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ABSTRACT

Sensor network application experts such as biologists, ge-
ologists, and environmental engineers generally have little
experience with, and little patience for, general-purpose and
often low-level sensor network programming languages. We
believe sensor network languages should be designed for ap-
plication experts, who may not be expert programmers. To
further that goal, we propose the concepts of sensor net-
work application archetypes, archetype-specific languages,
and archetype templates. Our work makes the following con-
tributions. (1) We have examined a wide range of wireless
sensor networks to develop a taxonomy of seven archetypes.
This taxonomy permits the design of compact languages that
are appropriate for novice programmers. (2) We developed
a language (named WASP) and its associated compiler for
a commonly encountered archetype. (3) We conducted user
studies to evaluate the suitability of WASP and several alter-
natives for novice programmers. To the best of our knowl-
edge, this 56-hour 28-user study is the first to evaluate a
broad range of sensor network languages (TinyScript, Tiny-
SQL, SwissQM, and TinyTemplate). On average, users of
other languages successfully implemented their assigned ap-
plications 30.6% of the time. Among the successful comple-
tions, the average development time was 21.7 minutes. Users
of WASP had an average success rate of 80.6%, and an av-
erage development time of 12.1 minutes (an improvement of
44.4%).

1. INTRODUCTION

Wireless sensor networks have the potential to allow in-
expensive, real-time, and broadly-distributed data collection
and analysis for the first time in history. Application experts,
such as geologists, entrepreneurs, civil engineers, and biol-
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ogists have the most to gain. However, these application
experts generally have little experience with, and little pa-
tience for, the general-purpose, node-level languages avail-
able for sensor network programming. As a result, appli-
cation experts are forced to rely on embedded system ex-
perts to implement their ideas. Almost all existing sensor
network deployments are implemented by embedded system
experts. This approach is costly. Separating design and im-
plementation in this way can also lead to errors due to mis-
communication between application experts and embedded
system experts. Application experts generally have limited
awareness of the constraints on sensor network capabilities
imposed by hardware and software limitations. On the other
hand, embedded system experts know little about the appli-
cation requirements, which are tightly related to the mea-
sured objects and the working environments. In addition,
since application experts’ and embedded system experts’ do-
main languages differ significantly, this can cause confusion
and misunderstandings that lead to incorrect implementa-
tions. Consequently, a collaboration between application ex-
perts and embedded system experts requires a large amount
of communication, negotiation, redesign, and reimplemen-
tation. Many potential users of wireless sensor networks
consider them because they have the potential to save time
and money. When these potential benefits are outweighed
by substantial increases in implementation complexity com-
pared to the bulky and expensive, but often easy-to-deploy,
sensing solutions already in use, wireless sensor networks
will remain unused.

We believe that appropriate high-level programming lan-
guages and compilers have the potential to make wireless
sensor networks accessible to the application experts who
have the most to benefit from their use. We propose design-
ing sensor network languages with the novice programmer in
mind, hence the following language features are desirable.

1. The languages should support specifying application-
level requirements, not just node-level behavior.

2. The languages should not expose low-level implemen-
tation details, such as resource management, commu-
nication protocols, and optimizations, to users. Users



should need only specify application requirements.

3. The languages should be compact and easy to use. Peo-
ple with limited or no programming experience should
be able to almost immediately learn and use them to
specify correct sensor network applications.

The first step to designing a programming language is to
determine the scope of applications it will support. There
are two extremes of the range of design philosophies a lan-
guage designer might adopt: a language might be entirely
general-purpose or entirely application-specific. General-
purpose languages can be used to specify any application.
However, all other things being equal, this flexibility is ob-
tained at the cost of increased language complexity. General-
purpose languages have advantages: once such a language is
learned, one can write any application with it. However, a
novice programmer may never be willing to expend the time
to learn it. In contrast, application-specific languages are
usually simple and compact, but support one type of appli-
cation. This makes it more difficult for a novice programmer
to select the appropriate language for an application, and re-
quires the design of numerous languages — one for each type
of application. Designers need to learn a new language with
each new application. We believe the optimal design philos-
ophy for sensor network programming languages is some-
where between these extremes: a moderate number of spe-
cialized languages that together cover most of the sensor net-
work application domain. Ideally, each of these languages
should be easy to learn and use for novice programmers.

The question remains, “what is the appropriate granular-
ity of the application groups?”, i.e., “how specialized should
the languages be?” To find the best tradeoff between the
complexity of selecting a language and the complexity of
the languages, we propose the concept of sensor network
archetypes. We have categorized sensor networking applica-
tions into archetypes based on functional properties that have
large impacts on language design. We have examined a wide
range of sensor network applications in order to develop a
taxonomy of seven archetypes (see Section 3). The language
tailored for an archetype is called an archetype-specific lan-
guage.

Once an application’s archetype is known, it is possible to
provide a program template/example as a starting point. Our
studies indicate that the availability of templates improves
the success rate for novice programmers implementing sen-
sor network applications from 0% to 8.3% for a node-level
language. Knowledge of an archetype further reduces the
burden on a novice programmer because only one archetype-
specific language needs to be learned, and each such lan-
guage is simpler than a general-purpose programming lan-
guage. We have embodied these language design concepts
in a language for a frequently encountered sensor network
arche-type. In comparison with alternative sensor network

programming languages such as TinyScript, TinyDB, and
SwissQM, this language results in 1.6x average improve-
ment in success rate and 44.4% average reduction in devel-
opment time. We plan to extend these language design con-
cepts to other archetypes in our future work.

