
Exploiting Packet Header Redundancy for
Zero Cost Dissemination of

Dynamic Resource Information

Peter A. Dinda
pdinda@cs.northwestern.edu

Department of Computer Science
Northwestern University

Abstract. Packet headers exhibit considerable coding redundancy from both a
theoretical and a practical standpoint. We propose to exploit this redundancy to
create an additional communication channel between hosts as a by-product of
normal packet transfers. This channel would be zero cost: the number and size
of packets transfered would not change. Dissemination of dynamic resource in-
formation is a natural user of such a channel. In the paper, we begin by illus-
trating the significant theoretical coding redundancy of typical TCP/IP traffic us-
ing widely available packet trace data. Next, we discuss a number of ways to
practically exploit this redundancy using only end-system changes and evalu-
ate their prospects. Then we describe proof-of-concept experiments that we have
conducted using a user-level network stack. Finally, we describe how common
forms of resource information could be communicated using this mechanism.

1 Introduction

An important challenge in resource monitoring and prediction systems such as Re-
mos [9], NWS [14], RPS [7], and GMA [13], is the dissemination of the data they
collect. Sending the data from producers to consumers can potentially consume a sig-
nificant portion of the available network bandwidth, especially when there are many
resources being monitored. The general approach to this problem is to encode the data
in the most efficient way possible given the constraints of the consumers [12, 15]. How-
ever, even if such methods are used and the bandwidth consumed is limited, it is still
the case that additional packets are introduced into the network, packets that may in-
teract badly with the non-monitoring traffic. Here, we propose an orthogonal technique
that could be used to avoid introducing any new network traffic at all: exploiting packet
header redundancy to transfer resource information.

The basic idea, summarized in Figure 1, is to piggyback additional information on
the transport, network, and data link headers and trailers of regular packets by encod-
ing the information into redundant fields. For example, in over 90% of IP packets, it

Effort sponsored by the National Science Foundation under Grants ANI-0093221, ACI-0112891,
and EIA-0130869. The NLANR PMA traces are provided to the community by the National
Laboratory for Applied Network Research under NSF Cooperative Agreement ANI-9807479.
Any opinions, findings and conclusions or recommendations expressed in this material are those
of the author and do not necessarily reflect the views of the National Science Foundation (NSF).

DataTCPIPEthernet Padding

Sensor Data

Fig. 1. Summary of approach.

is possible to trivially encode an additional 17 bits of information per packet. This is a
sufficient number of bits to encode a CPU load sample, or a network bandwidth mea-
surement. If the packet is also part of a TCP connection, as is extremely likely, it is
also possible to recover the timestamp of the sample. Every keystroke in an ssh session
could thus include a free exchange of timestamped load information. Every packet sent
on a multicast audio stream could communicate resource information to all subscribers
with no additional overhead.

Our purpose here is to demonstrate that this opportunity exists and can be exploited—
to highlight this interesting communication channel. We focus on IP header redundancy,
exploring both the theoretical limits of that redundancy and how it manifests in practical
ways. Our conclusions are based on an analysis of a set of NLANR packet traces [10]
collected from several PoPs. We then discuss a number of practical mechanisms to
transfer data by exploiting TCP and IP header redundancy, and Ethernet padding. Fi-
nally, we evaluate these methods by implementing them in a user-level network stack
and verifying that our information can indeed pass unmolested through various network
configurations.

Transmitting information that happens to fit into the redundant bits of a single packet
is the simplest way of using this communication channel. The channel has properties
that are similar to a multicast session, and we believe that the forward error correction
techniques that are sensible in multicast, such as Tornado codes [4], could be applied
here. Our ultimate goal is to be able to diffuse resource information throughout the
network using this and other techniques.

