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Abstract

Remosprovidesresource informationto distributedap-
plications. Its designgoals of scalability, flexibility, and
portabilityare achievedthroughanarchitecture thatallows
componentsto bepositionedacrossthenetwork,each col-
lectinginformationaboutits localnetwork.To collectinfor-
mationfrom different typesof networksand from hostson
thosenetworks,Remosprovidesseveral collectorsthat use
differenttechnologies,such asSNMPor benchmarking. By
matching the appropriatecollector to each particular net-
workenvironmentandby providinganarchitecture for dis-
tributing the outputof thesecollectorsacrossall querying
environments,Remoscollectsappropriatelydetailedinfor-
mationat each site and distributesthis informationwhere
neededin a scalablemanner. Prediction servicesare in-
tegratedat theuser-level, allowing history-baseddatacol-
lectedacrossthenetworkto beusedto generatethepredic-
tions neededby a particular user. Remoshasbeenimple-
mentedandtestedin a varietyof networksandis in usein
a numberof differentenvironments.

1 Intr oduction

TheRemossystemwasdesignedto provideresourcein-
formationto distributedapplications.While designingRe-
mos, we consideredthe needsof many differentapplica-
tionsandthecapabilitiesof arangeof networkingandcom-
puting environments. In this paper, we presentthe archi-
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tectureof theRemossystemanddescribehow it addresses
theseproblems.The ability of Remosto supportresource
measurementin a varietyof environmentsandfor a variety
of applicationsmakesit an appropriatemeasurementtool
for Grid environments.

Thedesignandimplementationof Remosaddressesthe
issuesof scalability, flexibility and portability neededto
supportapplicationsin avarietyof environments.

� Scalability: Resourcemonitoring in distributed sys-
temsnecessarilyinvolvesmany machines,a largenet-
work infrastructure,and many users. Beyond that,
however, is the questionof scaleof a system. To
supportapplicationsthathavewide-arearequirements,
high-performanceclusterrequirements,or somecom-
binationof both,Remosmustbeableto provideanap-
propriatelevel of detailto meettheinformationneeds
of the applicationwithout swampingthe application
with informationunnecessaryto its requirements.

� Flexibility: Dif ferentusersrequiredifferent typesof
information.For example,synchronousmultiprocess-
ing, real-timevideo, andbulk datatransferhave dis-
tinctly differentbandwidth,latency, andlossrequire-
ments,and require that information acrossdifferent
timescales.

� Portability:Thevarietyof operatingsystems,network
architectures,andhardwarefoundin differentenviron-
mentsmandatesa portablesolutionthatis notspecific
to any one technology. Even standardizedmeasure-
menttechniquesmay requirealternativeswhenthose
techniquesarenotsupported.

Remosis being usedin on a regular basisby several
groups:the Aura Project(CMU), QuO (BBN), the HiPer-
D Testbed(NSWC andS/TDC), CACTUS (University of
Arizona),andtheDesiderataProject(Ohio University). A
numberof othersitesarealsoexploring theuseof Remos.
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Figure 1. Overvie w of the components in the
Remos architecture .

Theseprojectsarequite diverse,both with respectto the
networksthey useand the applicationinformation needs.
Our evaluationalongthe “portability” and“flexibility” di-
mensionis in partbasedon interactionswith theseusers.

Thispaperdescribeshow thedesignof Remosaddresses
thesechallenges.In Section2, we describethegeneralar-
chitectureof Remos. Section3 describesthe techniques
usedby Remosto implementthearchitecture.Section4 de-
scribesotherwork relatedto RemosanddiscussesRemosin
termsof theGrid Monitoring Architectureproposedby the
Grid Forum.Section5 evaluateshow thedesignandimple-
mentationof Remosmeettheoriginaldesigngoals.Finally,
Section6 discussesthelessonslearnedin thedevelopment
of Remosaswell asissuesthatstill requirefurtherwork.

2 Ar chitecture

An overview of the Remosarchitectureis presentedin
Figure 1. The Remosarchitecturedivides the services
neededbetweencollectors, modelers, andpredictors. The
RemosAPI, which is exposedto applications,is imple-
mentedonly in the Modeler. This designallows consid-
erableflexibility in varyingthedesignof theothercompo-
nents.

2.1 Collectors

Thecollectorsareresponsiblefor acquiringandconsol-
idating the informationneededby theapplication.Collec-
torscanusea varietyof methodsof collectinginformation,

e.g. they may incorporateor control sensorsthat perform
the actual measurements,but from an architecturalview
they have a single function: collect information and for-
ward it on to the Modeler. For scalabilityreasons,collec-
tors canbe organizedin a hierarchicalfashion(Figure1).
At the lowest level, collectorsareresponsiblefor collect-
ing information aboutspecificnetworks. For example,a
local collectoris responsiblefor obtainingperformancein-
formationaboutits LAN. Globalcollectorsareresponsible
for obtainingperformanceinformationaboutthe networks
connectingLANs. Localor globalcollectorsatremotesites
canbecontactedto obtaininformationaboutthoseremote
sites.

TheMasterCollectoris responsiblefor gatheringinfor-
mationfrom differentcollectorsandcoalescingit into a re-
sponseto a modeler’s query. The MasterCollectormain-
tains a databaseof the locationsof other collectorsand
the portion of the networkfor which they areresponsible.
When a requestcomesfrom a modeler, the MasterCol-
lector queriesthe appropriatecollectorsand replieswith-
out revealingthat theresponsewasobtainedfrom multiple
collectors.Usingthis technique,it is possibleto build sev-
eral layersof collectors.For example,theremotecollector
in Figure1 might beanotherMasterCollectorthat in turn
contactsa varietyof localcollectorswhenqueriedaboutits
network.

