
Virtual TCP Offload: Optimizing Ethernet Overlay
Performance on Advanced Interconnects

Zheng Cui† Patrick G. Bridges† John R. Lange∗ Peter A. Dinda‡

†
Department of CS

University of New Mexico
Albuquerque, NM 87131, USA

{cuizheng,bridges}@cs.unm.edu

∗
Department of CS

University of Pittsburgh
Pittsburgh, PA 15260 USA

jacklange@cs.pitt.edu

‡
Department of EECS

Northwestern University
Evanston, IL 60208 USA

pdinda@northwestern.edu

ABSTRACT

Ethernet overlay networks are a powerful tool for virtu-
alizing networked applications. Their performance suffers
on advanced interconnects such as Infiniband, however, be-
cause of differences between the semantics of Ethernet and
the underlying network. In this paper, we demonstrate
that providing a virtual TCP offload Ethernet device to
the guest operating system dramatically improves overlay
network performance on advanced interconnects like Infini-
band. The virtual offload device enables the overlay system
to leverage the semantics and performance characteristics of
the underlying network to maximize overlay performance.
Our evaluation shows that this approach allows applications
to achieve near-native microbenchmark bandwidth and dra-
matically improved application performance compared to al-
ternative overlay approaches when running on an Ethernet
virtual overlay on a QDR Infiniband fabric.

Categories and Subject Descriptors

D.4.4 [Software]: OPERATING SYSTEMS

Keywords

Overlay Networks; Virtualization; HPC; InfiniBand

1. INTRODUCTION
Data centers and scientific clouds require clusters and su-

percomputers interconnected with advanced networks, such
as InfiniBand, SeaStar, and Gemini interconnects. Such
hardware resources are increasingly being integrated with
virtualization as a means of deploying and managing large-
scale computing systems with the “Infrastructure as a Ser-
vice” (IaaS) cloud computing model. The combination of

This project is made possible by support from the United
States National Science Foundation (NSF) via grants CNS-
0707365 and CNS-0709168, and by the Department of En-
ergy (DOE) via grants DE-SC0005050 and DE-SC0005343.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
HPDC’13, June 17–21, 2013, New York, NY, USA.
Copyright 2013 ACM 978-1-4503-1910-2/13/06 ...$15.00.

virtual machines and virtual overlay networking provides a
powerful model to realize virtual distributed and parallel
computing with strong isolation, portability, and recover-
ability properties.

A virtual Ethernet overlay network supports broad classes
of applications and software stacks by presenting a uniform
Ethernet communication environment. This simple, yet pow-
erful abstraction is provided regardless of the underlying net-
working hardware, which may be quite different from Eth-
ernet, and which may span multiple different data center
and supercomputer networks. The abstraction is a form of
software-defined networking (SDN), albeit the implementa-
tion is accomplished purely in end-system software via tun-
neling. This has the benefit that it does not require hard-
ware support (e.g., OpenFlow), nor cooperation among data
center/supercomputer networks, and can extend anywhere
where IP networking is available.

Past work has shown that this model can provide near-
native performance on high-speed Ethernet networks [6,17].
Providing the same Ethernet abstraction on high-end data
center, cluster, and supercomputer networks provides a num-
ber of additional advantages, such as reducing the effort
porting applications designed for Ethernet to other hetero-
geneous networks.

Current virtual overlay networks, however, are unable to
deliver near-native network performance on advanced inter-
connects such as Infiniband due to the semantic gap between
the Ethernet overlay network and underlying physical net-
work. Such a semantic gap [8] is inevitable in virtual overlays
whenever the semantics of the underlying physical network
are different from that of the overlay network. In the case
of an Ethernet overlay on top of Infiniband, for example,
performance problems from the semantic gap arise from dif-
ferences in overlay and network MTUs, or unnecessary pro-
tocol overheads from providing reliability semantics in both
the guest protocol stack and in the host network adapter.
While substantial work has been done bridging the semantic
gap between the VM and the VMM in general [12–15,21,23],
comparatively little work has been done on bridging this gap
for virtual overlay networks.

This paper proposes enhancing the Ethernet virtual over-
lay network with virtual TCP offload support to bridge the
semantic gap between the guest application, the overlay net-
work, and the underlying interconnect. TCP offload capabil-
ities in the virtual Ethernet device allow the guest to better
communicate its desired network semantics to the overlay,
improving its ability to meet guest network demands. We

49

demonstrate the viability of this approach by enhancing the
VNET/P virtual network overlay with offload device capa-
bilities and running it on top of a high-performance Infini-
band network fabric. Our results show that adding offload
capabilities to the Ethernet overlay network substantially
increases network performance on sophisticated data center
networks while preserving the advantages of Ethernet over-
lay networks.

The remainder of this paper is organized as follows. In
Section 2, we provide basic background on virtual overlay
networks in general, the VNET overlay we use in this pa-
per, and the Infiniband interconnect on which we evaluate
our proposed overlay enhancement. Section 3 then follows
with a discussion of the challenges the semantic gap presents
when running an Ethernet overlay on top of an advanced in-
terconnect such as Infiniband. Section 4 describes our pro-
posed mechanism for spanning this semantic gap, Virtual
TCP Offload Engines (VTOEs), and Section 5 provides de-
tails of the implementation of this mechanism for Infiniband
networks with Linux guests. Sections 6 and 7 then provide
microbenchmark and application benchmarks demonstrat-
ing the advantages of this approach. Finally, Section 8 con-
cludes and describes directions for future work.

2. BACKGROUND AND RELATED WORK
In this section, we provide a brief introduction to virtual

overlay networks. The implementation and evaluation of our
approach to optimizing overlay performance for advanced in-
terconnects was conducted using the VNET/P high-performance
virtual overlay on an InfiniBand network. Because of this
we also provide key architectural details of VNET/P and
the Infiniband network architecture.

2.1 Virtual Overlay Networks
Current adaptive cloud computing systems use software-

based overlay networks to carry inter-VM traffic. For ex-
ample, the user-level VNET/U system [18, 24, 25] combines
a simple networking abstraction within VMs with location-
independence, hardware-independence, and traffic control.
Specifically, it exposes a layer 2 abstraction that lets the
user treat his VMs as being on a simple LAN, while allow-
ing the VMs to be migrated seamlessly across resources by
routing their traffic through the overlay. By controlling the
overlay, the cloud provider or adaptation agent can control
the bandwidth and the paths between VMs over which traffic
flows. Such systems [22,24] and others that expose different
abstractions to the VMs [26] have been under continuous
research and development for several years.

