
Do Developers Understand IEEE Floating Point?
Peter Dinda Conor Hetland

Northwestern University

Abstract—Floating point arithmetic, as specified in the IEEE
standard, is used extensively in programs for science and
engineering. This use is expanding rapidly into other domains,
for example with the growing application of machine learning
everywhere. While floating point arithmetic often appears to be
arithmetic using real numbers, or at least numbers in scientific
notation, it actually has a wide range of gotchas. Compiler and
hardware implementations of floating point inject additional
surprises. This complexity is only increasing as different levels
of precision are becoming more common and there are even
proposals to automatically reduce program precision (reducing
power/energy and increasing performance) when results are
deemed “good enough.” Are software developers who depend
on floating point aware of these issues? Do they understand
how floating point can bite them? To find out, we conducted an
anonymous study of different groups from academia, national
labs, and industry. The participants in our sample did only
slightly better than chance in correctly identifying key unusual
behaviors of the floating point standard, and poorly understood
which compiler and architectural optimizations were non-
standard. These surprising results and others strongly suggest
caution in the face of the expanding complexity and use of
floating point arithmetic.

Keywords-floating point arithmetic, software development,
user studies, correctness, IEEE 754

I. INTRODUCTION

Complete reliance on floating point arithmetic, as de-
fined in the IEEE 754[6], and 754-2008 [7] standards, is
a common denominator of most programs in science and
engineering, ranging in scale from one-off scripts on laptops
to long-running simulations on capability supercomputers.
As more and more fields embrace a computational approach,
leveraging HPC via simulation or data science, this reliance
is expanding rapidly. As large scale machine learning is
being applied to an exploding range of problems, this re-
liance is expanding well outside of science and engineering.
The number of developers tasked with writing the needed
programs is similarly expanding quickly.

The ubiquity and exploding use of floating point has
also focused architecture, systems, and programming lan-
guage/compiler researchers on optimizing floating point for
performance and energy efficiency. Examples include offer-
ing lower precision but faster floating point numbers in the
hardware (e.g. half-floats), considering non-IEEE compliant
hardware [4], automatically reducing programmer-specified
precision to the minimum possible to stay within error

This project is made possible by support from the United States National
Science Foundation through grant CCF-1533560 and from Sandia National
Laboratories through the Hobbes Project, which is funded by the 2013
Exascale Operating and Runtime Systems Program under the Office of
Advanced Scientific Computing Research in the United States Department
of Energy’s Office of Science.

bounds [13], and approximate computing [9] where perfor-
mance/energy and output quality can be traded off. More im-
mediately, any programmer using a modern compiler is faced
with dozens of flags that control floating point optimizations
which could affect results. Optimizing a program across the
space of flags has itself become a subject of research [5].

The floating point arithmetic experienced by a software
developer via a particular hardware implementation, lan-
guage, and compiler, is swelling in complexity at the very
same time that the demand for such developers is also
growing. This may be setting the stage for increasing prob-
lems with numeric correctness in an increasing range of
programs. Numeric issues can produce major effects. Recall
that Lorenz’s insight, a cornerstone of chaos theory, was
triggered by a seemingly innocuous rounding error [10].
Arguably, modern applications, certainly those that model
systems with chaotic dynamics, could see small errors in
developer understanding of floating point become amplified
into bad overall results.

Do software developers understand the core properties of
floating point arithmetic? Do they grasp which optimizations
might result in non-compliance with the IEEE standard?
How suspicious are they of a program’s results in light
of the various exceptions in the standard? What factors
in a developer’s background lead to better understanding
and appropriate suspicion of results? We attempt to address
these questions through a study of software developers. Our
contributions are as follows:

• An anonymous survey taken by 199 software devel-
opers, largely from the sciences and engineering, plus
an additional survey on suspicion taken by 52 non-
overlapping students with controlled training.

• An analysis of the data from the surveys: Developers do
little better than chance when quizzed about core prop-
erties of floating point, yet are confident. Developers
do express a lack of confidence in dealing with opti-
mizations, however. Both developers and students are
less wary of certain exceptions than they ought to be.
While several factors enhance developer performance,
we did not find any particularly strong factor.

• A set of broader observations and potential actions that
the community could take to improve the situation.

Related work: As far as we are aware, this is the
first study of software developer understanding of floating
point, hence there is little directly related work to point to.
More incidentally related research is cited and discussed
throughout the paper.

589

2018 IEEE International Parallel and Distributed Processing Symposium

1530-2075/18/$31.00 ©2018 IEEE
DOI 10.1109/IPDPS.2018.00068

II. SURVEY DESIGN

Several requirements informed the design of our survey:
• Anonymity: Making individuals identifiable would re-

duce their likelihood of participation, particularly if
they felt, rightly or wrongly, that their understanding
of floating point was less than ideal.

• Low time commitment: Reducing the time to complete
the survey would increase participation.

• Approximation of practice: We want to test for the
application of floating point concepts within software
development, not for knowledge of terminology.

• Avoidance of prompting and anchoring: A question
should not lead the participant through use of termi-
nology or other forms, nor should consideration of a
question feed to a subsequent question.

• Factor identification: We want to be able to condition
survey results on factors that could conceivably influ-
ence understanding of floating point, and suggest ways
to increase such understanding among future users.

These requirements imply tradeoffs. For example, more
factors decrease anonymity, and a lower time commitment
reduces the ability to approximate practice.

