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ABSTRACT
We argue that the implementation of VMM-based virtual
services for a guest should extend into the guest itself, even
without its cooperation. Placing service components di-
rectly into the guest OS or application can reduce implemen-
tation complexity and increase performance. In this paper
we show that the set of tools in a VMM required to enable
a broad range of such guest-context services is fairly small.
Further, we outline and evaluate these tools and describe
their design and implementation in the context of Guest
Examination and Revision Services (GEARS), a new frame-
work within the Palacios VMM. We then describe two exam-
ple GEARS-based services—an MPI communication acceler-
ator and an overlay networking accelerator—that illustrate
the benefits of allowing virtual service implementations to
span across the VMM, guest, and application. Other VMMs
could employ the ideas and tools in GEARS.

Categories and Subject Descriptors
D.4.4 [Software]: OPERATING SYSTEMS

Keywords
virtual machines, services, code transformation

1. INTRODUCTION
The virtualization layer is commonplace in cloud/data

center computing, well attested to in adaptive/autonomic
computing, and increasingly common even in high perfor-
mance computing. In each of these areas, the capability to
augment guests with VMM-based virtual services that can
enhance their functionality, security, or performance, and
can better match a user’s VMs with a provider’s hardware
resources, is one of the key benefits of virtualization.
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To expedite the creation and deployment of virtual ser-
vices, it would be beneficial to provision the VMM with the
ability to implant parts of the service implementations di-
rectly in the guest. VMM code running directly within the
context of the guest OS or application without its coopera-
tion has the potential to considerably simplify the design
and implementation of services because the services could
then directly manipulate aspects of the guest from within
the guest itself. Furthermore, these kinds of services could
eliminate many overheads associated with costly exits to the
VMM, improving their performance. Finally, extending a
service into the guest would enable new classes of services
that are not possible, or are extremely difficult to implement
solely within the VMM context. We refer to virtual services
that can span the VMM, the guest kernel, and the guest
application, as guest-context virtual services.

We present the Guest Examination and Revision Services
(GEARS), a novel framework that aims to enable guest-
context virtual services. The tools in GEARS have been
carefully selected as those sufficient to implement a wide
range of such services, and their abstractions are indepen-
dent of our implementation. We also present the design,
implementation, and performance evaluation of the GEARS
tools in the context of the Palacios VMM, an effort that
demonstrates that the tools can be made available in a VMM
with only a modest increase in its code size and with very
low overhead (and zero overhead when not used). Finally, we
demonstrate how we built two guest-context virtual services
using the tools, and how they can enhance overlay network-
ing and MPI performance without significant implementa-
tion complexity. The overlay service improves latency by
3–20%, while the MPI service approaches the native mem-
ory copy throughput limit for co-located VMs.

The GEARS implementation also attempts to broaden the
community of virtual service developers by eliminating the
need for programmers to be intimately familiar with VMM
internals. While basic knowledge of the guest is required, the
GEARS framework provides the necessary tools to trans-
form standard code into a guest-context service. Guest-
specific information can then remain mostly opaque to the
service developer, and how these services are used to affect
guest operation is entirely at his or her discretion. GEARS
also allows the VMM to transparently mutate guest applica-
tions and OSes into VMM-aware entities. Thus, we believe
that frameworks like GEARS have the potential to beget
adaptive applications that reap the benefits of virtualization
while retaining the performance available to those aware of
the underlying software and hardware stack.



2. RELATED WORK
Adaptive or autonomic computing in virtualized comput-

ing environments is an area of considerable current inter-
est and promise (e.g., [21, 24, 19]). Autonomic computing
in this context extends new services to the guest, typically
without guest knowledge. This has much in common with
the virtual service model in other contexts.

Virtual services need to be cognizant of the guest, but
there exists a semantic gap [4] between the VMM and the
guest. Some have shown that the VMM can infer a great
deal of information about the guest (both the applications
and the kernel) through indirect means [8, 7]. These tech-
niques have particularly useful applications in security, where
trust can be placed in the VMM to detect attacks and ma-
licious processes [5, 9, 18, 15].

While these methods glean useful information about the
guest, the information only flows in one direction. Further,
the guest cannot assist in providing the information, limiting
the VMM to coarse-grained observations and decisions. In
contrast, Paravirtualization makes the guest OS aware of the
underlying VMM, allowing it to provide information directly
to the VMM [2]. However, the paravirtualized interface can
only be utilized directly by the guest. The VMM sees this
interface as an extension to its existing event-driven model.

Symbiotic virtualization allows information to flow both
ways between the VMM and guest [11], where the guest OS
optionally exposes a software interface directly to the VMM.
The VMM can then call into guest-context code. This ap-
proach also requires that the guest be aware of the VMM
and implies modifications to the guest OS. It would certainly
be beneficial to have a two-way interface that requires no a
priori modification to the guest. With GEARS, we aspire
to extend service implementations into the guest itself, even
without guest knowledge or cooperation.

Secure in-VM monitoring, or SIM [20], also utilizes guest-
context code execution, but it is aimed primarily at secu-
rity applications, not virtual services. Further, SIM requires
some degree of guest modification. Namely, it assumes that
a paravirtualized driver is present in the guest. This driver
is necessary for running VMM-trusted code in guest context.
GEARS requires no such preconditions in order to forcefully
and transparently affect guest execution.

