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ABSTRACT

We present the first study of the real-world behavior of dis-
play power management (DPM) policies. DPM policies con-
trol the mechanism of powering on and off the display—
turning off the display typically reduces total system power
by ~31%. The most widely used DPM policy, human in-
terface device (HID) timeout, powers off the display after a
user-configurable period of human interface device inactiv-
ity, and powers it back on in response to activity. To increase
energy savings, we also consider an alternative policy, user
presence detection, that uses sonar sensing to power off the
display when user absence is detected. Our study captures
how these DPM policies work “in the wild”, both in terms
of energy savings and the user irritation. We also determine
the maximum energy saving opportunity for any DPM pol-
icy, based on measured behavior. Our study, based on a
3,738 hours of computer usage by 181 volunteers with dif-
ferent machines, reveals several surprising results. User idle
periods follow power law distributions with little temporal
correlation. The maximum possible reduction in energy used
for the display is 81%, while the HID timeout policy man-
ages to reduce this energy by 51%. Many users have already
customized the HID timeout policy on their machines, re-
sulting in a high variation of timeout values, and surprisingly
low levels of user irritation. However, the 44% of users that
have not customized HID timeouts experience more irrita-
tion. The proposed user presence detection policy, when ef-
fective, further reduces display energy consumption by 10%
when combined with the HID timeout policy. 40% of the
2,869 machines tested can effectively generate and record
ultrasound for sonar.
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1. INTRODUCTION

Display power management (DPM) policies are autonomic
control policies with which all computer users have direct
experience. The goal of such a policy is to turn off the com-
puter display whenever the user becomes inattentive and
turn it back on again when the user becomes attentive. Tog-
gling the display is a simple, but important, mechanism for
controlling energy consumption. By display, we mean the
LCD panel and its backlight (this paper does not consider
the GPU).

LCD displays are major contributors to energy consump-
tion. A past power measurement of laptops indicates that
when dynamic voltage and frequency scaling (DVFS) is en-
abled on the CPU and the system is idle, the LCD (9%)
and backlight (29%) together draw 38% of system power
when fully brightened [10]. This idle condition is an ex-
tremely common state for modern laptop computers [12, 4].
We present our own measurements of the potential energy
savings (which exhibit similar behavior) in Section 3.

The DPM policy determines when to toggle on or off the
display. The resulting energy savings are determined by user
behavior, i.e., attentive and inattentive periods, and the ef-
fectiveness of the policy. Note that user attention is not
usually precisely measured although a strictly optimal pol-
icy would require this information. There is an important
tension in all realizable DPM policies: the more aggressive
the DPM policy is in estimating user inattentiveness, the
higher the energy savings, but also the higher the chance of
annoyingly shutting off the display when the user is still at-
tentive (e.g., reading a web page). We call such policy errors
irritation events. A DPM policy must choose an operating
point to resolve the tension between energy savings and ir-
ritation. In this work, we analyze how efficiently existing
schemes make such trade-offs. Specifically, we answer the
following questions:

e How well do current DPM policies work, both in terms
of energy savings and user satisfaction?

e How much better could an optimal DPM policy do?
How close to optimal are current policies?

e How can current DPM policies be improved upon?

We address these questions by examining the measured re-
sults of a large real-world study of two policies. The policies
are the human interface device (HID) timeout policy that



is universally employed in current operating systems, and
a policy we developed, user presence detection, that tries
to improve upon HID timeout, and that could be used in
conjunction with it. We describe these policies in detail in
Section 4.

Our measurements are based on a large-scale user study
of 181 volunteers, each with a separate machine, who collec-
tively provide us with 3,738 hours of computer usage logs.
We describe our study in detail in Section 6. We are aware of
no prior work that evaluates any DPM policies in practice:
this study is our main contribution.

In summary, our data show that:

e In practice, DPM policies can reduce display energy
consumption by 81% at most and total system energy
consumption by 25%.

e The widely-used HID timeout policy is surprisingly ef-
fective in practice, reducing display energy consump-
tion by 51% and total system energy consumption by
15.3%. Furthermore, the median rate of irritation events
for this policy is low: on the order of one per day.

e Evidence suggests that 44% of users do not customize

the HID timeout parameter. This may result in those

users having higher irritation rates than otherwise pos-
sible.