2.2 VNET/P Implementation
VNET/P [17] is an in-VMM, overlay-based layer-2 virtual

networking system for the Palacios VMM [19]. VNET/P
consists of a virtual NIC in each guest OS, an extension to
the VMM (the VNET/P Core) that handles packet routing
and interfacing to virtual NICs, and a Linux kernel module
(the VNET/P Bridge) for interacting with the host’s net-
work interfaces and remote systems. For high performance
applications, as in this paper, the virtual NIC conforms to
the virtio interface, but several virtual NICs with hardware
interfaces are also available in Palacios.

In operation, the virtual NIC moves Ethernet packets be-
tween the application VM and Palacios, and includes receive
and transmit rings. Interrupts are injected into the guest

via a virtual IOAPIC/APIC interrupt controller structure.
Routing and packet forwarding occur in the VNET/P Core.
Routing is based on MAC addresses with a hash-based cache
system that allows for constant time lookups in the common
case. A packet routed by the VNET/P Core to a guest is
handed to a virtual NIC, while a packet routed to an exter-
nal network or machine is routed to the VNET/P bridge.
The VNET/P bridge, which is embedded in the host kernel,
encapsulates guest Ethernet packets into UDP datagrams
and sends them out through host Ethernet devices.

Our experiments in this paper include portions of the
VNET/P+ (note the “+”) optimizations that improve the
performance of VNET/P for high speed networks [6]. They
allow VNET/P to achieve near-native performance for a
wide range of microbenchmarks and MPI application bench-
marks on high-speed Ethernet networks, including 10 Giga-
bit/second Ethernet networks. In particular, we utilize zero-
copy data overlay data movement techniques, but have not
yet merged in support for optimistic interrupt techniques.

2.3 InfiniBand
InfiniBand [1] is a standard switched fabric that supports

high bandwidth (up to 120Gb/s) and low latency. Processor
nodes connect to the fabric through Host Channel Adapters
(HCA). High-performance connections on these devices, par-
ticularly Reliable Connected (RC) modes, provide zero-copy
RDMA data transfer which bypasses OS involvement in data
movement. Infiniband NICs also provide other network in-
terfaces, for example the Unreliable Datagram (UD) mode,
whose semantics are similar to that of traditional Ethernet
and are generally used for administrative tasks.

The InfiniBand specification defines an HCA interface called
Verbs. Upper layer protocols are implemented on top of
Verbs. This interface is asynchronous: a consumer posts
Work Requests (Send, Receive, RDMA Write, RDMA Read
and Atomic operations) to the HCA. The HCA optionally
signals their completion and can schedule a completion no-
tification (through event queues or interrupt).

In addition, Infiniband implementations generally provide
IP-over-Infiniband support (IPoIB) [16]. The IPoIB func-
tionality of the device driver allows the TCP/IP stack of
the host to use the NIC to transport IP packets. Network
overlay systems such as VNET/P can use IPoIB functional-
ity to get basic overlay functionality on Infiniband networks.
For reasons discussed later in Section 3, this approach has
significant performance problems.

2.4 InfiniBand Virtualization
Currently two approaches are very popular in virtualiz-

ing InfiniBand with high performance: VMM-bypass [20]
and Passthrough [2, 6, 19]. VMM-bypass I/O extends the
idea of OS-bypass originated from user-level communica-
tion, and allows time-critical I/O operations to be carried
out directly in guest VMs without involvement of the VMM
and/or a privileged VM. However, the user-space applica-
tion in the guest has the direct access to the physical IB
device resources. In the Passthrough model, the VM has di-
rect access to the InfiniBand devices via VMM’s passthrough
mechanism.

Both of these approaches can significantly improve I/O
and communication performance for VMs, in some cases
even without sacrificing safety or isolation. However, they
lock the VM to the specific InfiniBand infrastructure, los-

50

ing the portability of virtual networks. This makes check-
pointing and migration more difficult because when a VM
is restored from a previous checkpoint or migrated to an-
other node, the corresponding state information on the de-
vice needs to be restored also, which requires a similar or
identical device.

3. CHALLENGES
Virtual Ethernet overlay mechanisms like VNET effec-

tively support high-performance applications on physical net-
works with semantics similar to Ethernet. On more ad-
vanced interconnects, however, the semantic gap between
overlay features and physical interconnect features presents
difficult performance challenges. In particular, guest OSes
see only a relatively simple Ethernet interface and so do not
provide the overlay with higher-level semantic information
about desired network semantics. This lack of knowledge
about the guest-level communications can lead to perfor-
mance degradation.

When deploying a virtual Ethernet overlay on top of ad-
vanced interconnects, there are two straightforward approaches
to addressing the semantic gap between the virtual over-
lay and underlying networks, like Infiniband, with more ad-
vanced features: (1) Using minimal interconnect features
to minimize the semantic gap, or (2) using more advanced
features without guest knowledge. Each has significant per-
formance problems as we describe below.

3.1 Using Minimal Features
The first alternative is to use minimal interconnect fea-

tures to transport guests’ traffic. The interconnect may be
able to provide reliability to applications on demand, while
the overlay delivers packets without any guarantees.

As an example, overlays could use the InfiniBand Unreli-
able Datagram (UD) transport service to minimize the gap
between overlay semantics and physical network semantics.
Unfortunately, datagram-based transport services in most
advanced interconnect implementations are limited to Max-
imum Transmission Unit (MTU) sizes which are usually less
than 4KB. The Infiniband MLX4 NICs used in this paper,
for example, impose a 2KB MTU. Small MTUs dramati-
cally reduce network throughput on high-speed networks by
increasing the required number of network headers, rout-
ing decisions in the routers, protocol processing and device
interrupts [5].