One of the tools that GEARS employs is system call inter-
position. This technique has been explored in the context
of several hypervisors, including Xen [3], KVM [17], and
QEMU [13]. Onoe et al. present a method to filter system
calls based on security policies [16]. MAVMM, a custom,
lightweight VMM designed for malware detection [15] also
utilizes system call interception. Ether [6] uses the same in-
terception mechanism, but focuses on keeping its presence
undetectable by malware. While system call interposition
is an important technique in the GEARS tool set, it alone
does not afford the ability to spread virtual services across
virtualization layers. Ether and VAMPiRE [22] have the
interesting capability to insert breakpoints into guest pro-
cesses to implement instruction stepping, but they do not
enable the broad range of services offered by the code injec-
tion facilities in the GEARS framework.

3. EXAMPLE SERVICES
When a VMM utilizes its higher privilege level to enable

or enhance functionality, optimize performance, or otherwise

modify the behavior of the guest in a favorable manner, it is
said to provide a service to the guest. VMM-based services
are usually provided transparently to the guest without its
knowledge (e.g. via a virtual device). We now consider
several example services that could profit from GEARS.

Overlay networking acceleration An important ser-
vice for many virtualized computing environments is an over-
lay networking system that provides fast, efficient network
connectivity among a group of VMs and the outside world,
regardless of where the VMs are currently located. Such an
overlay can also form the basis of an adaptive/autonomic en-
vironment, as described in Section 2. A prominent challenge
for overlay networks in this context is achieving low latency
and high throughput, even in high performance settings,
such as supercomputers and next-generation data centers.
We show in Section 7.3 how GEARS can enhance an existing
overlay networking system with a guest-context component.

MPI acceleration MPI is the most widely used com-
munication interface for distributed memory parallel com-
puting. In an adaptive virtualized environment, two VMs
running an application communicating using MPI may be
co-located on a single host. Because the MPI library has no
way of knowing this, it will use a sub-optimal communica-
tion path between them. An MPI acceleration service would
detect such cases and automatically convert message pass-
ing into memory copies and/or memory ownership transfers.
Section 7.4 outlines the design of this service.

Procrustean services While administrators can install
services or programs on guests already, this task must be
repeated many times. Furthermore, because the adminis-
trators of guests and those of provider hosts may not be
the same people, providers may execute guests that are not
secure. GEARS functionality would permit the creation of
services that would automatically deploy security patches
and software updates on a provider’s guests.

4. GUEST-CONTEXT VIRTUAL SERVICES
Services that reside within the core of the VMM have the

disadvantage of relying on the mechanism by which control is
transferred to the VMM. A VMM typically does not run un-
til an exceptional situation arises, such as the execution of a
privileged instruction (a direct call to the VMM in the case
of paravirtualization) or the triggering of external or soft-
ware interrupts. Much like in an operating system, the tran-
sition to the higher privilege level, called an exit, introduces
substantial overhead. Costly exits remain one of the most
prohibitive obstacles to achieving high-performance virtual-
ization.

Eliminating these exits can, thus, improve performance
considerably. The motivation is similar to minimizing costly
system calls to OS code in user-space processes. Modern
Linux implementations, for example, provide a mechanism
called virtual system calls, in which the OS maps a read-only
page into every process’s address space on start-up. This
page contains code that implements commonly used services
and obviates the need to switch into kernel space. If the
implementation of a VMM service could be pushed up into
the guest in a similar manner, more time would be spent in
direct execution of guest code rather than costly invocations
of the VMM. This is precisely what GEARS seeks to achieve,
and this ability to eliminate exits will, perhaps, become most
clear as we discuss our fast system call exiting utility in
Sections 6 and 7.



User%provided+Services+

Guest!

+
+
+

+ ++
+
GEARS+Framework+

App+frontend+

Service+Backends+VMM!

Bo;om+Top+

Kernel+frontend++

Figure 1: GEARS services are broken into two parts; one exists
in the guest and the other in the VMM. GEARS takes both parts
provided as source code and uses several utilities to register and
manage execution of the service.

Moving components of a service implementation into the
guest can not only improve performance, but also enable
services that would otherwise not be feasible. In particu-
lar, guest-context services have a comprehensive view of the
state of the guest kernel and application. These services
can make more informed decisions than those implemented
in a VMM core, which must make many indirect inferences
about guest state. The VMM must reconstruct high-level
operations based on the limited information that the guest
exposes architecturally. Moreover, in order to manipulate
the state of a guest kernel or application, the VMM must
make many transformations from the low-level operations
that the guest exposes to high-level operations that affect
guest execution. While services certainly exist that can ac-
complish this transformation, their implementation would,
perhaps, become more elegant operating at the same seman-
tic level as the guest components they intend to support.

These services are also easier for the developer to design.
Rather than having to effectively reverse engineer a partic-
ular execution path in the guest from the VMM’s limited
perspective, the developer can reason about the service at a
high level, avoiding the intricacies introduced by the seman-
tic gap.

GEARS employs a tiered approach, which involves both
the host and the VMM, to inject and run services in guest
context. The process is outlined in Figure 1. Users (service
developers) provide standard C code for the VMM without
needing extensive knowledge of VMM internals. This makes
the procedure of implementing a service straight-forward,
enabling rapid development. The code provided is a service
implementation, split into two clearly distinguishable parts.
We refer to these as the top-half and the bottom-half. The
top-half is the portion of the service that will run in the
guest-context. The bottom-half, which may not always be
present, resides within a host kernel module readily acces-
sible to the VMM. The top-half will call into its respective
bottom-half if it requires its functionality. The bottom-half
can similarly invoke the top-half, allowing for a two-way in-
teraction between the service components.