User idle periods follow a power law distribution with

little temporal correlation, suggesting that a simple

predictor could be used to estimate idle period length.

e A combined policy using both HID timeout and pres-

ence detection could reduce display energy consump-

tion by 10% compared to the HID timeout policy alone.

The performance of sonar is quite sensitive to the avail-

able audio hardware and operating conditions. 40% of

machines in our study were capable of generating and
recording significant levels of ultrasound.

2. RELATED WORK

We are aware of no prior work that evaluates DPM poli-
cies in practice. The most relevant work studies user inter-
action with computer systems. The seminal work in that
fold is that of Muttka and Livny [12], who studied system
idle times, finding that desktop workstations, even in 1990,
were idle much of the time. More recent work [4, 1] con-
firms that this remains the case today. Unfortunately, the
traces collected from such studies cannot be used to analyze
DPM policies since they are too coarse grained, and/or do
not capture HID events.

There appears to be considerable opportunity for DPM
policies to reduce overall system power consumption. Mah-
esari and Vardhan’s 2005 study found that the display drew
38% of full system power on an idle laptop computer [10].
Roberson et al. studied the energy consumption of com-
puter displays for the Energy Star program in a set of exten-
sive office surveys [15, 16]. Beyond powering off the display,
which has for many years been one of the primary means of
reducing energy consumption on deployed machines, Ran-
ganathan et al. describe new display hardware with highly-
adjustable reduced power consumption modes [14].

There have been proposals for new DPM policies based
on user attentiveness. Dalton and Ellis proposed using a
webcam to detect attention for DPM, but their evaluation
was incomplete [3]. Visual attention and presence detection
techniques are certainly promising; however, further work is

needed to determine both their real-world effectiveness and
their sensing and processing overheads. The user presence
detection policy we evaluate in this paper builds upon a pre-
vious study in which we showed that user presence can be
detected using computer audio hardware under controlled
laboratory conditions [19]. We have now demonstrated an
application of the same technique and evaluated it in real-
world environments. Our work takes place in the context
of the Empathic Systems Project [5], which has generally
found that there is a high degree of variation in user sat-
isfaction with any given operating point in a system, and
that variation can be exploited by autonomic control that
tailors for the individual user. Of relevance to this paper, we
have demonstrated a range of user-driven systems for power
management [17, 18, 9, 11]. However, none of these studies
analyze display power management.

3. DISPLAY ASSUMPTIONS

DPM policies are applicable to both laptop and desktop
computers. The obvious motivation for DPM on laptops
is to lengthen battery life. Desktop computers have larger
displays than laptop computers and therefore their displays
consume more energy. Thus, DPM on desktop computers is
important from environmental and economic perspectives.

The most recent measurements of display power we are
aware of were published in 2005 [10]. To confirm and expand
upon those measurements, we measured the total system
power of several machines using a clamp ammeter on the AC
supply line. By measuring the total electrical current with
the LCD display on and off, we can readily calculate the
current (and thus power) demand of display. We considered
one desktop and three laptops, all running MS Windows.

Figure 1 shows the machines’ total system power in several
LCD and CPU load states. In the CPU busy state, the OS-
reported CPU utilization was ~100%. We also considered a
CPU idle state, which is the common case, as reported in the
literature we described in Section 2. Three LCD states were
considered: fully off, dim, and full brightness. As we can see
from the figure, the display’s contribution to system power
ranges from 7% to 34%, supporting earlier measurements.
Note further that in a very common case, the CPU being
idle and the display being bright, the display consumes 31%
of system power, and this does not vary much across the
machines we tested.

