
GridG: Generating Realistic Computational Grids

Dong Lu Peter A. Dinda
{donglu,pdinda}@cs.northwestern.edu

Department of Computer Science, Northwestern University

Abstract

A realistic workload is essential in evaluating middleware for
computational grids. One important component of that work-
load is the raw grid itself: an annotated graph representing the
network topology and the hardware and software available on
each node and link within it. GridG is an extensible synthetic
generator of such graphs that is implemented as a series of trans-
formations on a common graph format. The paper provides a
definition of and requirements for grid generation. We then de-
scribe the GridG process in two steps: topology generation and
annotation. For topology generation, we have both a model and
a mechanism. We leverage Tiers, an existing tool commonly
used in the networking community, but we extend it to produce
graphs that conform to recently discovered power laws of In-
ternet topology. We also contribute to the theory of network
topology by pointing out a contradiction between two laws, and
proposing a new version of one of them. For annotation, we
have developed a mechanism, the requirements for a model,
and identified the open problem of characterizing the distribu-
tion and correlation of hardware and software resources on the
network.

1 Introduction

The goal of Grid computing [11, 12] is to give users
easy access to arbitrary amounts of computational power
within large, wide area distributed computing environ-
ments. Middleware such as Globus [10] and Legion [13]
simplify using remote resources within a computational
grid. To help users find resources, these systems typically
provide some form of a grid information service (GIS)
such as Globus MDS [4]. Resource monitoring tools such
as NWS [23], Remos [5], or RPS [7] can be used to gauge
the dynamic availability of found resources.

Designing and evaluating such grid middleware demands
realistic workloads. For example, we are in the process of
designing and building a grid information service based

Effort sponsored by the National Science Foundation under Grants
ANI-0093221, ACI-0112891, and EIA-0130869. Any opinions, find-
ings and conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of the Na-
tional Science Foundation (NSF).

on the relational data model [6]. In this system, users
will be able to pose complex compositional queries that
resemble decision support queries. A typical query might
look for a group of machines that use the same OS, to-
gether have a certain amount of memory, and that the sub-
set of the network connecting them have some bisection
bandwidth. To make these queries fast, we implement
them using stochastic search, allowing us to trade off be-
tween the number of nondeterministically chosen results
returned by the query and the amount of work done in
support of it. This tradeoff depends strongly on the struc-
ture of the grid: the network topology and the character-
istics of the hosts, routers, and links within the topology.

While Smith, et al [19] studied the update and query pro-
cesses on such grid information, there is no extant work
and limited available data on the structure of computa-
tional grids. We examined the contents of several running
GIS systems. The largest dataset we have found, gener-
ously provided by Smith, contains fewer than one thou-
sand nodes. Given the limited data sets, a synthetic grid
generator is a necessity. Furthermore, even as more data
becomes available, it will continue to be useful to have a
parametric source of grids. No such generator currently
exists.

In response to the need for large datasets, we have built
GridG, a grid generator. Our definition of a grid is an an-
notated directed graph in which the nodes represent hosts,
routers, switches, and hubs, and the edges represent net-
work links. The graph is a thus a network topology that
extends to the level of hosts. In addition, each node or
edge is annotated with information relevant to its use as
a part of a computational grid. A grid generator, such as
GridG, produces a grid of a given number of hosts. It
must meet the following requirements:

• It must produce a realistic network topology. Much
is known about the properties of real network
topologies: they are connected, and they have hi-
erarchical structures. Furthermore, wide area net-
work topologies, including the Internet, have been
recently been found to follow certain topological
power laws [9]. A good generator will provide both
structure and follow the power laws [20].

• It must generate realistic annotations for hosts and

1

network components. For a host, it should at least
provide the architecture type, processor type and
speed, number of processors, memory size, disk
size, hardware vendor, operating system, and avail-
able software. For a link, it should provide the
hardware bandwidth and latency. For routers and
switches, it should specify the aggregate back-
plane or switching fabric throughput and latency.
It should capture correlations between different at-
tributes (for example, we might expect that mem-
ory size increases with processor speed), and be-
tween nearby components (for example, a high
speed router is unlikely to be connected only to a
few slow links).

The networking community has produced a wide range
of topology generators. These generators either meet
the structure requirement or the power-law requirement.
GridG starts with the output of a structure-oriented topol-
ogy generator (we currently use Tiers [8, 3]) and adds
redundancy to it in such a way as to make it conform to
the power laws. As far as we are aware, this makes it the
first topology generator that provides structured topolo-
gies that obey the power laws.