One importantadvantageof this architectureis that it
blurs the line betweeninter- and intra-sitemeasurements.
Becausethecollectorsassumeresponsibilityfor contacting
remotesitesand for aggregatingall available information
into a singleresponse,neithertheModelernor theapplica-
tion mustdeterminewhetherthe queryconcernsnodesat
a singlesiteor at remotesitesor considerthemostappro-
priatemeasurementtechnique.If theWAN link is theonly
bottleneckalongthepathof thequery, thentheappropriate
measurementwill automaticallybereturned.

2.2 Modelers

Modelersprovide theRemosAPI to theapplicationand
communicatewith a collectorto obtaininformationneeded
to respondto queriesmadethroughthe API. Becausethe
collectorsexist only to obtain network resourceinforma-
tion, the Modeler is responsiblefor the processingneces-
saryto convert this informationinto aform of interestto the
application.For example,the availablebandwidthalonga
pathmay be provided by the collectorasseveral separate
measurements,but theModelerreportsonly thebottleneck
availablebandwidthto theapplication.Similarly, if anap-
plicationmakesatopologyquery, theModelerperformsad-
ditionalprocessingonthetopologyreturnedbythecollector
to eliminateunnecessaryinformationandpresentthetopol-
ogy to theapplicationin a moremanageableform.
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If a predictionis needed,the Modeleralsoactsas the
intermediarybetweenthecollectorsandthepredictionser-
vice.

2.3 Predictors

Predictorsareresponsiblefor turningameasurementhis-
tory into a predictionof futurebehavior. Predictorscanop-
eratein a client-server mode,turninga vectorof measure-
mentsinto a singlevectorof predictions,or in a streaming
mode,transformingastreamof measurementsinto astream
of (vector-valued)predictions.Theadvantageof theclient-
server form is thatit is stateless,while theadvantageof the
streamingmodeis thata singlemodelfitting operationcan
beamortizedover multiple predictions.The trade-offs be-
tweenthe two modesarecomplex andboth areuseful in
practice.

Figure1 shows how client-server predictorsfit into the
Remosarchitecture.This locationis theappropriatechoice
for several reasons.First,becauseRemoscollectsinforma-
tion on a componentbasisandlaterassemblesit into a sin-
gle response,predictionoftencannotbe doneat the lower
layers. For example,if the behavior of differentresources
werecorrelated,asmight commonlybe foundamongnet-
working components,then predictingtheir behavior inde-
pendentlybeforeaggregating the result would lose infor-
mation. Secondly, becauseit is possibleto specifydiffer-
ent optionsfor prediction,suchas the amountof history
to consider, the time granularity, or time in the future for
whichapredictionis needed,it is sometimesdifficult toper-
formpredictionsata lowerlayerbeforetheapplication’sre-
questis known. Finally, predictioncanrequirea substantial
amountof computationalpower, and this architectureal-
lowsusto placetheburdenof performingthesepredictions
neartheparticularapplicationrequestingtheprediction.

For environments where predictions can be shared,
streamingpredictorsoffer the ability to amortizethe cost
of predictionover several consumers.Streamingpredic-
torsoperatein tandemwith collectors.For example,a col-
lector may periodicallymeasureload on a particularhost,
choosingits samplingrateasappropriatefor thedynamics
of thehost. As eachsamplebecameavailable,it would be
fed to a directly attachedstreamingpredictor. The collec-
tor wouldthenmakethesepredictionsavailableto modelers
thatwereinterested.Althoughthis aspectis not integrated
into thecurrentRemosimplementation,beingableto chose
betweenclient-server and streamingpredictorsmay be a
significantfeaturefor supportingbotha varietyof applica-
tionsandminimizingunnecessarywork whereappropriate.

3 Implementation in Remos

Thecurrentimplementationof Remosis diagrammedin
Figure2. This figure illustrateshow thevariouscollectors
usedby Remosinteractwhenusedin a grid-like environ-
ment.In theremainderof thissectionwediscusstheRemos
componentsin moredetail.

3.1 Collectors

Themotivationanddesignof theoverall collectorarchi-
tectureis describedin apaperby Miller andSteenkiste[19].
In this sectionwe briefly describethe mainfeaturesof the
differentRemoscollectors.

Collectorscanbeclassifiedalongthreeprimaryaxis:
� How they collect information. Collectorsin Remos

eitheruseSNMPto collect informationdirectly from
routersandswitches,or they useexplicit benchmark-
ing.

� Thetypeof networkthey are responsiblefor. Remos
hascollectorsfor local-areaandwide-areanetworks,
and a collector for wirelessLANs (802.11)is under
development.Thenetworktypeaffectscritical param-
eterssuchaswhatwhatinformationis interesting(e.g.
latency is rarelyof interestin a LAN), level of traffic
aggregation(canaffect prediction),andadministrative
privilegesof thecollector(canlimit theuseof SNMP).

� How the collector operates. The two primary modes
areon-demand,i.e. the collectsinformationwhen it
receives a request,or periodic, i.e. the collectorcol-
lects informationat periodic intervals. We expectall
collectorsto aggressively cacheinformationto reduce
overhead.Remoscollectorstypically operatein peri-
odicmode,sincethis offersbetteruserresponsetime.

3.1.1 SNMP Collector

TheSNMPCollectoris thebasiccollectoruponwhichRe-
mosreliesfor mostof its networkinformation.SNMPis a
databaseprotocoldesignedto provide networkadministra-
torswith directaccessandcontroloverthestatusof network
devices.Thesefeaturescanalsobeusedto obtainnetwork-
level informationabouttopologyandperformancedirectly
from routersandswitches. Becausethe SNMP Collector
hasdirectaccessto theinformationthenetworkitself stores,
thiscollectoris capableof answeringtheflow andtopology
queriesthat requirean understandingof the detailsof the
network’sstructure[19]. TheSNMPCollectoroperateson
routednetworks(level 3).

An SNMPCollectoris assignedto monitor a particular
network,generallyan IP domaincorrespondingto a uni-
versityor department.BecauseSNMPagentsarenormally
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only accessiblefrom local IP addresses,thisprovidesa nat-
uralpartitioningfor thelocationof theSNMPCollectors.

