
performancéasedon directmeasurementsrhis modelis
in partdrivenby the costof adaptationadaptatiorthatdoes



not involve changesn nodeusagecan be cheapandfast,
while changingnodesor high-level applicationconfigura-
tion will bemoreexpensve.

7 Conclusions

The Remosarchitecturds designedto provide the in-
formationneededy Grid applicationsacrosanary diverse
ervironments. Remoshas beenimplementedand tested
in a variety of differentnetworkingervironmentsand has
beenusedto supporta variety of applicationsthusdemon-
stratingthe flexibility andportability neededor emeging
applications. We have usedRemosto supportboth large
numbersof machinest a singlesite aswell asto support
several sitessimultaneouslyand find that the architecture
scaleswell. While our architecturadiffers somavhatfrom
theproposedsrid Monitoring Architecture(GMA), acom-
parisonindicatesboththatRemosshouldinteractwell with
GMA-basedmonitoringtools andthat the future develop-
mentandperformancef toolssuchasRemoswill beeasily
supportedvithin theframewvork of the GMA.

Theavailability of theRemosAPI allows applicationde-
velopersto addressiew aspectof the ervironment. With-
outsacrificingportability for performancéor vice versa) it
is now possibleto developapplicationghatuseinformation
aboutthe statusof the networkto determinethe next adap-
tationsteps.Theavailability of andexperiencewith the Re-
mos architecturebacksup the claims madeby the Remos
API and provides a practicaldemonstratiorthat it is pos-
sibleto find a workablecompromisebetweerthe conflict-
ing objectvesof functionality, performanceand portabil-
ity. As networksgrow in compleity, andasefforts like the
Grid bring more applicationdevelopersinto this domain,
theinterestin infrastructuresystemdike Remoss likely to
increaseDealingwith andobtainingperformancenforma-
tion will remainanimportanttopic; Remosprovidesbotha
setof abstractionsndanarchitecturehathave proventheir
valuein practicalsettings.
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