
Hard Real-time Scheduling for Parallel Run-time Systems
Peter Dinda Xiaoyang Wang Jinghang Wang Chris Beauchene Conor Hetland

Northwestern University

ABSTRACT
High performance parallel computing demands careful synchro-
nization, timing, performance isolation and control, as well as the
avoidance of OS and other types of noise. The employment of soft
real-time systems toward these ends has already shown consider-
able promise, particularly for distributed memory machines. As
processor core counts grow rapidly, a natural question is whether
similar promise extends to the node. To address this question, we
present the design, implementation, and performance evaluation of
a hard real-time scheduler speci�cally for high performance parallel
computing on shared memory nodes built on x64 processors, such
as the Xeon Phi. Our scheduler is embedded in a kernel framework
that is already specialized for high performance parallel run-times
and applications, and that meets the basic requirements needed for
a real-time OS (RTOS). The scheduler adds hard real-time threads
both in their classic, individual form, and in a group form in which
a group of parallel threads execute in near lock-step using only
scalable, per-hardware-thread scheduling. On a current generation
Intel Xeon Phi, the scheduler is able to handle timing constraints
down to resolution of ⇠13,000 cycles (⇠10 µs), with synchronization
to within ⇠4,000 cycles (⇠3 µs) among 255 parallel threads. The
scheduler isolates a parallel group and is able to provide resource
throttling with commensurate application performance. We also
show that in some cases such �ne-grain control over time allows us
to eliminate barrier synchronization, leading to performance gains,
particularly for �ne-grain BSP workloads.

CCS CONCEPTS
• Software and its engineering → Real-time systems soft-
ware; Runtime environments; Ultra-large-scale systems;

KEYWORDS
hard real-time systems, parallel computing, HPC
ACM Reference Format:
Peter Dinda Xiaoyang Wang Jinghang Wang Chris Beauchene
Conor Hetland. 2018. Hard Real-time Scheduling for Parallel Run-time
Systems. InHPDC ’18: International Symposium on High-Performance Parallel

This project is made possible by support from the United States National Science
Foundation through grant CCF-1533560 and from Sandia National Laboratories through
the Hobbes Project, which is funded by the 2013 Exascale Operating and Runtime
Systems Program under the O�ce of Advanced Scienti�c Computing Research in the
United States Department of Energy’s O�ce of Science.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
HPDC ’18, June 11–15, 2018, Tempe, AZ, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-5785-2/18/06. . . $15.00
https://doi.org/10.1145/3208040.3208052

and Distributed Computing, June 11–15, 2018, Tempe, AZ, USA. ACM, New
York, NY, USA, 13 pages. https://doi.org/10.1145/3208040.3208052

1 INTRODUCTION
The performance of parallel systems, particularly at scale, is often
highly dependent on timing and synchronization. Although timing
and synchronization are very di�erent concepts, we argue that
for some parallel execution models, perfectly predictable timing
behavior can substitute for synchronization. Perfectly predictable
timing behavior can also be the cornerstone for achieving perfor-
mance isolation within a time-sharing model, with its promise for
better resource utilization. Finally, perfectly predictable timing be-
havior can be the basis for providing administrative control over
resource utilization while maintaining commensurate application
performance.

To achieve perfectly predictable timing behavior, we consider
a fusion of parallel systems and hard real-time systems. Simply
put, we investigate architecting a parallel application, its run-time
system, and its OS as a hard real-time system. In previous work
based on a soft real-time model (Section 7), we showed that a real-
time model can allow time-sharing of single-node programs and
virtual machines with controlled interference. We also showed it
is possible to schedule a parallel application across a distributed
memory parallel machine using centrally coordinated, but indepen-
dent per-node real-time schedulers. In contrast, the present work
focuses on a hard real-time model, applied with no-holds-bared
changes throughout the software stack in a single node environment.
Another important distinction is that we also consider extremely
�ne-grain scheduling, suitable, for example, for replacing some
application-level barriers with timing.

We build upon prior work in hybrid run-time systems (HRTs),
which have the premise of fusing a specialized kernel framework
with a parallel run-time and its application to produce a custom
kernel. We focus here solely on the integration of a hard real-time
scheduling model into such an environment and its pluses and
minuses. The speci�c environment we build within is the Nautilus
kernel framework for building HRTs for x64. Our contributions are:
• We make the case for the fusion of parallel systems and hard
real-time systems.
• We describe how the HRT environment and the Nautilus
framework lay the groundwork for a hard real-time environ-
ment, as well as the limitations placed on such an environ-
ment by the hardware.
• We describe the design, implementation, and detailed perfor-
mance evaluation of a hard real-time scheduler for node-level
parallel systems. Our scheduler supports running groups of
threads with �ne-grain timing control and extremely close
time-synchronization across CPUs.
• We describe techniques for ameliorating the central di�cul-
ties achieving individual and group hard real-time behavior
on x64 platforms, namely system management interrupts

HPDC ’18, June 11–15, 2018, Tempe, AZ, USA Peter Dinda Xiaoyang Wang Jinghang Wang Chris Beauchene Conor Hetland
(SMIs) and other “missing time”, as well as achieving coor-
dinated measures of wall clock time (and thus time-based
schedule synchronization) across CPUs.
• We evaluate the performance of the scheduler for a �ne-grain
bulk-synchronous parallel (BSP) benchmark. The scheduler
is able to provide administrator resource control with com-
mensurate application-level performance. Additionally, the
scheduler’s time-synchronization across CPUs make it possi-
ble to remove application barriers, leading to enhanced per-
formance compared to a non-hard-real-time environment,
especially as granularity shrinks.

The scheduler is implemented for all x64 machines, with our evalu-
ation focusing primarily on the current generation Intel Xeon Phi.
It is publicly available in the Nautilus codebase.

2 HYBRID RUN-TIMES (HRTS)
A hybrid run-time (HRT) is a mashup of an extremely lightweight
OS kernel framework and a parallel run-time system [13, 16]. The
desirability of this scheme is grounded in three observations. First,
modern parallel run-time systems replicate a great deal of the func-
tionality that a kernel typically provides. Second, these run-time
systems are currently at the mercy of the abstractions and perfor-
mance/isolation properties that the kernel, typically a commodity
kernel, provides. The �nal observation is, by virtue of the run-time
executing in user mode, the run-time cannot leverage the full hard-
ware feature set of the machine; privileged features that it may
be able to leverage are hidden behind a system call interface. In
an HRT, all is kernel: the parallel run-time executes as a kernel in
privileged mode, with full access to all hardware capabilities, and
with full control over higher-level abstractions. The entire software
stack, from the application down, executes with full privilege on
native hardware.

Nautilus is a kernel framework designed to support HRT con-
struction and research [14]. It is a publicly available open-source
codebase that currently runs directly on x64 NUMA hardware, most
importantly for this paper on the Knights Landing generation (the
current generation) of the Intel Xeon Phi. Nautilus can help a par-
allel run-time ported to an HRT achieve very high performance
by providing streamlined kernel primitives such as synchroniza-
tion and threading facilities. It provides the minimal set of features
needed to support a tailored parallel run-time environment, avoid-
ing features of general purpose kernels that inhibit scalability.

At this point, ports of Legion, NESL, NDPC, UPC (partial), OpenMP
(partial), and Racket have run in HRT form, fused with Nautilus.
Application benchmark speedups from 20–40% over user-level exe-
cution on Linux have been demonstrated, while benchmarks show
that primitives such as thread management and event signaling are
orders of magnitude faster.

Nautilus can form the basis of a hard real-time system because
its execution paths are themselves highly predictable. Examples
that are particularly salient for the purposes of this paper include
the following: Identity-mapped paging with the largest possible
size pages are used. All addresses are mapped at boot, and there
is no swapping or page movement of any kind. As a consequence,
TLB misses are extremely rare, and, indeed, if the TLB entries can
cover the physical address space of the machine, do not occur at

DeviceDevice

CPU	
(HW	Thread)

Local
Scheduler

CPU	
(HW	Thread)

Local
Scheduler

CPU	
(HW	Thread)

Local
Scheduler

CPU	
(HW	Thread)

Local
Scheduler

CPU	
(HW	Thread)

Local
Scheduler

CPU	
(HW	Thread)

Local
Scheduler

CPU	
(HW	Thread)

Local
Scheduler

CPU	
(HW	Thread)

Local
Scheduler

Interrupt-laden
Partition

Interrupt-free
Partition

Device

Interrupt	
Prioritization

Kick		IPIs

Distributed	Functionality

Figure 1: The global scheduler is a very loosely coupled collection
of local schedulers, one per hardware thread/CPU. Most CPUs are
are “interrupt-free” and see only scheduling-related interrupts. All
CPUs are subject to SMIs at all times.

all after startup. There are no page faults. All memory manage-
ment, including for NUMA, is explicit and allocations are done
with buddy system allocators that are selected based on the target
zone. For threads that are bound to speci�c CPUs, essential thread
(e.g., context, stack) and scheduler state is guaranteed to always be
in the most desirable zone. The core set of I/O drivers developed
for Nautilus have interrupt handler logic with deterministic path
length. As a starting point, there are no DPCs, softIRQs, etc, to
reason about: only interrupt handlers and threads. Finally, inter-
rupts are fully steerable, and thus can largely be avoided on most
hardware threads.