The SNMP Collector initially monitorsthe networkon
anon-demandbasis.It waitsfor queries,thenexploresand
begins monitoring the networkcomponentsneededto re-
spondto thatquery. Onceit beginsmonitoringpartsof the
network,it will continuewith periodicmonitoringto col-
lecthistoryof thatnetworkfor usein predictions.A logical
extensionfor thecollectorwouldbeto configureit to begin
monitoringspecificresourcesat startup,for usein a com-
putationalcenter, etc.

The first and most complex step the SNMP Collector
musttakeuponreceiving aqueryis topologydiscovery. Us-
ing theIPaddressesof thenodesin thequeryandtherouters
they areconfiguredto use,the collector follows the route
hop-to-hopbetweeneachpair of nodesin the query. The
collector cachespreviously discovered routes,so it must
only follow new routesuntil it reachesapreviouslyexplored
route.

Oncethe collector hasdiscovered the routesusedbe-
tweenthenodes,it queriestheroutersalongthepathfor the
link bandwidthbetweeneachpair of routers. It thenperi-
odicallymonitorstheutilizationof eachsegmentby query-
ing theoctetcountersfor eachinterfaceon therouters.By
default,theutilization is monitoredevery five seconds,al-
thoughthis is a configurableparameter.

Thefinal responsibilityof theSNMPCollectoris repre-
sentingthe networkwith a virtual topologygraph. When
the collectordiscoversnodesconnectedto a sharedEther-
net, or connectedto routersit cannotaccess,it represents
theirconnectionwith a virtual switch. In thecaseof shared
Ethernet,this switch canbeannotatedwith the bandwidth
capacityandutilization of a sharedEthernet,representing
its functionalitywith a standardgraphformat.

TheSNMPCollectoris implementedwith Java threads,
so it is capableof monitoringa numberof routersandre-
spondingto many queriessimultaneously.

3.1.2 Bridge Collector

The SNMP Collector by itself is only capableof moni-
toring level 3 routednetworks. While many researchnet-
works, as well as campusnetworksare connectedusing
only routers,themajority of LANs areimplementedusing
level 2 switchedEthernet. Although the techniquesused
by the SNMP Collector for monitoring link capacityand
utilization are identical on routersand switches,Ethernet
switchesto not provide explicit topologyinformationasis
providedby the IP routing tables.To collect this informa-
tion, the Bridge Collector is usedto determinethe topol-
ogy of theEthernetLAN throughqueriesto theforwarding
databasein theBridge-MIB of eachbridgeor switch[18].

At startup,the BridgeCollectorqueriesall components

of a bridgedEthernetto determineits topology, thenstores
this informationin adatabase.Whena queryis madeto the
SNMPCollector, theBridgeCollectorprovidesit with the
portionof the level 2 topologythat is neededto fulfill the
query, suchasproviding thepathbetweenpairsof nodes,or
betweena nodeandthe edgerouterof the EthernetLAN.
Onceit hasthetopologyinformation,theSNMPCollector
cancollectdynamicinformationfromtheswitches,andwill
cachethetopologyof thatportionof theEthernetnetwork.

In general,bridgedEthernetnetworkshave fairly static
topologies.However, over the lifetime of the network,we
expect that new nodesmight be addedto the network,or
existing nodesmaymove. Extremelyrarely, a switchmay
be moved or an additionalswitch added. In wirelessnet-
works,however, amobilenodemaymovebetweenbasesta-
tionsmuchmorefrequently, which will changeits location
in the topology. To accountfor this nodemovement,the
BridgeCollectormustmonitorthelocationof nodeson the
networkcontinuously. Thelocationof a hostcanbemoni-
toredmerelyby checkingits forwardingentryin thebridge
to which it is connected.Verifying the locationof bridges
andswitchesis somewhat more difficult, however, we do
not anticipatebridgesor switchesbeingmoved frequently
in typicalnetworks.

3.1.3 Benchmark Collector

While SNMP offers excellent information, Remosgener-
ally cannotobtainSNMPaccessto networkinformationfor
WANs or other networkswherethe Remosadministrator
doesnot have an accounton a machine. In that case,we
fall backon a BenchmarkCollector, thatdoesexplicit test-
ing to determinetheperformancecharacteristicsof thenet-
work. A BenchmarkCollectoris run at eachsitewherean
SNMPCollectoris. Whena measurementof performance
betweenmultiple sitesis needed,theBenchmarkCollector
exchangesdatawith the BenchmarkCollector running at
the othersite of interest. By measuringthe rateat which
thedatatravelsacrossthenetwork,theBenchmarkCollec-
torsdeterminetheperformanceof the links connectingthe
networkandreportthis informationto theMasterCollector.
Detailsandanalysisof this implementation,in particular, is
describedby Miller andSteenkiste[19]. This techniqueis
similar to thetechniquesusedby NWS[33].

Thecollectors’Java implementationsandtheir reliance
on theSNMPstandardandsimplebenchmarkshave made
themveryportable,runningonawidevarietyof hostarchi-
tecturesandsupportingmostnetworkcomponents.

3.1.4 Master Collector

BecauseSNMPandBenchmarkCollectorsmonitoronly a
particularportion of the network,distributedapplications
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cannotobtainall of their informationfrom thesecollectors.
TheMasterCollectoris designedto solvethisproblem.De-
spitethename,a differentMasterCollectoris usedin each
networkwhereRemosapplicationsarerunning.

The Modelerusedby the Remosapplicationsubmitsa
queryto its MasterCollector. Thefirst taskfor theMaster
Collector to solve is identifying the IP networksandsub-
netsneededto answerthequery, alongwith theassociated
SNMPandBenchmarkCollectorsfor thosenetworks.The
MasterCollector identifiesthe networkscontaininghosts
usedin thequery, aswell asany interveningnetworkscon-
nectingthosewith thehosts.Thedatabaseusedis verysimi-
lar to theSLPdirectory, andSLPmaybeusedby theMaster
Collectorin thenearfuture[29].