2. RELATED WORK

A number of researchers have proposed new sensor net-
work languages to improve design productivity. However,
most of these languages have been designed with expert pro-
grammers in mind. Although they may improve the produc-
tivity of embedded system experts, they are unlikely to make
the design and deployment of sensor networks accessible to
application experts who are often novice programmers. A
few languages are proposed for application experts. How-
ever, their use by novice programmers has not been exper-
imentally evaluated, making it difficult to draw conclusions
about their suitability. In this section, we review these lan-
guages and summarize the major differences and contribu-
tions of our work.

Node-level programming languages specify the behavior
of each single sensor node. To access the state of other
nodes, the program must explicity specify data transmission
between nodes. NesC [11] and C are widely used node-
level programming languages for sensor networks. These
languages are too low-level for novice programmers. In ad-
dition, concepts such as events and threads are quite difficult
for novice programmers to learn. Efforts [14, 24] have been
made to raise the abstraction level of these languages.

Network-level programming languages, also called macro-
programming languages, treat the whole network as a single
machine. Lower-level details such as routing and commu-
nication are hidden from programmers. Pleiades [19] ex-
tends C to achieve a centralized perspective with access to
all the nodes in the network via naming. Some researchers
allow designers to treat the sensor network as a database and
use query languages to extract data from the network [28,
33]. Regiment [34] lets programmers view the network as a
set of distributed data streams. ATaG [4] is based on data-
driven program flow and mixed imperative-declarative spec-
ification. It lets developers graphically declare the data flow
and connectivity of virtual tasks and specify the functionality
of tasks using common imperative language. RuleCaster [5]
provides a macroprogramming abstraction with a state-based
model and uses a high-level language akin to Prolog.

A few researchers have considered the accessibility of sen-
sor network design to application experts. However, we are
aware of only one other publication describing experiment
evaluation of usability of a sensor network programming lan-
guage. Some languages [12, 17] are inspired by commercial
graphical programming tools such as LabView [21] and Ex-
cel [10]. Other researchers made the design of easy-to-use
languages tractable by targeting a specific type of applica-



tions. NETSHM [7] is a sensor network software system for
structural health monitoring applications. In contrast, we did
a broad study of existing sensor network applications and
proposed a method of identifying classes of applications for
specialized language development. BASIC was proposed for
use in sensor network programming [30]. The authors im-
plemented BASIC for sensor networks and conducted a user
study with novice programmers. Their user study is contem-
poraneous with ours. Their work targeted a different appli-
cation domain than ours and focused on node-oriented pro-
gramming.

More comprehensive reviews and comparisons of exist-
ing sensor network programming languages can be found
in surveys [46, 31]. Sugihara and Gupta [46] compared the
languages using three metrics: energy-efficiency, scalability,
and failure-resilience. They acknowledged that ease of pro-
gramming is a very important criteria but they believed “cri-
teria of easiness is inherently subjective and the complex-
ity of code largely depends on each application". In con-
trast, we believe that it is possible and important to evaluate
the usability of sensor network languages and have designed
and executed a rigorous user study to compare a number
of languages. Mottola and Picco [31] introduced a taxon-
omy of wireless sensor network programming models. The
taxonomy we introduce is for sensor network applications.
Roemer and Mattern [38] have studied and characterized the
design space of sensor networks to provide a clearer pic-
ture of sensor network applications and their requirements.
We also classified sensor network applications but for a dif-
ferent purpose: archetype-based programming language de-
sign. We focus solely on dimensions that affect the complex-
ity of specification language.

Our work shares some techniques and principles with that
on human—computer interaction [13, 20] and the psychology
of programming [49]. Involving users in the design process
has been emphasized in the human—computer interface de-
sign.

3. TAXONOMY OF WIRELESS SENSOR
NETWORK APPLICATIONS

Specialized, high-level specification languages have the
potential to open sensor network design to application ex-
perts who are novice programmers. Finding the optimal par-
titioning of the sensor network application domain for the
purpose of language design is challenging. This section de-
scribes our study of a wide range of sensor network applica-
tions in order to build a taxonomy of sensor network arche-
types, and thus languages.

3.1 Wireless Sensor Network Applications

We studied 23 sensor network applications and summa-
rized their application-level requirements and functionalities

to extract 19 application properties. These applications, most
of which have been deployed, span a wide range of domains:
environmental monitoring [16, 47, 50, 44, 40], structural
health monitoring [8, 6, 26, 45, 35, 18], habitat monitor-
ing [37, 27], target detection and localization [15, 39, 2,
43], residential monitoring [51], active sensing [52], medical
care [41], farm management [42, 48], and others [9]. Speci-
fications should focus on the requirements of an application,
and avoid implementation details to the greatest degree pos-
sible while still maintaining adequate performance. Based
on this principle, we identified the following 19 application-
level properties (refer to Section 3.2 for definitions): mobil-
ity, initiation of sampling process, initiation of data transmis-
sion, interactivity, data interpretation, data aggregation, actu-
ation, homogeneity, topography, sampling mode, when sen-
sor locations are known, synchronization, unattended life-
time, mean time to failure, maximum node weight, max-
imum node size, maximum node volume, maximum node
mass, minimum covered area, and quality of service.