In the remainder of the paper, we report reductions in
display energy consumption and system energy consump-
tion as percentages. For the display, a reduction in energy
is equivalent to the change in duration that the display is
powered on. For a reduction in system energy consumption,
we normalize by the 31% figure, making the assumptions
(again, supported by previous studies) that the idle state is
most common and that that the display is at full brightness.
Two examples where these assumptions approximately hold
are web browsing and basic office applications. Note that
there is no significant energy cost or delay involved in pow-
ering up or down the display. We ignore any wear-out costs
associated with increased display power switching.

4. DPM POLICIES

We considered two DPM policies in our study. The most
important aspect of a DPM policy is how it estimates user
attention. We summarize how our two policies do so in



LCD CPU idle | CPU busy
description CPU type size LCD off | LCD dim | LCD max
desktop examples:
[Dell Vostro 410 | Tntel £8400 3 Gz [227 [[63W [ 92 (34%) [ 92 (34%) | 128 (2% |

laptop examples:
Lenovo T61 Intel T7500 2.2 GHz 14.17 || 13 14 (%) |19 (32%) | 29 (21%)
Dell Inspiron 8600 | Intel Pentium M 1.6 GHz | 15.47 || 18 22 (18%) | 26 (31%) | 37 (22%)
IBM Thinkpad 240 | Intel Celeron 300 MHz 10.5” || 7 8 (12%) | 10 (30%) | 16  (19%)

average contribution of LCD to total laptop power: 12% 31% 21%

Figure 1: Total system power consumption in Watts for various system states. Fraction of power due to the
LCD is reported in parentheses. Note that desktop LCD backlights typically cannot be dimmed.

policy attention estim. failure modes

optimal true attention none

HID input activity user reading without

timeout giving input

presence || physical presence | user present but

detection || as measured by distracted, sonar errors in
sonar detecting presence

Figure 2: Attention estimates for each DPM policy.

Figure 2. A comparison of the two policies can be considered
a comparison of two attention estimation models.

4.1 HID timeout

By far the most commonly used policy today is human
interface device (HID) timeout. HID timeout is familiar to
most computer users; it powers down the display after some
prescribed time interval has elapsed since the last HID (key-
board or mouse) event. HID timeout has a model of user
attention with one parameter: the timeout length 7. Under
this model, the user is deemed attentive if the time since the
last HID event is less than T and, conversely, inattentive if
greater than 7. HID input resets the interval and powers
up the display.

This model works in some cases because it captures en-
gagement between the user and computer. However, atten-
tion is not well measured: input activity-based techniques
are unable to distinguish between a truly inattentive user
and one who is actively reading the display without using
the mouse or keyboard. Thus, the model parameter 7' is
typically set to a conservative value: at least five minutes.
Microsoft Windows’ default value is five minutes for battery-
powered operation.

4.2 User presence detection

The proposed user presence detection policy attempts to
use sensor-based measurement of user presence as a user
attention estimate. In earlier work, we showed how sonar
can be used to detect user presence on a standard laptop
computer without any additional hardware [19]. The laptop
computer emits a sound “ping” from its speaker and records
the resulting echo on its microphone. The ping is a 22kHz
sine wave. This frequency is chosen to be high enough to
be silent to humans (thus it is wltrasonic), yet low enough
that it might be produced and recorded by the audio hard-
ware built into most laptop computers. To sense the user,
the computer can determine the amount of variation in the

ping’s echo. Little variation indicates a still room; more
variation indicates motion in the environment, which may
indicate the presence of a human. The technique is very
effective under controlled laboratory conditions.

We use a threshold to determine whether a sonar reading
indicates user presence or absence. High sonar reading vari-
ation corresponds to presence and low variation to absence,
but calibration is required to determine a threshold value.
In our lab experiments [19], sonar readings were taken while
the user was known to be present and also while absent and a
threshold value between these two readings was chosen. This
calibration procedure works fine if the acoustic environment
is static. However, if the computer is moved between differ-
ent environments or if the environment’s acoustics change
then calibration must be repeated.