Once the relevant networkshave been identified, the
MasterCollectordividesup the queryandpassesthe rel-
evantportionto thecollectorsresponsiblefor theidentified
networks.Whentheresponsesarereceivedfrom thosecol-
lectors,theMasterCollectorcombinestheminto onesingle
responseandreturnsthatresponseto theModelerthatmade
thequery.

3.2 Modeler

TheModelerprovidestheAPI to theuserandcommuni-
cateswith thelocalMasterCollectorto obtaintheinforma-
tion neededto answertheuser’squery. It is single-threaded
andcommunicateswith theCollectoroveraTCPsocket,us-
ing a simpleASCII protocol.Onceit receivestheresponse
from a collector, it is alsoresponsiblefor insertingvirtual
switchesto simplify the topologiesreturnedby thecollec-
tor. Becausecurrentlyonly topologiesareexchangedbe-
tweentheModelerandcollector, theModeleralsoperforms
max-minflow calculationson theCollector’s topologiesto
determinesolutionsto flow queries.By connectingadiffer-
ent Modeler to eachapplication,the modelerarchitecture
provides the flexibility neededto supportthe information
needsof differentapplicationsby allowing theinformation
obtainedfrom theCollectorto beinterpretedandpredicted
in differentmannersaccordingto theapplication.TheMod-
eleris implementedin bothC andJava.

3.3 Predictor

If predictionsarenecessary, the ModelerusesDinda’s
RPSToolkit [9]. TherelationshipbetweenRPSandRemos
is somewhat complex, as eachis an independentsystem.
In this context, RPSprovidespredictionservicesandhost
measurementservicestoRemos,whileRemosprovidesnet-
work measurementservicesto RPS.RemoscanuseRPS’s
client-server interfacefor generalpurposepredictions,and
its streaminginterfacefor predictionsabouthostsandflows
for whichstreamingpredictorshave beeninstantiated.

In the current implementation,Remosrelies on RPS
collecting data itself to establishthe performancehistory
neededto makepredictions.RPSdoesthis througha host
loadsensorandanetworkflow bandwidthsensor(thelatter
is itself a Remosapplication).This is dueto a limitation in
the first protocoldesignedfor usewith the collectors. We
aretransitioningto an XML over HTTP protocolthat will
allow the modelerto query the collectorsfor a history of
resourcemeasurements.In this architecture,thecollectors
will beresponsiblefor maintaininghistory informationfor
eachcomponentthey monitor, andwill thusbeableableto
useRPS’sclient-server interfaceaswell.

Currently, RPS’s time seriespredictionlibrary includes
the Box-Jenkins linear time series models (AR, MA,
ARMA, ARIMA), a fractionallyintegratedARIMA model
whichis usefulfor modelinglong-rangedependencedepen-
dencesuchasarisesfrom self-similarsignals,a“last value”
model, a windowed averagemodel, a long term average
model,anda templatethatcreatesa periodicallyre-fitting
versionof any model. More detailson the implementation
andperformancecharacteristicsof thesemodelsareavail-
ableelsewhere[9].

While RPS’s modelselectionis quite extensive, cover-
ing almostall approachesto lineartime seriesprediction,it
doesnot yet includenonlinearmodelssuchasTARs. The
choiceof models(systemidentification)is a complex topic
in general[4, 5, 1, 28] andalsowithin the context of dis-
tributedsystems.We have foundAR modelsof order16 or
betterto beappropriatefor predictionof hostload[10], de-
spiteload’s complex behavior [8]. Othershave alsofound
that simplemodelsaresufficient for host load [32]. Once
a modelhasbeenchosen,fitted to historicaldata,andis in
use,its error mustbe monitoredto verify that the fit con-
tinuesto hold. In RPS,this continuoustesting(doneby the
evaluator)is usedto decidewhenthe modelmustbe refit.
In contrast,theNetworkWeatherServiceusessimilar feed-
backto decidewhichof asetof modelsto usenext in avari-
antof themultipleexpertmachinelearningapproach[31].

4 The Grid and relatedwork

Grid-baseddistributedcomputinghasbroughtaboutthe
needfor systemsthatmonitorandpredictbothapplication
andresourceinformation. In additionto Remos,a number
of systemshave beendevelopedthataddressvariousinfor-
mationneedsof grid applications[31, 26, 21, 27]. Oneof
theprincipledifferencesbetweenRemosandthesesystems
is that Remoswas intendedto provide applicationswith
end-to-enddataderivedfrom componentsensorsacrossthe
network,andintegratethesemeasurementswith traditional
sensor-baseddataandend-to-endbenchmarks.

While otherprojectshave developedtechniquesto de-
rive Internettopology [11, 24, 15, 20], Remosis the first
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to integrateLAN topology information with performance
measurements.Becausethe link-sharingfound on LANs
canhave a profoundinfluenceon an application’s perfor-
mance,providing this informationaswell assite-to-siteper-
formancemeasurementshas proven useful for predicting
applicationperformance.

Researchinto resourceprediction has focusedon de-
termining appropriatepredictive models for host behav-
ior [10, 32, 22], andnetworkbehavior [30, 2, 12]. TheRPS
toolbox usedby Remosincorporatesmany of the models
studiedby this research.RPSis alsoavailableasan inde-
pendenttool for otherresearchrequiringpredictivemodels.

Oneof theproductsof theGrid Forumis theGrid Mon-
itoring Architecture[25], which is beingdevelopedby the
performanceworking group. In this architectureeachCol-
lector is a producer. The MasterCollector is a joint con-
sumer/producer, asits responsibilityis to contacttheother
collectorsasa consumer, beforeaggregating the informa-
tion togetherandproviding it to anotherlayer. Although
we view the Modelerasa consumer, it could alsobe an-
other joint consumer/producer, providing end-to-endper-
formancepredictionsusing the componentdataavailable
from thecollectorsasa serviceto otherapplications.In the
Remosarchitecture,thecollectorsalsoimplementa limited
form of directoryserviceto locateeachother. The direc-
tory serviceof the GMA would be naturalto usefor this
purpose.