The code for the top-half must adhere to a guest-specific
format. However, GEARS provides host-resident utilities
that transform the code appropriately. Hence, from the
user’s perspective, writing the top-half of a guest-context
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Figure 2: GEARS tools used to implement guest-context services.
Each tool is shown with a box indicating its primary function.
Dashed lines with gears indicate the ability to modify control
flow in the guest. Solid lines show that a tool is used for passively
extracting information from the guest. Note that all of these tools
can be used in different ways to alter the guest execution path.

service implies little more requisite knowledge than the abil-
ity to write a normal program or kernel module for the guest
in question. GEARS must simply provide the transforma-
tion utilities appropriate for that guest. If the service re-
quires access to, or assistance from the VMM core, the de-
veloper can design a bottom half by writing a host kernel
module that implements the relevant interface. We outline
how this module connects with the VMM in Section 6.5.

The notion of leaving service implementations entirely up
to the user allows a clean separation between the framework
and the services that it enables. GEARS provides the neces-
sary tools to create cross-layer services, and users are respon-
sible for using this platform to design innovative guest-VMM
interactions.

5. GEARS
We now provide a high-level description of the specific

tools used in the GEARS framework. These tools allow for a
broad range of feasible services, some of which we illustrated
in Section 3.

To enable guest-context services, the VMM must provide
a mechanism that can place components directly within the
guest. GEARS implements this mechanism with the code
injection tool. Further, the VMM must have a way to select
an appropriate time at which to perform this placement.
The GEARS system call interception utility provides one
way of accomplishing this. Finally, in order for the VMM
to control guest execution paths at a higher level, e.g. for
library calls, it must have the ability to modify the environ-
ment passed to the process. GEARS does this with process
environment modification. Because these three conditions
alone can facilitate the creation of guest-context services,
we claim that GEARS provides the necessary and sufficient
tools to accomplish this task.

5.1 System call interception
System call interception allows a VMM to monitor the

activity of the guest at a fine granularity. Normally, system
calls are not exceptional events from the standpoint of the
VMM. However, system calls are commonly triggered using
software interrupts, which modern hardware allows VMM
interception of. Once the VMM can track the execution of



system calls, it can provide a wide range of services to the
guest, such as sanity checking arguments to sensitive kernel
code or matching system call patterns as in [13].

5.2 Process environment modification
System call interception enables the VMM to essentially

see the creation of every process in the guest through calls
to execve, for example. The interception is done before
the system call even starts, so the VMM has the option to
modify the guest’s memory at this point. One useful thing it
can do is modify the environment variables that the parent
process passes on to its child.

There are certain environment variables that are particu-
larly useful. One is the LD_PRELOAD variable, which indicates
that a custom shared library should be given precedence over
the one originally indicated. This variable gives the VMM
an opportunity to directly modify the control flow of a guest
application. Other interesting environment variables affect-
ing control flow include LD_BIND_NOW and LD_LIBRARY_PATH.
The very fact that the Linux kernel itself uses the envi-
ronment to pass information to the process (e.g. with the
AT_SYSINFO variable) opens up a broad range of interesting
possibilities.

Environment variables can not only be modified, but also,
with careful treatment of memory, added or removed. This
introduces the potential for the VMM to provide information
directly to the guest application without the need for par-
avirtualization. The guest OS would not need to be aware of
the underlying VMM. Instead, VMM-awareness could vary
on an application by application basis. This would allow
developers to make rapid optimizations to utilize VMM ser-
vices. As we will later discuss in detail, these developers
could even implement their own VMM service with mini-
mal effort. Notice that this is a marked divergence from the
usual reliance of user space applications on the operating
system’s ABI.

5.3 Code injection
Code injection is perhaps the most unique mechanism in

the GEARS framework. Because it allows the VMM to run
arbitrary code in the context of the guest without any co-
operation or knowledge on the part of the guest OS or ap-
plication, it is the core tool enabling guest-context services.

We employ two types of code injection—user-space and
kernel-space. User-space injection allows the VMM to map
a piece of trusted code into the address space of a user-space
process. On exits, the VMM can invoke this code manually
or redirect user-space function calls to it by patching the
process binary image. The latter requires more complex
techniques that we are currently developing.

GEARS can also inject code into a guest that will dynam-
ically link with the libraries mapped into the applications’
address spaces. Our current example services do not utilize
this GEARS feature and we leave its detailed description to
future work.

The other type of injection is kernel-space code injection,
which relies on the ability to inject code into a user-space
process. Injected kernel code must currently be implemented
in a kernel module compiled for the guest. We use user-space
code injection to write the module into the guest file system
and subsequently insert it into the guest kernel.

Figure 2 shows the GEARS tools and outlines how they
are used together to control and modify guest execution.

Component Lines of Code
System Call Interception 833
Environment Modification 683
Code Injection 915
Total 2431

Figure 3: Implementation complexity for GEARS and its con-
stituent components.

These particular tools are the fundamental components that
allow a VMM to push service implementations into the guest
and affect its operation using guest semantics.