3 HARD REAL-TIME SCHEDULER
We have designed and implemented a new scheduler from the
ground up for the Nautilus kernel framework. The scheduler’s
design and its integration with other components of the kernel
framework are centered around the goal of achieving classic hard
real-time constraints for the software threads mapped to an in-
dividual hardware thread (e.g., a hyperthread on x64 processors).
While maintaining these constraints, the scheduler also implements
non-real-time behavior such as work-stealing from other hardware
threads, thread pool maintenance, and lightweight tasks.

We use the following terminology. A CPU is our shorthand way
of referring to an individual hardware thread (hyperthread). A local
scheduler is the scheduler of a CPU. The global scheduler is the
distributed system comprising the local schedulers and their inter-
actions. Figure 1 illustrates the global scheduler for the purposes of
this section, while Figure 2 does the same for a local scheduler.

3.1 Model
Our scheduler as a whole adopts the classic model of Liu [25] for
describing its interface, although not for its implementation.

An important concept is that of admission control. Before a thread
is ever executed, it must indicate the timing constraints it requires
to the scheduler. If the scheduler accepts these constraints, it guar-
antees that they will be met until the thread decides to change them,
at which point the thread must repeat the admission control pro-
cess. We refer to the wall clock time at which a thread is admitted
as � , the admission time.

Hard Real-time Scheduling for Parallel Run-time Systems HPDC ’18, June 11–15, 2018, Tempe, AZ, USA

APIC

One	Shot	
Timer

RT	Pending

RT	Run

Non-RT	Run

Pump

Eager
EDF

Arrivals

State
Update

Current
Thread Next

Thread

Processor	
Priority	
Interrupt	
Filtering

Scheduling	
Interrupts

From/To	Remote
Scheduler

From
Devices

Tasks
Execute
if	room

Known	Size

Task	Exec
Thread

Known/Unknown	Size

Idle	Thread
(opt.	Work	Stealer)

.	.	.

Aperiodic	
Threads

Stolen
Threads

Opt.	Interrupt
Thread

.	.	.

Periodic	and	Sporadic	
Threads	(EDF	order)

Thread-level

Scheduler-level
(Interrupts)

Hardware-level
(Timers	and	
Interrupt	Filtering)

Admission	Control
Utilization	Limit

Aperiodic	 Reservation
Sporadic	Reservation
Classic	 RMA/EDF

SMI

Missing
Time

Figure 2: The local scheduler is a tightly coupled eager earliest dead-
line �rst (EDF) engine with additional support for non-real-time
threads and tasks. Classic admission control approaches are used,
with reservations and utilization limits added to account for the
“missing time” of SMIs and scheduler overhead.

The following categories of timing constraints are observed:

• Aperiodic threads have no real-time constraints. They simply
have a priority, µ. Newly created threads begin their life in
this class.
• Periodic threads have the constraint (�,� ,�), which we refer
to as phase (�), period (�), and slice (�). Such a thread is
eligible to execute (it arrives) for the �rst time at wall clock
time � + �, then arrives again at � + � + � , � + � + 2� , and
so on. The time of the next arrival is the deadline for the
current arrival. On each arrival the task is guaranteed that it
will execute for at least � seconds before its next arrival (its
current deadline).
• Sporadic threads have the constraint (�,�,� ,µ) or phase (�),
size (�), deadline (�), and aperiodic priority (µ). A sporadic
thread arrives at wall clock time � + �, and is guaranteed to
execute for at least � seconds before the wall clock time �
(the deadline), and subsequently will execute as an aperiodic
thread with priority µ.

The scheduler also integrates support for �ner granularity tasks,
which have an even lower cost of creation, launching, and exiting
than Nautilus threads. These are essentially queued callbacks im-
plemented similarly to Linux’s softIRQs or Windows DPCs, with
an important exception in their processing. A task may be tagged
with its size (�). Size-tagged tasks can be executed directly by the
scheduler (like softIRQs/DPCs) until a periodic or sporadic task
arrives, but those without a size tag must be processed by a helper
thread. As a consequence, the timing constraints of periodic and
sporadic threads (e.g., the real-time threads) are not a�ected by
tasks, and indeed, such threads are not even delayed by tasks.

3.2 Admission control
Admission control in our system is done by the local scheduler, and
thus can occur simultaneously on each CPU in the system.

Aperiodic threads are always admitted. The particular meaning
of their priority µ depends on which non-real-time scheduling
model is selected when Nautilus is compiled.

Periodic and sporadic threads are admitted based on the classic
single CPU schemes for rate monotonic (RM) and earliest deadline
�rst (EDF) models [23]. Admission control runs in the context
of the thread requesting admission. As a consequence, the cost
of admission control need not be separately accounted for in its
e�ects on the already admitted threads. This potentially allows
more sophisticated admission control algorithms that can achieve
higher utilization. We developed one prototype that did admission
for a periodic thread-only model by simulating the local scheduler
for a hyperperiod, for example.

At boot time each local scheduler is con�gured with a utilization
limit as well as reservations for sporadic and aperiodic threads,
all expressed as percentages. The utilization limit leaves time for
the invocation of the local scheduler core itself in response to an
timer interrupt or a request from the current thread. It can also be
used for other interrupts and SMIs, as we describe below, but this
is usually not necessary. The sporadic reservation provides time
for handling spontaneously arriving sporadic threads, while the
aperiodic reservation leaves time for non-real-time threads and for
admission control processing.

3.3 Local scheduler and time
A local scheduler is invoked only on a timer interrupt, a kick inter-
rupt from a di�erent local scheduler, or by a small set of actions
the current thread can take, such as sleeping, waiting, exiting, and
changing constraints.

A local scheduler is, at its base, a simple earliest deadline �rst
(EDF) engine consisting of a pending queue, a real-time run queue,
and a non-real-time run queue. On entry, all newly arrived threads
are pumped from the pending queue into the real-time run queue.
Next, the state of the current thread is evaluated against the most
imminent periodic or sporadic thread in the real-time run queue. If
there is no thread on the real-time run queue, the highest priority
aperiodic thread in the non-real-time run queue is used. A context
switch immediately occurs if the selected thread is more important
than the current thread.

The maximum number of threads in the whole system is deter-
mined at compile time, each local scheduler uses �xed size priority
queues to implement the pending and real-time run queues, and
other state is also of �xed size. As a result, the time spent in a local
scheduler invocation is bounded. In other words, we can treat the
local scheduler invocation itself as having a �xed cost. Bounds are
also placed on the granularity and minimum size of the timing
constraints that threads can request, limiting the possible scheduler
invocation rate. Combining these limits allows us to account for
scheduler overhead in the utilization limit selected at boot time.

Unlike typical EDF schedulers, our local scheduler is eager: if
there is a real-time task that is runnable, we run it. We explain why
in Section 3.6.

HPDC ’18, June 11–15, 2018, Tempe, AZ, USA Peter Dinda Xiaoyang Wang Jinghang Wang Chris Beauchene Conor Hetland
All time is wall clock time relative to the coordinated startup

time of the local schedulers on all the CPUs. Measurement of time
is done using the x64 cycle counter. As we describe in Section 3.4,
cycle counters are synchronized at startup to the extent possible.
Time is measured throughout in units of nanoseconds stored in 64
bit integers. This allows us at least three digit precision in our time
computations and no over�ows on a 2 GHz machine for a duration
exceeding its lifetime.

When exiting an invocation, the local scheduler uses its CPU’s
advanced programmable interrupt controller’s (APIC’s) one-shot
timer to select a time to be invoked again (like a “tickless” Linux
kernel). At boot time, the APIC timer resolution, the cycle counter
resolution, and the desired nanosecond granularity are calibrated
so that the actual countdown programmed into the APIC timer will
be conservative (resolution mismatch results in earlier invocation,
never later). If the APIC supports “TSC deadline mode” (some Intel
processors), it can be programmed with a cycle count instead of an
APIC tick count, avoiding issues of resolution conversion.

3.4 Global scheduler and interactions
A local scheduler is almost entirely self contained, which makes
possible the use of simple, classic admission control and scheduling.
Each local scheduler is also driven independently by a separate
timer as each CPU has its own APIC. To the greatest extent possible,
all local schedulers coordinate using wall clock time.

At boot time, the local schedulers interact via a barrier-like
mechanism to estimate the phase of each CPU’s cycle counter
relative to the �rst CPU’s cycle counter, which is de�ned as being
synchronized to wall clock time. Since the kernel starts its boot
process on each CPU at a slightly di�erent time, and may require
di�erent amounts of time to boot on each one, this calibration is vital
to having a shared model of wall clock time across the system. In
machines that support it, we write the cycle counter with predicted
values to account for the phase di�erence, attempting to bring them
as close to identical as possible.