Calibration is one of several practical issues that arise in
real-world sonar presence sensing; we have addressed these
as follows. It is easy to record sonar readings representative
of a present user: for example, readings can be taken while
the mouse is is motion. In order to avoid requiring the user
to leave the computer to calibrate an absence reading level,
we approximate absent sonar readings as zero and simply
set the threshold to one half of the present value. Sonar
adapts to changes in the speaker volume levels by normal-
izing the reading to the recording’s ping intensity. Sonar
uses only a narrow ultrasonic frequency band and it does
not prevent normal use of the speakers, for example in play-
ing music. In informal laboratory tests, playing music had
no noticeable effect on sonar performance. If an irritation
event occurs, this indicates that presence detection failed.
To prevent repeated irritation, a factor of 0.8 is applied to
lower the threshold after each irritation event. Only the next
hourly recalibration may increase the threshold.

S. IMPLEMENTATION

We employ both the HID timeout and user presence de-
tection policies within a single piece of software, the Sonar
Power Manager, a utility that we have designed for use with
Windows XP, Vista, and 7, as well as Linux. Sonar Power
Manager is designed to simultaneously test both policies by
recording the actions of both policies in parallel.

If the sonar presence sensor indicates that the user is ab-
sent the display is shut off. Similarly, if the input activity
timer expires the display is shut off. The timeout value is set
equal to the display sleep timeout in the Windows control
panel for battery-powered operation. Thus, the presence de-
tection policy adds an additional display shut-off criterion



to the existing Windows HID timeout policy. By design, it
is more aggressive than the default policy.

The Sonar Power Manager is a user-space utility imple-
mented in C++ with the WxWidgets and PortAudio li-
braries to achieve portability across Windows and Linux.
The software is open source and has been released with a
permissive license. Both the source code and a Windows ex-
ecutable can be downloaded from our web site’. The website
also describes the software’s operation in more detail.

The Sonar Power Manager uses minimal power and CPU
time. On a Lenovo T61 laptop, sonar sensing consumes
~3% of the available CPU cycles on one core. The measured
system power overhead due to sensing for the machines listed
in Figure 1 was between 4% and 10%.

6. USER STUDY

We conducted a user study to collect usage traces appro-
priate for evaluating DPM.

Recruitment and users. To assist recruiting participants,
a Northwestern University press release on our work led to
a posting on the popular computer and technology news
website slashdot.org. Shortly thereafter, the Sonar Power
Manager was downloaded over 10,000 times. It is from these
downloaders that we draw our data. Hence, it is impor-
tant to note that our user sample represents those with an
interest in technology news and may therefore may react
differently to the HID timeout and user presence detection
policies than would the general population.

Sonar Power Manager collects log data on the operation
of the policies it is testing. Users who installed the utility
were given the option of “opting-out” of sending these logs
to us. The majority of users opted-out of logging. It is
also important to note that users who did opt-in ran the
software for varying amounts of time. A user could also
opt-out of logging at any time, and the logging process was
automatically disabled after one week. We eliminated logs
from those who used the software for less than one hour.

Log contents. For those who opted-in, Sonar Power Man-
ager collected logs of sonar and power management events.
Logs were compressed and sent to our servers every hour.
The following information was time stamped and logged:

e The starting and ending time of HID input activity.

e Irritation events for both policies. Specifically, an irri-
tation event is defined as a HID event that causes the
display to wake less than 5 seconds after it was slept.

e The value of each sonar measurement.

e Times at which logging starts and stops.

Recall that Sonar Power Manager collects log data for both
the HID timeout policy and the user presence detection pol-
icy simultaneously

High-level view of the dataset. We acquired 3,738 hours
of usage by 181 volunteers, each with a different machine.
There were 177 Windows users and 4 Linux users. Users ran
the software for varying amounts of time. Figure 3 gives the
distributions of the interval of time that the software was
installed and the amount of time the software ran with full
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Figure 3: CDF of installed time and logging time.
The difference is the time that the computer was off
or logging was disabled.

logging. The difference between these two durations is the
time the machine was off or the user had logging disabled.
The median amount of full-logging time was seven hours.

7. RESULTS

We analyzed the logs collected during the user study to
make the observations given in Section 1. We present our
results in several parts: a characterization of user active
and idle periods, an analysis of the effectiveness of the HID
timeout policy, an analysis of the upper bound of energy
savings for DPM policies based on user behavior, an anal-
ysis of the effectiveness and tradeoffs of the user presence
detection policy, and a characterization of sonar in practice.