6. IMPLEMENTATION
We now outline the implementation of the tools compris-

ing the GEARS framework. GEARS is implemented within
the Palacios Virtual Machine Monitor, an open-source, em-
beddable VMM actively developed and maintained by re-
searchers at several institutions [10, 12]. Its source code is
available for free online at v3vee.org, and will soon include
the latest GEARS framework.

While the current GEARS implementation is targeted at
Linux guests, it consists of relatively few components, each
of which rely on features provided almost universally by
modern OSes and architectures. This means that porting
GEARS for other kinds of guests entails no great effort.
Figure 3 shows the size of the GEARS codebase. Each com-
ponent is relatively compact. GEARS is currently imple-
mented as a set of extensions to the Palacios VMM, and
would likely become even more compact if integrated into
the hypervisor core.

GEARS currently focuses on AMD hardware, and the
port to Intel hardware is a work in progress. There are no
fundamental limitations that will make the implementation
of GEARS on Intel any more challenging since the hard-
ware virtualization extensions that we utilize are provided
by both vendors. While the current GEARS framework has
many simplifications to ease implementation, we note that
the purpose of this paper is to demonstrate its ability to en-
able transparent guest-context services—there is no loss of
general applicability of GEARS to hypervisor software.

6.1 Hooking system calls
Both Intel VT and AMD-V hardware virtualization sup-

port hypervisor interception of software interrupts (INTn in-
structions). This provides a fairly simple way to catch the
execution of system calls in guests by looking specifically for
INT 0x80 instructions. Once this instruction is intercepted
and handled in the VMM, the original software interrupt
can be injected back into the guest.

Most modern 64-bit software uses AMD’s more recently
introduced SYSCALL instruction to invoke system routines,
but hardware support for its interception is not yet provided.
Several have worked around this issue by intercepting the
write to the model-specific register (MSR) containing the
system call target address (named LSTAR in the case of
AMD) [3, 13, 16, 15, 6].

GEARS supports both of these implementations. How-
ever, there are some limitations because of the simplicity
of our current implementation. In the case of INT 0x80 on
AMD hardware, situations can arise where the system call
invoked with this instruction causes another faulting condi-
tion that triggers an exit to the VMM—namely, a page fault.
This is particularly noticeable with fork(). Normally, the
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system call is restarted by the kernel, but the VMM im-
plementation will have already incremented the instruction
pointer, so it will return to the next instruction, and behave
as if the system call were skipped. Thus, without hardware
support, the VMM must support full emulation of the soft-
ware interrupt instruction. However, this problem can be
avoided if the hardware supports nested paging, as these
page faults will not trap to the VMM. We therefore only
support the INT 0x80 instruction on machines supporting
nested paging. Without hardware support for INTn intercep-
tion, the VMM can overwrite the appropriate entry in the
IDT with either an illegal instruction or a VMMCALL. When
intercepting INT 0x80, GEARS currently assumes the nec-
essary hardware support.

Interception of the SYSCALL instruction can be achieved
by guaranteeing that the register containing the system call
entry point (LSTAR on AMD hardware) points to an un-
mapped memory address, causing a trap to the VMM by
page fault. However, finding an address that will trap un-
der nested paging is more difficult, as the VMM is invoked
much less frequently on page faults. We currently only
intercept SYSCALL instructions when the machine is using
shadow paging. The VMM can also unset the SCE bit in the
EFER MSR, causing an illegal instruction exception when a
SYSCALL instruction is executed. This exception will cause a
trap to the VMM, at which point the instruction at the RIP
is checked against the SYSCALL opcode. GEARS currently
only supports the method using page faults.

While these methods of interception are certainly viable,
they introduce substantial performance overhead. These
techniques require that every system call trigger an exit to
the VMM. We have developed a mechanism using GEARS
that can virtually eliminate this overhead. We call this the
Fast System Call Exiting Utility. This mechanism bears
some resemblance to the exit-gates presented in SIM [20], but
requires no guest cooperation. During guest boot, GEARS
records the address written to the appropriate STAR regis-
ter by the guest kernel and subsequently emulates the write.
After the guest has booted, GEARS can use code injection
to insert a kernel module into the guest. This kernel module
contains a compact stub intended to compare every system
call number to a bit vector mapped into the kernel address
space by the VMM. During module initialization, the VMM
is provided the address of this stub, which it writes to the
STAR register. All system calls invoked by the guest are
then redirected to this stub. GEARS can dynamically up-
date the system call bit-vector, indicating which system calls
should trap to the VMM. At any time, this module can be
forcefully removed from the guest kernel, completely dis-
abling system call exiting when not required.

6.2 Process monitoring
With the system call interception facility, we can easily

track the creation of new processes by looking for calls to
fork and execve. For our purposes in this paper, execve is
of particular interest because it represents the moment when
a process receives a new address space and begins executing
code independent of that in its parent’s address space. In
Linux, this call takes an executable object as an argument
and runs it within the new process. We allow the VMM
to hook the execution of specified binaries by comparing
the arguments to execve to binaries registered dynamically
within the VMM.

6.3 Modifying process environments
Along with the binary to execute, and arguments passed

to the new process, execve passes a pointer to an array of
environment variables. Since the system call is intercepted
before process creation, the VMM sees the state of the par-
ent process. This allows the VMM to change the environ-
ment that the parent passes to the child process.