GridG in fact directly enforces only one power law, the
so-called outdegree exponent power law. Its outputs,
however, show obedience to the other laws as well. In
studying the unreasonable effectiveness of the outdegree
law, we discovered a new fact: it is either the case that
the so-called rank exponent power law is not actually a
power law, or that it is more significant than the others.
We believe that the former is actually the case, but that
over the typical range that is considered, a power law is a
useful approximation.

GridG provides mechanisms for annotating each node
and edge. These mechanisms are currently based on user-
supplied empirical distributions and correlations among
different attributes on the same graph element. We are
presently developing a mechanism to support correla-
tion among attributes on nearby graph elements. We use
the Tiers structural model to give links reasonable band-
widths given their location on the hierarchy.

Very little is known about the characteristics of a grid or
network that are represented by the annotations. We point
to the information that we think is necessary to develop
models of these little studied network and host charac-
teristics. We also describe the various methods, all un-
successful at this point, that we have considered for ac-
quiring the data to develop such models. The successful
collection of this kind of data, and the models that could
be developed from it are are a very exciting research op-
portunity.

In the following, we begin by presenting the overall archi-
tecture of GridG in Section 2. While GridG can apply any

number of transformations to produce a grid, there are
two core steps: topology generation and annotation. In
Section 3, we describe how topology generation is done
and demonstrate that GridG conforms to the power laws
of Internet topology. Section 4 discusses our insights into
those laws, including the apparent contradiction between
two of them. Section 5 describes the GridG mechanisms
for annotation, while Section 6 outlines the requirements
of a model for annotation, describes the open research
questions posed by the need for such a model and how
we are attempting to address them. Finally, Section 7
concludes the paper.

2 Architecture

GridG is implemented as a sequence of transformations
on a text-based representation of an annotated graph. The
transformations are generally written in Perl, although
this is not a requirement. Figure 1 illustrates how these
transformations are composed to generate a grid. Cur-
rently, we begin with a structured graph without redun-
dancy that is generated by the Tiers topology generator.
The number of networks at each level of the topology is
the primary input. This also indirectly specifies the num-
ber of hosts. The first transformation enforces the power
laws by adding extra links to the graph. The outdegree
exponent is main input. The next transformation anno-
tates the graph according to user-defined empirical distri-
butions on and correlations over attributes such as mem-
ory and CPU. Additional transformations can be added.
For example, we can add clusters to sites on the grid. The
final output can then be visualized with DOT, used for
GIS evaluation, or for other purposes.

3 Topology

GridG generates topologies comprised of hosts, routers,
and IP layer links. In GridG’s graphs, nodes in WAN and
MAN are routers while nodes in LAN are hosts. Routers
have switching capability and several IP interfaces while
hosts have computing and storage resources. Grids are
embedded in the Internet topology and thus should fol-
low its rules. In particular, GridG produces grid topolo-
gies that follow the power laws of Internet topology [9],
laws that hold true in many kinds of natural and artificial
networks [2].

3.1 Power laws of Internet topology
Faloutsos, et al [9] identified three power laws and one
approximation in their influential 1999 paper. Figure 2
summarizes these laws. (Figure 3 summarizes the sym-
bols used in this paper.) The rank exponent law says that
the outdegree, dv , of a node v, is proportional to the rank
of the node, rv , raised to the power of a constant R. In

2

Other transformations
on common format
(Cluster maker, etc)

Structured Topology
Base

Topology
Generator

(Tiers)

Translation
To

Common
Format

GridG
Power
Law

Enforcer

Structured Topology
that obeys power laws

Grid

GridG
Annotator

GIS
Simulator

DOT
Visualization

Other
Tools

Figure 1: GridG Architecture.

Symbol Description Typical Values or Constraints
R Rank exponent ≈ −0.488 at router level
O Outdegree exponent ≈ −2.487 at router level
ε Eigen exponent ≈ −0.177 at router level
H Hop-plot exponent ≈ 2.84 at router level
dv Outdegree of node v 1 ≤ dv ≤ MaxD

MaxD Theoretical maximum outdegree MaxD = e−
log α

O

rv Ranking of node v All nodes with same outdegree have same ranking
fd Frequency of outdegree d Number of nodes with outdegree d, fd ≥ 1
h Number of hops
λi The ith biggest eigenvalue of the graph
P (h) Total number of pairs of nodes within h hops
N Total number of nodes in the graph
β Constant in equation 1 ≈ exp(4.395) at router level
α Constant in equation 3 ≈ exp(8.52) at router level

Figure 3: Symbols used in this paper.