3.2 Categorization of Wireless Sensor Network
Applications

Among the 19 application properties, only eight affect the
complexity of the specification language. Other properties
are constraint oriented and have little impact on the specifi-
cation of sensor network functionality. For example, chang-
ing the required lifetime of the system from a month to a year
will not change the functional specification, although the im-
plementation may change. Specifying constraints can be uni-
form and straightforward across many application domains,
unlike functional specifications. The syntax constraint =
value is sufficient. Therefore, we ruled out these properties
as criteria for placing applications. The following eight prop-
erties remain.

e Mobility indicates whether the sensor nodes are mo-
bile. Mobile nodes may be wearable devices to mon-
itor or track moving objects such as humans and an-
imals [48, 42]. Sensor nodes might also adjust their
positions. For applications with mobile sensor nodes,
specifications of node localization and node movement
control are usually desired. Therefore, mobile sensor
network applications will require more complex speci-
fications.

o Initiation of sampling indicates the condition that
causes the nodes to start sampling. It can be periodic,
event driven or a mix. Periodic sampling requires spec-
ification of the sampling period, while event-driven sam-
pling requires the specification of events.

o Initiation of data transmission indicates the condi-
tion in which nodes send data through the network. It
can be periodic, event driven, or both. Applications for



event detection usually require data to be sent to a base
station under a certain condition.

e Actuation indicates whether the sensor network pro-
duces signals to trigger or control other hardware com-
ponents. For example, the autonomous livestock con-
trol application [48] generates stimuli to bulls when the
sensor network detects two bulls will soon fight. Actu-
ation requires the specification of triggering conditions
and actuation actions, and is therefore more complex
than specifying only sensing.

o Interactivity indicates whether the network is required
to respond to commands sent during operation. Inter-
actions are usually required for initial deployment, re-
programming, maintenance, adjusting operational pa-
rameters, and on-site visits. Interactivity requires the
specification of commands and reactions.

e Data interpretation indicates that in-network data pro-
cessing is carried out on raw sensor data to filter or
compute derivative information. Such online data in-
terpretation may support automated decisions or other
actions. Support for data interpretation requires speci-
fication of the data processing procedures.

e Data aggregation indicates whether data should be ag-
gregated across multiple sensor nodes. Data aggre-
gated requires the ability to specify aggregation algo-
rithms as well as the group of nodes the aggregation
operation applies to. For this reason, data aggregation
complicates specification.

o Homogeneity indicates whether the functionality of ev-
ery sensor node in the network is the same. For a het-
erogeneous network, the specification language needs
to provide the ability of distinguishing among different
types of nodes.

The crossproduct of these eight application attributes re-
sults in at least 256 unique points in the language design
space. The 23 application samples form 20 points, as shown
in Table 1. The extreme of designing one language for each
point would make it difficult for a user to identify the cor-
rect language and increases the burden of language design.
Our goal is to find the categorization of sensor network ap-
plications that minimizes the complexity of categorizing ap-
plications within categories (archetypes) and the complex of
using the corresponding language, while also limiting the
number of languages required to make the language design
process practical.

A good partition should cluster some application types that
are adjacent or nearby in the attribute space. In addition,
the number of attributes for which multiple dimensions are
spanned should be minimized. This suggests using a cluster-
ing algorithm for categorization. We adopted the K-Means

algorithm to cluster the 23 applications. Dimensions with
orthogonal values are treated as sets; dimensions with com-
parative values are mapped to scalar values with larger values
indicate more complex functionality. Choosing the number
of clusters involves a trade-off between the complexity of in-
dividual languages and the number of languages. The com-
plexity of the specification language corresponding to each
application type is hard to quantify precisely ahead of time
and the specification language for a potential application cat-
egory cannot be accurately predicted without language de-
sign and evaluation. Therefore, choosing k is a somewhat
ad-hoc process based on prior experience with sensor net-
work and language design. The resulting clustering-based
archetypes are shown in Table 2. A row in the table corre-
sponds to one archetype. The “size” column indicates how
many applications fit into the corresponding archetype. An
archetype is defined by its values in the eight application at-
tributes. “*” means any value is accepted. Note that the spec-
ification languages may overlap, i.e., an application may be
a member of multiple archetypes.

4. ARCHETYPE-SPECIFIC LANGUAGES

The taxonomy of sensor network archetypes described in
the previous section guides the design of specialized lan-
guages, i.e., archetype-specific languages. The concept of
archetypes allows templates to be designed to further reduce
the programming burden for application experts. In our user
study, most test subjects indicated that examples help them
to understand a new language. Therefore, we propose the
concept of archetype templates. These can be generic ex-
ample programs for specific archetypes or incomplete pro-
grams with parameters and lines of code to be modified by
programmers according to their needs. An application ex-
pert uses an archetype-specific language by reading a short
tutorial and using an archetype template to implement an ap-
plication. We want this procedure to be easy and efficient for
novice programmers.

For an application expert using our proposed design flow,
the first step in sensor network implementation is to deter-
mine the right archetype for one’s application. We believe
this first step is easy for an application expert for the follow-
ing reasons. First, the archetypes are determined from eight
specific application properties that are meaningful to appli-
cation designers. Second, the archetype taxonomy allows the
design of an interactive tool to assist a user in choosing the
correct archetype for an application via a list of multiple-
choice questions based on the eight application attributes.
Classification should require eight or fewer answers, since
an archetype is determined by at most eight attributes.

In short, archetype-specific languages have the following
advantages.