We analyze environment variables by tracing the environ-
ment pointer, given as an argument, back to all of the strings
that it points to. The VMM can then modify these strings
at will. However, more work must be done if a modification
results in a string larger than the original. The VMM shifts
the preceding components up past the stack pointer to make
room for the overlap and repairs pointers by the appropri-
ate offsets. This is essentially a form of code relocation,
and also allows for the addition of an arbitrary number of
environment variables to a child process’s environment.

In this paper, we utilize this facility to redirect library
calls in targeted binaries to custom library wrappers using
the LD_PRELOAD environment variable.

6.4 Code injection
GEARS uses two modes of code injection—immediate in-

jection and exec-hooked injection. When using immediate in-
jection, the VMM, after receiving code to inject at run-time,
will inject the code into any user-space process as soon as
it can. There are many ways of tracking user-space events,
but GEARS currently uses system calls for this purpose.
Thus, the code will be injected at the subsequent system
call intercepted by the VMM.

Exec-hooked injection allows a means by which to inject
at more specific points. With this method, a user specifies a
binary file in the guest, which, upon execution, will trigger
the injection of the provided code. While this provides more
control, the injection actually happens in the parent process,
as the interception of the system call happens before the new
process is created. One potential way of addressing this issue
is to correlate CR3 values with calls to execve, and looking
for future user-space events matching the recorded value.

The VMM injects code into a process using several steps of
binary patching. We outline the steps comprising immediate
code injection below:

1 Intercept next system call
2 Inject mmap() call into process. This will allocate space for

code in a mapped region marked as rwx.
3 Touch every page in the region to ensure guest kernel

allocates pages
4 Inject a page fault for a page in the region
5 Subsequently copy a page of code into the faulted page
6 Continue steps 4 and 5 until all code is copied

7 Finally, set RIP to start of injected code

Once the code has been copied, the VMM can immedi-
ately set the instruction pointer to the code’s entry point
so that it begins executing on guest entry. The common
way that code is compiled in Linux directs the loader to
map the ELF binary into memory twice, once read-only for
code, and once read-write for data. The linked code will
take into account the fixed offset between the mapped loca-
tions of code and data. However, we cannot guarantee the
address at which mmap will allocate memory, so the presence
of two mappings would require dynamic relocation of ref-
erences from the code segment to data segment. To avoid
this complication, we currently use custom linker scripts for
injected code to ensure that it is mapped into memory only



once. For the same reason, the injected code must be com-
piled to be position-independent.

We can use GEARS to modify the behavior of the guest
kernel as well. Given user-space code injection, we can in-
ject code that will forcefully write out a file to the guest file
system. One kind of file that we can write out is a kernel
module. This presents an opportunity to affect the opera-
tion of the guest kernel. Once GEARS writes out a module,
it can subsequently insert it into the kernel. The entire pro-
cess ensues without any cooperation from the guest. While
GEARS could also potentially inject code into the kernel
address space directly using a technique similar to that em-
ployed by user-space injection, kernel modules represent the
simplest and safest way to inject service components into the
guest kernel. Note that we do not claim the guest cannot
detect the effects of the injection. We are concerned with
the case in which the VMM is simply providing a beneficial
service to the guest. While creating invisible guest-context
services is paramount to preventing exploits, it is outside
the scope of this paper. We direct the interested reader to
the security-related projects outlined in Section 2.

6.5 Bottom-half interface
The bottom half of a GEARS-based VMM service can be

implemented either directly in the VMM itself or as a sep-
arate kernel module for the Linux host OS. In the latter
case, the kernel module can be implemented without de-
tailed knowledge of Palacios. The module hooks to Palacios
through a new host hypercall interface that allows hyper-
call implementations to be created outside of the Palacios
codebase. This host interface provides the hypercall imple-
mentations with a constrained guest access interface that
enables them to inspect and modify guest state, such as
general purpose and control registers, guest address trans-
lation, and read/write access to guest physical and virtual
memory. Since Palacios is host OS-independent, the imple-
mentation of these two interfaces is split between the general
logic within Palacios, and a host-specific component. The
host-independent logic in Palacios comprises 274 lines of C,
while the host-specific component, for Linux, consists of 165
lines of C.

7. EVALUATION
In this section we evaluate the performance-sensitive com-

ponent of GEARS and the prototype example services we
have built.

7.1 Experimental setup
We perform all experiments on AMD 64-bit hardware. We

primarily use two physical machines for our testbed:

• 2GHz quad-core AMD Opteron 2350 with 2GB memory,
256KB L1, 2MB L2, and 2MB L3 caches. We refer to this
machine as vtest.

• 2.3GHz 2-socket, quad-core (8 cores total) AMD Opteron

2376 with 32GB of RAM, 512KB L1, 2MB L2, and 6MB

L3 caches, called lewinsky.

Both of these machines have Fedora 15 installed, with
Linux kernel versions 2.6.40 and 2.6.42, respectively. The
guests we use in our testbed are Linux kernel versions 2.6.38.
All experiments were run using the Palacios VMM config-
ured for nested paging.

Strategy Latency (µs)
guest 4.83
guest+intercept 10.24

Figure 4: Average system call latency for getpid system call using
INT 80 exiting. Because getpid is such a simple system call, the
latency difference represents the fixed cost of system call exiting.
This form of exiting roughly doubles the fixed cost of all system
calls.