We developed a survey design that would take less than
30 minutes to complete. We then tested the initial version
on a group of 20 non-anonymous participants and gathering
their feedback. This prompted a revision of the survey design
to clarify several questions, and the introduction of several
additional questions to tease apart situations where one
question was inadvertently testing more than one concept.

Our ultimate survey consists of four components, as
described below. Each bullet point in this section corre-
sponds to one question in the survey. Note that we label
each question here for convenience in our discussion, but
no labels appear in the actual survey. The precise sur-
vey we used and other study documents can be found
at http://presciencelab.org/float. The survey was online and
implemented using Google Forms. It is currently a publicly
announced open survey. However, for the results given in this
paper, it was not public and we used a restricted recruitment
model as described in Section III to garner participants
who are most likely to use floating point in consequential
positions in scientific research and engineering.

A. Background
The first component of the survey captures self-identified

information about the relevant background of the participant.
We first ask about the participant’s general background and
training in floating point.

• Position: The participant’s current position (e.g., fac-
ulty, research scientist, research staff, software engi-
neer, manager, post doc, Ph.D. student, etc.).

• Area: The participant’s area of formal training (e.g.,
CS, CE, EE, other engineering, other physical science,
mathematics, etc.).

• Formal Training: The amount of formal training about
floating point that the participant reports receiving.

• Informal Training: The kinds of informal training
about floating point the participant reports having used.

We also assess the participant’s level of software devel-
opment experience, and the extent of their interaction with
floating point within that experience.

• Software Development Role: How does the participant
view the software development they perform? Is their
main role a software engineer, a manager of software
engineers, or do they develop software or manage
software development in support of their main role?

• Floating Point Language Experience: The participant
reports the set of languages within which they have
used IEEE floating point. A wide range of options are
provided, and the participant can add their own.

• Arbitrary Precision Language Experience: The par-
ticipant reports the set of languages that they have
used that support non-floating point arbitrary precision
numbers and arithmetic. A large number of options are
provided, and the participant can add their own.

• Contributed Codebase Size: The participant reports
the number of lines of code of the largest codebase
they built or of their largest contribution to a shared
codebase that they have made. This is captured by order
of magnitude.

• Contributed Codebase Floating Point Extent: The
participant indicates the extent to which floating point
was involved in this codebase and their work within
it. For involvement: not at all, incidental, and intrinsic.
For intrinsic involvement of floating point, we also cap-
ture whether numeric correctness was the participant’s
focus, their team’s focus, or the focus of another team.

• Involved Codebase Size: The participant reports the
number of lines of code of the largest codebase they
have been involved with in any capacity. This is cap-
tured by order of magnitude.

• Involved Codebase Floating Point Extent: This cap-
tures the extent to which floating point was involved in
this codebase and their work within it.

B. Core quiz

The next component of the survey is a quiz in which
each question generally shows a snippet of code in C
syntax (C++, C#, and Java have identical syntax for each
snippet) and makes an assertion. The participant is asked
to choose whether the assertion is true, false, or that they
do not know. The idea is to invoke the experience of
writing code that uses floating point arithmetic to approxi-
mate real number arithmetic, and, in this context, reaching
points where the participant has to consider floating point
arithmetic behavior’s divergences from the behavior of real
number arithmetic. Note again that the labels we use here for
convenience in discussion and do not appear in the survey.

590

• Commutativity: Is a simple statement involving the
commutativity over addition true for floating point?
Generally, floating point arithmetic follows the same
commutativity laws as real number arithmetic. The
question indicates that we are speaking of non-NaNs,
although the term “NaN” is not used in order to avoid
prompting or anchoring the participant.

• Associativity: Is a simple statement involving associa-
tivity over addition true for floating point? Generally,
floating point arithmetic does not follow the associativ-
ity laws of real number arithmetic. We indicate we are
speaking of non-NaNs without using that term. Mis-
judging associativity is a common source of problems.

• Distributivity: Is a simple statement involving distribu-
tivity of multiplication over addition always true for
non-NaN floating point numbers? Such distributivity is
always true of real number arithmetic, but not of float-
ing point arithmetic, and in general the distributivity
laws for real number arithmetic do not apply in floating
point arithmetic. Misunderstanding distributivity is a
common source of problems.

• Ordering: Is a simple statement involving order-
ing of operations for non-NaN number, specifically
((a + b) - a) == b, always true for floating
point arithmetic? This is not always true for floating
point arithmetic, due to the existence of infinities and
rounding, among other reasons, and misunderstanding
ordering effects is a common source of problems.

• Identity: Is it always true that a==a if a is a floating
point value (NaNs are now included, although the
explicit term is still avoided)? Surprisingly, this is not
always true in floating point arithmetic.

• Negative Zero: Given two floating point values that are
both zero, is it possible for them not to be equal? The
existence of “negative zero” in the standard implies this
might be possible. However, it is not.

• Square: Is the square of a non-NaN floating point
number always ≥0? This is true for both floating
point arithmetic and real-number arithmetic, but not for
integer computer arithmetic. This tests whether a par-
ticipant confuses integer and floating point arithmetic,
which are often learned together.

• Overflow: Both floating point arithmetic and computer
integer arithmetic include the concept of overflow, but
they behave completely differently. Overflow in com-
puter integer arithmetic indicates wrap-around, while
overflow in floating point indicates saturation at an in-
finity. This question determines whether the participant
has confused these two behaviors.