1. An application expert only needs to learn the language
features that are strongly related to the application of



Table 1: Sensor network applications

Application Mobility Sampling Data Actuation  Interactive Data Data Homo-

transmission interpretation  aggregation  geneous
Wisden stationary periodic periodic N N Y Y Y
Habitat stationary periodic periodic N N N N Y
Bridge stationary periodic periodic N N N Y Y
FireWxNet stationary periodic periodic N N N N Y
Light control stationary periodic periodic N N N N Y
ACM stationary periodic periodic N N N N Y
Redwoods stationary periodic periodic N N N Y Y
Surveillance stationary periodic event-driven N Y Y Y Y
VigilNet stationary hybrid event-driven N N Y Y Y
SenSlide stationary periodic event-driven N N Y Y Y
Vehicle tracking  stationary periodic event-driven N N Y Y Y
Shooter stationary  event-driven  event-driven N N Y Y Y
Volcanic stationary periodic event-driven N N Y N Y
ElevatorNet mobile periodic periodic N N Y N Y
ZebraNet mobile periodic event-driven N N N Y Y
Active sensing mobile periodic event-driven Y N Y Y Y
Animal control mobile periodic periodic Y N Y N Y
Farm mobile periodic periodic Y Y N N N
ALARM-NET mobile periodic hybrid N Y N N N
CodeBlue mobile periodic hybrid N Y Y N N
PIPENET stationary hybrid hybrid N Y Y Y Y
NETSHM stationary  event-driven hybrid Y Y N Y Y
Tunnel mobile periodic event-driven N N Y Y N

Table 2: Sensor network archetypes

Archetype Size  Mobility Sampling Data Actuation  Interactive Data Data Homo-

transmission interpretation  aggregation  geneous
1 7 stationary periodic periodic N N * * Y
2 6 stationary * event-driven N * Y * Y
3 4 mobile periodic * * N * * Y
4 3 mobile periodic * * Y * N N
5 1 stationary hybrid hybrid N Y Y Y Y
6 1 stationary  event-driven hybrid Y Y N Y Y
7 1 mobile periodic event-driven N N Y Y N

interest. This results in shorter development time and a
shorter learning curve.

2. The simplicity of archetype-specific languages permits
short tutorials, simple grammars, high levels of abstrac-
tion, and productive use of archetype templates. This
reduces development time, improves correctness rates,
and increases the satisfaction of novice programmers
with the design process.

3. The design of high-level languages is simplified by tar-
geting specific groups of applications.

S. WASP: AN EXAMPLE ARCHETYPE-
SPECIFIC LANGUAGE

We selected the archetype with the most existing sensor
networking applications as the starting point for archetype-
specific language design. This archetype contains seven of
the sample applications. It corresponds to applications that
periodically sample and transmit raw data, or filter and ag-
gregate data, before transmitting them to a base station from

a stationary, homogeneous network. We will refer to this as
“Archetype 1”. This section presents the proposed language,
WASP, as well as its compiler and simulator.

5.1 Language Overview

Among the existing languages, those based on database
query languages (e.g., SwissQM and TinyDB) provide the
most appropriate high-level abstractions for Archetype 1.
However, their support for temporal queries may be difficult
to grasp for novice programmers, because the database ab-
straction represents a snapshot of the network that only con-
tains current data (the default table named sensors). In order
to use historical data, a storage point must be explicitly cre-
ated in the program. The storage point provides a location
to store a streaming view of recent data. For example, in
TinyDB

CREATE STORAGE POINT recentlight SIZE 8
AS (SELECT nodeid, light

FROM sensors

SAMPLE PERIOD 10s)



creates a storage point for the most recent eight light sam-
ples. For a simple application that compares the current sen-
sor reading with previous readings, developers need to issue
a query that joins data from the sensors table and the cre-
ated storage point. Joins are a complex query construction
that even experienced database users often get wrong. Our
experimental results indicate that many novice programmers
have great difficulty using joins correctly (see Section 7 for
details). Instead of forcing programmers to explicitly create
buffers to store temporal data, WASP makes both historical
and current data directly accessible to programmers.

To achieve easy access to both current and historical data,
WASP lets programmers view the network as distributed data
arrays. Each array corresponds to a node-level variable and
stores the stream of a particular type of data. Newly sam-
pled data or computed results are inserted to the top of the
array, which is indexed from 0. Older data can thus be refer-
enced by indexing into the array. Another major difference
between WASP and existing query languages is that it lets
users specify an application at two levels: node-level and
network-level. Operations that only use constants and data
generated on one node may be specified at node-level. Data
transmission and data aggregation are specified at network-
level. The two features permit local data processing while
retaining the high-level abstraction that hides the mechanics
of routing and communication.

5.2 WASP Language Construct

A WASP program is composed of two segments. The
node-level code segment, initiated with the keyword “local:”,
specifies single node behavior. The network-level code seg-
ment, initiated with the keyword “network:”, specifies how
data are aggregated through the network and gathered at the
base station.

The node-level code segment specifies two types of func-
tionalities: sampling and data processing. The sampling spec-
ification indicates the type of sensor data sampled and the
associated sampling frequency. The data processing speci-
fication indicates how the raw sensed data are processed to
generate other data. It may be used for data interpretation,
unit conversion, local event detection, etc. The syntax fol-
lows. Keywords are in uppercase. Variables and parameters
are in lowercase.