Rank exponent dv ∝ rR
v

Power Laws Outdegree exponent fd ∝ dO

Eigen exponent λi ∝ iε

Approximation Hop-plot exponent P (h) ∝ hH

Figure 2: Power laws of Internet topology.

our examples and evaluation, we choose to parameterize
our power laws according to the router-level data in the
Faloutsos paper. The parameterized rank exponent law is

dv = βrR
v = exp(4.395) ∗ r−0.49

v (1)

The omitted constant term does not affect our results and
is commonly dropped [1]. Another useful form of the
rank exponent power law is

rv = (
dv

β
)

1
R (2)

The outdegree exponent law says that the frequency, f d,
of an outdegree d, is proportional to the outdegree raised
to the power of a constant O. Parameterizing the law
using the Faloutsos router-level data, we have

fd = αdO = exp(8.52) ∗ d−2.49 (3)

A node’s ranking is defined in the following way, con-
forming with the Faloutsos paper. We do a topologi-
cal sort of the nodes in decreasing order of outdegree.

We then assign ranks according to this ordering and
the number of nodes in each equivalence class. All n1

nodes in the class with largest outdegree are assigned
rank rv = 1. All n2 nodes in the class with the sec-
ond largest outdegree are assigned rank rv = 1 + n1.
This accumulation continues such that all nodes in the
class with the kth largest outdegree are assigned rank
rv = 1 + n1 + n2 + . . . + nk−1. For example, if there
are 1000 nodes with outdegree larger than 3, and there
are 100 nodes with outdegree 3, then the nodes with out-
degree 2 will be ranked 1100. All nodes with same out-
degree have the same ranking.

The Eigen exponent power law says that the eigenvalues,
λi, of a graph are proportional to the order, i, raised to the
power of a constant ε.

The hop-plot exponent law is listed as an approximation
by Faloutsos, et al. It says that the total number of pairs of
nodes, P (h), within h hops, is proportional to the number
of hops raised to the power of a constant, H .

3.2 Current graph generators
There are mainly three types of topology generators in
use: random [21], hierarchical, and degree-based. De-
bates as to which type is better for Internet graph gen-
eration have persisted over a long period of time [20].
Our belief is that a good graph generator should pro-
duce a clear hierarchy that also follows the discovered
power laws. Hierarchical generators such as Tiers [3, 8]
and Transit-Stub [3] can generate a clear hierarchical net-

3

work, but the graphs don’t follow the power laws by na-
ture. The degree-based generators, such as Inet [14, 22],
Brite [15], the CMU power law graph generator [18] and
PLRG [1], generate graphs that follow the power laws,but
have no clear hierarchical structure. The topologies gen-
erated by GridG follow the power laws and have a clear
three-level hierarchy.

3.3 Algorithms
GridG takes the output of a basic graph generated by
Tiers as its input. This input graph has no redundant links.
GridG adds links to the graph according to the outdegree
power law. Hence, the graphs generated by GridG have
a clear three-level hierarchical structure and follow the
power laws. The following is a more detailed description.

1. Generate a basic graph without any redundant links
using Tiers. Tiers itself has several parameters,
specifically the number of nodes and networks at
each level of hierarchy. Translate the graph into
GridG’s native format. This basic graph has three
levels of hierarchy: WAN, MAN, and LAN. At
each level, the nodes are connected by a minimum
spanning tree. Each lower level network is con-
nected to one node on the higher level network.
The graph is guaranteed to be connected.

2. Assign each node an outdegree at random using the
outdegree power law as the distribution. The prob-
ability P (k) that a vertex in the network interacts
with k other nodes decays as a power law. This
probability is scale-free, meaning that we can ex-
tend graphs of any size in this manner [2]. Nodes
of outdegree one deviate from the power law as de-
scribed by Faloutsos, et al [9, Figure 6(b)]. We
set f1 = f2 as this is the case for real router level
data. Given outdegree d = 2, 3 . . .MaxD, we cal-
culate the corresponding frequencies according to
fd = exp(8.9)d−2.486

v , where 8.9 and −2.486 are
the defaults for parameters given a configuration
file. N =

∑MaxD
i=1 fi, where N is the total num-

ber of nodes in the graph. We then generate a ran-
dom number x between 1 and N for each node,
if x ≤ f1, the node is assigned outdegree 1; if
f1 < x ≤ f1 + f2, the node is assigned outde-
gree 2; if f1 + f2 < x ≤ f1 + f2 + f3, the node is
assigned outdegree 3, etc.