In addition, minimal-feature interconnect modes generally
do not bypass the OS and require significant interrupt pro-
cessing. Such interrupts are even more expensive in virtual-
ized operating systems than in non-virtualized hosts [6]. For
example, virtual interrupt emulation introduces overhead for
virtual device register handling (such as APIC, IOAPIC,
and NIC), guest context switches, and the VM/guest stack
switch. Moreover, the virtual machine monitor (VMM) has
to maintain the emulation state for each trap, which sig-
nificantly increases virtual network latency and decreases
throughput by more than 30%.

3.2 Translating to Advanced Features
Alternatively, the overlay system can use advanced inter-

connect features that provide more complex semantics (e.g.,
connected reliable streams) while hiding these features from
the guest. However, guests cannot assume these semantics
will be provided since the overlay exports a simple Ether-

net interface to VMs. As a result, guests must provide such
semantics themselves when they are necessary. This can in-
troduce duplicated guest/overlay protocol processing over-
heads.

For example, using a Linux guest and Infiniband RC con-
nections in the overlay causes the guest to unnecessarily
send TCP connection establishment requests and acknowl-
edgments over the reliable Infiniband connection. The guest
also unnecessarily checksums the incoming packets and per-
forms congestion and flow control activities. These increase
packet latency and guest CPU processing requirements, re-
ducing application performance.

4. VIRTUAL TCP OFFLOAD
To address these semantic gap issues, we supplement the

virtual Ethernet NIC exported to the guest by the over-
lay with a Virtual TCP Offload Engine (VTOE). In this
section, we give an overview of our the general VTOE ap-
proach, show the architecture of VNET/P as enhanced with
VTOE capabilities, and describe the overall architecture of
the VNET VTOE NIC.

4.1 Overview
TCP Offload Engine (TOE) Ethernet devices offload the

processing of the entire kernel TCP/IP stack to the network
controller. They are primarily used with high-speed network
interfaces such as 10 Gbps Ethernet, where the processing
overheads of the network stack are significant [4]. Most mod-
ern operating systems support TCP offload engines, though
Linux has no generic support for TCP offload.

By exporting a virtual TCP offload engine to the guest,
the overlay enables guests that support TCP offload to des-
ignate both reliable and unreliable traffic at the Ethernet
level. This reduces the semantic gap between the guest and
overlay. For connections that span only interconnects that
guarantee reliable transport, this results in lower virtualiza-
tion overhead and achieves better network performance, as
shown in Section 7. For connections that cross networks that
do not guarantee reliable transport, the overlay itself pro-
vides reliability using TCP; existing overlays such as VNET
already support overlay-level TCP tunneling. By exposing
VTOE to the guest, the overlay promises to either run TCP
itself or to use a network that obviates the need for it.

4.2 Virtual TCP Offload in VNET/P
Figure 1 shows the overall architecture of VNET/P sup-

plemented with a Virtual TCP Offload Engine, which we
denote VNET+VTOE. In this system, guests run in appli-
cation VMs. The VMM provides a virtual (Ethernet) NIC
with an offload engine to each guest. Basic Ethernet virtual
NIC functionality is used to transport non-TCP Ethernet
packets between the application VM and the overlay imple-
mentation inside the VMM, while the VTOE carries TCP
traffic.

Inside the virtual machine monitor, the VNET Core and
Host Connection Agents (VNET Core CA andVNET Host -
CA) are respectively responsible for interacting with the
guest VNIC and the host physical NIC. Specifically, the
VNET Core CA supplies the guest with a VNET Socket
ID for each connection it creates to use to make requests
to the overlay. The VNET Host CA creates and manages
shadow connections over the underlying high performance

51

Figure 1: VNET+VTOE architecture with Linux
VM and Palacios VMM.

fabric, which the VNET Core CA references using a shadow
connection ID (shadow CID).

More specifically, VNET Core CA:

1. Maps between guest VNET Socket IDs (SIDs) and host
shadow Connection IDs (CIDs),

2. Provides receive buffers to the VNET Host CA based
on buffers supplied by the guest, and

3. Translates events and interrupts from the underlying
physical device to VTOE events and interrupts as nec-
essary.

For example, when the guest requests the creation of a
new offload TCP connection through the VTOE NIC, the
VNET Core CA allocates a unique Socket ID for the guest
and returns this to the guest using the VTOE NIC. When a
connection is later established between two VNET sockets,
the VNET Host CAs on each hosts create a unique shadow
Connection ID. Each guest uses its local Socket ID when en-
queuing buffers to the overlay, and VNET Core CAs maps
between the VNET Socket ID and the shadow Connection
ID when interacting with the VNET Host CA.

The VNET Core CA memory allocator manages direct
memory access (DMA) from buffers posted to the guest SID
to the underlying shadow CID, and the VNET Core CA
event dispatcher handles virtual interrupt and asynchronous
event delivery to virtual offload engines based on the physi-
cal interrupts raised by local devices and events signaled by
the underlying physical device. These components are also
responsible for handling the memory mapping and interrupt
processing for zero-copy cut-through forwarding.

4.3 VTOE NIC Architecture
The VTOE NIC provides a simple offload interface be-

tween the guest and the VNET Core CA. It supports two
main classes of operations between the guest and the overlay
in the virtual machine monitor. Specifically, I/O ports and
an event queue are used for managing connection creation
and state changes, while interrupts and send and receive

work queues are used to manage data movement between
the guest, the overlay, and the network.

The guest and overlay manage connection creation and
state management using I/O ports and a memory-mapped
event queue. Guests request the creation of new connections
by programming VTOE I/O ports, and the overlay commu-
nicates connection state information back to the guest using
the event queue. All event queue entries are tagged with the
corresponding socket ID, and event queue includes events
for all TCP-relevant state changes, including CONNECT -
REQUEST, CONNECT ESTABLISHED, DISCONNECTED,
ADDRESS ERROR, UNREACHABLE, and CONNECT -
REJECTED,

Likewise, the guest uses send and receive work queues
(SWQ and RWQ) to enqueue data buffers to the overlay for
transmission or receiving incoming data. Each queue entry
is tagged with the relevant SID, enabling the VNET Host -
CA to map to the relevant underlying shadow connection.
Once data has arrived into a guest buffer, the overlay raises
a virtual interrupt into the guest at the appropriate time,
either eagerly or using more complex optimization such as
optimistic interrupts [6].