• Divide By Zero: This question asks whether in floating
point, 1.0/0.0 is a non-NaN value. It is (infinity). The
purpose here is to determine if the participant may
believe that such an operation in their code might
become immediately obvious by generating a NaN.

Unlike a NaN, an infinity might ultimately propagate
to the program output as an ordinary numeric value,
disguising such an error.

• Zero Divide By Zero: This question asks whether in
floating point 0.0/0.0 is a non-NaN value, which it
is not. NaN generation is desirable here, since it will
propagate to the output as a NaN and thus make the
user suspicious.

• Saturation Plus: This questions asks whether in float-
ing point, it is possible for (a + 1.0) == a to be
true. This is possible, since floating point arithmetic is
saturating arithmetic, and thus a could be an infinity.
Our goal here is to see if the user understands the
existence of saturation. Another possible reason is
rounding, if a has a very large magnitude. Misunder-
standing saturation is a common source of errors.

• Saturation Minus: This is another variant of Saturation
Plus and serves a similar goal, namely whether it is
possible to “back off” from an infinity.

• Denormal Precision: This question asserts that floating
point numbers very near zero have less precision than
those further away. These numbers, the denormalized
numbers, do have fewer bits of precision as they get
closer to zero. The purpose of the question is to test if
the participant is aware of denormalized numbers and
their gradual underflow behavior (without specifically
using such terms). Applications that rely on very small
magnitude numbers must take such precision loss into
account. Furthermore, some hardware has the ability to
disable denormalized numbers, which can produce very
different results in such applications.

• Operation Precision: This question asserts that float-
ing point arithmetic operations can have results that
have lower precision than the operands. This is true due
to rounding. Our purpose is to test if the participant is
aware of how rounding can produce different results
than would be expected in real number arithmetic.

• Exception Signal: This question asserts that any float-
ing point operation that delivers an exceptional result
(NaN, infinities, etc) will inform the participant’s ap-
plication by default. This in fact does not happen in
floating point arithmetic, and an additional source of
confusion is that it is partially true for computer integer
arithmetic. We want to see if the participant thinks that
a signal-free program execution means no exceptional
floating point value was generated. A participant who
believes this has a very false sense of security.

C. Optimization quiz
It is very common for developers to seek to optimize

their code for performance through compiler optimizations
and hardware features. Some of these go beyond the IEEE
standard. As a consequence, correct code can become in-
correct under some optimizations and/or on some hardware.
In this component of the survey, we try to determine if the

591

participant understands when they are choosing non-standard
optimizations or hardware.

• MADD: Is the common fused multiply-add instruction,
which the question describes, part of the standard?
MADD is included in the newer IEEE standard, but
not the original. MADD can compute a different result
than separate multiplication and addition.

• Flush to Zero: Intel processors have control bits (FTZ
and DAZ) that eliminate denormalized numbers and
their “gradual underflow” behavior in favor of speed.
On some hardware, the bits are on by default, leading
to surprises particularly if very small (in magnitude)
numbers are important to the computation. This is not
part of the standard.

• Standard-compliant Level: Typical compilers have
options for different levels of optimization (i.e., -O3).
Which level is generally considered to the be the
highest possible that still preserves standard-compliant
floating point behavior? This is typically -O2, with
-O3 also allowing MADD.

• Fast-math: Compilers typically have a tempting
--ffast-math option that enables certain optimiza-
tions. This question asks whether this can result in non-
standard-compliant behavior. It can.

D. Suspicion quiz

Floating point hardware internally tracks exceptions for
every operation via sticky condition codes. By default, these
exceptions do not propagate to the application. In this
component of the survey we pose a hypothetical situation
in which we wrap a scientific simulation with code that
determines if any of the possible exceptions occurred one or
more times during the execution of the simulation. Then, for
each of these possible exceptions, we ask the user to indicate,
on a 5 point Likert scale, how suspicious they would be of
the simulation results if the exception occurred. The possible
exceptions are:

• Overflow: The result of an operation was an infinity.
Arguably, this is usually a sign of trouble in real code.

• Underflow: The result of an operation was a zero. This
is probably not a sign of trouble in real code.

• Precision: The result of an operation required rounding
and thus a loss of precision. In practice, rounding
is very common, and not a problem if the numeric
behavior of the algorithm has been designed correctly.

• Invalid: The result of an operation was a NaN. This is
almost invariably a sign of serious trouble in real code.

• Denorm: The result of an operation was a denormal-
ized number. Similar to rounding, this is common, and
not a problem given appropriate numeric algorithm
design. However, if the developer does not expect to
see very tiny, but non-zero results at any point of the
computation, it could be a sign of trouble.

III. PARTICIPANT RECRUITMENT AND BACKGROUND

In recruiting participants we sought individuals at the
Ph.D. student level and above who were actively involved
in software development or the management of software de-
velopment for science and engineering fields at universities,
national labs, and industry. These individuals’ understanding
of floating point is likely to be critical to the correctness
of scientific results based on the computational mode of
investigation, and on the quality of engineered artifacts. We
are not only interested in scientists/engineers who program,
but also in the software engineers who program in support
of science/engineering. In both cases, we would expect them
to have a higher level of understanding of floating point
than the general population of programmers because it is so
intrinsic to their work.