As both the phase measurement and cycle counter updates hap-
pen using instruction sequences whose own granularity is larger
than a cycle, the calibration does necessarily have an error, which
we then estimate and account for when a local scheduler uses its
own cycle counter as an estimate for the wall clock time.

We require that the processor provide constant cycle counter
behavior (“constant TSC”—a common feature), and that the exe-
cution of below-kernel �rmware does not stop or manipulate the
cycle counter. We do not currently support dynamic voltage and fre-
quency scaling or above-maximum clock rates (e.g., “turboboost”)
although the design does have room to handle it in the future.

Figure 3 shows a histogram of the typical cycle counter o�sets our
calibration logic derives on the Xeon Phi KNL using our techniques.
We estimate that we bring all 256 CPUs to an agreement about wall
clock time that is accurate to about 1000 cycles (slightly less than a
microsecond on this hardware).

Each local scheduler has lockable state, and a scheduler invoca-
tion takes the lock, and thus could conceivably wait on some other
lock holder. However, we have designed this to only be possible
during a small set of activities such as thread reaping/reanimation
(thread pool management), work stealing, and garbage collection.

0 200 400 600 800 1000
Difference in cycle count between CPU and CPU 0

0

50

100

150

200

250

N
um

be
r o

f C
PU

s

Figure 3: Cross-CPU cycle counter synchronization on Phi.We keep
cycle counters within 1000 cycles across 256 CPUs.

Each of these features, with the exception of garbage collection,
in turn holds a local scheduler’s lock for a time bounded by the
compile-time selected limit on the total number of threads. Fur-
thermore, each of these features can be disabled at compile-time,
allowing us to con�gure a kernel where local scheduler locking
occurs only within an invocation of the local scheduler.

The work stealer, which operates as part of the idle thread that
each CPU runs, uses power-of-two-random-choices victim selec-
tion [28] to avoid global coordination, and only locks the victim’s
local scheduler if it has ascertained it has available work. Only
aperiodic threads can be stolen or otherwise moved between local
schedulers. This avoids the need for any parallel or distributed ad-
mission control, and simpli�es the implementation of hard real-time
group groups (Section 4).

3.5 Interrupt steering and segregation
In order to achieve hard real-time constraints, a scheduler must
either control or be able to predict all time-consuming activities
in the system. Interrupts, in which we include exceptions, traps,
aborts, system calls, interprocessor interrupts (IPIs) and external
interrupts, must therefore be accounted for. Nautilus has no system
calls as all code executes in kernel mode. Exceptions, traps, and
aborts are treated as hard, fail-stop errors, and thus can be ignored
for scheduling purposes. This leaves IPIs and external interrupts.

Due to the design of Nautilus, IPIs are rarely needed. For example,
as there is a single system-wide address space that is con�gured
at boot time and then never changes, no TLB shootdowns are ever
done. In the con�guration used in this paper, IPIs are only used to
communicate between local schedulers, to allow one local scheduler
to “kick” another to get it to do a scheduling pass. The cost of a
scheduling pass is bounded, as we described previously, as is the
kick rate. As a consequence, the cost of IPIs is known and is taken
into account via the limit on utilization.

An external interrupt, from an I/O device, for example, can be
steered to any CPU in the system. Using this mechanism we can
partition the CPUs into those that receive external interrupts (the
interrupt-laden partition) and those that do not (the interrupt-free
partition). External interrupts are then a non-issue for scheduling
in the interrupt-free partition. The default con�guration is that the
interrupt-laden partition consists of the �rst CPU, but this is can
be changed according to how interrupt rich the workload is.

Hard Real-time Scheduling for Parallel Run-time Systems HPDC ’18, June 11–15, 2018, Tempe, AZ, USA
Even for the interrupt-laden partition, we ameliorate interrupts

through two mechanisms. First, the local scheduler sets the CPU’s
APIC’s hardware processor priority as part of switching to a new
thread. For a hard real-time thread, the priority is set such that the
only interrupts that the thread will see are scheduling related (i.e.,
the APIC timer, and the “kick” IPI). These are already accounted
for in scheduling admission control decisions. In other words, this
mechanism steers interrupts away from the hard real-time threads.
In contrast, the second mechanism provides the ability to steer
interrupts toward a speci�c “interrupt thread”. Note that for both
of these mechanisms, the allowed starting time of an interrupt
is controlled, however the ending time is not. Thus to use these
mechanisms to preserve hard real-time behavior on the interrupt-
laden partition, interrupt handler time and invocation rates must
be bounded, known, and accounted for in setting the utilization
limit of the local scheduler. The device drivers we have built so far
for Nautilus have thus been designed with the principle of having
a bounded interrupt handling time.

Another mechanism we use to avoid having interrupts a�ect
hard real-time operation of threads is eager scheduling, which we
describe within the next section.

3.6 SMIs and mitigation of “missing time”
A major impediment to achieving hard real-time behavior on x64
machines is the existence of system management mode (SMM)
and interrupts (SMIs). SMM, which has been a part of Intel proces-
sors since the early 1990s, boils down to the ability of the system
�rmware (BIOS) to install a special interrupt handler (the SMI
handler) that vectors into �rmware. This handler cannot then be
changed, or masked, by any higher-level software such as a VMM or
kernel. The handler’s code and state are curtained by the memory
controller under normal operation. When the system hardware gen-
erates an SMI, all CPUs stop, the memory controller uncurtains the
SMM memory, and one CPU then executes the SMI handler. Once
it �nishes, it executes a special return-from-interrupt instruction
that again curtains the memory, and resumes all of the CPUs.

Manufacturers of systems (and processors) use SMM code and
SMIs for various purposes and their incidence and cost vary across
systems. From the perspective of even the lowest level kernel or
VMM code, SMIs appear to be “missing time”—at unpredictable
points, the cycle counter appears to advance by a surprisingly large
amount, meaning that a signi�cant amount of wall clock time has
passed without software awareness.1 From the parallel systems
perspective, SMIs are “OS noise” [10] that the OS simply cannot
control. The missing time of SMIs can have dramatic e�ects on
overall system behavior even in general purpose systems [5].

For a hard real-time scheduler, the missing time of SMIs can
be catastrophic. If SMI rates and handling times are unpredictable
or unbounded, the scheduler cannot guarantee any hard real-time
constraint will bemet. However, for any real hardware, these cannot
be unbounded as this would imply the system could not make
forward progress or that the user experience could be negatively
impacted by glitches. The issue is estimating the bounds. Note that

1Much as in an alien abduction in classic UFOlogy, except that the alien in question is
the hardware vendor, and the abductee is the kernel.

having unpredictable or unbounded handling times and rates for
ordinary interrupts presents the same problem as SMIs.

We address this problem through eager, work-conserving sched-
uling. In many hard real-time schedulers, a context switch to a
newly arrived thread is delayed until the last possible moment at
which its deadline can still be met. The goal is in part to create
opportunities to handle newly arriving threads that might have an
even more imminent deadline. While this non-work-conserving
behavior is ideal, the consequence of missing time due to SMIs (or
di�cult to predict ordinary external interrupt costs in the interrupt-
laden partition) is that the thread may be resumed at a point close
to its deadline, but then be interrupted by an SMI that pushes the
thread’s completion past its deadline.

In our local scheduler, in contrast, we never delay switching to
a thread. Consequently, while missing time introduced by SMIs or
badly predicted interrupts can still push back the thread’s comple-
tion time, the probability of pushing it back beyond the deadline
is minimized—We start early with the goal of ending early even if
missing time occurs. The utilization limit then acts as a knob, letting
us trade o� between between sensitivity to SMIs/badly predicted
interrupts, and utilization of the CPU.

4 HARD REAL-TIME GROUPS
As described to this point, our scheduler supports individual hard
real-time (and non-real-time) threads. Parallel execution demands
the ability to collectively schedule a group of threads running across
a number of CPUs. That is, we want to gang schedule the group of
threads. In our system we achieve this through a distributed, time-
based mechanism that builds on local hard real-time behavior. Our
mechanism has the bene�t of not requiring any communication
between the local schedulers once all the threads in the group have
been admitted. All coordination costs are borne at admission time.

4.1 Scheduler coordination
To understand why it is possible to e�ectively gang-schedule a
group of threads with no communication among the local sched-
ulers, consider the following. Let us have a pair of local schedulers,
A and B, that have the same con�guration (utilization limits, inter-
rupt steering, reservations for sporadic and aperiodic threads, etc.)
Consider further that both A and B are currently each handling
a set of threads, SA and SB , where the timing constraints of the
threads in SA are the same as those in SB . That is, while A and B
are scheduling di�erent sets of threads, they are attempting to meet
exactly the same set of constraints. Because our local scheduler
is completely deterministic by design, both A and B are making
identical scheduling decisions on each scheduling event (e.g., timer
interrupt). Hence, in a particular context in which A switches to a
particular thread, B would also switch to the parallel thread (the
one with identical constraints to A’s) in its set.