5. IMPLEMENTATION
Our initial implementation of VTOE support in VNET/P

has focused on Infiniband networks, but VTOE could also be
used to support overlay functionality on other high-performance
network fabrics such as Cray SeaStar or Gemini systems.
In addition, we have implemented VTOE NIC support for
Linux guests; because general Linux support for TCP of-
fload is somewhat lacking, this required special measures on
Linux guests. We detail the specific work done to support
VNET+VTOE on Infiniband with Linux guests in the re-
mainder of this section.

5.1 Infiniband Support
VNET+VTOE Infiniband support has two main elements:

connection management and data movement. Connections
are established in a multistep handshake process before en-
tering the data transfer phase. After data transmission
is completed, the connection termination closes established
virtual circuits and releases all allocated resources. In the
remainder of this subsection, we describe the mapping be-
tween TCP and Infiniband RC connection states, and detail
management of data movement for Infiniband and VNET+-
VTOE.

5.1.1 Connection Management

For connection management, the VNET Core CA must
manage three different sets of states: the guest TCP state,
the Infiniband connection state as per the IB Connection
Management standard, and the underlying Infiniband queue
pair state. To do this, it makes requests to the VNET Host -
CA in response to guest connection changes, maps event
notifications from the VNET Host CA to TCP event noti-
fications to the guest, and communicates with the local In-
finiband connection manager. We use Active/Passive (also
referred as client/server) mode to establish a connection.
In the client/server model, the shadow server side listens for
connection requests with a service ID; the client shadow side
initiates a connection request with a matching service ID.

Connection Establishment: Figure 2(a) shows the TCP
state machine of the VNET socket and the IB state of the

52

(a) Connection establishment (b) Connection termination

Figure 2: State machines for both frontend VNET sockets and shadow CIDs, during connection establishment
and termination.

shadow connection during connection establishment. The
right half of figure Figure 2(a) corresponds to an active open
by the guest (i.e. a connect() system call), while the left
half of the figure corresponds to a passive open by the guest
(i.e. a listen() system call). Note the close, but not exact,
correspondence between the TCP and IB connection state
machines.

When the guest performs an active open on the VNET
socket and changes its socket state to TCP SYN SENT, the
overlay sends of an IB REQ (request) packet which includes
the Socket ID and number of available receive buffers. It
also changes the IB connection state changes to IB REQ -
SENT and changes the underlying queue pair (not shown)
to the READY TO RECEIVE state.

Note that during this process, overlay routing tables and
existing IB infrastructure are used to handle address resolu-
tion mapping guest Ethernet addresses to underlying Infini-
band addresses in the overlay. As part of this process, the
overlay delivers ROUTE RESOLVED events to the guest as
necessary.

When the remote side responds with an IB REP (reply)
message, the VNET Core Connection Agent changes the
shadow connection state to IB REP RECEIVED, sets the
queue pair to READY TO SEND state, sends an IB RTU
(ready-to-use) message, and transitions to IB ESTABLISHED
state. It then notifies the guest of the response to its con-
nection request. The guest transitions the guest socket to
the TCP ESTABLISHED state in response.

The process is similar on passive opens. The overlay sends
CONNECT REQUEST events to the guest upon receipt of
an IB REQ packet, initializes the underlying queue pair (not
shown), and sends IB REP message. Similarly, it sets the
queue pair to READY TO SEND and delivers the guest an
ESTABLISHED event on the receipt of an IB RTU message.

Connection Termination: Figure 2(b) illustrates the
procedure for connection teardown. When a guest wishes to
stop its half of the connection, it send a TCP FIN packet

to its peer and changes state from TCP ESTABLISHED to
TCP FIN WAIT1.

On receiving the FIN message, the peer changes state from
TCP ESTABLISHED to TCP CLOSE WAIT. It continues
sending any outstanding data, however, before notifying the
overlay to close its half of the connection. After sending out
all the outstanding packets, the peer sends a FIN packet to
its peer, sends a disconnect command to the overlay, and
transitions to state TCP LAST ACK. In the overlay, the
shadow CID sends a disconnection request message to the
peer host and changes IB connection state to IB DREQ -
SENT. Upon receiving IB DREP from the active-closing
host, the shadow CID changes queue pair state to ERROR,
and transitions to state IB TIME WAIT.

When the active-closing shadow CID receives the discon-
nection request from the passive-closing host, it transits to
state DREQ RCVD. It delivers all the incoming packets to
the guest VTOE buffers, and raises a DISCONNECT event
to the guest. It then changes queue pair state to ERROR,
sends an IB disconnection reply message to the peer host,
and changes IB connection state to IB TIME WAIT. When
the guest either gets the FIN packet from the peer, or the
DISCONNECT event from the overlay, it processes all the
incoming data and transitions to state TCP TIME WAIT.
Finally, timeouts are used to transition from time wait to
idle connection states.

5.1.2 Data Transfer

Data transfers leverage two optimization techniques.
Transmission with Zero Overlay Copies: The guest

OS in the VM includes the device driver for the virtual NIC
and the VTOE. The socket initiates packet transmission by
posting a SEND request with Socket ID and data source to
the send work queue in the VTOE NIC. In the overlay, the
packet dispatcher sends the packet of type TCP OFFLOAD
to the VNET Core Connection Agent. The VNET Core -
CA maps the packet Socket ID to the appropriate shadow

53

CID and posts the packet to the appropriate Infiniband RC
queue pair.

While the packet is handed off multiple times, there is no
copy from the guest’s socket buffer to the host’s NIC. We
adopt the zero-copy data forwarding technique to avoid any
data copies in the overlay. Note, however, that the guest
may include a copy from the application’s data buffers to
the VNET socket’s private buffer.

Reception with Zero Overlay Copies: As in the trans-
mit case, guests use the receive work queue in the VTOE
NIC to post receive buffers to different connections. The
VNET Core CA and VNET Host CA work together to post
these buffers to the queue pair associated with the shadow
connection. As in the send case, the receive datapath to the
guest OS does not require any copies, using the zero-copy
data forwarding technique. Also note that the receive path
does not need to route packets in the overlay, since each
shadow CID is associated with a unique guest socket ID.