2 Header redundancy

We begin by discussing the amount of redundancy that theoretically exists within packet
headers, concentrating on IP headers. Figure 2 is derived from an analysis of 28 packet
traces, captured at 4 different PoPs within the NLANR PMA network in at different
times during Wednesday, September 26, 2001. Each trace is roughly 90 seconds long
and contains anywhere from 68,000 to almost 3 million packets. A PoP (Point of Pres-
ence) trace is interesting because it aggregates traffic from many different sources on
two networks. It is not, however, representative of traffic within one network or LAN.
We have repeated our analysis using a larger set of NLANR traces collected during
Wednesday, June 5, 2002. We present results from the earlier traces and point out when
the results for the later traces are different.

Trace Information Mutual Information (1 step)
Description Name bits/symbol % redundant bits/symbol %redundant

BUF-1001462650 4.50 43.78 1.24 84.56
University of BUF-1001473743 4.48 44.05 1.17 85.32
Buffalo OC3 BUF-1001486582 4.38 45.27 1.23 84.68
to NYSERnet BUF-1001497670 4.30 46.24 1.20 84.96
(Internet2) BUF-1001506918 4.33 45.84 1.24 84.55

BUF-1001519802 4.41 44.87 1.20 85.06
BUF-1001529100 4.37 45.36 1.20 85.05
BWY-1001473743 4.64 42.00 1.25 84.38

Columbia OC3 BWY-1001486581 4.56 43.04 1.23 84.57
to NYSERnet BWY-1001497671 4.53 43.35 1.28 84.06
(Internet2) BWY-1001506918 4.46 44.22 1.18 85.29

BWY-1001519803 4.53 43.43 1.20 84.94
BWY-1001529100 4.64 42.06 1.19 85.10
BWY-1001538343 4.65 41.83 1.28 83.97
COS-1001473743 4.82 39.77 1.20 85.03

Colorado State COS-1001486582 4.71 41.23 1.26 84.20
OC3 to Front COS-1001497671 4.63 42.08 1.20 85.04
Range GigaPoP COS-1001506917 4.62 42.17 1.20 85.02

COS-1001519803 4.81 39.90 1.17 85.42
COS-1001529101 4.86 39.24 1.19 85.17
COS-1001538342 4.85 39.31 1.19 85.18
MEM-1001473742 4.29 46.34 1.09 86.32

University of MEM-1001486581 4.23 47.18 1.20 85.01
Memphis OC3 to MEM-1001497670 4.19 47.61 1.24 84.46
Abilene MEM-1001506918 4.19 47.62 1.14 85.20

MEM-1001519802 4.39 45.17 1.23 84.58
MEM-1001529100 4.20 47.52 1.24 84.56
MEM-1001538342 4.34 45.81 1.25 84.40

Fig. 2. Redundancy in IP Traffic: Information content of IP header traces. Each trace is about 90
seconds long, and was collected on September 26, 2001.

Shannon entropy of IP header sequences

If we consider a packet header trace as being a stream of symbols, we can compute the
stream’s Shannon Entropy [11], the number of bits needed, on average, to represent a
symbol given no knowledge of its relation to other symbols in the stream. We applied
this measure of information content to the traces by creating a stream of consecutive
IP headers from them and then interpreting that stream as a stream of bytes. With 256
symbols, we would need 8 bits per symbol if there was no redundancy. The third column
of Figure 2 shows the entropy of each of our traces, and the fourth column shows the
redundancy that this implies. On average, we need only about 4.8 bits per byte, and
thus a 20 byte IP header is about 40% redundant. This suggests that on average we
could conceivably encode 8 extra bytes of resource information into each IP header.

Field Bits
TCP Headers
Use reserved bits 6
Use TCP Acknowledgment field when ACK=0 32
Use TCP URG pointer when URG=0 16
Use TCP NOP padding varies
IP Headers
Use reserved TOS bits 2
Use reserved IP flag 1
Use ID field when DF=1 16
Use fragment offset when DF=1 13
Use IP NOP padding varies
Data link layer
Use Ethernet minimum packet size redundancy varies
Total identified bits:

�����

Fig. 3. Practical ways to exploit TCP/IP/Ethernet redundancy.

