Programmer’s view of LDOS system
Peter A. Dinda

LDOS (Lightweight Distributed Object System) lets you bdistributed objects without dealing withe
details of communicationThe idea is that you write a description of yotlasss interface in he CORBA
IDL (Interface Definition Languageand alocal implementation of itslass The LDOS DL Compiler
generates the necessajlye code for your implementation tase the LDOS rusiime system The end
result is &' servet class which wraps your impmentation and makes it possible to be called from
anywhere on the network, and'eeferencéclass through which those calls can be madée reference
class is dsmart pointet in that it makes the object being called appear to be local, whetheoitnst.

Interface Description Implementation class
erflten in Extendeo'ly IDL implementation and
interface foo ... private declarations

LDOS IDL Compiler

AN

Reference class Server class Implementation class
“fooReferenceé “fooServet declarations

v v v :
C++ Compiler| | C++ Compiler| | C++ Compiler

LDOS Run-time

Link/Lib Link/Lib

l |

Client-side Reference class Server-side Class with
(with local implementation) implementation

Example: An Accumulator C lass

Suppose we want to implement a class that has a sum which can be added to and read. First, we define the
interface in IDL:

interface Accumulator {
void Reset 0
void Add(in unsigned long x);

unsign ed long Get() ;

If you are unfamiliar with CORBA IDL, note that this is similar to a C++ class definition, except that
“class is replaced with‘interface’, arguments have directioriif”), and no state is declared. At this point,
we have pure IDL.which can be compiled by any IDL compilerWWe compile the file with the LDOS IDL

compiler, which generates declarations and dé&éns for theclasseAccumulatorServeand
AccumulatorReferenganda macro fordeclaing the classAccumulatorimpl The only class we need
concern ourselves with now is Accumulatorimpl, which is the actual implementation of the ¢lass.we
shall declare our implementation:

DECL_CLASS Accumulator() {
DECL_IDL_GENERATED_Accumulator()
private:

unsigned sum;

The DECL macros generate the approprideglarations. There is no need to declare anything in the IDL
file, which why we only add the declaration for the internal state, the siext, we define the member
functions:

void Accumulatorimpl::Reset()

{
}

void Accumulator Impl ::Add(unsigned x)

sum=0;

sum+=x;

}

unsigned Accumulator Impl ::Get()

return sum

That concludes the programnmetask for making Accumulator a class that LDOS can usetice the
similarity to writing a header file (the IDL fileand an implementation fileTo use the claskcally, simply
instantiate a serveand a reference to jtand make calls via the reference:

AccumulatorServer acc_s ;
AccumulatorReference acc(&acc_s);

acc.Reset();

acc.Add(5);
unsigned x=acc.Get();

Notice that the AccumulatorReference acts as a pointer to the implementation. However, it is a very smart
pointer, as we shall see.

Making A Remotely Accessible Accumulator

To make tke accumulator ecessible from a remote machine, we must add a networkfaate to it. To do
this, we use an interface option, which is an LDOS extension to IDL:

interface Accumulator [TCP 1{

In this case, we have endowed the Accumulator with a TCP/IP interf&ewuilarly, we can create UDP,
HTTP (with HTML forms), and IPMulticast interfaces.After recanpiling, we can instantiate an
accumulator objedn this way.

AccumulatorServer acc_s(portnum);

whereportnum is tle port number at which the servaiill reside. The object is internallynultithreaded
and isimmediatelyavailable both locally and remotely

A reference to this object can be instantiated and used on any machine on the network:

AccumulatorReference acc (host name,port,objectid);

acc.Reset();
acc.Add(5);
unsigned x=acc.Get();

Noticethat this differs fom using a local server only in how the reference is instantiated. Instead of a local
pointer, a hostname, port, and object identifier are supplied. The hostaadneort identify a network

interface, and the objectid identifies an object served byititarface. By using the TCP interface option

in thelDL, we haverequested a private interface. For a private interface, the objectid is ignored and should
be zero.

Nannyed Objects

A network interfacecan be shared by many objects by using an Objaotly. We can remove the TCP
interface option from the accumulator IDle(use"interface Accumulator {instead of“interface
Accumulator{TCP]{") and instantiatéwo AccumulatorServerthat share a single network interface in
this way.

AccumulatorSer veracc_sl ,acc_s2 ; // Two accumulators, no server
ObjectNanny on(tcpportnum, udpportnum, httpportnum);

ObjectiD id1= on.AddObject(&acc_sl);
ObjectiD id2= on.AddObject(&acc_s?2);

The ObjectNannywgupplies thanetwork interface and routes requests to therappate object based on the

requess objectid.