5.2 Interfacing With Linux Guests
Interfacing VNET+VTOE with Linux is somewhat com-

plicated due to the lack of general TCP offload support in
Linux. We worked around this problem similarly to how
Infiniband and other Linux TCP offload implementations
do. In particular, we use the Infiniband SDP [3] approach
to dynamically change the application address family into
AF INET VNET using a preload library. This address fam-
ily then redirects to new offload drivers in the guest. This
code has two elements, the VNET socket provider and the
VTOE socket module.

The VNET socket provider is user-mode shared library
code that provides socket direct extensions to the TCP/IP
stack and determines which connections to redirect, based
on protocol type, to the AF INET VNET address family.
These socket direct extensions are completely transparent
to the higher-layer protocols and applications that run on
top of them. Applications interact in the same way with a
VNET+VTOE stack as they would with a standard TCP/IP
stack.

For the connection establishment calls, the provider makes
a routing and policy decision and decides whether a TCP or
VNET socket should be created. If a TCP socket is required,
all calls on the socket are redirected to the Linux socket
chain. If a VNET socket is required, the calls are redirected
to the kernel VNET socket module.

The VNET socket module handles the socket operations
redirected from the TCP socket by the VNET socket provider,
updating kernel socket state and interfacing the VTOE de-
vice as necessary. and responding asynchronous events.

Although in this work the user is responsible for inserting
the kernel module into the guest, and for assuring that the
application uses the preload library, this not strictly nec-
essary. In related work, we have shown how both of these
steps can be done without user or guest cooperation through
VMM-based code injection [9].

6. MICROBENCHMARKS
We first studied the effects of VTOE on a set of simple

TCP and MPI throughput and latency microbenchmarks.
Application benchmarks are described in Section 7.

6.1 Testbed
Our testbed, which is used both here and in the next sec-

tion, consists of 6 physical machines each with dual quad
core 2.3 GHz 2376 AMD Opteron “Shanghai” processors (8
cores total), 32 GB RAM, and a Mellanox MT26428 In-
finiBand NIC in a PCI-e slot. The Infiniband NICs were
connected via a Mellanox MTS 3600 36-port 20/40 Gbps
InfiniBand switch.

We compared the performance of four different configura-
tions, all mapped to underlying Infiniband RC connections:

• Native+SDP/Uverbs: Infiniband Socket Direct Pro-
tocol to offload TCP connections or MPI directly using
Infiniband user-level verbs.

• Native+IPoIB: In-kernel TCP over the Infiniband
in-kernel IP-over-IB implementation.

• VNET+VTOE: VNET Ethernet overlay with vir-
tual TCP offload support.

• VNET+IPoIB: In-kernel TCP over VNET on top of
the host IP-over-IB implementation.

For VNET+VTOE and VNET+IPoIB measurements, we
ran a simple Linux 2.6.32 host with a minimal BusyBox
configuration, and the Palacios VMM. The guest used was
a Linux 2.6.30 kernel also with a minimal BusyBox running
on a virtual machine with a single virtio network interface,
4 cores, and 2.5 GB of memory. In the VNET+VTOE con-
figuration, the guest is provided with a single virtual TOE.
Unless otherwise specified, the virtio NIC provided to the
guest was configured to use 9000 byte MTUs. For native
measurement, we ran a Linux 2.6.30 kernel also with a min-
imal BusyBox. For Native+IPoIB and VNET+IPoIB con-
figurations, MTUs are set to 65520.

Performance measurements were made between identically
configured machines. To assure accurate time measurements
in the virtualized case, each guest was configured to use
the CPU’s cycle counter, and Palacios was configured to al-
low the guest direct access to the underlying hardware cycle
counter.

The CPU utilization is reported by TTCP by dividing the
total of user mode time + guest OS kernel time by real used
wall-clock time, so it includes both the guest OS and VMM
CPU costs, and is not averaged for single-thread TTCP.

6.2 Microbenchmarks
We used simple two-node TCP and MPI benchmarks to

provide an initial characterization of the impact of our pro-
posed VTOE infrastructure. TCP throughput was measured
using ttcp-1.10. For simple MPI tests, we used the Intel
MPI Benchmark Suite (IMB 3.2.2) [11] running on Open-
MPI 1.3 [7], focusing on the point-to-point messaging per-
formance. For each test case, we ran 10 times and report
the average as the result.

6.2.1 TCP Uni-stream Bandwidth

Figure 3(a) shows uni-stream bandwidth performance for
VNET+VTOE running over a single connection along with
CPU utilization.

VNET+VTOE achieves near-native micro-benchmark per-
formance of 9.4 Gbps, compared to the 10 Gbps in the
Native+SDP case. This is higher bandwidth than Native+-
IPoIB performance, and Virtual TCP offload offers nearly
2.7 times the performance of VNET using IP-over-IB.

54

(a) TCP Uni-stream Bandwidth (b) TCP Bi-stream Bandwidth

Figure 3: End-to-end TCP throughput and CPU utilization of Native+SDP, Native+IPoIB, VNET+VTOE,
and VNET+IPoIB on InfiniBand Interconnect. VNET+VTOE performs more than 2.5 times better then
VNET+IPoIB on the InfiniBand Interconnect

In terms of CPU usage, Native+IPoIB and Native+SDP
have the same receive-side CPU usage, while Native+IPoIB
has more transmit-side CPU utilization than Native+SDP.
In the virtualization cases, VNET+VTOE has 76% receive-
side usage compared to 99% for VNET+IPoIB. On the trans-
mit side, VNET+IPoIB has less CPU usage than VNET+-
VTOE.

Analysis: First, in the native cases, the more transmit-
side CPU utilization in Native+IPoIB, mainly comes from
the interrupt processing triggered by large amount of ACKs
generated in the receive-side TCP stack.

Second, in the virtualization cases, on the receive side, the
higher CPU usage in VNET+IPoIB comes from two-level
overheads: 1) On the first level, sender’s TCP processing,
and overlay’s data copies, encapsulation, de-encapsulation,
and routing all slower down the packet delivering rate (vir-
tual link speed), and thus more virtual interrupts are gen-
erated to the receive side, which have the receive side spend
more time on virtual interrupt processing; and 2) on the
second level, each incoming packet goes through the whole
guest TCP stack, which makes the receive side busier.