Mutual information of IP header sequences

The figure also shows that IP headers, when treated as a byte stream, show tremendous
mutual information. Mutual information [3, Chapter 3] is an extension of Shannon en-
tropy to streams where symbols do not occur independently. In the case of our traces,
exploiting dependence from one packet to the next would let us encode the next byte in
about 1.2 bits per byte, for a redundancy of over 85%! We could conceivably appropro-
priate 17 bytes out of every IP header to transmit resource information. While exciting,
it’s important to note that because of the aggregation that is happening here this is not
really an estimate of redundancy we would expect from a packet header stream from an
individual host. However, it is important to note that exploiting the redundancy from the
TCP/IP headers in one packet to the TCP/IP headers in the next packet is extensively
and successfully used when running TCP/IP over low-speed serial links [8].

The conclusion here is simple: there is a tremendous amount of redundancy in IP
headers that could potentially be exploited to transmit resource information. We have
not tested this yet, but we believe that this redundancy also extends to headers at other
layers of the network stack.

3 Exploiting header redundancy while maintaining compatibility

Exploiting to the hilt the redundancy we have just illustrated would require a new en-
coding of the headers, which would immediately make a stack incompatible with other
TCP/IP stacks. Evidence of practical redundancy is needed. We can not rearrange or
recode the fields of a header. Instead, we need cases where it is acceptable to overload
the existing header fields—to use their bits when the field is otherwise unused.

Figure 3 lists a number of approaches we have identified through which this might
be possible. While we have identified over 86 bits per packet that could be exploited,
we should point out that we have only studied the approaches at the IP level in any kind

flagshlen reserved

destination port

window size
checksum

sequence number

options

source port

acknowledgement number

urgent pointer

Fig. 4. Potential redundant fields in TCP headers.

of depth. There potentially in excess of 32 bits available at that level, but, as we show
in the next section, we have only been able to successfully make use of 17 of them.

Transport layer (TCP)

The potential sources of redundancy in TCP headers are illustrated in Figure 4. A TCP
header is 160 bits long, and may be followed by up to 320 bits of options [2]. The length
of the header and option must be an integral multiple of 32 bits, additional NOP options
being added until this is the case. One possible mechanism for for introducing additional
information into the packet is to overload NOP. In effect, a NOP consists merely of an
8 bit type identifier and there are far fewer than 256 different TCP option types. Notice
that overloading NOP would only help us send bits on those packets which use NOP
options.

A TCP header contains a 16 bit pointer that points to urgent data within the packet.
However, this pointer is ignored if the URG flag is not set. If an outgoing packet has
URG=0, we could embed our own information into the pointer field.

Whenever possible, a sending TCP piggybacks an acknowledgment for data flow in
the opposite direction when it emits a data segment. Every TCP header contains both
a sequence number for the outgoing segment and an acknowledge number for some
segment that arrived in the past. The 32 bit acknowledgment number is only valid when
the ACK flag is set. We could embed 32 bits of our own data on each outgoing segment
where ACK=0.

A final TCP mechanism we identified is to use the flags that are currently reserved.
This would provide an additional 6 bits.

Network layer (IP)

The potential sources of redundancy in TCP headers are illustrated in Figure 4. An IP
header is 160 bits long, with an additional 320 bits of options possible [1]. As with TCP,
the total length must be an integral multiple of 32 bits and NOP options are used to pad
to such a length. Here too we could consider overloading the meaning of NOP to add
information to packets which have NOP IP options.

An IP packet can be fragmented into multiple IP packets in the network, with the
receiving host having the responsibility of reassembling the original packet from the

vers hlen TOS length
identifier fragment offset

TTL protocol checksum
source address

destination address

options

flags

Fig. 5. Potential redundant fields in IP headers.

DataTCPIPEthernet Padding

Fig. 6. Potential redundancy in Ethernet padding.

fragments. To support this, IP headers have a 13 bit field that contains the offset of the
fragment with respect to the beginning of the packet, a 16 bit field that identifies the
original packet, and a flag that indicates that a fragment is the last fragment. However,
a sender can also make a packet unfragmentable by setting a don’t fragment flag in the
header. For outgoing packets which have DF=1, we could borrow the unused fragment
offset and packet ID fields to transfer �����������
	�� bits.