Describing Object State in IDL

If the state of the objechnd what state each method ugedeclaredn the IDL file, LDOS can provide
many additional services than just RPC. State datians are an LDS exension to CORBA IDL. For
the acumulatorwe canrewrite the IDL thus:

interface Accumulator {
state {
unsigned long sum;
} all_state;
void Reset () writes {all_state} ;
void Add(in unsigned long x) modifies {all_state} ;
unsign ed long Get() reads(all_state} ;
h

and we can then remove the state declaration from the implementation:

DECL_CLASS Accumulator() {
DECL_IDL_GENERATED_Accumulator()

h

The state is the union of the contents of all the state declaratiBpgartitioningthe object state into
several state declarations, the programmer can specify at an arbitrarily fine granularity how he access the
state of his object.

Serializability, Mobility, and Persistence

An classwhose state is declared in IDL can regtthatit be made serializable:
interface Accumulator [Serializable] {
This meanghat instances of this class can sdliemselves tand restore themselvé®m LDOS streams:

AccumulatorServer x,y ;

x.Serialize(somestream); Il x saves itself
y.UnSerial ize(somestream); /l'y restored from x

LDOS streams include network streams, file streams, and memory streams (bufferiglizableobjects
can also be persistent (exist longer than the program that created them), and (aloleil® move from site
to site). These features are expressed via interface options:

interface Acc umulator [Serializable, Persistent, Mobile] {

Note that pesistence andnobility are not currently implemented. However, the serialization interface and
streams can be used for shpurposeurrently.

Replicable Objects

An object with no state can be replicated. Replicability is an interface option:

interface Adder [Replicable] {
unsigned long Add(unsigned long x, unsigned long y);

To treat multiple AdderServers as a singleplicated object, a group is created:
GrouplD gid=theGM - >NewGroup();

and AdderSerers join it:

AdderServeradd_s (tcp port) ;

ObjectAddress add_oa={ TolPAddress(gethostname()), tcpport, udpport,

httpport, objectid}
theGM- >AddAddress(gid,&add_oa);

To create a reference to a replicated object, we execute:

AdderReference ar(theGM,gid) ; I/l identify the group manager, and the group on that manager.
Now, when a call is made via the referentiee mapping of that call to a specific instantedetrmined by
a“member selectdr The programmer can install his own member seleeiitiner at compile time by

subclassing AdderReferenaed overriding AdderReference::MemberSelector() or at run timediyg the
InstallExternalMemberSelector call:

unsig ned mem_select(GroupMangerReference *gm, unsigned max_choice);

ar.InstallExternalMemberSelector(mem_select);

Distributed Objects

Distributed dojects are objects with state which may have more than one instance. In order to make this
possible, relevartomponents of object state are mousdthe LDOS rurtime to satisfycalls. To ceate

such an object, weely on several I extensions. Vétag its interfacespecwith the Distributed optin,
specify its state, and defirew the methods in the interfaaise the objets state. Here is aimple

exampleof two accumulators wrappeih a single object:

interface TwoAccumulator s [Distributed] {
state {
unsigned long accl ;
}accl ;
state {
unsigned long acc?2 ;
}acc2 ;
void Reset 1() writes {accl };
void Add 1(in unsigned long x) modifies {accl };
unsign edlong Get 1() reads(accl };
void Reset 2() writes {acc2 };
void Add 2(in unsigned long x) modifies {acc2 };

unsign edlong Get 2() reads(acc2 };
h

We write the implement&in of TwoAccumulators in precisely the same way as for the single accumulator
example aboveTo create an instance, we create a group, just like with a replicated object:

GrouplD gid=theGM - >NewGroup();
and TwoAccumulat@Seners join it;

TwoAccumulato rsServeracc 2_s(tcp port) ;
ObjectAddress acc?2 _oa={ TolPAddress(gethostname()), tcpport, udpport,
httpport, objectid}
theGM- >AddAddress(gid,&acc2 _oa);
We must also initially assign the state to one instance:
theGM->SetAllStateOwnership(gichembenumbe;
To create a reference to a replicated object, we execute:
TwoAccumulators Reference acc (theGM,gid) ;
just like for a replicated object, and, similarly, we can install our own member selector as well. The LDOS

run-time, and the code the IDL corilpr generated conspire to assure that all state necessary to complete a
call is accessible, in effect performingé a small time distributed shared memory system.