Given that the constraints of SA and SB are the same, it is not
only the case that A and B are making the same decisions, but also
that they are making them at the same time; all local schedulers in
the system are driven by wall clock time.

Now consider adding a new pair of threads, a and b, to the
respective local schedulers. If a and b have identical constraints,
then both local schedulers are given the same admission control

HPDC ’18, June 11–15, 2018, Tempe, AZ, USA Peter Dinda Xiaoyang Wang Jinghang Wang Chris Beauchene Conor Hetland
conduct leader election;
if I am the leader then

lock group;
attach constraints to group;

end
execute group barrier;
conduct local admission control;
execute group reduction over errors;
if any local admission control failed then

readmit myself using default constraints;
execute group barrier;
if I am the leader then

unlock group;
end
return failure;

end
execute group barrier and get my release order;
phase correct my schedule based on my release order;
if I am the leader then

unlock group;
end
return success;

Algorithm 1: Group admission control algorithm.

request with the same current set of constraints. It must be the case
that if the new constraints are realizable, then both local schedulers
will admit the threads, and, from that point in time, make identical
decisions about them. Several subtleties do arise here, which we
describe how to mitigate in Section 4.4.

4.2 Groups
We have added a thread group programming interface to Nautilus
for group admission control and other purposes. Threads can cre-
ate, join, leave, and destroy named groups. A group can also have
state associated with it, for example the timing constraints that all
members of a group wish to share. Group admission control also
builds on other basic group features, namely distributed election,
barrier, reduction, and broadcast, all scoped to the group.

4.3 Group admission control
Group admission control is done by having every thread in a group
call a single function which parallels the function called for indi-
vidual admission control. Instead of invoking

nk_sched_thread_change_constraints(constraints);

to change the caller’s constraints, each member of the group of
threads instead invokes

nk_group_sched_change_constraints(group, constraints);

This function either succeeds or fails for all the threads.
The pseudocode for the function is straightforward and is shown

in Algorithm 1. The “default constraints” refer to aperiodic con-
straints. Admission control for aperiodic threads cannot fail in our
system, so aperiodic constraints are used as fallbacks.

As can be readily seen, the algorithm is quite simple. The heavy
lifting is accomplished by the local admission control process. Also
note that coordination is limited to the barriers and reductions,
and these are essentially the limiters on scalability of the group

admission control process, as we will see. Note again that, once
admitted, no further coordination is done, except via time.

4.4 Phase correction
Several issues arise in our group scheduling scheme, all of which
we ameliorate through careful control of the phase parameter (�)
for individual periodic or sporadic threads (Section 3.1).

The �rst issue is that during the local admission control process
for an individual thread, the admission control algorithm runs in
the context of the thread, and the thread is aperiodic (not real-time),
and hence could be delayed. Furthermore, in an interrupt-laden
partition an external interrupt may also delay the admission control
processing of the local scheduler. Even in an interrupt-free partition,
SMIs can still cause such delays. As a consequence, the wall-clock
time at which the admission processing �nishes (�) may be slightly
di�erent on two local schedulers given identical threads being
admitted at the same time.

Barriers among the threads are used in the group admission
control process to help ameliorate this issue, but they introduce their
own problem: threads are not released from a barrier at identical
times. There is some �rst thread to leave the barrier, and some last
thread. The gap in time between them e�ectively becomes a gap
in the actual wall clock time their admission control processing
completes, even if their �s are identical.

The �nal issue is that wall clock time is not (and cannot be)
identical between local schedulers. Time cannot be exactly synchro-
nized in a distributed system. Figure 3 suggests in our system, on a
Phi, it can be synchronized to less than 1000 cycles, but this is not
zero. As a consequence, the actual wall clock time represented by
� on one CPU may occur slightly behind the actual wall clock time
represented by the same � on another.

To further mitigate both of these problems, we use the thread
phase, �, to get thread scheduling events across the CPUs to be
synchronized to the limits possible given the synchronization of the
wall clock time. Recall that a sporadic or periodic thread �rst arrives
at wall clock time � + �. For each thread in a group, we detect its
release order i for its �nal barrier before it becomes a real-time
thread. The ith thread to be released is then given a corrected phase
�correctedi = � + (n � i)� where � is the measured per-thread delay
in departing the barrier.

5 EVALUATION
We evaluated the scheduler for correctness and for the limits of its
performance for scheduling individual threads and for admitting,
scheduling, and keeping groups of threads synchronized.

5.1 Testbed
Unless otherwise noted, our evaluation was carried out on a Colfax
KNL Ninja platform. This is an Intel-recommended platform for
Xeon Phi Knights Landing (KNL) development. It is essentially a
Supermicro 5038ki, and includes a Intel Xeon Phi 7210 processor
running at 1.3 GHz. The processor has 64 cores, each of which has
4 hardware threads (CPUs in our terminology). The processor is
tightly coupled to 16 GB of MCDRAM, and more loosely to 96 GB
of conventional DRAM. All visible CPU throttling/burst behavior
is disabled in the BIOS.

Hard Real-time Scheduling for Parallel Run-time Systems HPDC ’18, June 11–15, 2018, Tempe, AZ, USA

(a) Broad view

(b) Single interrupt
Figure 4: Hard real-time scheduling in Nautilus on Phi as measured
by external scope. From top to bottom, the traces are the test thread,
the local scheduler pass, and the interrupt handler (which includes
the scheduler pass and context switch).

We conducted an identical evaluation on Dell R415 hardware
consisting of dual AMD 4122 processors running at 2.2 GHz (8
hardware threads / cores total) and 16 GB DRAM. Since the in-
dividual hardware threads on this machine are much faster than
individual Phi hardware threads, even �ner grain scheduling and
synchronization is possible than shown here for the Phi.

Unless otherwise noted, we con�gure the scheduler with a de-
fault con�guration (99% utilization limit, 10% sporadic reserva-
tion, 10% aperiodic reservation). We schedule non-real-time ape-
riodic threads using round-robin scheduling with a 10 Hz timer,
which given the evaluation is the best con�guration outside of
non-preemptive scheduling.

5.2 External veri�cation
A hard real-time scheduler, because it operates in sync with wall
clock time, must be veri�ed by timing methods external to the
machine. To do so, we added a parallel port interface (a GPIO
interface) to our machine. A single outb instruction within a local
scheduler is su�cient to change all 8 pins on the output connector.
We monitor those pins using an oscilloscope (a Rigol DS1054Z,
which is a 4 channel, 50 MHz, 1 GS/s DSO).

Figure 4 shows scope output when a local scheduler is running a
periodic threadwith period � = 100µs and slice� = 50µs. Figure 4(a)

IRQ Other Resched Switch
Overhead Break Down

0

500

1000

1500

2000

2500

3000

3500

O
ve

rh
ea

d
in

 c
yc

le
 c

ou
nt

IRQ Other Resched Switch
Overhead break down

0

500

1000

1500

2000

2500

3000

3500

O
ve

rh
ea

d
in

 c
yc

le
 c

ou
nt

(a) Phi (b) R415
Figure 5: Breakdown of local scheduler overheads on Phi and R415.

and (b) are showing the same experiment. In (a), we are looking at a
600 µs window with trace persistence at 200 ms. In (b), we zoom in
on this, looking at a 60 µswindow around a timer interrupt, andwith
trace persistence set to in�nity. Recall that an oscilloscope draws
the trace at full speed again and again. The trace fades according to
the persistence value. Any fuzziness in the trace thus corresponds
to deviation from “normal” behavior. The three traces are, from top
to bottom, the active and inactive times of the test thread, the active
and inactive times of the scheduler, and the active and inactive
times of the timer interrupt. The timer interrupt times include the
interrupt overhead, the scheduler pass, and a context switch.

The test thread is marked as active/inactive at the end of the
scheduler pass, hence its active time includes the scheduler time,
which is why the duty cycle is slightly higher that 50%. Also, on
every second cycle, the scheduler runs twice, once due to the inter-
rupt, and once again shortly thereafter. This is because when we
switch from the test thread to the idle thread, the idle thread runs
the work-stealer and then immediately yields to any new work.
Since here there is no work to steal, the scheduler simply decides
to continue running the idle thread.

The most important observation here is that while the interrupt
handler trace (bottom) and scheduler trace (middle) have “fuzz”,
the scheduler keeps the test thread trace (top) sharp. This is partic-
ularly easy to see in Figure 4(b). This combination of fuzziness and
sharpness tells us that the scheduling algorithm is doing its job of
controlling time (other threads, interrupts, etc) so as to meet the test
thread’s timing constraints, and to meet them as deterministically
as possible.

We evaluated various combinations of period and slice using this
method and found the same, correct behavior. Provided the period
and slice are possible once the time costs of the scheduler pass,
timer interrupt handling, and thread context switch are accounted
for, the timing constraints will always be met.