Recall that an important goal of the survey design (Sec-
tion II) is anonymity. Combining anonymity with the need to
target a restricted population makes recruitment challenging.
To recruit participants, we used a standardized email to
announce the survey, ask the recipient take it, and request
that the recipient forward it internally to appropriate groups.
We specifically noted in the email that we were seeking
Ph.D. students and above, in all fields.

Our set of initial “seed” recipients was chosen based on
our existing connections and were high-level individuals that
we felt could be relied on to forward the request reliably
within their organizations. Essentially, we wanted to be
confident that no initial recipient would simply spam a broad
group that would include individuals outside of the restricted
population we wanted to study, but rather would forward the
request with care. Our initial recipients included:

• Chairs of all engineering and physical science de-
partments at Northwestern University. Chairs of social
science departments that use computation were also
included. This was a total of 21 departments.

• Associate director for research in Northwestern’s IT
department, who oversees our shared HPC resources.

• Faculty, Ph.D. students, and postdocs within Northwest-
ern’s EECS department.

• Members of Northwestern’s Center for Interdisciplinary
Exploration and Research in Astrophysics (CIERA).

• Managerial contacts at the following national labs:
Oak Ridge, Sandia, Argonne, and Los Alamos. These
contacts are all involved in computational science and
engineering, either directly or in a supporting role).

• Faculty contacts in CS/CE departments at the following
universities: University of Chicago, Indiana University,
IIT, University of Pittsburgh, University of Florida,
University of New Mexico, Ohio State, University
of Southern California / ISI, University of Queens-
land, Eidgenoessische Technische Hochschule Zuerich,
Carnegie Mellon, Technische Universiteit Delft, Uni-
versity of Michigan, University of Minnesota, Georgia
Tech, Virginia Tech, Rutgers University, Purdue Uni-

592

Position n %
Ph.D. student 73 36.7
Faculty 49 24.6
Software engineer 23 11.6
Research staff 17 8.5
Research scientist 11 5.6
M.S. student 8 4.0
Undergraduate 7 3.5
Postdoc 4 2.0
Manager 3 1.5
Other 5 2.5

Figure 1: Positions of participants.

Area n %
Computer Science 80 40.2
Other Physical Science Field 38 19.1
Other Engineering Field 26 13.1
Computer Engineering 19 9.5
Mathematics 10 5.0
Electrical Engineering 9 4.5
Economics 2 1.1
Other Non-Physical Science Field 2 1.1
CS&Math 2 1.1
CS&CE 2 1.1
Political Science and Statistics 1 0.5
Social Sciences 1 0.5
Robotics 1 0.5
Econometrics 1 0.5
Biomedical Engineering 1 0.5
MMSS 1 0.5
Statistics 1 0.5
Mechanical Engineering 1 0.5
Unreported 1 0.5

Figure 2: Areas of participants.

versity, Notre Dame, and Texas A&M, These contacts
are all involved in HPC or closely-related research.

It is important to understand that given the anonymity of
our survey, we cannot determine who specifically at these
institutions participated in the survey or to whom our seed
recipients forwarded our request to within their institutions
or outside of them.

We attracted 199 participants through this process. To
categorize them, despite anonymity, we rely on their self-

Formal Training in Floating Point n %
One or more lectures in course 62 31.2

None 52 26.1
One or more weeks within a course 49 24.6

One or more courses 35 17.6
Not reported 1 0.5

Figure 3: Formal Training in floating point of participants.

Informal Training in Floating Point n %
Googled when necessary 138 69.4

Read about it 136 68.3
Discussed with coworkers/etc 89 44.7

Trained by adviser/mentor 38 19.1
Watched video 22 11.1

Figure 4: Informal Training in floating point of participants
(Top 5 shown).

Software Development Role n %
I develop software to support my main role 119 59.8
My main role is as a software engineer 50 25.1
I manage others who develop

software to support my main role 19 9.5
My main role is to manage software engineers 6 3.0
Not Reported 5 2.5

Figure 5: Software Development Roles of participants.

Floating Point Languages Experience n %
Python 142 71.4
C 139 69.9
C++ 136 68.3
Matlab 105 52.8
Java 100 50.3
Fortran 65 32.7
R 48 24.1
C# 26 13.1
Perl 25 12.6
Scheme/Racket 17 8.5
Haskell 12 6.0
ML 9 4.5
JavaScript 6 3.0

Figure 6: Floating Point Language Experience of partici-
pants. 55 languages were reported. These 13 had n ≥ 5.

reported background (Section II-A). Figures 1 through 11
describe our participants’ backgrounds in detail.

About 1/3 of our participants are Ph.D. students, 1/4 are
faculty, and 1/4 are software engineers, research scientists or
staff. About 1/2 were formally trained in computer science
or engineering, and 1/2 were formally trained in a science or
engineering field, including math (5%). Almost 2/3 develop
software to support their main role, while about 1/4 see
software engineer as being their primary role.

More than 3/4 report some formal training about floating
Arb. Precision Language Experience n %
Mathematica 71 35.7
Maple 29 14.6
Other language 20 10.0
MPFR/GNU MultiPrecision Library 19 9.6
Scheme/Racket/LISP with BigNums 13 6.5
Other library 13 6.5
Matlab MultiPrecision Toolbox 10 5.0
Haskell with arb. prec. and rationals 8 4.0
Macsyma 5 2.5

Figure 7: Arbitrary Precision Language Experience of par-
ticipants. 38 languages/libraries were reported. These 9 had
n ≥ 5.