On the transmit side, in VNET+IPoIB, each incoming
packet has to go through the TCP stack, so the receive-side
TCP is slower in generating ACKs to the sender; moreover,
the virtual link is slower in delivering ACKs, and virtual
interrupt handling takes time, thus the flow control window
in the sender is exhausted faster, and therefore the sender
slows down.

6.2.2 TCP Bi-Stream Bandwidth

In addition to unidirectional TCP performance, we also
examined bi-stream bandwidth performance to measure the
duplex capability of VNET+VTOE. In this test, we use two
machines and two threads on each machine. Each thread
connects to its partner on the other machine, thus two con-
nections are established between the machines. On each

connection, the basic TTCP bandwidth test is performed.
The throughput and CPU usage are shown in Figure 3(b).

Native+SDP shows good duplex performance, delivering
10 Gbps bandwidth for each stream. In contrast, Native+-
IPoIB hits a bottleneck on bi-directional data transfer, with
each stream dropping to half of the wire capacity. This is
due to the TCP acknowledgment processing, which increases
CPU interrupt processing overhead.

In the virtual overlay configurations, VNET+VTOE also
fully utilizes the physical interconnect’s full duplex features.
Similar to the native case, VNET+IPoIB does not utilize the
interconnect’s full-duplex capabilities. This again mainly
comes from the guest-level duplicated reliability processing
and virtual interrupts triggered by ACKs from the TCP
stack.

The CPU utilization is also presented for each test con-
figuration. The benchmark reveals that Native+SDP and
VNET+VTOE can not only achieve high aggregated band-
width, they also show reduced overall CPU utilization. Specif-
ically, Native+SDP reduces receive-side average CPU uti-
lization compared with Native+IPoIB, and VNET+VTOE
reduces the transmit-side average CPU usages compared to
VNET+IPoIB.

6.2.3 CPU Utilization

There are two important observations regarding the mea-
surements shown in Figure 3.

1. Receive-side CPU utilization in the virtualized config-
urations is lower than for the native configurations,
while the opposite is true for the transmit-side.

2. In both native cases, receive-side CPU utilization higher
than transmit-side CPU utilization, while the opposite
is true for both virtualized configurations.

In the native cases, the real physical link is fast enough to
keep the receive-side CPU busy with incoming packets, and
the NIC speed is faster than the CPU, thus the application

55

cannot consume data from the buffer as fast as it is filled.
The receive-side flow control window is quickly exhausted
and the sender has to slow down. In the native cases, the
network performance is bound to the receive-side CPU uti-
lization.

In contrast, in the virtualized cases, the virtual link pro-
vided by the overlay is slower, reducing load on the receiver.
The receiver now buffers data slower than the application
can consume it. The receive window is open, the sender
delivers data as fast as possible, and thus the network per-
formance is bound to the overlay virtual link data-transfer
rate.

6.2.4 MPI

Figure 4 shows the IMB MPI point-to-point performance
with VNET+VTOE. For small messages, VNET+VTOE
has more than two times lower message delay than VNET+-
IPoIB, but two times higher message delay than Native+-
IPoIB. For medium-sized messages, VNET+VTOE approaches
Native+IPoIB performance. For large messages, Native+-
IPoIB achieves about 47% of Native+Uverbs throughput,
while VNET+VTOE achieves 60% of Native+Uverbs per-
formance. VNET+IPoIB delivers about 28% of Native+-
Uverbs bandwidth.

7. APPLICATION BENCHMARKS
Beyond the microbenchmarks we described in the pre-

vious section, we also evaluated VNET+VTOE using the
HPC Challenge benchmarks, with the goal of characteriz-
ing the performance impact of the VTOE optimization on
communication-intensive applications.

7.1 HPC Challenge Benchmarks
The HPC Challenge (HPCC) benchmarks [10] are a set

of macro and application benchmarks for evaluating vari-
ous aspects of the performance of high performance comput-
ing systems. We used the communication-oriented macro-
benchmarks and application benchmarks to compare the
performance of VNET+VTOEwith Native+Verbs, Native+-
IPoIB, and VNET+IPoIB. For these tests, each VM was
configured with 4 virtual cores, 2.5 GB RAM, and a virtio
NIC. For VNET+VTOE, each VM is also configured with
a virtual TOE. For VNET testing, each host had one VM
running on it. We ran tests with 2, 3, 4, 5, and 6 VMs with
4 HPCC processes started on each VM. Thus our perfor-
mance results are based on HPCC with 8, 12, 16, 20, and
24 processes. In the native cases, no VMs are used and the
processes ran directly on the host.

7.1.1 Latency-Bandwidth Benchmark

This benchmark consists of the ping-pong test and the
ring-based tests, where the former measures the latency and
bandwidth between all distinct pairs of processes. The ring
based tests arrange the processes in a ring topology and
then engage in collective communication among neighbors
in the ring, measuring bandwidth and latency. The ring-
based tests model the communication behavior of multi-
dimensional domain-decomposition applications. Both nat-
urally ordered rings and randomly ordered rings are evalu-
ated. Communication is done with MPI non-blocking sends
and receives, and MPI SendRecv. Here, the bandwidth per
process is defined as total amount of message data divided

Figure 4: Intel MPI PingPong microbenchmark
showing bidirectional throughput as a function of
message size on InfiniBand Interconnect

56

by the number of processes and the maximum time needed
in all processes.

Figure 5 shows the results of the HPCC Latency-Bandwidth
benchmark for different numbers of test processes. Ping-
Pong Latency and Ping-Pong Bandwidth results are con-
sistent with the previous microbenchmarks: Native+IPoIB
generally has 5–12 times higher latency than Native+Uverbs,
and 40–60% bandwidth of Native+Uverbs. In VNET+-
VTOE, bandwidths are within 60% of Native+Uverbs, and
latencies are about 2 times that of Native+IPoIB. In VNET+-
IPoIB, bandwidths are within 20–30% of Native+Uverbs,
and latencies are about 4 times that of Native+IPoIB la-
tencies. The results show that our VTOE can substantially
enhance the performance of a software-based overlay virtual
network like VNET/P on InfiniBand.

7.1.2 HPCC application benchmarks

We considered the three application benchmarks from the
HPCC suite that exhibit the largest volume and complex-
ity of communication: MPIRandomAcceess, PTRANS, and
MPIFFT.