SAMPLE sensor EVERY t t_unit INTO buffer
SAMPLE sensor INTO scalar

new_data = arithmetic_expr

new_data = arithmetic_expr EVERY t t_unit
new_data = function (args)

new_data = function(args) EVERY t t_unit

Sensor describes the type of sampled data. Buffer,
scalar, and new_data are user-defined variables. Pro-
grammers can view a variable as an infinite array that stores
a time series. Data items in the array can be referred to via

indexing. Index O represents the most recent data, while in-
dex n represents the nth most recent data item. A sequence
of data items can be referred to using two indices, indicating
a range. Fox example, buffer[0:9] returns the most recent
10 data items. Data types of variables are not specified by
users, but inferred by the compiler. If a sampling operation
or data computation is periodic, “EVERY t t_unit” should
be specified at the end of the statement to indicate the pe-
riod. If absent, this implies that the operation need only be
done once. Function is selected from a library of built-in
functions. These functions are aggregation functions used in
node-level code. They aggregate data across time on each
individual node. The execution order of the statements is de-
termined by the data dependency. Programmers can write
them in any order. The syntax of node-level code is designed
to be straightforward and readable by novice programmers.
The SAMPLE clause is similar to English. The other instruc-
tions are based on assignment statements that even novice
programmers are likely to be familiar with.

The network-level code segment lets programmers view
the entire sensor network as a table and use collective opera-
tions to extract the data they want. Instead of containing only
the current sensor readings, as in TinyDB, this table con-
tains the most recent data items for all the variables that are
defined in the node-level code segment. Although the table
represents a snapshot, its columns may contain variables rep-
resenting or derived from temporal data. Therefore, only one
table exists in WASP; programmers need not create tables or
query from multiple tables. Network-level code has a syntax
that is similar to the TinySQL language used in TinyDB. It
consists of collect-where-group by-having-delay clause sup-
porting selection, join, projection, and aggregation.

WASP has a DELAY statement for specifying maximum
latency of data collection. The syntax isDELAY t t_unit.
Parameter t t_unit indicates the maximum delay from
data item generation to arrival at the base station. Program-
mers without delay constraints should eliminate this state-
ment. The syntax of the clause for network-level code is
more constrained than TinyDB. The data following the se-
lect keyword can either be a node-level variable or an ag-
gregation function. Expressions are not allowed. In contrast
with TinyDB, WASP network-level code does not specify
sampling frequency. Frequency should always be specified
in node-level code segment, together with variable defini-
tions. The data transmission frequency can be inferred from
the periods at which data are collected.

5.3 WASP Programming Template

A template for WASP programs is given below. Upper-
case words are commands. Lower-case words are descrip-
tions of parameters at the corresponding locations; they will
be replaced with the variables, functions, and expressions by
programmers.



LOCAL:
SAMPLE sensor EVERY t t_unit INTO buffer
SAMPLE sensor INTO scalar

datal = function(args) EVERY t t_unit
data2 = function(args)

data3 = arithmetic_expr EVERY t t_unit
datad4 = arithmetic_expr

NETWORK :

COLLECT fieldl, field2,

WHERE node-selection-conditions
GROUP BY node-variable-list
HAVING group-selection—-conditions
DELAY t t_unit

5.4 Compiler and Simulator for WASP

The WASP compiler translates a WASP program into NesC
code. The generated NesC code is then compiled to executa-
bles with ncc, the NesC compiler for TinyOS. The parser is
written with PLY [36], a python implementation of the com-
piler construction tools lex and yacc. The implementation
of Archetype 1 requires the use of modules for timing, com-
municating, synchronization, and routing, which we imple-
ment as a library that is automatically accessed by the gener-
ated code. We constructed a NesC template for Archetype 1
that embodies the partial implementation that is required for
any application in the archetype. The Collection Tree Proto-
col (CTP), implemented as TinyOS components, is used for
the routing and data collection. In the template, application-
dependent code segments are marked with special symbols,
which are replaced with NesC statements generated by the

WASP compiler. The replacement is automated with a Python

script. During compilation, variables in the WASP program
are converted to arrays or scalars with explicit data types, the
minimum size of the arrays are computed. The sampling in-
structions are converted to NesC instructions to control the
sensor components. Other node-level instructions are con-
verted to tasks. The period specification in the WASP pro-
gram is converted to instructions to set timers. The network-
level code is converted to data transmission and in-network
data aggregation instructions in NesC. The compiler has been
tested with the three applications from our user study (refer
to Section 6 for more details). The generated code was run
on a multi-hop network composed of four TelosB nodes. We
did not yet work on compiler optimization of performance
and power.

To support our user study, we also implemented a discrete
event simulator for WASP in Python. The parser is modi-
fied to generate Python code that creates sampling, process-
ing, and data collection events. The simulator is only used
to check functional specification, not implementation or re-
liability. Therefore, it emulates a perfect network: every
operation is instantaneous; there is no node failure or com-
munication loss. The sensor data are randomly generated in

the range from O to 1024. An user interface was also devel-
oped for WASP, providing a simple programming environ-
ment in which WASP code is edited, saved, compiled, and
simulated.

6. USER STUDY

To test the suitability of WASP and to assess the value of
archetype-specific languages, we conducted a user study that
tested 28 novice programmers using five different program-
ming languages. This section describes the protocol of our
user study. The materials used in the study are available on
our project website [1].

The user study was designed to address these questions:

1. What impact does the use of specialized languages have
on programmer productivity, as quantified via develop-
ment success rate and time?

2. What impact does the use of programming templates
have on productivity?

3. Is the node-level or the network-level programming mo-
del better for novice programmers?

4. Can novice programmers efficiently and correctly use
WASP?

5. What is the most appropriate language for the most fre-
quently encountered archetype?

6. What difficulties do novice programmers have in using
existing programming languages?

We used the following criteria when selecting languages
for testing and comparison: (1) the language is designed to
simplify sensor network programming and it provides high-
level abstractions; (2) it was designed to support applica-
tions that carry out periodic data sampling and transmission;
(3) is has been implemented and the associate tool chain is
publicly available. Five programming languages were se-
lected for comparison: TinyScript, TinyTemplate, TinySQL,
SwissQM, and WASP. Three of them (TinyScript, TinySQL,
SwissQM) are from existing work with released software
tools.