A last approach to use with IP is to borrow its reserved flags for information transfer.
There are 3 bits to be gained here, one from the generic reserved flag and two from a
portion of the type of service (TOS) field that is not currently used.

Data link layer (Ethernet)

At the data link layer, the most common hardware by far is Ethernet. Almost all LANs
use Ethernet of some form. To traverse an Ethernet, an IP packet is embedded into an
Ethernet packet. Because of Ethernet’s media access control algorithm, the data portion
of an Ethernet packet must be at least 368 bits long, but an IP packet can be as short
as 160 bits. The difference is made up by padding the IP packet with zeros that will be
removed by the receiving Ethernet device driver before the packet is passed up to IP. We
could easily pad short packets with our information instead, as illustrated in Figure 6.
Notice that the bulk of IP packets sent in an ssh or telnet session typically involve single
keystrokes. The total length of such IP packets can potentially be as short as 328 bits
(160 bit IP header, 160 bit TCP header, 8 bit keystroke), leaving room to insert extra
information.

Prospects for these approaches

We examined our packet traces looking at the prospects our IP layer mechanisms and
for some of our TCP layer mechanisms. Figure 7 shows the some of the results. Not
surprisingly, the vast majority of the packets are TCP packets. We note that none of the

% of IP Headers that have % of TCP
Trace Packets TOS=0 DF=1 fragoff=0 options res. flags TCP options res. flags

BUF-1001462650 907036 96.26 88.50 100.00 0.00 0.00 90.35 2.89 0.00
BUF-1001473743 1026657 94.13 86.01 100.00 0.00 0.00 85.24 2.56 0.00
BUF-1001486582 809735 95.01 95.07 100.00 0.00 0.00 97.58 2.26 0.00
BUF-1001497670 375121 93.74 98.37 100.00 0.00 0.00 97.99 3.71 0.00
BUF-1001506918 348499 97.38 97.71 100.00 0.00 0.00 97.38 2.22 0.00
BUF-1001519802 660944 89.56 94.67 100.00 0.00 0.00 94.81 2.23 0.00
BUF-1001529100 1308250 85.47 94.93 100.00 0.00 0.00 94.28 1.75 0.00
BWY-1001462650 1424319 94.95 91.23 100.00 0.00 0.00 91.47 7.17 0.00
BWY-1001473743 1414983 95.89 87.23 98.71 0.00 0.00 86.91 11.87 0.00
BWY-1001486581 1115827 87.56 91.48 100.00 0.00 0.00 90.66 9.49 0.00
BWY-1001497671 763685 92.16 90.95 99.97 0.00 0.00 91.33 10.46 0.00
BWY-1001506918 699310 90.91 90.26 100.00 0.00 0.00 90.94 7.26 0.00
BWY-1001519803 1459321 97.28 92.36 100.00 0.00 0.00 92.46 19.03 0.00
BWY-1001529100 1324686 93.08 90.04 99.62 0.00 0.00 89.64 6.53 0.00
BWY-1001538343 1744003 90.68 92.18 100.00 0.00 0.00 91.69 17.81 0.00
COS-1001473743 867421 95.70 89.97 99.98 0.00 0.00 94.77 8.84 0.00
COS-1001486582 89833 95.55 92.75 99.91 0.00 0.00 96.83 5.51 0.00
COS-1001497671 1585481 97.03 92.50 99.89 0.00 0.00 97.93 5.37 0.00
COS-1001506917 1333572 92.84 93.64 99.99 0.00 0.00 98.74 10.33 0.00
COS-1001519803 2333952 94.68 86.96 99.49 0.00 0.00 94.57 8.07 0.00
COS-1001529101 2870711 97.01 85.12 99.57 0.00 0.00 95.30 8.24 0.00
COS-1001538342 2958614 95.60 88.99 99.38 0.00 0.00 95.05 9.48 0.00
MEM-1001473742 105478 97.88 92.92 100.00 0.00 0.00 94.15 4.44 0.00
MEM-1001486581 115441 98.86 97.07 100.00 0.00 0.00 97.10 2.87 0.00
MEM-1001497670 76412 98.30 95.74 100.00 0.00 0.00 96.59 2.02 0.00
MEM-1001506918 68729 98.32 95.71 100.00 0.00 0.00 96.38 3.48 0.00
MEM-1001519802 95266 95.65 96.04 100.00 0.00 0.00 96.75 4.12 0.00
MEM-1001529100 114926 98.44 97.40 100.00 0.00 0.00 97.95 3.10 0.00
MEM-1001538342 92195 95.01 95.23 100.00 0.00 0.00 96.23 7.03 0.00