In MPIRandomAccess, random numbers are generated
and written to a distributed table, with local buffering. Per-
formance is measured in billions of updates per second (GUPs)
that are performed. Figure 6(a) shows the results of MPI-
RandomAccess, comparing the Native+Uverbs, Native+-
IPoIB, VNET+VTOE, and VNET+IPoIB cases. Native+-
IPoIB achieves 90–100% of Native+Uverbs performance in
cases of 8 and 12 processes. However, when the scale in-
creases, Native+IPoIB only delivers 40–75% of Uverbs per-
formance. For the overlay, VNET+VTOE delivers full Native+-
IPoIB performance at 8 and 12 processes and 60% of Native+-
Uverbs performance as the scale increases.VNET+IPoIB achieves
60–70% of Native+Uverbs performance at scale of 8 and 12
processes, while delivers 40–45% of Native+Uverbs perfor-
mance at greater scales.

PTRANS does a parallel matrix transpose, exercising the
simultaneous communications between pairs of processors.
The performance is measured in the total communication
capacity (GB/s) of the network. Figure 6(b) shows the
result of PTRANS for the Native+Uverbs, Native+IPoIB,
VNET+VTOE, and VNET+IPoIB cases. Native+IPoIB
achieves 63–80% of Native+Uverbs performance. VNET+-
VTOE achieves 100% of Native+IPoIB performance and
outperforms Native+IPoIB performance as the scale of the
application gets bigger, while VNET+IPoIB frequently de-
livers 5–10% of the Native+IPoIB performance.

MPIFFT implements a double precision complex one--
dimensional Discrete Fourier Transform (DFT). Its perfor-
mance is measured in Gflop/s. Figure 6(c) shows the result
of MPIFFT for the Native+Uverbs, Native+IPoIB, VNET+-
VTOE, and VNET+IPoIB cases. Native+IPoIB achieves
65–85% of Native+Uverbs performance. VNET+VTOE achieves
near Native+IPoIB performance, while VNET+IPoIB deliv-
ers around 19–50% of Native+IPoIB performance.

7.2 Discussion
As shown in the evaluation results, VTOE significantly

improves bandwidth and reduces CPU utilization for bandwidth-
intensive codes. For large messages and throughput-sensitive
applications, VTOE outperforms Native+IPoIB. On the other
hand, for the application benchmarks, the network commu-
nication consisted of a mixture of small and large packets,

and so their performance was determined both by through-
put and latency. Recall small-message latency in VNET+-
VTOE is still high, about twice Native+IPoIB latency and
10–14x higher than Native+Uverbs, although it has been im-
proved compared with that in VNET+IPoIB by more than
50%. This may explain why some application benchmarks
cannot achieve native performance despite VNET+VTOE
achieving native throughput in the microbenchmarks.

The long latency mainly comes from the virtual interrupt
emulation overhead, and the virtualization overhead is more
expansive than TCP kernel stack processing. From the re-
sults of application MPIRandomAccess, we can see the high
latency has negative impacts on the overall performance.
We expect that the optimistic interrupt techniques described
elsewhere will reduce this overhead, but have not yet imple-
mented these techniques in VNET+VTOE.

Considering the tradeoff between CPU overhead and net-
work performance, it is again true that MPI applications mix
communication and computation, and thus reduced CPU
availability and thus more CPU-intensive communication
handling may affect computation. However, when the com-
munication is slow, the application cannot make progress
even if sufficient CPU time is available. This is of particular
concern for MPI applications that do significant collective
communication and synchronization.

8. CONCLUSION AND FUTURE WORK
We analyzed the challenges in deploying virtual Ether-

net overlays on advanced heterogeneous interconnects such
as InfiniBand. The difficulties come from the semantic gap
generated by virtualization. To reduce the semantic gap, we
proposed, designed, and implemented a virtual TCP offload
model to improve virtual Ethernet overlay performance, in
terms of throughput, latency, and CPU utilization. This
approach improves virtual Ethernet overlay TCP through-
put by more than 2.5 times, cuts TCP latency by 50%, and
improves TCP application performance.

Although VTOE has reduced VNET+IPoIB latency on
InfiniBand by 50%, its latency is still high. Our previous
work [6] did a quantitative analysis of virtual overlay over-
head. The high overlay latency is due to the delayed virtual
interrupt delivery into the guests. Optimistic interrupt al-
lows the overlay delivers virtual interrupts to the guest prior
to the overlay data processing, overlaps the overlay’s pro-
cessing with the virtual interrupt emulation. Merging this
technique into the virtual TCP offload model should reduce
latency. Additionally, current VTOE overhead still includes
a memory copy between guest kernel space and applica-
tion buffers. Since advanced interconnects have RDMA fea-
tures, it should be possible enable remote user space memory
copiess without the intervention of either guest kernels or
VTOE modules, avoiding all data copies. We are currently
implementing such functionality in the VTOE.

9. REFERENCES

[1] The InfiniBand architecture specification, release 1.2.
www.infinibandta.org/specs.

[2] RDMA performance in virtual machines using QDR
Infiniband on VMware vSphere 5.
http://www.mellanox.com/pdf/whitepapers/RDMA -
Performance in Virtual Machines using QDR -
InfiniBand on VMware vSphere5.pdf.

57

(a) HPCC Latency on InfiniBand (b) HPCC Bandwidth on InfiniBand

Figure 5: HPCC Latency-Bandwidth benchmark for all of Native+Uverb, Native+IPoIB, VNET+VTOE, and
VNET+IPoIB. The results are generally consistent with the previous microbenchmarks, while the ring-based
tests show that latency and bandwidth of VNET+VTOE scale and perform better than VNET+IPoIB.

[3] Socket Direct Protocol.
en.wikipedia.org/wiki/Sockets Direct Protocol.

[4] TCP offload engine.
www.networkworld.com/details/653.html.

[5] Clark, D., Jacobson, V., Romkey, J., and

Salwen, H. An analysis of TCP processing overhead.
Communications Magazine, IEEE 27, 6 (june 1989),
23 –29.