7.2 System call interception
The primary performance issue associated with GEARS

is the cost of intercepting system calls. As we mentioned
in Section 6, we must use either INT 0x80 interception or
SYSCALL interception until the machine is booted. GEARS
can then forcibly inject the fast system call exiting utility
into the guest to all but eliminate the overhead of system
call exiting. Since our main concern is the effect of this
overhead on applications, we present the performance of the
fast system call exiting utility.

Our system call micro-benchmark suite consists of two
timing programs that measure the time to completion for a
single system call. Each timing run essentially consists of
the following sequence of instructions:

time:

cpuid

rdtsc

mov $SYSCALL_NR, %rax

syscall

cpuid

rdtsc

The cpuid instructions enforce serialized execution, avoid-
ing situations in which rdtsc instructions might be rear-
ranged by the instruction scheduler. Each experiment con-
sists of 1000 trial runs. We take the minimum of these
runs to ignore any intermittent influences such as context
switches.

Figures 4 and 5 show the latency associated with the
getpid system call for software interrupt interception and
selective system call exiting, respectively. This particular
call is one of the simpler system calls in Linux, so these
numbers represent the fixed cost introduced by system call
interception. The row labeled guest represents a standard
guest with no GEARS extensions. The guest+intercept row
indicates a GEARS-enabled guest using system call exiting.
For INT 0x80 exiting, every system call results in a VMM
exit, so this technique has a significant effect on the latency
of the system call path. In the case of selective exiting, all
system calls are routed through the injected kernel module,
but do not cause an exit to the VMM unless marked to do
so. In this experiment, no system calls were marked for exit-
ing. Thus, this figure shows the overhead introduced to the
system call path only by this rerouting process. Whether or
not any particular system call is marked to trigger a VMM
invocation, this shows the bare minimum cost that must be
paid for system call exiting. Selective system call exiting
adds only about 6% latency overhead to a standard guest—
less than one microsecond.

Figure 6 shows the bandwidth cost of selective system call
exiting. For this experiment, we chose a system call that
varies in performance according to the amount of data han-
dled. We measured the bandwidth of the write system call
with varying buffer sizes. Notice that the difference in band-
width is virtually negligible. Figure 7 displays this difference



Strategy Latency (µs)
guest 4.26
guest+intercept 4.51

Figure 5: Average system call latency for getpid system call using
selective exiting. The overhead is significantly smaller than INT
80 exiting.
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Figure 6: Bandwidth (MB/s) vs. bytes transferred for a write
system call. These lines track very closely, demonstrating how
little selective system call exiting affects the bandwidth of a data-
intensive system call.

more clearly with the ratio of bandwidth with a standard
guest over the bandwidth of a GEARS-provisioned guest.
The ratio approaches one as the fixed overhead cost of sys-
tem call exiting is amortized over the amount of data being
written.

7.3 VNET/P accelerator
VNET/P [23] is an overlay networking system with a layer

2 abstraction implemented inside the Palacios VMM. It cur-
rently achieves near-native performance in the 1 Gbps and
10 Gbps switched networks common in clusters today, and
we intend for it to work at native speeds on even faster
networks, such as InfiniBand, in the future. At the time of
this writing, VNET/P can achieve, with a fully encapsulated
data path, 75% of the native throughput with 3-5x the na-
tive latency between directly connected 10 Gbps machines.
We use GEARS tools to further improve this performance.

The throughput and latency overheads of VNET/P are
mostly due to guest/VMM context switches, and data copies
or data ownership transfers. We can potentially reduce the
number of context switches, and the volume of copies or
transfers, by shifting more of the VNET/P data path into
the guest itself. In the limit, the entire VNET/P data path
could execute in the guest with guarded privileged access
to the underlying hardware. In this paper, we explore an
initial step towards this goal that does not involve privileged
access and aims at reducing the latency overhead as a proof-
of-concept.

Figure 8 illustrates this initial proof-of-concept implemen-
tation of the VNET/P Accelerator Service. In the baseline
VNET/P data path, shown on the left, raw Ethernet packets
sent from a VM through a virtual NIC are encapsulated and
forwarded within the VMM and sent via a physical NIC. In
the VNET/P Accelerator data path, shown on the right, the
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Figure 7: Bandwidth ratio of standard guest to guest with
GEARS. This ratio approaches unity as the fixed system call ex-
iting cost is amortized.
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Figure 8: Implementation of the prototype VNET/P Accelerator.

encapsulation and forwarding functionality of VNET/P re-
sides within the guest as part of the guest’s device driver for
the virtual NIC. This augmented device driver kernel mod-
ule is uncooperatively inserted into the guest kernel using
the GEARS code injection tool. The augmented driver then
delivers Ethernet frames containing the encapsulated pack-
ets to the virtual NIC. In our implementation, the driver
that has been augmented is the Linux virtio NIC driver.
The backend virtio NIC implementation in Palacios has no
changes; it is simply bridged to the physical NIC.

The implementation complexity of the proof-of-concept
VNET/P accelerator is shown in Figure 9, which illustrates
that few changes are needed to split VNET/P functionality
into a top half and a bottom half. The control plane of
VNET/P remains in the bottom half in the VMM; only the
encapsulation and forwarding elements move into the top
half that GEARS injects into the guest.