Overall, we find that the Remosarchitectureis quite
compatiblewith the GMA, and should interoperatewell
with othermonitoringsystemsonceappropriateinterfaces
aredesigned.The biggestchallengepresentedby Remos
is describingthe informationavailablethroughit in thedi-
rectoryservice. BecauseRemosprovidesend-to-enddata
derivedfrom component-level data,it would bedifficult to
describeall possiblemeasurementpairsin thedirectoryser-
vice. However, severalsolutionsto this problemhave been
discussedby theGrid PerformanceGroupandothers,there-
fore weareconfidentthat theGMA’s directoryservicewill
supportRemoswell whenfully developed.

Associatedwith the format of the GMA is the method
usedto storegrid informationin thefirst place.Significant
discussionis ongoingaboutthe advantagesanddisadvan-
tagesof a hierarchicalapproach,suchasMDS-2 [6], or a
relationalapproach[7]. Bothproposalspresentmodelsthat
arecapableof associatingRemoswith theresourcesit mon-
itors,which is the fundamentalrequirementRemoshasfor
a directoryservice.

5 Evaluation

The flexibility and portability aspectsof Remoshave
been discussedin other Sections,especiallySection 3.
Here,wediscussscalabilityandfunctionalityresultsfor the
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differentRemoscomponentsandthesystemasa whole.

5.1 LAN scalability

In afirst setof experiments,welook attheresponsetime
of theSNMPCollectordeployedin the local areanetwork
in the Schoolof ComputerScienceat CMU. The network
is a very largebridgednetworkandin theexperiments,the
BridgeCollectoris alreadyrunningandtheSNMPCollec-
tor periodicallycollectsdynamicinformationfor all nodes
in its cachewith a periodof 5 seconds.

Figure3 showshow theresponsetime increaseswith the
numberof nodesspecifiedin the query. For all measure-
ments,mostof theelapsedtime is spentin theSNMPCol-
lector. Therearethreescenarios:

� Coldcache: theSNMPCollectorhasjuststartedupso
it hasno informationon either the static topologyor
thedynamicperformancemetrics.

� Mixed: theSNMPCollectorhassomecachedinforma-
tion, namelytheresultfrom thepreviousquery(typi-
cally about1/2or 1/3of thedata).

� Warm cache: the SNMPCollectorhasboth the static
anddynamicdatain its cache.

We canmakea numberof observations.First, it clearly
paysoff to cacheinformation. Thewarm-cacheresultsare
a factor of three or more better than the cold cachere-
sults. Second,the worst casecostof a cold cachequery
is
�������	�

. However, we implementeda numberof opti-
mization that reducethe cost, especiallyfor large N; the
measurementsshow the effect. Finally, the costof warm-
cachequeriesshouldbe

�
�����
. We seethat the costactu-

ally grows faster, probablybecauseof increasingmemory
requirementswhich reduceexecutionefficiency.
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5.2 SNMP Collector accuracy

We rananexperimentonourprivatenetworkingtestbed
to determinetheaccuracy of theSNMPCollectorin track-
ingchangesin networkbandwidth.WeusedNetperftogen-
erateburstsof TCPtraffic of varyinglengthsbetweentwo
endpointson our testbed.Theendpointswereseparatedby
two 933MHz routersrunning FreeBSD.The SNMP Col-
lector was set up to gatherdataabout the links between
thesehostsat several differentsamplingintervals: 5 sec-
onds,2 seconds,andonesecond. Figure 4 comparesthe
end-to-endbandwidthreportedby Netperfwith the band-
width reportedby theSNMPCollectormeasuredin 2 sec-
ondintervals.Figure5 showsNetperfbandwidthcompared
to bandwidthmeasuredby theSNMPCollectorat5 second
intervals.

Thereis a fairly goodmatchbetweenthe results. The

0

10

20

30

40

50

60

70

80

90

100

1 10 100 1000
Measurement�Rate�(Hz)

Figure 6. CPU usage of RPS-based host load
prediction system as a function of measure-
ment rate . The appropriate AR(16) predictive
model is being used.

expenseof trackingbandwidthmorecloselycancreatein-
consistenciesin the dataandput addedstrainon network
routers.In practice,we’ve foundthata samplinginterval of
5 secondsseemsto bea gooddefaultfor mostapplications.

5.3 RPSevaluation

The RPS prediction error is highly dependenton the
characteristicsof the data that is to be predictedand the
predictionhorizon. For host load,AR(16) predictorspro-
duceone-second-aheaderrorvariancesthatare70%lower
thanraw signalvariance,andprovidebenefitsout to at least
30 seconds.Much moredetail on host load predictionis
available elsewhere[10]. RPSalso characterizesits own
predictionerror, and that characterizationis usuallyquite
accurateregardlessof thedata.This in largepartdueto the
feedbackin thesystem.

RPS prediction systemshave quite low latenciesand
overheads,andcanoperateat high rates. The RPS-based
host load predictionsystemthat the RemosModelercur-
rently interfaceswith hasa latency from measurementto
predictionof 1-2 ms and can operateat a rate in excess
of 700 Hz on a 500 MHz 21164 Alpha machine. Fig-
ure6 showsCPUusageof thissystem,usingtheappropriate
AR(16)model,asa functionof themeasurementrate.At 1
KHz the CPU is saturatedand the latency grows. At the
normal1 Hz rate,CPUandnetworkusageis negligible.

In a separateexperiment,we wereableto run a Remos
queryfor asingleflow atabout14Hz usingtheSNMPCol-
lector, which itself typically makesSNMPqueriesat a ��
��
Hz rate.At suchrates,theoverheadof RPSwith anAR(16)
or similarpredictivemodelis in thenoise.
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Figure 7. CPU time needed to fit/init and
step/predict different RPS predictive models.