3. Calculate the remaining outdegree of each node af-
ter taking the links of the minimum spanning tree
into consideration.

4. Add redundant links to the graphs by randomly
choosing pairs of nodes with remaining outdegree
> 0. Nodes at higher levels (e.g., WAN) are given
priority over nodes at lower levels (e.g., MAN).
Continue to add more redundant links until no pairs
of nodes with positive outdegree can be found.

Internet Routers GridG Tiers
Rank exponent -0.49 -0.51 -0.18
R2 0.94 0.89
Outdegree exponent -2.49 -2.63 -3.4
R2 0.97 0.55
Eigen exponent -0.18 -0.24 -0.23
R2 0.97 0.97
Hop-plot exponent 2.84 2.88 1.64
R2 0.99 0.99

Figure 4: GridG topology generator Evaluation

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 0.5 1 1.5 2 2.5 3 3.5

lo
g(

d)

log(r)

GridG

Tiers

Figure 5: log-log plot of Outdegree vs. Ranking

3.4 Evaluation
In this section, we show that the graphs generated by
GridG follow the power laws. For comparison, the ba-
sic graph generated by Tiers is also shown in our figures.
The basic graph was generated by “Tiers 1 50 10 500 40
5 1 1 1 1 1”, meaning one WAN containing 50 MANs,
each containing 10 LANs. The WAN contains 500 nodes,
while the MANs and LANs contain 40 and 5 nodes, re-
spectively. This is similar to the parameters used in other
evaluations [20].

0

0.5

1

1.5

2

2.5

3

3.5

0 0.2 0.4 0.6 0.8 1 1.2 1.4

lo
g(

f)

log(d)

GridG

Tiers

Figure 6: log-log plot of Frequency vs. Outdegree

4

0

1

2

3

4

5

6

7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

lo
g(

nu
m

be
r

of
 p

ai
rs

)

log(number of Hops)

GridG

Tiers

Figure 7: log-log plot of Number of pairs of nodes within h
hops vs. Number of hops h

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2 1.4

lo
g(

E
ig

en
va

lu
es

)

log(Order)

GridG

Tiers

Figure 8: log-log plot of Eigen values in decreasing order

Figure 4 shows that the exponents of the topology gener-
ated by GridG match router level data from the Faloutsos
paper much better than those of the basic Tiers graph. The
coefficients of determination, R2, represent how well a
power law fits the generated data. We can see that GridG
produces R2 values close to 1, the ideal. The exponents
in Figure 4 are the slopes in Figures 5, 6, 7, and 8.

Figure 5 is a log-log plot of outdegree versus ranking. We
can see that a linear fit on this graph explains the relation-
ship for GridG’s topology very well. The divergence at
small ranks is quite interesting and shows up in studies of
real topologies including Faloutsos, et al [9, Figure 4(b)]
and Medina, et al [16, Figure 6]. Removing the three di-
verging datapoints from Figure 5 increases R2 to 0.99.
In Section 4, we will describe a potential new rank law
that models this divergence and can be derived from the
outdegree law.

Figure 6 shows a log-log plot of frequency versus outde-
gree. GridG follows the outdegree exponent power law
very well except when outdegree equals 1, which is not

plotted in the graphs. We have already noted that this
divergence is intentionally induced to better match real
topologies.

Figure 7 is a log-log plot of the number of pairs nodes
within h hops versus number of hops h. Clearly, GridG’s
topology conforms to this power law.

Figure 8 is a log-log plot of the eigenvalues in decreasing
order. We can see that GridG agrees very well with this
power law, though our exponents deviate from the data
given by Faloutsos, et al [9].

4 Relationships among power laws

Several recent graph generators [14, 22, 1, 18] and GridG
generate graphs according to the outdegree law only.
However, the generated graphs follow all four power
laws! Why is this possible? A possible reason is that
the power laws (Figure 2) are closely interrelated. A re-
cent paper [2] proposed incremental growth and preferen-
tial connectivity to explain the phenomenon and origin of
the outdegree law. Medina, et al found that the hop and
eigenvalue power laws were followed by all the topolo-
gies they considered [16]. Mihail and Papadimitriou have
shown that the eigenvalue law follows from the outdegree
law [17].