In our treatment, we generally refer to two kinds of results:
aggregate results are computed after first joining data col-
lected from all users, while individual results are first com-
puted for each user and then afterwards averaged across
users. Aggregate results weigh each observation equally
while individual results weigh each user equally. Since users
provided different amounts of log data, these two averag-
ing methods give different results. We also use logarithmic
plots because it is well known that human perception of time
durations scales logarithmically [6, 8, 13].

7.1 Characterization of idle/active periods

Computer usage may be broken into a sequence of al-
ternating active and idle periods, which we identify in our
traces based on HID events. We consider a HID-active pe-
riod as one in which HID events are spaced by no more than
than one second. HID-active periods are separated by HID-
idle periods which we define as those where more than one
second elapses with no HID events.

Figure 4 shows the distribution of idle and active periods
as defined above that were found in our data. Notice that
the idle period distribution clearly follows a straight line in
this log-log plot, indicating that it is a power-law distribu-
tion. Active periods tend to be shorter than idle periods and
they seem to follow a piecewise power-law distribution (note



Compl. cumulative dist. of HID session lengths

= 10° T
S r o 1 1 idle
S a0 X ~ active ==---=-
510" Foo S S e e e 3
(@]
5
- 10°
[
S
)
2102
"
5 1
o 10
o
g
10

session length (seconds)

Figure 4: Distribution of lengths of HID-active and
HID-idle periods.

HID session length correlation

actilve periodsI
idle periods =====--
a” penods ................ .

0.9
0.8

normalized autocorrelation

session lag

Figure 5: Autocorrelation of consecutive active and
idle periods. These are individual results.

that the power-law exponent changes around 1000 seconds,
evidenced by a change in slope).

In Figure 5 we show an autocorrelation analysis of active
and idle sessions, considering active—active, idle—idle and
(idle+active)—(idle+active). Although there is significant
correlation of active periods to themselves, there is little to
no correlation that might support the prediction of idle pe-
riods. This suggests that to predict an idle period’s length,
the best approach is probably simply to exploit the memory
property of the idle periods’ power-law distribution [7].

7.2 HID timeout policy performance

Timeout setting distribution. Figure 6 shows the distribu-
tion of users’ DPM timeout settings. Given the observations
we have repeatedly made in the Empathic Systems Project
(see Section 2), we might expect that users vary consider-
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Figure 6: Distribution of users’ HID timeout values.

ably in their performance expectations and that this should
be reflected in a wide range of DPM timeout settings. This
is indeed the case.

The peak of users at 5 minutes appears to be due to this
being the default value in Windows. In Section 7.3 we will
explore the implications of this peak.

Energy savings. Figure 7(a) shows the distribution of the
energy savings achieved by the HID timeout policy for users
in our study. The savings is measured by the fraction of
total runtime during which the display was shut off—called
the sleep fraction. The median sleep fraction was 25%.

Figure 7(b) shows the sleep fraction as a function of users’
timeout values. One might expect that the sleep fraction
would decrease monotonically with the timeout value, but
this is not the case. The mean aggregate sleep fraction
across all users is about 51%. Although there there is some
trend of lower energy savings with increasing timeout value,
clearly the variation among users swamps this trend. Mul-
tiplying the display sleep fraction by the fraction of system
power due to the display (which we approximate in Sec-
tion 3 as 31%) gives the total system energy savings. The
average total system power savings seen in our study is thus
51%x%31%=15.8%.

It is important to note that the data of Figure 7(b) are
based on users choosing their own timeout values. That is,
it is an observational result, not intervention-based result.
If we were to force different timeout values in a controlled
way, the curve might be quite different.

Irritation rates. User irritation occurs when the policy shuts
off the display while the user is actually attentive. Of course,
it is highly likely that the user will respond to such an #rri-
tation event with some HID input to wake the display. The
sequence of the display being powered down quickly followed
by HID input thus labels irritation events. In the following,
we consider any display sleep period shorter than five sec-
onds to represent an irritation event.