Fig. 7. Redundancy in IP Traffic: Available header fields and properties. Each trace is about 90
seconds long and was collected on September 26, 2001.

packets currently use the reserved TCP header bits. However, TCP options are relatively
rare, which suggests that NOP padding will not be very effective.

It is rare to find ACK=0. This is not surprising as TCP is a bidirectional protocol and
acknowledgments for the symmetric channel can always be included “for free” when a
packet is sent. However, in a LAN environment, ACKs are rarely delayed or lost. One
could imagine a modification of the TCP stack for LANs in which acknowledgments
are normally sent just once, and when the field is used for extra data in other situations.
This would probably require too many code changes, however.

In the earlier set of traces, we did not study the prevalence of having the urgent flag
set to zero. In the later traces we found that it is very rare (������� of packets) for URG
to be set. Hence the 16 bit urgent pointer field will almost always be available for use
by additional data.

Most of our analysis of the traces has focused on the IP layer. Here we see some
quite promising results. First, notice that in almost all cases the reserved TOS flags and
the reserved IP flag are zero, and thus could be overloaded. Even better, about 90%
of packets are not fragmentable (DF=1), which indicates that we can use the 13 bit
fragmentation offset field and the 16 bit packet ID field. We notice that there are almost
no IP options, which suggests that IP NOP padding will be ineffective.

As the traces do not show data link layer information, we can currently say nothing
about the prospects for padding at the Ethernet level.

To summarize, we have identified in excess of 86 bits in various headers that could
be used to communicate information in various cases. We studied our traces and con-
sidered the prospects for the bits in the IP header and the TCP header and found 54 bits
that could be overloaded most of the time in practice, 22 at the TCP level and 32 at the
IP level.

4 Proof of concept

Given the promising results of the previous section, we decided to test several of our
IP layer mechanisms within a real network. To do so, we modified the IP module of
Minet to inject information into outgoing packets and extract information from incom-
ing packets. Minet [6] is a user-level TCP/IP stack that we have developed for educa-
tional purposes. It is not fast, but it is a compatible TCP/IP implementation that is very
easy to modify. The information that we communicated was a random bit stream. About
220 new lines of C++ code were added to Minet, of which about 20 were involved with
header editing, the remainder being debugging output. We evaluated using the follow-
ing IP header fields: TOS, reserved, packet ID for don’t fragment packets, and fragment
offset for don’t fragment packets. The total number of bits was 32.

We ran three experiments using Minet. In the first experiment, we communicated
from Minet to a Linux 2.2 stack, checking what effect each of our mechanisms had
on ordinary IP communication. The communication path traversed several managed
and unmanaged layer 2 Ethernet switches. In the second experiment, we communicated
from a Minet stack to another Minet stack with a layer 3 IP router (Cisco) in the com-
munication path in addition to layer 2 Ethernet switches. Here we wanted to check to
see how the router reacted to our “interesting” IP packets. We were out to verify that
communication succeeded between the two stacks and that our embedded data was not
overwritten by the router. In the third experiment, we communicated from a Minet stack
to a Linux stack via the router. Here wanted to verify that IP communication was still
possible.