In the following, we show that the outdegree law follows
from the rank law. It does not appear, although we can
not prove, that the rank law follows from the outdegree
law. This suggests one of several possibilities:

• The rank law is strictly more descriptive than the
outdegree law.

• The rank law is wrong.

• The outdegree law is wrong.

The evidence against the first and third possibilities is the
unreasonable effectiveness of using the outdegree law to
generate graphs that appear to follow all of the laws. Fur-
thermore, as we noted earlier, the rank/outdegree rela-
tionship diverges from a strict power law in actual topolo-
gies at small ranks. Finally, earlier work has shown that
the eigenvalue law follows from the outdegree law and
that most networks exhibit the eigenvalue and hop-plot
laws.

Our belief is that the second possibility is the case.
We show that it is possible to derive a power law
like rank law from the outdegree law that captures
the divergence seen in real topologies and gives the
appearance of a power law over much of its range.
This also would explain the surprising effectiveness of

5

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.2 0.4 0.6 0.8 1 1.2 1.4

lo
g(

f)

log(d)

Figure 9: log-log plot of derived f-d law

only using the outdegree law in graph generation. We
advocate the following relationship among the laws:

New rank law ⇐⇒ Outdegree law =⇒ Eigenvalue law.

4.1 Rank law =⇒ outdegree law
Starting from the rank law, we derive a form of the outde-
gree law. Let fd be the frequency of nodes with outdegree
equal to d, or the number of nodes with outdegree d. Let
rd be the ranking of the nodes with outdegree d. Simi-
larly, let rd−1 be the ranking of the nodes with outdegree
equal to d− 1. Given the outdegrees d and d− 1, and the
ranking of nodes with those outdegrees, the frequency of
outdegree d is

fd = rd−1 − rd (4)

Now, substitute for rd−1 and rd their values according to
the rank law (Equation 2). This gives

fd = (
dv − 1

β
)

1
R − (

dv

β
)

1
R (5)

To simplify further,

fd = β− 1
R [(dv − 1)

1
R − d

1
R
v] (6)

This relationship is itself a power law that associates fre-
quency and outdegree. Figure 9 shows the log-log plot of
this derived outdegree law (Equation 6). We have derived
an outdegree power law from the rank power law.

4.2 Outdegree law ⇐⇒ new rank law
Starting from the outdegree law, we attempted to derive
a power law for the rank-outdegree relationship. Our end
result is a rank law which is not a power law. If our rea-
soning is correct, then this shows that the rank law can not
be derived from the outdegree law. As discussed earlier,
we believe that the new rank law, which we derive from
the outdegree law, is more accurate than the original rank
law in that it fits actual topology data better.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 0.5 1 1.5 2 2.5 3 3.5 4

lo
g(

d)

log(r)

Figure 10: log-log plot of derived d-r law

First, note that
MaxD∑

i=1

fi = N (7)

where N is the total number of nodes in the graph, and
MaxD is the maximum outdegree. The minimum fre-
quency is 1, so we must make sure that fd = αdO ≥ 1
(Equation 3). Substituting, we see that

MaxD = e−
log α

O (8)

From the definitions of rank and frequency, we get

rv =
MaxD∑

i=dv+1

fi (9)

That is, the rank of node v is equal to the number of nodes
with outdegree bigger than that of node v. Using the out-
degree law (Equation 3), we get

rv = α

MaxD∑

i=dv+1

di
O = N − α

dv∑

i=1

di
O (10)

If we assume that O is negative, as shown in paper [9], we
can then derive the following relationship between rank
and outdegree:

rv = N − α[ζ(−O) − ζ(−O, 1 + dv)] (11)

Here, ζ(t) =
∑∞

n=1
1
nt is the Riemann Zeta function.

Figure 10 is a log-log plot of this derived rank law. Sur-
prisingly, this derived law is not an ideal power law—it
is far from a straight line. If our derivation is correct, it
is clear that the rank law does not follow from the outde-
gree law. Furthermore, our derived law is a better fit to
the actual observed topologies than the rank law. A close
look at Figure 10 shows that when rank r >≈ 37, the
relationship between log rank and log outdegree is nearly

6

0

0.5

1

1.5

2

2.5

3

3.5

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

lo
g(

f)

log(d)

Figure 11: log-log plot of derived d-f law using the new d-r
law

a straight line, giving the appearance of a power law re-
lationship. The divergence for r ≤≈ 37 is similar to that
shown for the actual router level topology in Faloutsos, et
al [9, Figure 6(b)].