Figure 10 depicts the performance of the initial, proof-of-
concept VNET/P Accelerator. Here, the round-trip latency
and throughput is measured between a VM running on the
vtest machine and a VM running on an adjacent machine
that does not use the accelerator. We measure latency using
ping with 1000 round-trips. The throughputs are measured
using ttcp, where both TCP and UDP throughput are re-
ported. We run ttcp with a 6400 byte buffer, 10000 packets
sent, and a standard 1500 byte MTU. We compare acceler-
ated VNET/P with standard VNET/P and native perfor-
mance between the two host machines without virtualization
or overlays.



Component Lines of Code
vnet-virtio kernel module (Top Half) 329
vnet bridge (Bottom Half) 150
Total 479

Figure 9: Implementation complexity of prototype VNET/P Ac-
celerator Service. The complexity given is the total number of
lines of code that were changed. The numbers indicate that few
changes are necessary to port VNET/P functionality into a Linux
virtio driver module

Benchmark Native VNET/P VNET/P Accel
Latency

min 0.082 ms 0.255 ms 0.205 ms
avg 0.204 ms 0.475 ms 0.459 ms
max 0.403 ms 2.787 ms 2.571 ms

Throughput
UDP 922 Mbps 901 Mbps 905 Mbps
TCP 920 Mbps 890 Mbps 898 Mbps

Figure 10: VNET/P accelerator results.

The VNET/P Accelerator achieves the same bandwidth
as VNET/P, and both are as close to native as possible
given that encapsulation is used. The VNET/P Acceler-
ator achieves a modest improvement in latency compared
to VNET/P (20% minimum, 3% average, 8% maximum).
It is important to note that this accelerator is a proof-of-
concept of using GEARS to build a guest-context service.
Our next step will require guarded privileged execution of
injected code, which is in progress. We should note, how-
ever, that the implementation complexity (Figure 9) will
not change significantly, since guarded privileged execution
is GEARS-level functionality, not service-level.

7.4 MPI accelerator
Consider an MPI application executing within a collec-

tion of VMs that may migrate due to decisions made by an
administrator, an adaptive computing system, or for other
reasons. The result of such migrations, or even initial al-
location, may be that two VMs are co-located on the same
host machine. However, the MPI application and the MPI
implementation itself are oblivious to this, and will thus
employ regular network communication primitives when an
MPI process located in one VM communicates with an MPI
process in the other. VNET/P will happily carry this com-
munication, but performance will be sub-optimal.

Fundamentally, the communication performance in such
cases is limited to the main memory copy bandwidth. Ide-
ally, matching MPI send and receive calls on the two VMs
would operate at this bandwidth. We assume here that the
receiver touches all of the data. If that is not the case, the
performance limit could be even higher because copy-on-
write techniques might apply. The goal of the MPI Accel-
erator service is to do precisely this transformation of MPI
sends and receives between co-located VMs into memory
copy operations.

Building such an MPI Accelerator purely within the VMM
would be extremely challenging because MPI send and re-
ceive calls are library routines that indirectly generate sys-
tem calls and ultimately cause guest device driver interac-
tions with the virtual hardware the VMM provides. It is
these virtual hardware interactions that the VMM sees. In
order to implement an MPI Accelerator service, it would
be necessary to reconstruct the lost semantics of MPI op-
eration. The ability to discern the MPI semantics from the
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Figure 11: Implementation of the MPI Accelerator service for co-
located VMs. This illustrates the fast path between an MPI Send
and its matching MPI Recv.

guest application is the key enabler of our MPI Accelerator
implementation.

GEARS provides two essential tools that the MPI Accel-
erator service leverages: (a) user space code injection, and
(b) process environment modification. At any point dur-
ing VM execution, the service uses (a) to inject and run a
program that creates a file in the VM. The file contains a
shared library that is an LD_PRELOAD wrapper for MPI. The
system then uses (b) to force exec()s of processes to use
the LD_PRELOAD wrapper. This can be limited to specific
executables by name if desired. The wrapper installs itself
between the processes and the MPI shared library such that
MPI calls bind to the wrapper. The wrapper, which con-
stitutes the top half of the service can then decide how to
process each MPI call in coordination with the bottom half
of the service that resides in the VMM. The top and bottom
halves communicate using service-specific hypercalls.

In our prototype implementation, illustrated in Figure 11,
we focus on the blocking MPI Send and MPI Recv calls.
The top half intercepts the appropriate MPI calls as follows:

• MPI Init() : After normal initialization processing in MPI,
this call also notifies the bottom half of this MPI process,
including its name, arguments, and other parameters. It
registers the process for consideration with the service.

• MPI Finalize(): Before normal de-initialization in MPI,
this call notifies the bottom half that the process can be
unregistered.

• MPI Comm rank(): After a normal ranking in MPI, this
call notifies the bottom half of the process’s rank.

• MPI Send(): The wrapper checks to see if this is an
MPI Send() that the bottom half can implement. If it is
not, it hands it to the MPI library. If it is, it touches each
page of the data to assure it is faulted in, and then hands
the send request to the bottom half and waits for it to
complete the work. If the bottom half asserts that it
cannot, the wrapper defaults to the MPI library call.

• MPI Recv(): This is symmetric to MPI Send().