[6] Cui, Z., Xia, L., Bridges, P. G., Dinda, P. A.,

and Lange, J. R. Optimizing overlay-based virtual
networking through optimistic interrupts and
cut-through forwarding. In Proceedings of the
International Conference on High Performance
Computing, Networking, Storage and Analysis (Los
Alamitos, CA, USA, 2012), SC ’12, IEEE Computer
Society Press, pp. 99:1–99:11.

[7] Gabriel, E., Fagg, G. E., Bosilca, G., Angskun,

T., Dongarra, J. J., Squyres, J. M., Sahay, V.,

Kambadur, P., Barrett, B., Lumsdaine, A.,

Castain, R. H., Daniel, D. J., Graham, R. L.,

and Woodall, T. S. Open MPI: Goals, concept, and
design of a next generation MPI implementation. In
Proceedings of the 11th European PVM/MPI Users’
Group Meeting (September 2004).

[8] Garfinkel, T., and Rosenblum, M. When virtual
is harder than real: security challenges in virtual
machine based computing environments. In
Proceedings of the 10th conference on Hot Topics in
Operating Systems - Volume 10 (Berkeley, CA, USA,
2005), HOTOS’05, USENIX Association, pp. 20–20.

[9] Hale, K., Xia, L., and Dinda, P. Shifting GEARS
to enable guest-context virtual services. In Proceedings
of the 9th International Conference on Autonomic
Computing (ICAC 2012) (September 2012).

[10] Innovative Computing Laboratory. HPC
challenge benchmark. http://icl.cs.utk.edu/hpcc/.

[11] Intel. Intel Cluster Toolkit 3.0 for Linux.
http://software.intel.com/en-us/articles/intel-mpi-
benchmarks/.

[12] Jones, S. T. Implicit operating system awareness in a
virtual machine monitor.
http://citeseerx.ist.psu.edu/viewdoc/download?rep=-
rep1&type=pdf&doi=10.1.1.143.6999,
2007.

[13] Jones, S. T., Arpaci-dusseau, A. C., and

Arpaci-dusseau, R. H. Antfarm: Tracking processes
in a virtual machine environment. In Proceedings of
the USENIX Annual Technical Conf (2006).

[14] Jones, S. T., Arpaci-Dusseau, A. C., and

Arpaci-Dusseau, R. H. Geiger: monitoring the
buffer cache in a virtual machine environment.
SIGARCH Comput. Archit. News 34, 5 (Oct. 2006),
14–24.

[15] Jones, S. T., Arpaci-Dusseau, A. C., and

Arpaci-Dusseau, R. H. VMM-based hidden process
detection and identification using Lycosid. In
Proceedings of the fourth ACM SIGPLAN/SIGOPS
international conference on Virtual execution
environments (New York, NY, USA, 2008), VEE ’08,
ACM, pp. 91–100.

[16] Kashyap, V. IP over InfiniBand (IPoIB) architecture.
IETF Network Working Group Request for Comments
RFC 4392, April 2006.

[17] L. Xia and Z. Cui and J. Lange and Y. Tang and

P. Dinda and P. Bridges. VNET/P: Bridging the
cloud and high performance computing through fast
overlay networking. In Proceedings of the 21st ACM
International Symposium on High-performance
Parallel and Distributed Computing (HPDC) (June
2012).

[18] Lange, J., and Dinda, P. Transparent network
services via a virtual traffic layer for virtual machines.

58

(a) HPCC MPIRandomAccess

(b) HPCC PTRANS

(c) HPCC MPIFFT

Figure 6: HPCC application benchmark results.
VNET+VTOE approaches Native+IPoIB perfor-
mance and scalable application performance when
supporting parallel application workloads on Infini-
Band with rigorous network communication.

In Proceedings of the 16th IEEE International
Symposium on High Performance Distributed
Computing (HPDC) (June 2007).

[19] Lange, J., Pedretti, K., Hudson, T., Dinda, P.,

Cui, Z., Xia, L., Bridges, P., Gocke, A.,

Jaconette, S., Levenhagen, M., and

Brightwell, R. Palacios and Kitten: New high
performance operating systems for scalable virtualized
and native supercomputing. In Proceedings of the 2010
IEEE International Symposium on Parallel Distributed
Processing (IPDPS) (April 2010), pp. 1 –12.

[20] Liu, J., Huang, W., Abali, B., and Panda, D. K.

High performance VMM-bypass I/O in virtual
machines. In Proceedings of the annual conference on
USENIX ’06 Annual Technical Conference (Berkeley,
CA, USA, 2006), ATC ’06, USENIX Association,
pp. 3–3.

[21] Menon, A., Cox, A. L., and Zwaenepoel, W.

Optimizing network virtualization in Xen. In
Proceedings of the annual conference on USENIX ’06
Annual Technical Conference (Berkeley, CA, USA,
2006), ATC ’06, USENIX Association, pp. 2–2.

[22] Ruth, P., Jiang, X., Xu, D., and Goasguen, S.

Towards virtual distributed environments in a shared
infrastructure. IEEE Computer (May 2005).

[23] Santos, J. R., Turner, Y., Janakiraman, G., and

Pratt, I. Bridging the gap between software and
hardware techniques for I/O virtualization. In
Proceedings of USENIX 2008 Annual Technical
Conference (Berkeley, CA, USA, 2008), ATC’08,
USENIX Association, pp. 29–42.

[24] Sundararaj, A., and Dinda, P. Towards virtual
networks for virtual machine grid computing. In
Proceedings of the 3rd USENIX Virtual Machine
Research And Technology Symposium (VM 2004)
(May 2004). Earlier version available as Technical
Report NWU-CS-03-27, Department of Computer
Science, Northwestern University.

[25] Sundararaj, A., Gupta, A., and Dinda, P.

Increasing application performance in virtual
environments through run-time inference and
adaptation. In Proceedings of the 14th IEEE
International Symposium on High Performance
Distributed Computing (HPDC) (July 2005).

[26] Wolinsky, D., Liu, Y., Juste, P. S.,

Venkatasubramanian, G., and Figueiredo, R. On
the design of scalable, self-configuring virtual
networks. In Proceedings of 21st ACM/IEEE
International Conference of High Performance
Computing, Networking, Storage, and Analysis
(Supercomputing 2009) (November 2009).

59