Figure 11 shows the log-log plot of the outdegree and
frequency relationship that can be derived from the new
rank law (Equation11) and Equation 4.

5 Annotations

In addition to producing a realistic topology that extends
to the level of hosts a grid generator must also anno-
tate the topology with the attributes of its links, routers,
switches, and hosts. In GridG we acquire annotations
in two ways. For network link bandwidth and latency,
we rely on the underlying structural graph generator and
power law enforcer. For the switching bandwidth of a
router or switch, we assume it is some user-defined frac-
tion of the total bandwidth of incident links.

Host characteristics are considerably more complex. Our
first approximation is to treat each attribute of a host inde-
pendently. The user supplies an empirical distribution for
the attribute, and we select randomly based on that dis-
tribution. Host attributes are not independent, however.
Clearly, host memory and CPU speed are correlated. To
express such correlations, our second approximation is to
allow the user to specify a joint distribution over all the
possible attributes. This is the current state of the GridG
annotator.

We envision extending the annotator with a general en-
gine for user-supplied logical rules. For example, the user
should be able to assert that hosts with four or more pro-
cessors have at least 4 GB of memory.

We expect that there exist correlations between the at-
tributes of machines that are near each other in the net-

work topology. The obvious example is a cluster, in
which tightly coupled machines have identical attributes.
While we can support clusters via an additional graph
transformation that explicitly creates them, there are
other examples: servers in the same machine room are
likely to have more in common with each other than with
the client hosts that use them. While we do not yet have
a mechanism to support inter-host correlation, we believe
that a relaxation algorithm may be appropriate.

6 Open research questions

Given a model of the distribution and correlation of host
characteristics, the topology generator and the mecha-
nisms described in the previous section would allow us
to generate realistic computational grids. At the present
time, we do not have such a model because we have been
unable to collect a sufficient amount of data from which
to infer one. We appear to be the first to need to do this.
In the following, we lay out what is needed, and the ap-
proaches that we have undertaken or considered to ac-
quire this data.

We can easily imagine important correlations. For ex-
ample, the average CPU speed on a Gigabit network is
probably faster than on a 10 mbit network. We incor-
porate this correlation between network speed and CPU
speed into our default annotation process. We also as-
sume a positive correlation between the number of CPUs
and the total memory, and the assumption that machines
with more CPUs are less likely to run a version of Win-
dows.

To test such correlations and to discover more, we need
a large random sample of hosts on the Internet or from a
representative grid environment. For each host, we need
information about its hardware and software resources,
and a description of where it is on the network topology
captured in the sample. We have considered the following
ways of acquiring such a sample:

• Examine the contents of existing grid information
service systems. We studied the (anonymized)
dumps from several large grids and the dataset col-
lected by Smith, et al [19], which was collected
when there was a single MDS server. Smith’s
dataset was by far the largest, but it contained fewer
than 1000 machines. Our conclusion is that ex-
isting systems don’t contain enough data for our
needs.

• Use SNMP scans. The default SNMP MIB pro-
vides almost all the information we need. How-
ever, most users have turned off SNMP on their
hosts due to security concerns. This results in a
small and biased sample.

7

• Use DMI/IPMI/OpenManage/etc. These are
BIOS-level distributed management tools for PCs.
The prospects here are not clear yet, but even if
they could be used, they would provide a sample
biased towards PCs.

• Write a virus. An innocuous virus that reported
back host data and deleted itself after infecting sev-
eral other machines would be highly effective, al-
though the sample would be biased towards ma-
chines exhibiting the exploits used. We discarded
this idea because of its ethical implications.

• Use hardware vendor sales data. If we knew of
new machines being sold and attached to the net-
work, we could at least derive distributions of their
attributes. We attempted to acquire sales data from
IBM, Dell, and HP, but were unsuccessful. These
companies regard even aggregated sales data as
proprietary information.

• Use OS vendor registration data. Hooking into the
processes of OS registration would provide very
detailed, if OS-biased information. We attempted
to establish a relationship with Microsoft and with
Red Hat, but were unable to do so.