Figure 8 shows the user irritation rate as a function of the
user’s timeout setting. Note that for all timeout settings,
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Figure 7: Users’ achieved display energy savings.

except the lowest setting (one minute), irritation rates are
quite low, on the order of once per day. We discuss the
surprising peak in the curve at 5 minutes next.

7.3 Default users

Surprisingly, Figure 8 shows that users who chose a time-
out value of two or three minutes experienced less irritation
than those with a higher timeout value of five minutes. Five
minutes happens to be the Windows default value, and it is
used by roughly half of the users (see Figure 6). We suspect
that the peak in irritation at five minutes is due to a signifi-
cant group of users who neglected to customize the timeout
value, and thus have more irritation and/or lower energy
savings than would otherwise be possible.

Some portion of the five minute users have deliberately
chosen five minutes, while the rest use it by default. We
now attempt to estimate the sizes of these groups. We first
ignore the problematic five minute users while fitting a dis-
tribution curve to the remaining users. Then we can use the
distribution to estimate the expected size of the deliberative
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Figure 8: User irritation rate as a function of the
user’s DPM timeout setting.
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Figure 6. The curve is fit to all users except those
with the default five minute value.

group. Figure 9 shows that a log-normal distribution ap-
pears to fit user timeout preference well, with PDF defined
as follows:

1 _ 2
PDFlognormal(x) - M}

1
exp | —
xoV 2w P { 202

Using this fit, we estimate that, of the 101 users with
the default five-minute timeout, 21% deliberately chose that
value while 79% just use it by default. This latter group is
significant in that it represents 44% of the users in our study.
Due to the nature of our participants, it is likely that this
latter figure significantly underestimates the proportion of
users in the general population who ignore the customization
controls for HID timeout policies. Assuming that the peak in
irritation seen in Figure 8 is due to this population, irritation
rates can be reduced by somehow forcing users to optimize
the timeout setting.
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7.4 Energy savings upper bound

Figure 10 shows the upper bound for display energy sav-
ings that any DPM policy can achieve. Here we assume
that the display can be powered-down whenever there is no
HID input for a given duration; we call this duration the
idle period cut-off. We include all idle periods encountered
in our data, not just those where the user was inattentive.
Because of this, the upper bound is loose—a policy that cap-
tured actual user attention would have lower energy savings.
At most, the display energy savings are 81%, for a system
energy savings of 81%x31%=25%.

Two classes of policies are compared. The predictive pol-
icy assumes foreknowledge of an idle period’s length and
thus allows the display to be powered down for the entire
duration of the period. The timeout policy powers down the
display only after an idle period extends beyond the cut-off
value. The closeness of these upper bounds suggests that
using a sophisticated idle period length prediction scheme
will give little benefit. Furthermore, the diminishing returns
of targeting brief idle periods is seen as the curves flatten
out below about one minute. Conversely, the steeper slopes
around the default timeout value of five minutes indicate
that energy savings are sensitive to the timeout setting in
this regime.

7.5 User presence detection policy results

We now show the benefit to DPM of adding a sonar pres-
ence detection sensor. Initially, we consider all users, but
later we attempt to isolate the machines on which sonar
presence sensing worked well.

Energy savings. Figure 11(a) shows a comparison of the
sleep times (and thus the energy savings) of the HID time-
out and sonar presence detection policies when they were
run simultaneously. Many users (those above the diagonal)
experienced more energy savings due to the HID timeout
policy than presence detection alone. For the users below
the diagonal, presence detection alone performed better than
HID timeout. We begin by considering a simple combined
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Figure 11: Comparison of energy savings due to
presence detection and HID timeout policies.

policy in which both HID timeout and presence detection
policies are run in parallel. Either policy can decide to turn
off the display, and HID input turns it back on.

Figure 11(b) considers the additional energy savings that
sonar provides in the combined policy. It shows the energy
savings that would be lost if sonar presence sensing were
disabled. In particular, the CDF shows that for half of the
users, presence detection contributes at least 10% of the to-
tal display energy savings. Also, the presence detection pol-
icy at least doubled display energy savings for almost 20%
of users.