The hypercalls also implicitly carry a pointer to Palacios’s
structures that represent the VM and the current virtual
core’s state, allowing ready access to the CR3 register, which
contains a pointer to the current page table. This informa-
tion is used to identify a guest process. It should be clear
that this model can readily be extended to support a wider
range of MPI functionality.

The bottom half of the service is implemented as a Linux
kernel module that supplies the hypercall implementations.
This module is relatively straightforward. It maintains a ta-
ble of registered processes, as well as their current rank,
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Figure 12: Performance of MPI Accelerator Service on OSU MPI
Latency Benchmark running in two co-located VMs on lewinsky
test machine. For small messages, it achieves a 22 µs latency,
limited by system call interception and hypercall overheads. For
large messages, the MPI accelerator approaches the maximum
possible performance given the memory copy bandwidth of the
machine (4.6 GB/s).

send state, and receive state. The table can be queried
by the VM/virtual core/CR3/executable name combination
that uniquely identifies registered MPI processes across all
of the co-located VMs on the host. When an MPI pro-
cess initiates an applicable MPI Send, the guest exists due
to the top half’s hypercall, and Palacios redirects execution
into the kernel module’s handler. The handler attempts to
find a matching pending receive. If it can, it copies the data
from the guest virtual addresses in the sending VM to the
guest virtual addresses in the receiving VM. It then writes
the appropriate return code to the receiving thread, which
waits in the kernel module as well, and subsequently releases
it. Both hypercalls return to their respective guests, and the
transfer is seen as complete by both of them. If the receive
is not pending or no matching receive is yet available, the
sender saves the send side state into its own entry in the
table, marks itself as pending, and waits for the receiver. In
this instance, the receiver will perform the copy operation
when it arrives and then release the sender. Note that if
the copy operation fails, for example, due to a guest virtual
address that is not currently paged in on the guest, the copy
simply stops and the error is signaled to the top half, which
falls back on the MPI library to complete the transfer.

Our implementation is intended as a proof of concept
demonstrating the utility of GEARS tools and advancing
the overall argument of this paper. Nonetheless, it also
performs quite well. We have run the OSU MPI Latency
benchmark [1] (osu latency) between two co-located VMs
using VNET/P, VNET/P with the GEARS tools enabled in
Palacios, and with the MPI Accelerator active. We use the
MPICH2 MPI library [14] for our measurements. Our per-
formance measurements are taken on the lewinsky machine,
previously described. The results are shown in Figure 12.
It is important to note that for larger message sizes, the
message transfer time is dominated by the machine’s mem-
ory bandwidth. According to the STREAM benchmark, the
machine has a main memory copy bandwidth of 4.6 GB/s.
Our results suggest that we approach this—specifically, the
MPI latency for 4 MB messages implies a bandwidth of 4

Component Lines of Code
Preload Wrapper (Top Half) 345
Kernel Module (Bottom Half) 676
Total 1021

Figure 13: Implementation complexity of MPI Accelerator.

GB/s has been achieved. For small messages the MPI la-
tency is approximately 22 µs (about 50,000 cycles). The
small message latency is limited by system call interception,
exit/entry, and hypercall overheads. Here, GEARS selec-
tive system call interception is not enabled. Using it would
further reduce the overhead for small messages.

The figure also shows the performance of using VNET/P
for this co-located VM scenario. The “VNET/P” curve il-
lustrates the performance of VNET/P without any GEARS
features enabled. Without system call interception over-
heads, we see that VNET/P achieves a 56 µs latency for
small messages and the large message latency is limited due
to a transfer bandwidth of a respectable 500 MB/s. The
“VNET/P+Gears”curve depicts VNET/P with the GEARS
features enabled and illustrates the costs of non-selective sys-
tem call interception. The small message latency grows to
150 µs, while the large message latency is limited due to a
transfer bandwidth of 250 MB/s. In contrast to these, the
MPI Accelerator Service, based on GEARS, is achieving 1/3
the latency and 8 times the bandwidth, approaching the la-
tency limits expected due to the hypercall processing and
the bandwidth limits expected due to the system’s memory
copy bandwidth. Note that the impact of GEARS system
call interception on the MPI Accelerator’s small message la-
tency is much smaller than its impact on VNET/P. This is
not a discrepancy. With the MPI Accelerator, far fewer sys-
tem calls are made per byte transfered because the injected
top-half intercepts each MPI library call before it can turn
into multiple system calls.

Figure 13 illustrates that the service implementation is
quite compact. The GEARS tools are the primary reason
for the service’s feasibility and compactness.

8. CONCLUSIONS AND FUTURE WORK
GEARS is a set of tools that enable the creation of guest-

context services which span the VMM, the guest kernel and
the guest application. We have shown through an imple-
mentation within the Palacios VMM that the complexity of
these tools is tractable, suggesting that they could be im-
plemented in other VMMs without great effort. GEARS in
Palacios allows developers to write VMM services with rela-
tively little knowledge of VMM internals. Further, we have
shown that the implementations of the services themselves
can remain relatively compact while still delivering substan-
tial performance or functionality improvements.

We are currently investigating several aspects of guest-
context services, including boundaries between guest code
and code injected by the VMM. This includes the ability
to safely run trusted components of a service in the guest
while providing them with fully privileged hardware access.
Finally, we intend to explore interfaces that provide a direct
connection between the VMM and guest application.

The source code for GEARS is available as part of the
open-source Palacios VMM from v3vee.org.

v3vee.org
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