Contributed Codebase Size n %
1,001 to 10,000 lines of code 79 39.7
10,001 to 100,000 lines of code 65 32.7
100 to 1,000 lines of code 27 13.6
100,001 to 1,000,000 lines of code 17 8.5
>1,000,000 lines of code 9 4.5
<100 lines of code 1 0.5
Not Reported 1 0.5

Figure 8: Contributed Codebase Sizes of participants.

593

Contributed Codebase Floating Point Extent n %
FP incidental 77 38.7
FP intrinsic 63 31.7
FP intrinsic, I did numerical correctness 29 14.6
FP intrinsic, other team did numerical correctness 10 5.0
FP intrinsic, my team did numeric correctness 10 5.0
No FP involved 9 4.5
No Report 1 0.5

Figure 9: Contributed Codebase Floating Point Extent of
participants (within the codebase they built (Figure 8.)

Involved Codebase Sizes n %
10,001 to 100,000 lines of code 61 30.7
1,001 to 10,000 lines of code 53 26.6
>1,000,000 lines of code 36 18.1
100,001 to 1,000,000 lines of code 36 18.1
100 to 1,000 lines of code 8 4.0
<100 lines of code 2 1.0
No Report 3 1.5

Figure 10: Involved Codebase Sizes of participants.

point, most commonly one or more lectures in a course.
Almost all report informal training about floating point,
with Googling and reading being the most common. De-
pressingly, less than 20% report training from their adviser
or mentor. The participants have experience with floating
point in 55 different languages, with Python, C, C++,
Matlab, Java, and Fortran each being reported by 1/3 or
more. Over 2/3 have experience with arbitrary precision
languages/libraries, with Mathematica being by far the most
common (over 1/3).

Almost 1/2 of our participants have personally written a
codebase or made a codebase contribution of at least 10,000
lines of code, and floating point was intrinsic to almost 2/3
of those codebases. Over 2/3 have been involved with a
codebase of at least 10,000 lines of code, and floating point
was intrinsic to over half of those codebases. Less than 8%
reported codebases in which floating point was not involved.

Of course, our analysis results depend on the nature
of the sample. We believe that the combination of our
recruitment process and the resulting background of the
participants illustrated here suggest that our sample is a good
representative of software developers who write code for,
and in support of, science and engineering applications.

Additional participant group for suspicion quiz: We
also administered the suspicion quiz (Section II-D) to a
Involved Codebase Floating Point Extent n %
FP incidental 71 35.7
FP intrinsic 55 27.6
FP intrinsic, I did numerical correctness 23 11.6
FP intrinsic, other team did numerical correctness 17 8.5
No FP involved 15 7.5
FP intrinsic, my team did numeric correctness 13 6.5
No Report 5 2.5

Figure 11: Involved Codebase Floating Point Extent of
participants within the largest codebase they were involved
with (Figure 10).

0 5 10 150

10

20

30

40

Core Questions Correct

Co
un

t

Figure 13: Histogram of core quiz scores. There are 15
questions. Chance would put the mean at 7.5.

group of 52 undergraduates at Northwestern. These students
were taking EECS 213, Introduction to Computer Systems,
which includes book [3], lecture (one week / 160 minutes),
lab (∼1/8 of lab content in quarter), and homework (∼1/8 of
homework content in quarter) material on floating point. The
course material did not include the floating point condition
codes (other than the x64’s oddball use of the parity bit
to indicate a NaN result). Note that this training is similar
in lecture quantity (one or more weeks) to about 1/4 of
our previous study population (Figure 3). The suspicion
quiz was given as a midterm exam problem. There were
no wrong answers, although the students did not know this
when taking the exam. This data gives us a comparison
group for the suspicion quiz for whom we know precisely
the content of the formal training given.

IV. ANALYSIS RESULTS

We analyzed the dataset in a wide variety of ways with
the following questions in mind:

• Do developers understand floating point arithmetic in
terms of how it differs from real arithmetic and com-
puter integer arithmetic?

• Do developers understand how optimizations at the
hardware and compiler level may affect the behavior of
floating point arithmetic within or beyond the standard?

• What are the common misunderstandings?
• What factors have an effect on understanding?
• What might make developers suspicious of a result?

We now summarize the main results of our analysis.

A. General understanding

The most important results of our analysis are in Fig-
ure 12. Here, we show what the average (i.e. expected) score
was on the core and optimization quizzes. Our participants
generally feel they can answer the core quiz questions, but
then perform at near chance levels on those questions. The
score for the core quiz was 8.5/15, which is only slightly
better than would be expected by chance (7.5/15). Figure 13
shows a histogram of scores on the core quiz. There is a
subtlety here in that “Don’t Know” was a possible response
to a question. The incidence of this, however, was < 15%
for the core quiz. In contrast, in the optimization quiz, our

594

Core Quiz
Correct # Incorrect # Don’t Know # No Answer # Chance

8.5 4.0 2.3 0.2 7.5
Optimization Quiz

Correct # Incorrect # Don’t Know # No Answer # Chance
0.6 0.2 2.2 0.1 1.5

Figure 12: Average (expected) performance of participants on the core and optimization quizzes. For the core quiz, most
participants were comfortable giving an answer for most questions, yet the expected number of correctly answered questions
(8.5) is only slightly higher than would be expected by chance (7.5). For the optimization quiz, most participants answered
“Don’t Know” for most questions. Standard-compliant Level is not included as it is not a T/F question.

participants generally recognized their ignorance, answering
“Don’t Know” over 2/3 of the time.