Sensing overhead. There is a small energy overhead asso-
ciated with sonar measurement so we must judge whether
the gains from incorporating sonar outweigh the costs. Fig-
ure 12 shows the ratio of the gains to the number of sonar
measurements. We extrapolate the energy overhead based
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on the 7% average sensing power overhead recorded on lab
computers (see Section 5). In Figure 12, the top 10% of
users gained at least 0.6 s of display sleep time per 1s sonar
reading. Costs are about (7% x 1s)/(31% x 0.6s) = 38% of
gains for these users. For users with less than 0.22s of extra
display sleep time per sonar reading, costs were at least at
large as gains. Sonar can and should be disabled for these
67% of users.

Irritation rates. While Figure 8 showed low user irrita-
tion rates for the HID timeout policy, Figure 13 shows more
significant irritation rates for the presence detection policy.
The presence detection policy’s median value of one irrita-
tion event per hour is relatively low but significantly higher
than the HID timeout policy’s rate of one per day. The
combined policy’s irritation rates track those of the pure
presence detection policy. The curve annotated “combined
— good users” shows the performance of the combined policy
for situations where it is most effective, as discussed next.

Presence detection irritation vs energy savings

10 ——rrrr——r g
E example tradeoff ==-=--- «
_ [ ‘ P x ox X &X;X%
=3 - xoox X >,<'
2 T S S KooK Tl
. E X %é( AR e
g : X X% ><x><><>§<< % ]
2] B ! >e< X )(X§< 3&% )ié(
g F ; X 3:EX X '4'>< X 1
— N l' ><
8 0.1 «gxx%-
= F X, X i NS
= F < Lo )
i >< /‘:' < :
0.01 R - I 1 BT o
10*  10® 102 107 10°

fraction of sleep time added

Figure 14: Relationship between irritation rates
and energy savings for the presence detection pol-
icy. The 44 users below the dashed line experienced
fewer than 2 irritation events per hour of sleep due
to presence detection.

Figure 14 shows that there is some correlation between
energy savings and irritation rates for the combined policy.
As expected, at the left side of the plot, we see that users
for whom sonar rarely powered off the display were rarely
irritated. Note that some users with high energy savings
rates did not experience high irritation rates (users below
the dashed line in Figure 14). These are the users for whom
sonar provided a real benefit over the pure HID timeout
policy.

Thus far, we have explained a combined HID timeout and
presence detection policy that simply runs the two in parallel
and allows either to turn off the display. A more advanced
policy would determine when presence detection is likely to
be effective. One approach would be simply to run the two
policies to collect information similar to that of Figure 14.
The user would then choose a dividing line (as shown in
the figure) to trade off between irritation and energy sav-
ings. The example line represents a tradeoff that requires
fewer than 2 irritation events per hour of additional display
sleep time. The “combined — good users” curve in Figure 13
reflects the effects of the example line. Another combined
policy might track the irritation rates of the two policies
and choose the one that currently has the lowest rate, over
some window. This would be an application of the multiple
experts strategy [2].

7.6 Characterizing sonar

Our study also allowed us to characterize the performance
of ultrasonic sonar on ordinary computers in ordinary situ-
ations. Our previous analysis [19] focused on a small range
of audio hardware under controlled lab conditions.

Sonar-based detection of user presence requires audio hard-
ware that is capable of both emitting and recording ultra-
sound. Sonar Power Manager was configured to conduct a
calibration phase and report its findings back to us. Because
calibration happens at startup time, we have calibration
data from an order of magnitude more users and machines
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Figure 15: Ultrasound signal to noise ratios (SNR).
On a given machine, a low SNR means that sonar
will not work.

than we have long-term logging data. The important part
of the calibration data is a measurement of the ultrasound
signal to noise ratio (SNR). This is accomplished by gen-
erating and simultaneously recording ten seconds of white
noise in the range 15 to 30 kHz, as well as recording ten sec-
onds of silence. The white noise is the desired signal and
the silence is the background noise. Their power ratios at
different frequencies give an approximate SNR spectrum, for
which we show the CDF for 2,869 machines in Figure 15(a).
Figure 15(b) shows the SNR calculated from recordings of a
22 kHz sine wave. This measurement occurred after the pre-
vious one, and so there is an attrition of users—only 1847
machines are included. This measurement method reduces
the effect of spectral leakage and interference, so it is more
reliable.