5.3 Local scheduler overheads and limits
Due to its distributed nature, our scheduler’s overheads, and thus
the limits on the possible timing constraints (i.e., on �, � , � , �
and �), are largely determined by the local scheduler’s overheads.
Figure 5(a) breaks down the local scheduler overhead on the Phi that
is incurred on a timer interrupt. These times are measured using
the cycle counter on the CPU, and do not account for interrupt
dispatch overheads in the processor. They represent the overheads
that could be changed through software means.

On the Phi, the software overhead is about 6000 cycles. For a
periodic thread, two interrupts are incurred on each period (the

HPDC ’18, June 11–15, 2018, Tempe, AZ, USA Peter Dinda Xiaoyang Wang Jinghang Wang Chris Beauchene Conor Hetland

0 20 40 60 80
Slice (% of period)

0

20

40

60

80

100
M

is
s

ra
te

 (%
)

1000 us
100 us
50 us
40 us
30 us
20 us
10 us

Feasible

Edge of
Feasible

10us

20us

30us

Figure 6: Local scheduler deadline miss rate on Phi as a function of
period (�) and slice (�). Once the period and slice are feasible given
scheduler overhead, the miss rate is zero.

0 20 40 60 80
Slice (% of period)

0

20

40

60

80

100

M
is

s
ra

te
 (%

) 1000 us
100 us
50 us
40 us
30 us
20 us
10 us
4 us

4 us

Feasible

Edge of
Feasible

Figure 7: Local scheduler deadlinemiss rate onR415 as a function of
period (�) and slice (�). Once the period and slice are feasible given
scheduler overhead, the miss rate is zero.

arrival, and the timeout), although these can overlap (one thread’s
timeout and the next thread’s arrival can be processed in the same
interrupt.) Hence, the limits on scheduling constraints will be in
the 6000-12000 cycle range (4.6 to 9.2 µs). About half of the over-
head involves the scheduling pass itself, while the rest is spent in
interrupt processing and the context switch.

Figure 6 shows the the local scheduler miss rate on the Phi. Here
we have turned o� admission control to allow admission of threads
with infeasible timing constraints. Each curve represents a di�erent
period, the x-axis represents the slice as a fraction of the period,
and the y-axis shows the miss rate. On this kind of graph, we expect
a sharp disconnect: for too small of a period or slice, or too large of
a slice within a period, misses will be virtually guaranteed since the
scheduler overhead will not leave enough time. On the other hand,
once the period and slice are feasible given the scheduler overhead,
we expect a zero miss rate. As the graph shows, the transition point,
or the “edge of feasibility” is for a period of about 10 µs, as we
would expect given the overhead measurements.

It is important to realize that an individual Phi CPU is quite slow,
both in terms of its clock rate and its superscaler limits. On faster
individual CPUs, the scheduling overheads will be lower in terms of
both cycles and real time, as can be seen for the R415 in Figure 5(b).

10 20 30 40 50 60 70 80
Slice (% of period)

0

2

4

6

8

10

M
is

s
tim

e
(u

s)

1000 us
100 us
50 us
40 us
30 us
20 us
10 us 10 us

20 us

30 us

Figure 8: Average and standard deviation of miss times for feasible
schedules on Phi. For infeasible constraints, which are usually not
admitted, deadlines are missed by only small amounts.

10 20 30 40 50 60 70 80
Slice (% of period)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

M
is

s
tim

e
(u

s)

1000 us
100 us
50 us
40 us
30 us
20 us
10 us
4 us 4 us

Figure 9: Average and standard deviation of miss times for feasible
schedules on R415. For infeasible constraints, which are usually not
admitted, deadlines are missed by only small amounts.

These lower overheads in turn make possible even smaller schedul-
ing constraints, as can be seen for the R415 in Figure 7. Here, the
edge of feasibility is about 4µs.

It is also instructive to see what happens beyond the edge of
feasibility, when deadlines misses occur because the timing con-
straint is simply not feasible given the overhead of the scheduler.
In Figures 8 (Phi) and 9 (R415) we show the average and variance
of miss times both for feasible and infeasible timing constraints.
For feasible timing constraints, the miss times are of course always
zero. For infeasible timing constraints, the miss times are generally
quite small compared to the constraint. Note again that, in nor-
mal operation, infeasible constraints are �ltered out by admission
control.

5.4 Group admission control costs
In steady state operation, once a group of threads has been admitted
in our system, only the overheads of the local schedulers matter.
These are quite low, as shown previously. The time costs of group
operation are born solely when the group of threads is admitted,
namely for the algorithm in Section 4.3. Figure 10 breaks down
the absolute costs of the major steps of the algorithm: group join,
leader election, distributed admission control, and the �nal barrier.

Hard Real-time Scheduling for Parallel Run-time Systems HPDC ’18, June 11–15, 2018, Tempe, AZ, USA

0 50 100 150 200 250
Number of threads

0

0.5

1

1.5

2

2.5

3

O
ve

rh
ea

d
in

 c
yc

le
 c

ou
nt

105

0 50 100 150 200 250
Number of threads

0

1

2

3

4

5

O
ve

rh
ea

d
in

 c
yc

le
 c

ou
nt

104

(a) Group Join (b) Leader Election

0 50 100 150 200 250
Number of threads

0

1

2

3

4

5

O
ve

rh
ea

d
in

 c
yc

le
 c

ou
nt

106

Group Change Constraints

Local Change Constraints

0 50 100 150 200 250
Number of threads

0

0.5

1

1.5

2

2.5

3

O
ve

rh
ea

d
in

 c
yc

le
 c

ou
nt

106

(c) Distributed Admission Control (d) Barrier/Phase correction
Figure 10: Absolute group admission control costs on Phi as a func-
tion of the number of threads in the group. The average time across
the threads, as well as the minimum and maximum times encoun-
tered by individual threads is shown.

The average time per step grows linearly with the number of
threads because we have opted to use simple schemes for coordi-
nation between local schedulers during group admission control.
Even still, the absolute costs at up to 255 threads are minimal and
dominated by the group admission control and �nal barrier steps.
Only about 8 million cycles (about 6.2 ms) are needed at 255 threads.
More sophisticated coordination schemes would likely make the
growth logarithmic with the number of threads, should this be
needed in a future node with many more CPUs.

Note that the core of the algorithm is local admission control.
Figure 10(c) shows curves for both global admission control (“Group
Change Constraints”) and the local admission control (“Local Change
Constraints”) that it builds on. The local admission control cost
is constant and independent of the number of threads. This is the
hard limit to the cost of global admission control.

5.5 Group synchronization limits
Once a group of threads has been admitted, the local schedulers’
individual operation, coordinated only via wall clock time, should
su�ce to keep the threads executing in near lock step. Figure 11
illustrates this in operation. Here, an 8 thread group, one thread per
CPU, has been admitted with a periodic constraint. Each time a local
scheduler in invoked and context-switches to a thread in the group,
it records the time of this event. A point in the graph represents
the maximum di�erence between the times of these events across
the 8 local schedulers. For example, a point at (4000,7500) means
that at scheduling event 4000, the slowest scheduler was operating
7500 cycles behind the fastest one.

In this and the subsequent graphs of this section, it is important to
understand that phase correction is disabled, hence there is a bias. In
this �gure, the “�rst” member of the group is on average about 5000
cycles ahead. This average bias is eliminated via phase correction.

0 2000 4000 6000 8000 10000
Scheduler Invocation Index

3000

4000

5000

6000

7000

8000

M
ax

im
un

 d
iff

er
en

ce
 in

 c
yc

le
 c

ou
nt

Figure 11: Cross-CPU scheduler synchronization in an 8 thread
group admitted with a periodic constraint on Phi. Context switch
events on the local schedulers happen within a few 1000s of cycles.

0 200 400 600 800 1000
Scheduler Invocation Index

0

1

2

3

4

5

6

7

M
ax

im
un

 d
iff

er
en

ce
 in

 c
yc

le
 c

ou
nt 104

255 Threads

128 Threads 64 Threads 8 Threads

Figure 12: Cross-CPU scheduler synchronization in di�erent size
groups with periodic constraints. The average di�erence, which de-
pends on the number of threads in the group, can be handled with
phase correction. Themore important, and uncorrectable, variation
is on the other hand largely independent of the number of threads
in the group.

What is important in the �gure (and later �gures) is the variation.
Here, we can see that timing across the threads has a variation of no
more than 4000 cycles (3 µs). This variation, which phase correction
cannot correct, is largely independent of the number of threads.
Recall that time synchronization itself has a variation of about 1000
cycles (Figure 3), hence the group scheduler is approaching the
thread synchronization limits possible on the hardware.

Figure 12 extends these results, in a less busy graph, to groups
with up to 255 threads. As before, it is the uncorrectable variation
that matters, and this is largely independent of group size. Even in
a fully occupied Phi, with one CPU in the interrupt-laden partition
and 255 in the interrupt-free partition, we can keep threads in the
latter partition synchronized to within about 4000 cycles (3 µs)
purely through the use of hard real-time scheduling.