7 Conclusion

We have presented GridG, a tool for generating realis-
tic computational grids. The topology generation com-
ponent of GridG is largely finished. We can produce
structured network topologies that obey the power laws
of Internet topology. While developing GridG’s topology
generator, we found that two of the power laws (rank and
outdegree exponent laws) are in conflict. We derived a
new rank law from the outdegree law that conforms well
with published data on actual topologies and has a power
law like range. We speculate that this new law is a better
approximation of rank behavior.

The topology annotation component of GridG is still
at an early stage, but we described the mechanisms we
have developed, and, more importantly, pointed out the
open research questions that must be answered in order
to fully reach the goal of synthetic generation of realistic
computational grids. We are now striving to answer these
questions.

Acknowledgment
We would like to thank Dr. Huaien Li for discussions on
the theoretical part of this paper.

References
[1] W. Aiello, F. Chung, and L. Lu. A random graph model
for massive graphs. In ACM Symposium on Theory of Comput-
ing, 2000.

[2] A. Barabasi and R.Albert. Emergence of scaling in ran-
dom networks. Science, pages 509–512, 1999.
[3] K. L. Calvert and M. B. Doar. Modeling internet topol-
ogy. IEEE Communications Magazine, 1997.
[4] K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kessel-
man. Grid information services for distributed resource sharing.
In 10th IEEE Symp. on High Performance Distributed Comput-
ing, 2001.
[5] P. Dinda, T. Gross, R. Karrer, B. Lowekamp, N. Miller,
P. Steenkiste, and D. Sutherland. The architecture of the remos
system. In 10th IEEE Symp. on High Performance Distributed
Computing, 2001.
[6] P. Dinda and B. Plale. A unified relational approach
to grid information services. Grid Forum Informational Draft
GWD-GIS-012-1, 2001.
[7] P. A. Dinda. Online prediction of the running time of
tasks. Cluster Computing, 5(3), 2002.
[8] M. B. Doar. A better model for generating test networks.
IEEE GLOBECOM, 1996.
[9] M. Faloutsos, P. Faloutsos, and C. Faloutsos. On power-
law relationships of the internet topology. In Proceedings of
SIGCOMM ’99, 1999.
[10] I. Foster and C. Kesselman. Globus: A metacomputing
infrastructure toolkit. The International Journal of Supercom-
puter Applications and High Performance Computing, 1996.
[11] I. Foster and C. Kesselman, editors. The Grid: Blueprint
for a New Computing Infrastructure. Morgan Kaufmann, 1999.
[12] I. Foster, C. Kesselman, and S. Tuecke. The anatomy of
the grid. Intl J. Supercomuter Applications, 2001.
[13] A. S. Grimshaw, W. A. Wulf, and C. T. L. Team. The
legion vision of a worldwide virtual computer. Communications
of the ACM, 40:39–45, 1997.
[14] C. Jin, Q. Chen, and S. Jamin. Inet: Internet topology
generator. Technical report, Department of EECS, University
of Michigan Ann Arbor, 2000.
[15] A. Medina, A. Lakhina, I. Matta, J. B. famedina, and
anukool. Brite: An approach to universal topology generation.
In IEEE MASCOTS ’01 (Tools track), 2001.
[16] A. Medina, I. Matta, and J. Byers. On the origin of power
laws in internet topologies. ACM SIGCOMM Computer Com-
munication Review (CCR), 30:18–28, 2000.
[17] M. Mihail and C. Papadimitriou. On the eigenvalue
power law. Springer-Verlag Lecture Notes in Computer Science,
2002.
[18] C. R. Palmer and J. G. Steffan. Generating network
topologies that obey power laws. In GLOBECOM ’2000, 2000.
[19] W. Smith, A. Waheed, D. Meyers, and J. C. Yan. An
evaluation of alternative designs for a grid information service.
Cluster Computing, 4:29–37, 2001.
[20] H. Tangmunarunkit, R. Govindan, and S. Jamin. Net-
work topology generators: degree-based vs. structural. In Pro-
ceedings of SIGCOMM ’02, 2002.
[21] B. Waxman. Routing of multipoint connections. IEEE
J. of Selected Areas in Communications, 1988.
[22] J. Winick and S. Jamin. Inet-3.0: Internet topology
generator. Technical Report CSE-TR-456-02, Department of
EECS, University of Michigan Ann Arbor, 2002.
[23] R. Wolski, N. T. Spring, and J. Hayes. The network
weather service: A distributed resource performance forecast-
ing service for metacomputing. Journal of Future Generation
Computing Systems, 1998.

8