As a rule of thumb, we do not expect sonar to work if
the SNR is below ten. As expected, lower frequencies give a
generally higher SNR at the expense of becoming audible to
more humans. Note that at the frequency used by the ex-
perimental software (22 kHz), about 40% of machines had a
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Figure 16: Correlation between SNR and sonar-
induced irritation (first and second plots) and en-
ergy savings (third plot).

good SNR. We might expect users with high irritation rates
seen in Figure 13 and low cost-benefit ratios in Figure 12 to
fall into the 60% of machines with low sonar SNR. However,
this did not appear to be the case. Figure 16 shows corre-
lation between SNR, and both irritation and energy savings.
Strangely, a clear correlation is not evident. Based on these
results, it seems clear that any combined sonar and HID
timeout policy should select between the two using the per-
formance of the overall system, rather than the SNR found
during calibration. Ideally, an ultrasound calibration tech-
nique capable of predicting sonar presence detection perfor-
mance would be found.

As previously stated, Figure 15(b) tells us that around
40% of available machines were capable of generating and
recording ultrasound with their current audio systems. While
it straightforward to understand why a commodity micro-
phone can capture ultrasound, it is surprising that speakers
are capable of generating it. We attribute this to the lack
of low pass filtering in common output paths combined with
cheap speaker elements being quite small.

8. CONCLUSIONS AND FUTURE WORK

We have presented the first study of the real-world be-
havior of display power management (DPM) policies, con-
sidering the widely-used HID timeout policy, a sonar-based
presence detection policy, and a combined policy. We found
that user idle periods follow power law distributions with lit-
tle temporal correlation. The maximum possible reduction
in energy used for the display is 81%, while the HID time-
out policy manages to achieve 51%. Our results suggest
that 56% of users have already customized the HID timeout



policy on their machines resulting in surprisingly low levels
of user irritation of around once per day. However, 44% of
users have not, and these users experience more irritation.
The presence detection policy combined with the HID time-
out policy further reduced display energy consumption by
10%. 40% of available machines can generate and record
ultrasound effectively.

Based on the experimental results, we recommend modify-
ing Operating System DPM implementations as follows. We
have described a method of detecting user irritation events
caused by false display shutoff policy decisions. Whenever
this happens, the user should be prompted to optionally
lengthen the DPM timeout. This feedback scheme would
allow users to easily fix a sub-optimal policy setting which
might otherwise be ignored. Alternatively, a fully autonomic
policy might increase the timeout length by 10% whenever
an irritation event occurs while reducing the timeout by 10%
each active hour. We also recommend adaptively adding
sonar presence detection to the DPM policy. During run-
time, if either the ultrasound SNR or achieved display en-
ergy savings are too low or the irritation rate is too high,
sonar should be disabled.

So far we have considered only DPM policies for current
hardware. Several additional paths exist. First, better user
attention detection sensors could be employed, for example
the biometric sensors we have begun to use to gauge user
satisfaction [18]. Dedicated presence sensors (e.g., infrared
motion sensors) can be both reliable, energy efficient, and in-
expensive. We also note that most current laptop computers
do not even have a button or switch to turn off the display.
Another research direction is DPM policies for emerging dis-
play technologies. In particular, e-paper displays consume
power only when the display contents change. LED back-
lit displays (which are already replacing traditional fluores-
cent backlit displays) have lower overall power consumption.
Some experimental displays have been demonstrated which
allow only part of the display to be lit. The proliferation of
new computer displays throughout homes and workplaces
might provide an additional motivation for DPM in reduc-
ing visual clutter/confusion as well as saving power.
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