However, the resourcedemandsof an RPSsystemare
drasticallyaffectedby themodelusedin prediction.RPS’s
modelsvary over four ordersof magnitudein their compu-
tationalcosts.Figure7 showsthecostsinvolvedwith using
someof thedifferentmodels.Thesearebrokendown into a
“fit/init” cost,whichis thecostto fit themodelto asequence
of samples(600),anda“step/predict”cost,whichis thecost
to pushonenew samplethroughthefittedmodel,producing
onesetof predictions.Thevariationin costis importantbe-
causethe appropriatepredictive modelsfor otherkinds of
resources(networkbandwidth,for example)areunknown
at this time.

In a streamingimplementation,suchasin thehostload
predictionsystem,the fit/init cost can be amortizedover
multiple samples. However, to do this RPS must keep
aroundper-streamstate,andmustpaythestep/predictcost
every time a new measurementbecomesavailable. In the
client-serverinterfacethatRPSalsoprovidesto Remos,the
fit/init andstep/predictcostsarepaidevery time a queryis
made.However, the RPSrequest-responsepredictionsys-
temis statelessandcomputationhappensonly in directre-
sponseto queries.A moredetailedevaluationof the over-
headsof RPSis availableelsewhere[9].

5.4 Mirr oredserverexperiment

Onesimpleuseof Remosis to helpapplicationschoose
a remoteserver basedon availablenetworkbandwidth.We
havewrittenasimpleapplicationthatreadsa3MB file from
a server afterusingnetworkinformationobtainedfrom Re-
mosto choosethebestserver from a setof replicas[19].

We ran two setsof mirror experiments:one that used
remotesiteswith goodnetworkbandwidth,andanotherex-
perimentusingsiteswith poorbandwidth.For thefirst ex-
periment,we ran the applicationat Carnegie Mellon and
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servers at Harvard, ISI, NorthwesternUniversity (NWU),
andETH. Averagedover all 108trials,we observedanav-
eragethroughputof 2.03 Mbps from Harvard, 2.15 Mbps
from ISI, 4.11 Mbps from NWU, and 1.99 Mbps from
ETH. For thesecondexperiment,we rantheapplicationat
CarnegieMellon andtheserversat theUniversityof Coim-
bra,Portugal(averagethroughput0.25Mbps),the Univer-
sity of Valladolid, Spain(averagethroughput1.02Mbps),
andthethird serverwasrunonamachinein Pittsburghcon-
nectedviaaDSLlink with amaximumupstreambandwidth
of 0.08Mbps. We ran72 trials usingthepoorly connected
sites.

In orderto beableto evaluatethequality of theRemos
information, we modified the applicationto readthe file
from all threeservers,startingwith theserver that,accord-
ing to Remos,hasthebestnetworkconnectivity. In thefirst
experimentusingwell connectedsites,Remoschosethere-
motesitethatendeduphaving thefastesttransferrate83%
of thetime. Figure8 showsthedifferencein throughputbe-
tweenthe1stplacesiteRemoschoseandtheother3 sites.
The left half of the graphshows the throughputwhenRe-
moschosethebestsite,andtherighthalf of thegraphshows
thethroughputwhenRemosdid not choosethefastestsite.
Thesecondbarin eachgroupshowseffectivebandwidthfor
thesiteRemoschose.This bandwidthincludesthe time it
took to getananswerbackfrom theRemossystem.

In thesecondexperiment,whichusedsitesthatwerenot
well connectedto CMU, Remoschosetheremotesite that
endedup having the fastesttransferrate82% of the time.
Figure9 showsthedifferencein throughputbetweenthe1st
placesiteRemoschoseandtheother2 sites.As in Figure8,
theleft half of thegraphshowsthroughputfor whenRemos
chosethebestsite,andtheright half shows throughputfor
whenit didn’t. The secondbar in eachgrouponceagain
showstheeffective bandwidthfor thesiteRemoschose.

We included the effective bandwidthmeasurementto
show thateventhoughit takessometimeto consultRemos
to choosea server, performanceis still betterthanchoosing
oneof the slower sites. Theseexperimentsalsoshow that
usingRemosto pick a site is effective evenwhenall of the
siteshave poorconnectivity.

5.5 Application Experiment—Video transfer

In thepreviousexample,Remosusedtheavailableband-
width asa metric. This metric, however, doesnot always
directly correspondto the metric in which the application
is interested.For example,the quality of a videoapplica-
tion that downloadsandplaysthe video in real time may
be ratedby the numberof correctlyreceived framesat the
client [14]. This experimentshows how theRemosmetric
correspondsto suchanapplication-definedmetric.

For the experiment,the video client is locatedat ETH.

average standard
Server Location bandwidth deviation
ETH Zurich 63.1 5.61
EPFLLausanne 3.03 0.17
CMU 0.50 0.28
Universityof Valladolid,Spain 0.37 0.28
Universityof Coimbra,Portugal 0.18 0.07

Table 1. Server location, the available band-
width and the standar d deviation, measured
by Remos.
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Figure 10. Server picked accor ding to the
measured bandwidth (large cir cle) and the
number of correctl y received frames in the
follo wing download.

Servers from which the videos can be downloadedare
placedat differentlocationsin EuropeandtheU.S(seeTa-
ble1). Thevideoserver is ableto adapttheoutgoingvideo
streamto theavailablebandwidthby intelligentlydropping
framesof lower importance[14]. It therebymaximizesthe
numbersof framesthataretransmittedcorrectly.

Thebandwidthof thelocal server at ETH is anorderof
magnitudehigherthanEPFL,which in turn is an orderof
magnitudelargerthantheothers.