Figure 8 shows the results of our experiments. Essentially, we found that using the
fragment offset field was impossible, even for packets marked as not fragmentable. Both
the Linux stack and the Cisco router rejected such packets. We also found that while
using the reserved TOS bits did not affect IP communication, the router zeroed these
bits and hence they could not be used to communicate additional information.

We were able to successfully use the reserved IP flag and the packet ID field to com-
municate additional information without affecting IP communication. We are relatively
confident that these 17 bits can be used in other contexts as well.

untested

FAILS

OK

OK

FAILS

Minet to
Router

to Minet

untested

FAILS

OK

OK

OK

Minet to
Router

to Linux

17

0

0

16

1

0

Demon-
strated

bits

untested

FAILS

OK

OK

OK

Minet to
Linux

variesNOP option padding

>=32Total

13Fragment offset when DF=1

16Identifier when DF=1

1Reserved IP flag

2Reserved TOS bits

BitsMechanism

untested

FAILS

OK

OK

FAILS

Minet to
Router

to Minet

untested

FAILS

OK

OK

OK

Minet to
Router

to Linux

17

0

0

16

1

0

Demon-
strated

bits

untested

FAILS

OK

OK

OK

Minet to
Linux

variesNOP option padding

>=32Total

13Fragment offset when DF=1

16Identifier when DF=1

1Reserved IP flag

2Reserved TOS bits

BitsMechanism

Fig. 8. Proof of concept.

App

Transport

Network

Data Link

Physical

App

Transport

Network

Data Link

Physical

Sensor

Header
Editing

Consumer

Data
Extraction

Fig. 9. Anticipated implementation.

In summary, then, we have shown it is possible to communicate an additional 17
bits of information on almost all IP packets through a typical networked environment,
about ��� 	 of the number of bits we initially identified.

5 Disseminating dynamic resource information

The mechanisms we have described and studied provide an odd kind of communica-
tion channel. Like the channel formed by the IP protocol, packet loss, corruption, and
reordering can occur. Unlike IP, however, the sender is also not in control over when or
necessarily to whom data will be sent. What would this look like from the application
level? How can we use this channel to communicate resource information?

The implementation that we anticipate is summarized in Figure 9. We envision that
at the application level we would expose a send and receive queue, perhaps as files in the
/proc filesystem on Linux or as a device driver represented by a /dev file. An application
would enqueue messages consisting of bits and preferred IP addresses to which those
bits should be sent, including wildcard addresses. In the normal course of operation,
when a packet is about to be injected into the network, the stack would find the most
relevant queued message and embed as much of it into the packet as possible into the

App

Transport

Network

Data Link

Physical

Sensor

Header
Editing

Consumer

Data
Extraction

Random
Drop

Fig. 10. Information diffusion concept.

packet’s redundant fields. Any remaining data in the message would have to wait to
hitch a ride on the next packet going to that destination. When a packet is extracted
from the network, the bits would be stripped out of its redundant fields and queued
with a source address and timestamp to be read by a user-level process. The timestamp
would be determined without using packet bits simply through the local time and the
TCP round-trip-time estimator and would only be available for TCP packets.

The 17 bits per packet that we have identified thus far would be sufficient to embed
host load information, as typical entropy for a single host load measurement is on the
order of 13-15 bits [5]. Longer messages would have to be encoded using forward
error correction. Any such encoding or other transport-like functionality would be the
responsibility of the user-level process.

One can also consider an interesting extreme use of our mechanism, illustrated in
Figure 10. Instead of having the sender designate the destination, one could simply
ignore the destination and choose the next message in the queue when injecting a packet
into the network. Furthermore, some portion of incoming messages would be copied to
the outgoing queue to be propagated further. In this way, messages would slowly diffuse
outward from “close” hosts to more distant ones. The portion of messages that a host
resends would control how far information would spread and thus the scalability of the
scheme.

Security is a legitimate concern with these two models. Users choose the hosts
which exchange data packets, but it is the owners of the hosts which determine what
data is piggybacked onto those packets. The users must now trust the owners to a greater
degree than before.