The core quiz behavior is alarming, while the optimization
quiz behavior is reassuring. Our participants seem to be
appropriately wary about compiler and hardware optimiza-
tions (perhaps because that level of detail may not have
been encountered before in their limited training (Figures 3
and 4), but overconfident in basic floating point behavior
(which is encountered in these forms of training).

Figure 14 is a question-by-question breakdown of the core
quiz. As highlighted in the table, 6/15 questions are an-
swered at chance levels, while 2/15 are answered incorrectly
by most participants. Notice also that while participants
do better than chance on Associativity (69.3% correct),
Overflow (60.8%), and Exception Signal (69.3%), these are
not exactly stellar numbers for such important concepts. 30%
of our participants may think that an exceptional floating
point value (NaN, etc) will result in a signal, which it will
not. Considering Overflow and the Saturation questions, as
many as half of our participants may not fully appreciate
that floating point arithmetic is saturating arithmetic instead
of modular arithmetic.

Figure 15 is a question-by-question breakdown of the op-
timization quiz. The news here is that over 2/3 of participants
reported that they did not know whether noted optimizations
resulted in non-standard behavior. <10% (<20% with a
more generous definition) knew at which optimization level
the compiler could produce non-standard compliant code.
Less than 1/3 knew that -ffast-math, the “least con-
forming but fastest math mode” to quote the gcc manual,
could produce non-standard behavior.

B. Factor analysis for core quiz

We considered each of our background factors (Sec-
tion II-A) as a predictor of performance on the core and
optimization quizzes. We have enough data to meaningfully
consider each factor in isolation, which we did. In the
following, we report on the factors that seem to have the
largest significance only.

Although several factors are somewhat predictive, no
factor has an outsize impact on performance in the core
quiz. In the best case, the average performance rises from
8.5/15 to 11/15, and the variation across the values of the
factor is 4/15.

!

"

#

$

%

&!

&"

&#

&$

'&(&!!)*&(&!)*&!!) &)*&!) &!!*&)

+,
-
./

012
314

,/
56
72
85

91:200/;6 91<8;200/;6 91=28>61)82? 91@8A85?/0/B

Figure 16: Effect of Contributed Codebase Size on core quiz
scores.

Perhaps not surprisingly, the most predictive factor is
simply Contributed Codebase Size, the effect of which
is shown in Figure 16. The effect of Involved Codebase
Size is similar. The larger the codebase that the participant
has experienced or built, the better their understanding of
floating point. However, this is no panacea. Even those who
have built million line codebases are still getting an average
of 4 out of 15 questions wrong.

One might expect that given the importance of Con-
tributed Codebase Size (or Involved Codebase Size), that
Contributed Codebase Floating Point Extent (and Involved
Codebase Floating Point Extent), which measure the degree
of the participant’s interaction with floating point within
these codebases, would be high. While there is an effect—if
the participant or their team focused on numeric correctness
within a codebase, they are more likely to have a higher
score—it is a small effect. There is a gain of only about 2/15
compared to those who reported a codebase where floating
point was not intrinsic or where they were not involved.

Area follows Codebase Size closely as a predictive factor,
and is illustrated in Figure 17. It may not be surprising
that participants from areas closest to the construction of
floating point (EE, CS, CE) do better, but note that this at
best raises average performance from 8.5/15 to 11/15 and
the variation across the values is 3.5/15. What is particularly
disturbing is that “Other Physical Science Field” (PhysSci)
and “Other Engineering Field” (Eng) are performing at the
level of chance. Yet developers from these areas are likely
to be the most extensive users of floating point!

The effect of the participant’s Software Development Role

595

Question % Correct % Incorrect % Don’t Know % Unanswered
Commutativity 53.3 27.6 18.6 0.5
Associativity 69.3 14.1 15.6 1.0
Distributivity 81.9 6.0 10.6 1.5
Ordering 80.4 6.0 12.6 1.0
Identity 16.6 76.9 5.5 1.0
Negative Zero 58.8 28.1 11.6 1.5
Square 47.2 35.2 16.6 1.0
Overflow 60.8 24.1 11.1 4.0
Divide by Zero 11.6 76.4 11.1 1.0
Zero Divide By Zero 70.4 9.0 19.6 1.0
Saturation Plus 54.8 26.1 17.6 1.5
Saturation Minus 53.3 25.6 19.6 1.5
Denormal Precision 52.3 24.6 22.1 1.0
Operation Precision 73.4 9.0 16.6 1.0
Exception Signal 69.3 10.1 19.6 1.0

Figure 14: Core quiz questions. Boldfaced questions were answered correctly at the level of chance. Italicized questions
were answered incorrectly or reported as unknown more often than answered correctly.

Question % Correct % Incorrect % Don’t Know % Unanswered
MADD 15.6 10.0 72.4 2.0
Flush to Zero 13.6 7.5 76.9 2.0
Standard-compliant Level 8.5 20.7 68.8 2.0
Fast-math 29.1 3.0 65.8 2.0

Figure 15: Optimization quiz questions. All questions were reported as unknown by more than half the participants.

!

C

D

E

F

"!

"C

"D

"E

:$:# %&'()(*+$,- #./

0G
1
23

415
617

G3
+'
-5
.+

81:5443,' 819.,5443,' 81=5.:'1;.5H 81<.&.+H343=

Figure 17: Effect of Area on core quiz scores.