TinyScript [24] is a general-purpose, node-level, event-
driven programming language used for the Maté virtual ma-
chine [23]. Programmers write imperative code for event
handlers. We made two major changes to create a special-
ized version of TinyScript, called TinyTemplate, for the most
frequently encountered archetype. First, we pruned the li-
brary and handlers of TinyScript to only contain functions
and events that are related to the target archetype. Second,
we provided a programming template. The template is an pa-
rameterized example program that implements periodic sam-
pling and data aggregation; comments in the program indi-
cate the variables and instructions that should be replaced



for different applications. Expecting that it will be extremely

difficult for novice programmers to implement multi-hop com-

munication within reasonable a amount of time, we let the
test subjects of TinyTemplate and TinyScript assume a one-
hop network structure, in which every node can directly com-
municate with the root node. Even so, the success rate was
extremely low for these two languages.

TinySQL [28] is the SQL-like language used in TinyDB.
Programmers view the whole network as a table, with each
row indexed with node identification number. User-defined
storage points are used in this language to buffer temporal
data. SwissQM [33]" is a programming interface for a query
virtual machine. The query language for SwissQM is sim-
ilar to TinySQL, but instead of letting users write textual
code, SwissQM provides a graphical interface. The interface
makes composing queries convenient, but it also constrains
the supported applications; temporal queries cannot be sup-
ported by this interface.

In our study, it was our goal to compare languages and
minimize the effect of other factors such as documentation
and programming environment. We therefore rewrote the tu-
torials for these languages (these tutorials are available at our
project website [1]). The published documents [32, 29, 22]
were generally written for programming experts and proved
to be very difficult for novice programmers to understand.
Programming templates are provided for WASP, TinySQL,
and TinyTemplate. The graphical interface of SwissQM is
considered to be a template.

In practice, system design and programming are interac-
tive and iterative processes. Hence, feedback to test subjects
is necessary for the user study to approximate real-world cir-
cumstances. Asking users to work with a collection of sen-
sor nodes has the potential to introduce problems that are
orthogonal to language design and thereby reduce the dis-
cerning power of the study. In order to focus on measuring
the impact of the language on productively writing function-
ally correct code, we associated each language with a simu-
lator. A network composed of four nodes was simulated for
each language. These simulators run in real-time, and em-
ulate ideal sensor networks without delay or failure?>. The
TinyOS simulator, TOSSIM [25], was used for TinyScript,
TinyTemplate, and SwissQM. We implemented a simulator
in Python for TinySQL?. The TinySQL code is translated
into iterative database queries that are passed to a database
server. The creation of storage points is converted to creation

"The new version had not been released at the time we designed
our experiments; version 1.0 was used. This is unlikely to have
significantly effected results. Although the new version of Swis-
sQM allows users to write query code, temporal queries are not
supported.

“We intend to consider the interactions between language design,
performance, and reliability in future work.

3We could not get TinyDB working and the release tool does not
support the semantics for temporal query, so we wrote a new simu-
lator for it.

of view points. We implemented a discrete event simula-
tor for WASP in Python. Though the implementation of the
simulation environments of these languages differ, the user
interfaces are quite similar.

Our study procedure is designed to permit fair compar-
isons among languages while maintaining short duration stud-
ies. First, the test subjects are introduced to wireless sensor
networks via a short description. This gives test subjects
a basis for understanding the programming languages and
tasks. Next, the test subjects are given 30 minutes to read a
tutorial for the language under test, and to familiarize them-
selves with the programming environment.

After that, they are given the description of two sensor net-
work programming tasks; 40 minutes are permitted for each
one. The description of the second task is given after the
first is complete, or after 40 minutes have elapsed. The test
subjects may notify the test administrator when they think
they have a correct solution. Finally, test subjects answer
a survey to provide feedback on the language, tasks, pro-
gramming environment, etc. The screen is recorded during
the study, allowing us to examine the interaction between
the programmers and the programming environments. Dur-
ing the study, the test subjects are permitted to ask the test
administrator questions regarding the tutorials or the task de-
scriptions. However, the administrator does not answer ques-
tions related to the implementation of the tasks. Though we
used three tasks and five languages for the user study, each
test subject was asked to complete two tasks in one language.
This is due to the requirement of maintaining a study dura-
tion short enough for participants to tolerate. The selection
of language and tasks for each test subject was random. To
eliminate ordering effects, we randomized the order of the
two tasks.

We selected three tasks that we believe are representative
of the target archetype and span different levels of difficulty.
These tasks are closely related to the real deployed sensor
network applications, cited earlier. Task 1 is a basic environ-
mental monitoring application that transmits raw sensor data
to a base station. Task 2 requires node grouping and data ag-
gregation. Task 3 requires temporal processing. SwissQM is
inherently unable to support Task 3. The descriptions of the
tasks follow.

e Task 1: Sample light and temperature every 2 seconds
from all the nodes in the network. Transmit the sam-
ples with their node identification numbers to the base
station [37, 16, 8].

e Task 2: Sample light and temperature every 3 seconds
from all the nodes in the network. Collect average tem-
perature readings from nodes that have the same light
level. Light levels are computed by dividing raw light
readings by 100 [47].

e Task 3: Sample temperature every 2 seconds from all
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Figure 1: User interface of WASP2.

the nodes in the network. Transmit the node identifi-
cation numbers and the most recent temperature read-
ings from nodes where the current temperature exceeds
1.1 times the maximum temperature reading during the
preceding 10 seconds.