6 Conclusion

We have demonstrated the potential for disseminating dynamic resource information at
low or no cost by exploiting the redundancy that exists in packet headers. The theoret-
ical limits of that redundancy are quite high, and there also exist practical mechanisms

to exploit it whose prospects appear bright. Our simple proof-of-concept experiment
demonstrated that it is possible to communicate an extra 17 bits of information on al-
most every IP packet traversing two common network paths, enough bits to usefully
represent load or bandwidth information. Finally, we have described two models for
how this new communication channel could be used.

The next steps in this work are to develop the kernel implementation discussed in the
previous section, to test more of the redundancy exploitation mechanisms we pointed
out, and to evaluate the mechanisms across a wider range of network environments. We
are currently implementing the idea within the Linux kernel.

References

1. Internet protocol: Darpa internet program protocol specification. Internet RFC 791, Septem-
ber 1981.

2. Transmission control protocol: Darpa internet program protocol specification. Internet RFC
793, September 1981.

3. ABARBANEL, H. Analysis of Observed Chaotic Data. Institute for Nonlinear Science.
Springer, 1996.

4. BYERS, J. W., LUBY, M., MITZENMACHER, M., AND REGE, A. A digital fountain ap-
proach to reliable distribution of bulk data. In Proceedings of ACM SIGCOMM 1998 (Octo-
ber 1998).

5. DINDA, P. A. The statistical properties of host load. Scientific Programming 7, 3,4 (1999).
A version of this paper is also available as CMU Technical Report CMU-CS-TR-98-175. A
much earlier version appears in LCR ’98 and as CMU-CS-TR-98-143.

6. DINDA, P. A. The minet tcp/ip stack. Tech. Rep. NWU-CS-02-8, Northwestern University
Department of Computer Science, January 2002.

7. DINDA, P. A., AND O’HALLARON, D. R. An extensible toolkit for resource prediction in
distributed systems. Tech. Rep. CMU-CS-99-138, School of Computer Science, Carnegie
Mellon University, July 1999.

8. JACOBSON, V. Compressing tcp/ip headers for low-speed serial links. Internet RFC 1144,
February 1990.

9. LOWEKAMP, B., MILLER, N., SUTHERLAND, D., GROSS, T., STEENKISTE, P., AND

SUBHLOK, J. A resource monitoring system for network-aware applications. In Proceed-
ings of the 7th IEEE International Symposium on High Performance Distributed Computing
(HPDC) (July 1998), IEEE, pp. 189–196.

10. NATIONAL LABORATORY FOR APPLIED NETWORKING RESEARCH. Nlanr network analy-
sis infrastructure. http://moat.nlanr.net. NLANR PMA and AMP datasets are provided by the
Natioanl Laboratory for Applied Networking Research under NSF Cooperative Agreement
ANI-9807579.

11. SHANNON, C. E. A mathematical theory of communication. Bell System Tech. J. 27 (1948),
379–423, 623–656.

12. SKICEWICZ, J., DINDA, P., AND SCHOPF, J. Multi-resolution resource behavior queries us-
ing wavelets. In Proceedings of the 10th IEEE Symposium on High-Performance Distributed
Computing (HPDC 2001) (August 2001), pp. 395–405.

13. TIERNEY, B., AYDT, R., GUNTER, D., SMITH, W., TAYLOR, V., WOLSKI, R., AND

SWANY, M. A grid monitoring architecture. Tech. Rep. GWD-PERF-16-2, Global Grid
Forum, January 2002.

14. WOLSKI, R. Forecasting network performance to support dynamic scheduling using the net-
work weather service. In Proceedings of the 6th High-Performance Distributed Computing
Conference (HPDC97) (August 1997), pp. 316–325. extended version available as UCSD
Technical Report TR-CS96-494.

15. ZINKY, J., BAKKEN, D., KRISHNASWAMY, V., AND AHAMAD, M. Pass — a service for
efficient large scale dissemination of time varying data using corba. In Proceedings of the
19th IEEE International Conference on Distributed Computing Systems (ICDCS 99) (1999).