>

!

"

#

$

%&

%!

%"

%#

'()*+ '()*+,+- 'G.,/0* 'G.,/0*,+- 1*2.3405036

7G
8
93

-1:
51;

G3
2<
0:
*2

=1::--34< =1>*4:--34< =1=:*?<1@*:H =11*/*2H3-36

Figure 18: Effect of Software Development Role on core
quiz scores.

follows in importance, and is illustrated in Figure 18. Those
who view their main role as software engineering do slightly
better than those who see their software engineering as done
in support of their main role.

!

"

#

$

%

&!

&"

&#

&$

?!"##$ %!&'()*# %!+#&,()# -'.#

-(
/
0#

)1'
112

(#
*,
3'
.*

91:'))#&, 91<.&'))#&, 91='.>,1).'" 914.5.*"#)#6

Figure 19: Effect of Formal Training (in floating point) on
core quiz scores.

One might hope that Formal Training (in floating point)
would have a considerable effect. While it does have an
effect (as illustrated in Figure 19, it is not a large one. The
maximum gain over the baseline is only about 1/15, and the
variation is about 2/15.

The factors we have not discussed thus far, Position, In-
formal Training (in Floating Point), Floating Point Language
Experience, and Arbitrary Precision Language Experience,
have minimal or ambiguous effects on core quiz scores.
Note that the participant supplies lists for some of these
factors. What seems to be true about them is that very short
lists predict bad scores. That is provided the participant has
reported some kind of Informal Training, etc, it does not
seem to matter what it is. A possible explanation is that these
are driven by the two Codebase Size factors. If a participant
wrote or was involved with a codebase of any significant
size, they probably experienced a range of languages and

596

7

789

:

:89

!

!89

!

"" :" :# $%&' (')*#+, "-.

/G
0
12

314
516

G2
*&
,4
-*

71:4332+& 718-+4332+& 71=4-9&1:-4H 71;-%-*H232<

Figure 20: Effect of Area on optimization quiz scores.

=

=;<

=

=;<

>

>;<

>

?@"##$?@&'()*# -'.# ?@+#&,()#

-(
/
0#

)1'
112

(#
*,
3'
.*

A1:'))#&, A1<.&'))#&, A1='.?,1).'" A14.5.*"#)#6

Figure 21: Effect of Software Development Role on opti-
mization quiz scores.

had to participate in some kind of informal training.

C. Factor analysis for optimization quiz
The main story about the optimization quiz is the domi-

nance of the response “Don’t Know” regardless of how the
data is sliced by the factors.

Only the factors Software Development Role (Figure 21)
and Area (Figure 20) appear in our data to have an effect
on optimization quiz scores. Even there, the effects cap
quickly (0.7/3 above chance for Role and 0.5 above chance
for Area), although the variation is considerable (1.4/3 for
Role and 0.8/3 for Area). The effect of Informal Training (in
floating point) is ambiguous in our data, although it could
be interpreted as producing considerable variation, albeit the
maximum effect we see is only slightly better than chance.

It is surprising that factors like the codebase sizes and
floating point experience within codebases have no effect
here. On the other hand, the limited impact of Formal
Training (in floating point) could be explained by the fact
that most of those who have received training in our sample
have received a level similar to that of an introductory
computer systems or machine organization course. Such an
introduction will not touch on optimizations at all.

D. Suspicion analysis
There is of course no ground truth for the suspicion

quiz component of our survey, and it really depends on

the application. However, as we described earlier, some
exceptional conditions are generally more suspicious than
others—an arguably reasonable ranking is that generating a
NaN (Invalid) is by far more suspicious than generating an
infinity (Overflow), which is in turn much more suspicious
than generating any of the other three conditions.

Figure 22(a) shows the distribution of reported suspicion
for the five exceptional conditions within our 199 participant
main group, while Figure 22(b) shows the corresponding
distribution for our separate 52 participant student group.
The groups behave quite similarly, although the student
group is overall less suspicious about Underflow and De-
norm, possibly because the topic is fresh in their minds
given the course. The student group is also less suspicious
of Overflow.

As we might hope, both groups do tend to be more
suspicious of Invalid and Overflow than the other conditions.
However, consider Invalid more carefully: About 1/3 of both
groups reported a suspicion level less than the maximum for
a computation that somewhere encountered a NaN!

V. CONCLUSIONS

Stepping back from the data and analysis, we believe that
some generalizations can be made, along with actions to
address them.

Observation: Many developers do not understand core
floating point behavior particularly well, yet believe they do.
This suggests that some existing and future codebases may
have hidden numeric correctness issues. This is probably
more likely to be the case in smaller and newer projects
where there is no specialist whose role is in part to mitigate
these issues. As use of floating point rapidly expands outside
of the traditional domains of science and engineering, the
problem is likely becoming widespread.

Action: The HPC community should make an effort to
make developers in general more suspicious about floating
point behavior. The analogy might be how the programming
languages and operating systems communities have raised
awareness about C’s undefined behavior and its interaction
with modern compilers [12], [14].

Action: Although our study found that formal training
in floating point has only a small effect on understanding,
we believe the issue is not that training does not work per
se, but rather that the community has just not found the
right training approach yet. A rigorous process to develop
effective training for a broad range of developers is an action
that the HPC community, for example via SIGHPC, could
undertake. We would then also need to convince the broader
(and ever expanding) non-CS community of developers that
such training is necessary.