Beforedownloadinga video, the client issuesa Remos
queryto measurethe availablebandwidthto all servers. It
thendownloadsthemovie fromtheserverwith thebestcon-
nectivity. To comparethe results,the client subsequently
alsodownloadsthe samevideo from all othersitesin the
decreasingorderof the availablebandwidth. This experi-
mentwasrun several timeswithin 24 hourswith different
movies.

Figure10showsthenumberof correctlyreceivedframes
for eachexperiment.Theserver thatis selectedfirst accord-
ing to thebandwidthmeasurementsby Remosis indicated
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Figure 11. The bandwidth measured by the
application, averaged over different time in-
tervals, and the bandwidth repor ted by Re-
mos.

by a largecircle. Thefigureexcludestheresultsfrom ETH
andEPFLbecausethebandwidthis alwayshigherthat the
bandwidthrequiredby theapplication.If ETH is included,
theclientalwayspickstheserver at ETH. Thedownloaded
video doesnot loseany frames. If ETH is excluded,the
systemalwaysselectsEPFLandalsogetsthevideowithout
droppedframes. If both ETH andEPFL areexcluded,the
client-perceived quality correspondsto the reportedband-
width in 90%of thecases,i.e. theclient receivesthemost
framescorrectly from the server with the highestband-
width. In the 2 caseswherethe bestserver is not picked,
an inspectionshows that theserver only sentabouthalf of
thepackets,probablydueto ahigh loadontheserver.

The resultsshow that the available bandwidthcorre-
spondswell to theapplication-perceivedquality. However,
thetwo wrongpicksindicatethatthebandwidthalonedoes
not guaranteea good video download. Other parameters
mayinfluencethedownloadaswell andmustbetakeninto
account.

Figure 11 shows 2 experimentsin detail. The same
movie is downloadedfrom 2 differentservers,a localserver
with a high- bandwidthconnectivity andtheremoteserver
with a limited bandwidth. Eachpacketthat arrivesat the
client is timestampedand the application-perceived band-
width is calculatedasthe averageover 3 differenttime in-
tervals:1, 2 and10seconds.

Thedownloadfrom thelocalserver is not limited by the
bandwidth.Theaverageover smallintervalsshows thatthe
bandwidthrequirementsvary over time. Thesefluctuations
canbeexplainedby thevariationof themovie content.Av-
eragingthe bandwidthover a larger interval smoothsthe
variations.

For the remoteserver experiment,the bandwidthmea-

suredby Remosis the horizontalline at 0.15Mbps. This
line correspondswell to bandwidthmeasuredby theappli-
cationif it is averagedover a largeinterval. The10seconds
interval correspondsto the time interval that Remosuses
to measurethe availablebandwidth. Calculatingthe aver-
ageover smallerintervalsshows higherfluctuations. The
reportedbandwidthdoesnot correspondwell to the band-
width of thesesmallintervals.

This experimentdemonstratesthat optimal resultscan
only be achieved whennot only the metric of Remosand
theapplicationcorrespond,but alsowhenthe interval over
which thebandwidthis reportedmatchesthevaryingneeds
of theapplication.AlthoughRemosis notcurrentlyableto
fully addressthesepoints, this experimentstill shows that
Remosis well ableto provideusefulguidanceto thistypeof
application.It canhelpthevideoclient to selecttheserver.
In addition,it mightsimilarly beusedto determinealternate
serversandroutesfor a dynamicvideohandoff [16].

6 Reflections

In this sectionwe try to capturewhat we learnedabout
resourcemonitoringsystemsin the last four years. While
thesecommentsareof coursequitesubjective,wehopeour
thoughtswill helpothersworkingin thesamearea.

6.1 What worked

The first stepin the Remosdevelopmentwasthe defi-
nition of the RemosAPI [17]. TheAPI supportstopology
queriesthatprovideuserswith networkutilizationinforma-
tion in theform of a virtual topology, andflow queriesthat
returnpredictionsof the performancethat a new flow can
expect. While the API supportsseveral performancemet-
rics,our initial implementationfocusedon bandwidth.Our
experiencesuggeststhat thesewerethe right designdeci-
sions.TheAPI providesagoodbalancebetweensimplicity
andamountof informationprovided.TheAPI worksfor all
thenetworkswe have encounteredsofar, i.e. it is network
independent.Finally, bandwidthis by far themostimpor-
tantmetricfor mostapplications.

Underneaththe fixedAPI, we decidedto usea systems
architecturethat wasmodularandextensible. This choice
alsoworkedwell. Our initial systemconsistedof just an
SNMPCollector, andlaterwewereableincorporateBench-
mark, Bridge, and MasterCollectors,without changesto
theAPI. Becauseof themodulardesign,we werealsoable
to usedifferentdatagatheringtechniquesfor differentnet-
works. While benchmarksareaneffective way of collect-
ing bandwidthinformation,it is tooexpensive andintrusive
for many typesof networks,andwe needto utilize more
lightweighttechniquessuchastheSNMPCollector.
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Finally, our experiencewith host load predictionsug-
geststhatit paysoff to build on rigoroustimeseriespredic-
tion theory. Thiseffort notonlyallowedusto leverageexist-
ing experienceandtools,but it alsohadmoreconcreteben-
efits.For example,wecancharacterizevariance,whichap-
plicationsneedto makedecisionsbasedon thepredictions.
Onecatchis thatapplyingtime seriesmodelsrequirescol-
lecting periodic measurements,which is sometimeshard.
We are continuingto evaluatesimilar techniquesfor net-
work load.

6.2 What needsmore work

We discoveredthat oneof the mostdifficult challenges
in building aresourcemonitoringsystemis makingthesys-
temeasilyportableandrobustacrossdiverseenvironments.
Our goal is thatRemosmustbeableto reportresourcein-
formationfor any networkedenvironment,with minimal, if
any, manualconfiguration.In practice,we discoveredthat
bringingup Remosin a new environmentcanbechalleng-
ing. Problemsrangefrom: networkfeaturesthatwehadnot
encounteredbefore(e.g. VLANs), andnetworkelements
thatweremisconfiguredor have non-standardfeatures(e.g.
non-standardSNMP implementations). To someextend,
theseportability problemsshouldnot be a surprise: there
aremany networkvendorsandmany waysto configurea
network,sothisproblemis inherentlyhard.A relatedissue
is thatRemoscurrentlyassumesafairly staticenvironment,
sonetworkfailuresandhostmovementcanconfuseRemos.
Improving therobustnessandportabilityof Remosis anon-
goingeffort.