6 BSP EXAMPLE
To consider how the hard real-time scheduling model and our sched-
uler could bene�t applications, we implemented a microbenchmark
and then used it to consider two potential bene�ts of our model:

HPDC ’18, June 11–15, 2018, Tempe, AZ, USA Peter Dinda Xiaoyang Wang Jinghang Wang Chris Beauchene Conor Hetland
• Resource control with commensurate performance: Can we
throttle up and down the CPU time resource given to a paral-
lel application with proportionate e�ects on its performance?
• Barrier removal: Can we use real-time behavior to avoid
barriers that are necessary in a non-real-time model?

We can answer yes to both questions.

6.1 Microbenchmark
We developed a bulk-synchronous parallel (BSP [11]) microbench-
mark for shared memory that allows �ne grain control over com-
putation, communication, and synchronization. The benchmark
emulates iterative computation on a discrete domain, modeled as a
vector of doubles.

As used here, the algorithm is parameterized by P, the number
of CPUs used (each CPU runs a single thread), NE, the number of
elements of the domain (vector) that are local to a given CPU, NC,
the number of computations done on each element per iteration,
NW, the number of remote writes to do to other CPUs’ elements
per iteration, and N, the number of iterations done in total. In the
following, remote writes are done according to a ring pattern. CPU
i writes to some of the elements owned by CPU (i+1) % P.

Once the threads are running, they execute an
nk_group_sched_change_constraints() call to use a common
schedule, and to synchronize their operation. Next, they all execute
the following:
for (i=0; i<N; i++) {

for (j=0; j<NE; j++) {
compute_local_element(NC);

}
optional_barrier();
for (j=0;j<NW;j++) {
write_remote_element_on((myproc+1)%P);

}
optional_barrier();

}

As is common to BSP codes, the barriers in the above are needed
for any non-real-time schedule since we need to assure that each
compute or communication phase completes before the next phase
starts to avoid race conditions on the elements. With a group real-
time schedule, this property may be feasible to provide via timing.

6.2 Study
We ran a parameter study using the microbenchmark and our sched-
uler on the Xeon Phi. We in particular wanted to study the part of
the parameter space where the compute and communicate phases
in the algorithm are short. These create the greatest stress for the
scheduler for providing resource control with commensurate per-
formance, and present the most interesting opportunities for barrier
removal.

We swept P from 1 to 255 CPUs in powers of two, and NE, NC
and NW from 1 to 128 in powers of two. N was chosen to be large
enough in all cases to allow us to see the steady state behavior of
the scheduler’s interaction with the benchmark. All threads are
mapped 1:1 with CPUs in the interrupt-free partition.

We considered both aperiodic and periodic group constraints.
For aperiodic, since no other threads are available on the CPUs,

0

0.2

0.4

0.6

0.8

1

1.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Ex
ec

ut
io

n
Ti

m
e

(s
)

Utilization (slice/period)

Figure 13: Resource control with commensurate performance for
coarsest granularity with barriers. All period and slice combina-
tions are plotted, with utilization meaning the ratio of slice to pe-
riod (� /�). Regardless of the speci�c period chosen, benchmark ex-
ecution rate matches the time resources given.

the benchmark has as much CPU time as possible—there are no
context switches and scheduling interrupts are extremely rare (they
occur at 10 Hz, similar to Kitten [20]). We considered 900 di�erent
periodic constraints, with the period ranging from 100 µs to 10 ms
in steps of 100 µs, and, for each period, 9 slices comprising 10, 20,
..., 90% of the period. A �nal parameter involves executing, or not
executing, the optional_barrier() call.

The entire parameter space explored consists of 1,037,852 combi-
nations. In the following, we focus on the cases where there are 255
CPUs (the largest scale), and where NC and NW are equal (indicating
a roughly 50/50 compute/communicate ratio). The value for NE then
essentially gives us the computation granularity. Our observations
can be readily understood simply by considering the extremes of
granularity (“coarsest” and “�nest”).

6.3 Resource control
The group hard real-time scheduling scheme can keep application
threads executing in lock-step. As a consequence, when one thread
needs to synchronize or communicate with another, for example via
the optional_barrier() in our benchmark, the synchronization
is almost certain to avoid any blocking on a descheduled thread.
Further note that the scheduler is providing isolation. While this
isolation is limited to timing, as we previously described [6, 22],
timing isolation, combined with other readily available resource
isolation techniques available at the OS level and above, can result
in quite strong isolation properties across most resources.

These observations suggest that the period (�) and slice (�) con-
straints of a periodic real-time constraint can be used to control
the resource utilization (utilization is �

�) while providing commen-
surate application performance. That is, if �

� = 0.5, we expect the
application to operate at 50% of its top speed, not slower. Our prior
work also showed how to make this possible in a distributed en-
vironment for relatively coarse granularities using soft real-time
scheduling with feedback control. Does our hard real-time schedul-
ing approach make this possible for �ne granularities in a shared
memory machine?

Figure 13 clearly shows that this is indeed the case. Here, we
are looking at the coarsest granularity computation, with barriers,

Hard Real-time Scheduling for Parallel Run-time Systems HPDC ’18, June 11–15, 2018, Tempe, AZ, USA

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Ex
ec

ut
io

n
Ti

m
e

(s
)

Utilization (slice/period)

Figure 14: Resource control with commensurate performance for a
�nest granularity with barriers. All period/slice combinations are
plotted, with utilization meaning the ratio of slice to period (� /�).
Regardless of the speci�c period chosen, benchmark execution rate
roughly matches the time resources given.

running on 255 CPUs. In the �gure, each point represents a sin-
gle combination of period and slice (there are 900), plus aperiodic
scheduling with 100% utilization. Regardless of the period selected,
the performance of the benchmark is cleanly controlled by the time
resources allocated. As the granularity shrinks, proportionate con-
trol remains, as can be seen in Figure 14, in which we consider the
�nest granularity in our study. In this case, there is more variation
across the di�erent period/slice combinations with the same uti-
lization because the overall task execution time becomes similar to
the timing constraints themselves for some of the combinations.

6.4 Barrier removal
Because of the lock-step execution across CPUs that our scheduler
can provide for hard real-time groups, and the fully balanced nature
of a BSP computation as modeled in our microbenchmark, it is
possible to consider discarding the optional barriers. What are the
performance bene�ts of doing so?

The bene�ts depend on the granularity of the computation. Con-
sidering the BSP structure as represented in the benchmark, Am-
dahl’s law tells us that the cost of optional_barrier() only mat-
ters if the costs of compute_local_element() and
write_remote_element_on() are small. optional_barrier()’s
cost is only dependent on the number of CPUs, so this boils down
to how large NE, NC, and NW are.

Figure 15 shows us the bene�t for the coarsest granularity com-
putation, on 255 CPUs. In the �gure, each point represents a single
combination of period and slice (there are 900). The point compares
the time with the barrier to the time without. All points above
the line (almost all of them) represent con�gurations where the
benchmark is running faster without the barrier. The points form
9 clusters as these are the 9 levels of slice (10%, 20% and so on)
in our study. Also indicated is the performance of the aperiodic
constraints (which must be run with barriers for correctness). With
a 90% slice (utilization), the hard real-time scheduled benchmark,
with barriers removed, matches and sometimes slightly exceeds the
performance of the non-real-time scheduled benchmark. The latter
is running at 100% utilization.

Figure 16, which is semantically identical, shows the bene�t for
the �nest granularity computation on 255 CPUs Here, the bene�t of

2 4 6 8 10

x 10
8

2

4

6

8

10

x 10
8

Time with Barrier Removal

T
im

e
 w

it
h

o
u

t
B

a
rr

ie
r

R
e

m
o

v
a

l

Aperiodic

Performance
Gain

Figure 15: Bene�t of barrier removal at the coarsest granularity. Dis-
tance of points above line indicates bene�t. The real-time scheduled
benchmark without barriers and with period/slice constraints giv-
ing 90% utilization, is similar in performance to the non-real-time
scheduled benchmark with barriers at 100% utilization. Time in ns.

2 3 4 5 6

x 10
7

2

3

4

5

6
x 10

7

Time with Barrier Removal

T
im

e
 w

it
h

o
u

t
B

a
rr

ie
r

R
e

m
o

v
a

l

Performance
Gain

Aperiodic

Figure 16: Bene�t of barrier removal for the �nest granularity. Dis-
tance of points above line indicates bene�t. For a range of period/s-
lice combinations and utilizations, the real-time scheduled bench-
mark without barriers exceeds the performance of the non-real-
time scheduled benchmark with barriers. Time in ns.

barrier removal is much more pronounced, as Amdahl’s law would
suggest, and the e�ects of barrier removal are much more varied.
The bene�t ranges from about 20% to over 300%. As before the aperi-
odic/100% utilization case, which requires the barrier, is highlighted.
Now, however, the hard real-time cases, with barriers removed, can
not just match its performance, but in fact considerably exceed it.

7 RELATEDWORK
Ourwork ties to long-running research in several areas, as described
below. It is important to keep in mind that we target �ne-grain
scheduling of CPUs in a shared memory node, not courser grain
scheduling of a distributed memory machine.