Action: Static and dynamic analysis tools that can ex-
amine existing codebases and point developers to potentially
suspicious code would likely have significant impact. Several
such tools exist [1], [11], [8], but the tools would also need

597

1 2 3 4 50

20

40

60

80

100

Suspicion Level

Pe
rc

en
t R

ep
or

tin
g

Overflow
Underflow
Precision
Invalid
Denorm

1 2 3 4 50

20

40

60

80

100

Suspicion Level

Pe
rc

en
t R

ep
or

tin
g

Overflow
Underflow
Precision
Invalid
Denorm

(a) Main Group (n = 199) (b) Student Group (n = 52)
Figure 22: Distribution of suspicion for different exceptional conditions.

to have interfaces suitable for a non-CS community and
have a low barrier to use. Perhaps commercial tools like
Coverity [2] will expand their purview to include floating
point. We ourselves have been developing a simple runtime
monitoring tool to spy on unmodified binaries and track
exceptional conditions using floating point condition codes,
similar to the structure of the suspicion quiz.

Action: The boundary between floating point and arbi-
trary precision arithmetic is too thick. A system that would
allow code written using floating point to be seamlessly
compiled to use arbitrary precision would enable developers
to easily sanity check the behavior of their code (and any
optimizations they chose). A particularly paranoid developer
could just opt for slow, arbitrary precision results.

Observation: Many developers recognize their lack of
knowledge of how hardware and software optimizations
affect floating point behavior. As the space of such opti-
mizations expands, it could be that developers simply use
them without understanding the consequences, or developers
could simply avoid them out of fear of incorrect results,
which would reduce their impact. There may be a parallel
with the OS developer community, where optimizations that
leverage C’s undefined behavior are carefully avoided lest
they break working kernel code or make it insecure.

Action: We need to assess to what extent developers
wittingly or unwittingly use hardware and software opti-
mizations without knowing their consequences. Are they
as conservative about what they use as they are about
what they think they know? If not, then the introduction
of optimizations may be leaving a hidden trail of incorrect
results behind it.

Action: Optimization implementations should take de-
veloper knowledge into account—ideally, a developer would
not be able to use an optimization without demonstrating that
they understand it. How can we create an effective interface
for this that would not be gameable or too onerous to use?

REFERENCES

[1] F. Benz, A. Hildebrandt, and S. Hack, “A dynamic pro-
gram analysis to find floating-point accuracy problems,” in
Proceedings of the 33rd ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI),
2012.

[2] A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton, S. Hallem,
C. Henri-Gros, A. Kamsky, S. McPeak, and D. Engler, “A few
billion lines of code later: Using static analysis to find bugs
in the real world,” Commuications of the ACM, vol. 53, no. 2,
pp. 66–75, February 2010.

[3] R. Bryant and D. O’Hallaron, Computer Systems: A Program-
mer’s Perspective, 3rd ed. Pearson, 2015.

[4] M. Fagan, J. Schlachter, K. Yoshii, S. Leyffer, K. Palem,
M. Snir, S. M. Wild, and C. Enz, “Overcoming the power
wall by exploiting inexactness and emerging cots architectural
features: Trading precision for improving application quality,”
in Proceedings of the 9th IEEE International System-on-Chip
Conference (SOCC), September 2016.

[5] K. Hoste and L. Eeckhout, “Cole: Compiler optimization level
exploration,” in Proceedings of the 6th Annual IEEE/ACM In-
ternational Symposium on Code Generation and Optimization
(CGO), 2008.

[6] IEEE Floating Point Working Group, “IEEE standard for
binary floating-point arithmetic,” ANSI/IEEE Std 754-1985,
1985.

[7] ——, “IEEE standard for floating-point arithmetic,” IEEE Std
754-2008, pp. 1–70, Aug 2008.

[8] M. O. Lam, J. K. Hollingsworth, and G. Stewart, “Dynamic
floating-point cancellation detection,” Parallel Computing,
vol. 39, no. 3, pp. 146–155, 2013.

[9] S. Mittal, “A survey of techniques for approximate comput-
ing,” ACM Computing Surveys, vol. 48, no. 4, Mar. 2016.

[10] F. C. Moon, Chaotic and Fractal Dynamics: An Introduction
for Applied Scientists and Engineers. John Wiley and Sons,
Inc., 1992.

[11] P. Panchekha, A. Sanchez-Stern, J. R. Wilcox, and Z. Tatlock,
“Automatically improving accuracy for floating point expres-
sions,” in Proceedings of the 36th ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation
(PLDI), 2015.

[12] J. Regehr, “Embedded in academia,” https://blog.regehr.org/,
a long running series of posts on undefined behavior has been
widely read.

[13] C. Rubio-González, C. Nguyen, H. D. Nguyen, J. Demmel,
W. Kahan, K. Sen, D. H. Bailey, C. Iancu, and D. Hough,
“Precimonious: Tuning assistant for floating-point precision,”
in Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis
(Supercomputing), 2013.

[14] X. Wang, N. Zeldovich, M. F. Kaashoek, and A. Solar-
Lezama, “Towards optimization-safe systems: Analyzing the
impact of undefined behavior,” in Proceedings of the 24th
ACM Symposium on Operating Systems Principles (SOSP),
November 2013.

598