7. EXPERIMENTAL RESULTS

The user study evaluated five programming languages when
used by 28 novice programmers. This section presents and
analyzes the study results.

7.1 Results of User Study

Each of the five languages, except SwissQM, is evaluated
based on use by five novice programmers. SwissQM cannot
support Task 3 so it was only tested with three test subjects.
Our test subjects are from a variety of fields: science, en-
gineering, arts, etc. Ten of them have no programming ex-
perience. The others, mostly students in engineering fields,
have different levels of experience with Fortan, C, and Mat-
lab. We claim that the level of programming experience for
this population is representative of wireless sensor network
application expert. By randomly assigning languages to par-
ticipants, each language was tested by a combination of par-
ticipants with different background and programming expe-
rience.

We used success rate and time-to-success to quantify pro-
gramming productivity. Table 3 shows the success rate and
the average time-to-success for each language and task. The
success rate is shown in the form of n/m, meaning n partic-
ipants out of m succeeded within 40 minutes. The last col-
umn shows the average time-to-success of the n participants.
The success rates of TinyScript and TinyTemplate were ex-
tremely low; only one test subject completed the simplest
task with TinyTemplate. TinySQL and WASP have similar

productivity for Task 1 and Task 2, but differ for Task 3.
None of the test subjects completed Task 3 with TinySQL,
while two out of four succeeded at Task 3 with WASP. The
average success rate for TinySQL is 47.2%. The average
success rate of WASP is 66.7%. SwissQM has 100% success
rate and the shortest completion time for Task 1 and Task 2.
However, it does not support Task 3.

The failure of test subjects to complete any tasks with
TinyScript suggests that TinyScript may be less appropriate
for novice programmers than the other types of languages
evaluated. When reviewing mistakes programmers made dur-
ing the study, we observed two significant obstacles encoun-
tered by TinyTemplate users. First, users had trouble with the
event-driven programming model; most participants ended
up using the wrong event handlers. In addition, many users
fell back to programming in an imperative manner. They at-
tempted to specify periodic events with a for loop. Second,
novice programmers had trouble implementing node com-
munication. None of the TinyScript users wrote the piece of
code required for communication between two nodes (this
requires calling the bcast function to send the data in a buffer,
and calling the broadcast function in the broadcast handler to
retrieve the data). These issues hindered most programmers
from further understanding the programming template pro-
vided in TinyTemplate. The difficulty of using TinyScript for
novice programmers was also demonstrated in the BASIC
study [30] by Miller et al., which used simpler tasks. The in-
creased success rate with TinyTemplate relative to TinyScript
implies the benefit of a specialized language with a program-
ming template over a general-purpose language. It is intu-
itive for WASP and TinySQL to have similar results for Task
1 and Task 2, as the solutions for these tasks are similar in
both languages. WASP improved the success rate of Task
3 from 0 to 50% because it allows simpler semantics for ac-
cessing temporal data. The short development times of Swis-
sQM for Tasks 1 and 2 can be attributed to two features: (1)
SwissQM is well specialized to these tasks and (2) SwissQM
provides an easy-to-use graphical user interface for compos-
ing a program.

Although it is difficult to interpret the results of statisti-
cal tests on small data sets, we did apply the t-test and the
rank sum test to evaluate the significance of the differences
in success rates and completion times among the languages.
The results suggest that, with high confidence, we can con-
clude (1) WASP has a higher success rate than TinyScript
and TinyTemplate; (2) the mean completion time for Task 1
using SwissQM is longer than that using WASP2; and (3)
the mean completion time for Task 2 using WASP is longer
than that using SwissQM. The details of this analysis and its
caveats can be found in the extended technical report version
of this paper [3].

In addition to the objective metrics of success rate and
time-to-success, we also asked participants to provide their



feedback on the study-related factors. They were asked to
use a number, on the scale from 1 to 7, to indicate their
agreement with the following statements (1 means strongly
disagree and 7 means strongly agree):

1. The tutorial is easy to understand.

2. The descriptions of the tasks are clear.

3. The programming environment is friendly.

4. Tunderstand this programming language.

5. The programming language is easy to learn and use.

Statements 1, 2, and 3 help us to identify problems caused
by difficulty in understanding the manual or the task descrip-
tions. They also provide additional evidence that may help
to better understand the success rate and time-to-success re-
sults. For example, if users of one language had difficulty
understanding the given tasks but users of another language
understood the tasks well, we could not conclude that the
difference in productivity is due to the accessibility of these
languages. We tried our best to avoid bias caused by factors
other than the languages, although we could not totally elim-
inate biases resulting from differences in the released tool
chains of existing languages.

Table 4 shows the average ratings for each language. The
five rightmost columns correspond to the statements listed
above. According to the results, all participants understood
the tutorials and tasks. TinyScript and TinyTemplate have
less friendly programming environments, but this is not the
major reason for their low success rates. Screen recordings
indicated that the programming interface did not introduce
any trouble for the participants editing the code or running
the simulation. Statements (4) and (5) focus on user experi-
ence with the languages. In contrary to our expectations, the
TinyScript users think they understand the language better
than TinyTemplate users. This may seem counter-intuitive
because the TinyTemplate language is a simplified version
of TinyScript. The simplest explanation we have found for
this irregularity is that TinyScript users are over confident in
their understanding of the language. There is some evidence
for this conclusion; several TinyScript users made the error
of using the uart function to send data to the base station.
On the contrary, the TinyTemplate users were able to see
that the correct implementation for data collection is more
complicated, thanks to the template. The ratings for the last
statement order languages by perceived difficulty. This or-
dering is consistent with actual productivity: in general, the
harder a language is perceived to be, the lower its success
rate.