OS noise, overhead, and responses. In distributed memory parallel
machines, it has been well known for a long time that operating
system noise can produce di�erentiated timing, and ultimately
performance degradation [10] and variation [19]. These issues com-
pound as scale increases, as do the overheads of using full OS

HPDC ’18, June 11–15, 2018, Tempe, AZ, USA Peter Dinda Xiaoyang Wang Jinghang Wang Chris Beauchene Conor Hetland
kernels on such machines. One response has been specialized oper-
ating systems, including the long-term development of lightweight
kernels from the early 90s [1, 40] through today [20, 36]. Light-
weight kernels can provide both low overheads and a high degree
of predictability for parallel applications.

The hybrid run-time (HRT)model [16] andNautilus kernel frame-
work [14] that we build upon in this paper extend the lightweight
kernel concept by merging the application, parallel run-time, and
kernel into a single entity (the HRT). Such an approach is becoming
increasingly feasible through the combination of a rapidly growing
core counts and tools thatmake it possible to boot (and reboot) HRTs
(and other radical kernels) alongside traditional kernels [15, 30].
Leaving our removal of the kernel/user distinction aside, the HRT
model can be viewed as a form of Exokernel [8], and constructed
HRTs are single-purpose, similar to unikernels [27], which are be-
coming accepted within the general cloud/data center space. Other
forms of HPC unikernels are also emerging [12].

Gang scheduling. When time-sharing a distributed memory par-
allel machine, it is possible for the application to unnecessarily
block on one node because it is descheduled on another. For exam-
ple, a send from one node may block on a receive on another. The
probability and performance impact of such unnecessary blocking
increase dramatically as the application scales. Independent of this
issue, It is also well known that collective communication can be
more e�cient if synchronization and data transfer can be decou-
pled as in classic direct deposit [38] or today’s RDMA [24], but this
implies receivers are running when senders deliver messages.

Gang scheduling, in which each time-shared node runs the appli-
cation simultaneously, was proposed by Ousterhout in 1982 [32] to
address these kinds of concerns. Classic gang scheduling (e.g. [18])
uses global synchronization to guarantee coordinated scheduling
decisions on di�erent nodes, and is perceived to be di�cult to scale
on some hardware. Implicit co-scheduling [7] avoids global coor-
dination and instead coordinates node scheduler actions through
inference of likely remote scheduler activity from local interactions.
This produces gang scheduled behavior with high probability.

Gang scheduling of processes or threads within a single node
was shown early on to allow faster synchronization mechanisms
to be employed [9]. More recently, a similar idea has become im-
portant for virtual machines. Here, a particular concern is that a
descheduled virtual CPU that is holding a spin lock can very ine�-
ciently block other virtual CPUs that are attempting to acquire the
spin lock [39]. Gang scheduling the virtual CPUs of a VM is one
way to address the problem.

Ourwork provides guaranteed gang scheduled behavior of threads
on a single node without global synchronization.

Real-time systems. Real-time systems research dates back to the
earliest days of computing. Both soft and hard real-time systems
introduce the concept of a deadline (or a generalization in the
form of a utility function [35]) in scheduling tasks or threads, and
the concept of making scheduling time-driven [17] as opposed to
providing some notion of fairness as in commodity schedulers. In a
hard real-time system, all deadlines must be met in order for the
system to be correct [37]. The theory of hard real-time systems can
be implemented in numerous ways, of which an RTOS is one. The
cornerstone theoretical result is that of Liu and Layland [23], which

we use as well. In our work, we also adopt the theoretical model of
Liu [25] to integrate real-time and non-real-time scheduling in a
single, per-CPU RTOS framework.

To the best of our knowledge, our work on VSched [21], which
used a soft real-time model to allow time-sharing of single-node
programs with controlled interference, was the �rst use of real-
time systems in HPC. Subsequent work extended this model to
distributed memory parallel machines. Similar to scheduling in
Barrel�sh, which we describe below, we showed how to use an
infrequently invoked global feedback control loop to dynamically
set real-time constraints on individual nodes so as to achieve coordi-
nated scheduling (and the e�ect of gang scheduling) with minimal
communication [6, 22]. This allowed an administrator to throttle
up/down application resource usage with commensurate perfor-
mance changes. In part, the current work extends these ideas to the
node level using a hard real-time model.

Mondragon, et al [29] describe using an earliest-deadline-�rst
(EDF) scheduler to time-share simulation and analysis codes with
isolation, but this did not involve either hard real-time or coordi-
nated scheduling.

Operating systems. Tesselation and Barrel�sh are operating sys-
tems research projects of particular relevance to the present work.
Tesselation [4, 26], implements a “space-time” partitioning model
for the node’s CPU resources, allowing associated threads to be
scheduled simultaneously across a group of CPUs in a gang sched-
uledmanner. The group scheduling component of ourwork achieves
a similar e�ect. As far as we are aware, however, Tesselation does
not use a hard real-time model to achieve its goals.

Barrel�sh is an implementation of a multikernel [2]. Multiker-
nels attempt to achieve better scalability on a multicore node (as
well as to support a heterogeneous node) by adopting a largely
distributed model in which per-CPU kernels strictly communicate
using explicit messaging. In contrast, our HRT model shares all
state across CPUs and between kernel and application, although
we aggressively use traditional per-CPU state where necessary for
performance. We also focus on a homogeneous node.

Scheduling in Barrel�sh [33, 34] was heavily in�uenced by HPC
scheduling, in particular gang scheduling. Similar to our design,
Barrel�sh uses per-CPU real-time schedulers whose clocks are
synchronized. A gang scheduling abstraction called phase-locked
scheduling is then implemented on top of these deterministic sched-
ulers by selecting the same scheduling constraints for each member
of the gang. Our work has several di�erences. First, we attempt to
achieve hard real-time behavior on x64 despite SMIs through the use
of an eager EDF scheduling model on the individual CPU. Second,
we introduce interrupt steering and segregation to further enhance
hard real-time behavior. Third, we incorporate lightweight tasks
within our scheduling model. Fourth, we give a detailed perfor-
mance evaluation of our system as a hard real-time system. Finally,
we illustrate how barriers may be eliminated in some cases using
very �ne grain scheduling.

8 CONCLUSIONS AND FUTUREWORK
The fusion of hard real-time systems and parallel systems holds
considerable promise, and this paper strongly supports the feasibil-
ity of such a fusion. We have described the design, implementation,

Hard Real-time Scheduling for Parallel Run-time Systems HPDC ’18, June 11–15, 2018, Tempe, AZ, USA
and performance of a hard real-time scheduler for parallel systems
at the node level. The scheduler, which will be publicly available
within the Nautilus codebase for x64 hardware, is able to achieve
isolation and very �ne resolution timing constraints, based on wall
clock time, both for individual threads and groups of threads that
execute synchronously. Our scheduler is able to run a �ne grain BSP
benchmark across a Xeon Phi such that its resource consumption
can be cleanly throttled. The scheduler also makes it possible to
replace barriers in the benchmark with scheduling behavior that is
time-synchronized across CPUs.

We are currently working on adding real-time, and barrier re-
moval support to Nautilus-internal implementations of OpenMP [31]
and NESL [3] run-times. We are also exploring compiling paral-
lel programs directly into cyclic executives, providing real-time
behavior by static construction.

REFERENCES
[1] Rolf Riesen Arthur B. Maccabe, Kevin S. Mccurley and Stephen R. Wheat. 1994.

SUNMOS for the Intel Paragon: A Brief User’s Guide. In Intel Supercomputer
Users’ Group. 1994 Annual North America Users’ Conference. 245–251.

[2] Andrew Baumann, Paul Barham, Pierre-Evariste Dagand, Tim Harris, Rebecca
Isaacs, Simon Peter, Timothy Roscoe, Adrian Schüpbach, and Akhilesh Singhania.
2009. The Multikernel: A New OS Architecture for Scalable Multicore Systems. In
Proceedings of the ACM SIGOPS 22Nd Symposium on Operating Systems Principles
(SOSP).

[3] Guy E. Blelloch, Siddhartha Chatterjee, Jonathan Hardwick, Jay Sipelstein, and
Marco Zagha. 1994. Implementation of a Portable Nested Data-Parallel Language.
J. Parallel and Distrib. Comput. 21, 1 (April 1994), 4–14.

[4] Juan A. Colmenares, Gage Eads, Steven Hofmeyr, Sarah Bird, Miguel Moretó,
David Chou, Brian Gluzman, Eric Roman, Davide B. Bartolini, Nitesh Mor, Krste
Asanović, and JohnD. Kubiatowicz. 2013. Tessellation: Refactoring theOSAround
Explicit Resource Containers with Continuous Adaptation. In Proceedings of the
50th ACM/IEEE Design Automation Conference (DAC 2013). 76:1–76:10.