Remos currently relies on SNMP MIB and bench-
mark information. Many other sourcesof information
couldbetapped,includingmeasurementscollectedby ISPs
for traffic engineeringpurposes,application-level informa-
tion [23], and network information that is collected in
vendor-specificways. Also, for certaintypesof networks,
suchassharedEthernets,weneedbettertechniquesfor per-
formanceprediction.

Therearemany waysin which theRemossystemcould
be improved. We are currently working on updatingthe
communicationbetweenRemoscomponents.The initial
implementationuseda simple text format that we would
like to replacewith anXML formatusingHTTP asa com-
municationprotocol.Thischangewouldgiveusmuchmore
flexibility in the kinds of datawe can exchangebetween
components,and it would also allow new collectorsand
other piecesto be addedmore easily. In particular, the
XML formatwill enableusto sendanentirehistoryof net-
work measurementsto the RPSsubsystemfor prediction
purposes.

As networktechnologyadvances,wemustmodify exist-
ing collectorsor addnew collectorsto discover information

in networkswith new kindsof protocolsandhardware.In
particular, we areworking on a new collectorfor wireless
networks,andimproving our existing collectorsto support
mobilehosts.A relatedextensionis to allow thesystemto
operatethoughit maynotknow how to handleall thecom-
ponentsin a network.

Our BenchmarkCollectorcouldbeimprovedby adding
supportfor otherkinds of benchmarkingprograms,espe-
cially thosethat put aslittle load on the networkaspossi-
ble,andthosethatdonotrequirebothasourceandasinkto
measurenetworkinformation. We would alsolike to pro-
vide information aboutmetricsother than bandwidth,for
examplenetworkjitter, whichcouldbenefitmultimediaap-
plications.

The currentRemossystemis able to provide a wealth
of informationat a ratethatsufficesfor many applications.
However, asprocessorandnetworkspeedsimprove,appli-
cationsmaydemandmorefrequentupdatesonthechanging
environment.An issuethathasnotyetbeenexploredis how
far thisarchitecturescalesin theperformancedomain– how
higha rateof requestscouldbesatisfied.

Finally, therearea numberof issuesthat we have not
lookedat in depth, including an evaluationof techniques
for cachingandsharingof predictionresults,dealingwith
non-TCPtraffic (that claimsto be “TCP-friendly”), anda
characterizationof non-networkeffects that influenceap-
plicationnetworkperformance.

6.3 When is Remosmostuseful?

Many applications(e.g., video streaming)only care
abouttheperformanceof a singleflow betweentwo nodes
that arecurrentlyexchangingdata. In suchcases,Remos
is probablyoverkill, becausetheapplicationcangetthere-
quired information more cheaplyandmore accuratelyby
monitoringits own performance[3]. However, for applica-
tions thathave to selecta server from a setof options,that
haveto selectandassignasetof computenodeswith certain
connectivity properties,or thathaveto makecritical config-
urationdecisions(e.g. to useremoteor local execution,to
usevideo plus audio,or audioonly), Remosprovidesex-
plicit connectivity information that would be difficult and
expensive to collectotherwise[13].

We endup with a modelof anadaptive applicationthat
combinestwo typesof adaptationusingdifferentinforma-
tion sources.The applicationperformsnodeandnetwork
selection,and high-level self-configurationbasedon ex-
plicit, Remos-providedresourceinformation. This type of
decisionis typically madewhen the applicationstartsup,
or, for long runningapplications,periodicallyduring exe-
cution. During execution,the applicationcanfine-tuneits
performancebasedon directmeasurements.This modelis
in partdrivenby thecostof adaptation:adaptationthatdoes
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not involve changesin nodeusagecanbe cheapandfast,
while changingnodesor high-level applicationconfigura-
tion will bemoreexpensive.

7 Conclusions

The Remosarchitectureis designedto provide the in-
formationneededby Grid applicationsacrossmany diverse
environments. Remoshas beenimplementedand tested
in a variety of differentnetworkingenvironmentsandhas
beenusedto supporta varietyof applications,thusdemon-
stratingthe flexibility andportability neededfor emerging
applications. We have usedRemosto supportboth large
numbersof machinesat a singlesite aswell asto support
several sitessimultaneouslyand find that the architecture
scaleswell. While our architecturedifferssomewhat from
theproposedGrid MonitoringArchitecture(GMA), a com-
parisonindicatesboththatRemosshouldinteractwell with
GMA-basedmonitoringtools andthat the future develop-
mentandperformanceof toolssuchasRemoswill beeasily
supportedwithin theframework of theGMA.

Theavailability of theRemosAPI allowsapplicationde-
velopersto addressnew aspectsof theenvironment.With-
outsacrificingportabilityfor performance(or viceversa),it
is now possibleto developapplicationsthatuseinformation
aboutthestatusof thenetworkto determinethenext adap-
tationsteps.Theavailability of andexperiencewith theRe-
mosarchitecturebacksup the claimsmadeby the Remos
API andprovidesa practicaldemonstrationthat it is pos-
sible to find a workablecompromisebetweenthe conflict-
ing objectivesof functionality, performance,andportabil-
ity. As networksgrow in complexity, andasefforts like the
Grid bring more applicationdevelopersinto this domain,
theinterestin infrastructuresystemslike Remosis likely to
increase.Dealingwith andobtainingperformanceinforma-
tion will remainanimportanttopic;Remosprovidesbotha
setof abstractionsandanarchitecturethathaveproventheir
valuein practicalsettings.
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