7.2 Enhanced Version of WASP

From the user study, we observed that, although appro-
priate programming idioms for Tasks 1 and 2 are similar

Table 3: Results of user study
Success rate Develop time (min)
TL T2 T3 T1 T2 T3
SwissQM 3/3  3/3 NA. 5.7 11.3  N.A.
WASP 272 2/4 2/4 16 31 29.5
TinySQL 3/4 273 0/3 177 275 N.A.
TinyTemplate | 1/4 0/3  0/3 34 N.A. N.A.
TinyScript 0/3 03 0/4 | NA. NA. NA.
WASP2* 3/3  3/4 273 3 9.7 235

*WASP?2 is presented in Section 7.2.

Language

Table 4: Feedbacks from test subjects

Language Tutorial Task Env. Understand  Lang.
lang. easy
SwissQM 5.7 5.7 5 5.7 6
TinyScript 44 5.4 4.2 3.8 3.2
TinySQL 4.6 5.8 5.6 4 4.8
TinyTemplate 52 5.6 4.6 2.8 3.2
WASP 44 5.4 5.8 42 4.6
WASP2* 44 6.2 5.8 52 4.8

*WASP?2 is presented in Section 7.2.

for SwissQM and WASP, the average completion time for
WASP is almost 3x that of SwissQM. By studying screen
recordings, we found that test subjects spent a significant
amount of time locating and correcting syntax errors in WASP.
This was not the case for SwissQM because its interface pro-
hibits many syntax errors; part of the programming is done
via selecting from lists and checking radio buttons. The
WASP interface provides a text window into which arbi-
trary text may be entered to compose a program. Program
errors are not detected until the syntax check or simulation
is started by the users by clicking the associated button. To
investigate the impact of user interface on sensor network
programming by novice programmers, we designed WASP2.
WASP2 is linguistically similar to WASP, but the user inter-
face has a number of enhancements.

Instead of letting users input arbitrary code, WASP2 pro-
vides dialogs for composing different types of instructions.
The dialogs are equipped with lists containing already-defined
variables, validators, auto-completers, syntax checkers, and
pop-up warning messages to accelerate instruction editing,
prevent user error, and detect syntax errors as early as pos-
sible. The widgets in the interface are tagged with pop-up
windows displaying appropriate descriptions and help so that
programmers do not need to frequently refer to the tutorials.
The WASP2 interface is shown in Figure 1. We repeated the
original study protocol for WASP2 with another five novice
programmers. The results are shown in Table 3 and Ta-
ble 4. Compared with WASP, WASP2 improves success rate
by 20.8%, and reduces average development time by 58.2%.
WASP2 results in better productivity than SwissQM: 20.8%
improvement in success rate and 25.3% reduction in average
development time for Tasks 1 and 2 (recall that SwissQM
does not permit the temporal queries required for some tasks
in Archetype 1).



7.3 Lessons Learned

Conducting user studies allowed us to test our hypothesis,
evaluate and improve our design, and develop new ideas that
would not occurred to us if we were isolated from users. Un-
fortunately, user studies quickly consume budgets and time,
so it is desirable to carefully design them. This section sum-
marizes the lessons we learned and our observations.

e Conduct a small-scale test study first to minimize unex-
pected problems in the later, large-scale study. A test
study needs not be as strict as the formal study. We
tested several tasks with EECS students and our col-
laborators before the study, though the final study re-
quires randomly recruited strangers who are not pro-
grammers. Our test study revealed some bugs in the
programming tools and helped us determine a reason-
able time limit for the large-scale study.

e Observe the user and record the study without inter-
rupting or intervening. Having a record of the user’s
behavior allows later analysis of anomalies. During our
study, the screen was recorded, the observer took notes
on the questions users asked, and users could sketch
on draft papers and or mark anything in the language
manual. These records allowed us to determine where
users become stuck and what mistakes they make.

e Try to consider all factors that may affect your study
results. We were interested in the differences among
programming languages, so we eliminated the effects
introduced by the editor and working environment by
using the same editor and similar simulators for every
test.

e End user behavior can be very different from designers
expectations.

e Programming examples are helpful to novice program-
mers. Many test subjects indicated that they found the
templates helpful and most of them suggested includ-
ing more examples in the language tutorials.

e Event-driven models, explicit programming data com-
munication, and table joins are hard for novice pro-
grammers to grasp.

8. CONCLUSIONS

Application-level programming languages that are acces-
sible to novice programmers have the potential to open sen-
sor network design to application experts. We have pro-
posed the concept of sensor network archetypes and built
an archetype taxonomy based on 23 applications. This con-
cept supports the design of compact archetype-specific lan-
guages. We developed a high-level language for the most fre-
quently encountered archetype. Our user study of 28 novice

programmers using five programming languages indicates
that archetype-specific languages have the potential to sub-
stantially improve the success rates and reduce programming
times for novice programmers compared with existing general-
purpose and/or node-level sensor network programming lan-
guages. Our language, WASP, increased the success rate by
1.6 x and reduced average development time by 44.4% com-
pared to other languages. This work is the first step towards
our ultimate goal of developing a set of archetype-specific
programming language for wireless sensor network applica-
tions. We are also working on an optimized implementation
of WASP2.
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