[5] Brian Delgado and Karen Karavanic. 2013. Performance Implications of Sys-
tem Managemnet Mode. In Proceedings of the IEEE International Symposium on
Workload Characterization (IISWC 2013).

[6] Peter Dinda, Bin Lin, and Ananth Sundararaj. 2009. Methods and Systems
for Time-Sharing Parallel Applications with Performance-Targetted Feedback-
Controlled Real-Time Scheduling. (February 2009). United States Patent Appli-
cation 11/832,142. Priority date 8/1/2007.

[7] Andrea C. Dusseau, Remzi H. Arpaci, and David E. Culler. 1996. E�ective Dis-
tributed Scheduling of Parallel Workloads. In Proceedings of the 1996 ACM SIG-
METRICS Conference on Measurement and Modeling of Computer Systems. 25–36.

[8] Dawson R. Engler, M. Frans Kaashoek, and James O’Toole. 1995. ExoKernel: An
Operating System Architecture for Application Level Resource Management. In
Proceedings of the 15th ACM Symposium on Operating System Principles. 256–266.

[9] Dror G. Feitelson and Larry Rudolph. 1992. Gang Scheduling Performance
Bene�ts for Fine-grain Synchronization. J. Parallel and Distrib. Comput. 16, 4
(1992), 306–318.

[10] Kurt Ferreira, Patrick Bridges, and Ron Brightwell. 2008. Characterizing appli-
cation sensitivity to OS interference using kernel-level noise injection. In 2008
ACM/IEEE conference on Supercomputing (SC). 1–12.

[11] Alexandros V. Gerbessiotis and Leslie G. Valiant. 1994. Direct Bulk-Synchronous
Parallel Algorithms. J. Parallel and Distrib. Comput. 22, 2 (1994), 251–267.

[12] Balazs Gero�, Masamichi Takagi, Gou Nakamura, Tomoki Shirasawa, Atsushi
Hori, and Yutaka Ishikawa. 2016. On the Scalability, Performance Isolation and
Device Driver Transparency of the IHK/McKernel Hybrid Lightweight Kernel. In
Proceedings of the IEEE International Parallel and Distributed Processing Symposium
(IPDPS 2016).

[13] Kyle Hale. 2016. Hybrid Runtime Systems. Ph.D. Dissertation. Northwestern
University. Available as Technical Report NWU-EECS-16-12, Department of
Electrical Engineering and Computer Science, Northwestern University.

[14] Kyle Hale and Peter Dinda. 2016. Enabling Hybrid Parallel Runtimes Through Ker-
nel and Virtualization Support. In Proceedings of the 12th ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments (VEE 2016).

[15] Kyle Hale, Conor Hetland, and Peter Dinda. 2017. Multiverse: Easy Conversion
of Runtime Systems Into OS Kernels. In Proceedings of the 14th International
Conference on Autonomic Computing (ICAC 2017).

[16] Kyle C. Hale and Peter A. Dinda. 2015. A Case for Transforming Parallel Run-
time Systems Into Operating System Kernels (short paper). In Proceedings of the
24th International ACM Symposium on High Performance Parallel and Distributed
Computing, (HPDC 2015).

[17] E. Douglas Jensen, C Douglass Lock, and Hideyuki Tokuda. 1985. A Time-Driven
Scheduling Model for Real-Time Operating Systems. In Proceedings of the Real-
Time Systems Symposium. 112–122.

[18] Morris Jette. 1997. Performance characteristics of gang scheduling in multi-
programmed environments. In Proceedings of the 1997 ACM/IEEE conference on
Supercomputing. 1–12.

[19] Brian Kocoloski, Leonardo Piga, Wei Huang, Indrani Paul, and John Lange. 2016.
A Case for Criticality Models in Exascale Systems. In Proceedings of the 18th IEEE
International Conference on Cluster Computing (CLUSTER 2016).

[20] John Lange, Kevin Pedretti, Trammell Hudson, Peter Dinda, Zheng Cui, Lei
Xia, Patrick Bridges, Andy Gocke, Steven Jaconette, Mike Levenhagen, and Ron
Brightwell. 2010. Palacios and Kitten: New High Performance Operating Systems
for Scalable Virtualized and Native Supercomputing. In Proceedings of the 24th
IEEE International Parallel and Distributed Processing Symposium (IPDPS 2010).

[21] Bin Lin and Peter Dinda. 2005. Vsched: Mixing Batch and Interactive Virtual
Machines Using Periodic Real-time Scheduling. In Proceedings of ACM/IEEE SC
(Supercomputing).

[22] Bin Lin, Ananth Sundararaj, and Peter Dinda. 2007. Time-sharing Parallel Appli-
cations With Performance Isolation And Control. In Proceedings of the 4th IEEE
International Conference on Autonomic Computing (ICAC). An extended version
appears in the Journal of Cluster Computing, Volume 11, Number 3, September
2008.

[23] C. L. Liu and James W. Layland. 1973. Scheduling Algorithms for Multiprogram-
ming in a Hard Real-Time Environment. Journal of the ACM 20, 1 (January 1973),
46–61.

[24] Jiunxing Liu, Jiesheng Wu, and Dhabaleswar Panda. 2004. High Performance
RDMA-Based MPI Implementation over In�niBand. International Journal of
Parallel Programming 32, 3 (June 2004), 167–198.

[25] Jane W. S. Liu. 2000. Real-Time Systems. Prentice Hall.
[26] Rose Liu, Kevin Klues, Sarah Bird, Steven Hofmeyr, Krste Asanović, and John

Kubiatowicz. 2009. Tessellation: Space-time Partitioning in a Manycore Client
OS. In Proceedings of the 1st USENIX Conference on Hot Topics in Parallelism
(HotPar 2009). 10:1–10:6.

[27] Anil Madhavapeddy, Richard Mortier, Charalampos Rotsos, David Scott, Balraj
Singh, Thomas Gazagnaire, Steven Smith, Steven Hand, and Jon Crowcroft. 2013.
Unikernels: Library Operating Systems for the Cloud. In Proceedings of the 18th
International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS 2013).

[28] Michael Mitzenmacher. 2001. The Power of Two Choices in Randomized Load
Balancing. IEEE Transactions on Parallel and Distributed Computing 12, 10 (2001),
1094–1104.

[29] OscarMondragon, Patrick Bridges, and Terry Jones. 2015. Quantifying Scheduling
Challenges for Exascale System Software. In Proceedings of the 5th International
Workshop on Runtime and Operating Systems for Supercomputers (ROSS 2015).

[30] Jiannan Oayang, Brian Kocoloski, John Lange, and Kevin Pedretti. 2015. Achiev-
ing Performance Isolation with Lightweight Co-Kernels. In Proceedings of the
24th International ACM Symposium on High Performance Parallel and Distributed
Computing, (HPDC 2015).

[31] OpenMP Architecture Review Board. 2008. OpenMP Application Program Interface
3.0. Technical Report. OpenMP Architecture Review Board.

[32] John Ousterhout. 1982. Scheduling Techniques for Concurrent Systems. In
Proceedings of the Conference on Distributed Computing Systems (ICDCS).

[33] Simon Peter. 2012. Resource Management in a Multicore Operating System. Ph.D.
Dissertation. ETH Zurich. DISS.ETH NO. 20664.

[34] Simon Peter, Adrian Schüpbach, Paul Barham, Andrew Baumann, Rebecca Isaacs,
Tim Harris, and Timothy Roscoe. 2010. Design Principles for End-to-end Multi-
core Schedulers. In Proceedings of the 2nd USENIX Conference on Hot Topics in
Parallelism (HotPar).

[35] Raj Rajkumar, Chen Lee, John Lehoczky, and Dan Siewiorek. 1997. A Resource
Allocation Model for QoS Management. In Proceedings of the IEEE Real-Time
Systems Symposium.

[36] Rolf Riesen, Ron Brightwell, Patrick Bridges, Trammell Hudson, Arthur Mac-
cabe, Patrick Widener, and Kurt Ferreira. 2009. Designing and Implementing
Lightweight Kernels for Capability Computing. Concurrency and Computation:
Practice and Experience 21, 6 (April 2009), 793–817.

[37] John Stankovic and Krithi Ramamritham. 1988. Hard Real-Time Systems. IEEE
Computer Society Press.

[38] Thomas Stricker, James Stichnoth, DavidO’Hallaron, SusanHinrichs, and Thomas
Gross. 1995. Decoupling Synchronization and Data Transfer in Message Passing
Systems Of Parallel Computers. In Proceedings of the International Conference on
Supercomputing. 1–10.

[39] Chuliang Weng, Qian Liu, Lei Yu, and Minglu Li. 2011. Dynamic Adaptive Sched-
uling for Virtual Machines. In Proceedings of the 20th International Symposium on
High Performance Distributed Computing (HPDC).

[40] Stephen R. Wheat, Arthur B. Maccabe, Rolf Riesen, David W. van Dresser, and
T. Mack Stallcup. 1994. PUMA: An Operating System for Massively Parallel
Systems. Scienti�c Programming 3 (1994), 275–288.

