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Abstract—Approaches to making cloud operation more
efficient, for example through scheduling and power man-
agement, largely assume that the workload offered from
mobile, user-facing applications is a given and that the
cloud must simply adapt to it. We flip this assumption
180 degrees and ask to what extent can we instead
shape the user-centric workload into a form that would
benefit such approaches. Using a toolchain that allows us
to interpose on frontend/backend interactions in popular
Android applications, we add the ability to introduce delays
and collect information about user satisfaction. We conduct
an ““in the wild” user study using this capability, and report
on its results. Delays of up to 750 ms can be introduced
with little effect on most users, although this is very much
user and application dependent. Finally, given our study
results, we consider reshaping the application requests
by selective delays to have exponential interarrival times
(Poisson arrivals), and find that we are often able to do so
without exceeding the user’s delay tolerance.

I. INTRODUCTION

Policies for scheduling, mapping, resource alloca-
tion/reservation, power management, and similar mech-
anisms are generally designed with the assumption that
the offered workload itself is sacrosanct. Even for closed
systems, we hope that the system will have minimal
effect on the offered workload. For the present paper,
we consider three parts of this assumption: (1) the
workload’s statistical properties are a given, (2) the
overall offered load is a given, and (3) the performance
requirements are uniform across users. The design of a
policy typically is then focused on the goal of minimiz-
ing cost, power, energy, latency, etc. given these.

As an example, consider making a modern user-facing
cloud application such as Pinterest, Pandora, or Google
Translate more energy or economically efficient. The
application consists of a user interface (the “frontend”),
for example an app on a smartphone, that communicates
with the core application and systems software (the
“backend”). The backend runs in the remote data centers
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and the network that are the physical underpinnings
of the cloud. User interactions with the frontend result
in requests to the backend. The data center brings up
or shuts down hardware to accommodate the offered
load of the requests from the application’s users. The
assumption given above puts major constraints on the
possible policies to drive these mechanisms and what
they can do. It is clear that a given offered load combined
with uniform performance requirements will place a
lower limit on how many machines need to be active,
regardless of policy. Less obviously, the properties of the
requests, for example the interarrival time distribution,
request size distribution, and any correlations will affect
the dynamics of the request stream and thus how much
headroom (active hardware) the policy needs to preserve.
In this paper, we consider the prospects for relaxing
this assumption. Instead of studying how the cloud or
datacenter might respond better to a sacrosanct offered
workload, we turn the problem around 180 degrees and
consider a model in which the backend determines its
desired workload characteristics and the frontend, or
load balancer, enforces these characteristics. In effect, we
consider shaping the user-driven workload analogously
to how a packet stream might be shaped at entry to a net-
work. We think this can be done by taking advantage of
the variation in tolerance for a given level of performance
that exists among individual users. We have found that
such variation exists in many other contexts [14], [19],
[25], [28], [40], and that its is possible to take advantage
of it in those contexts [18]-[24], [35], [38], [39], [44].
We leverage a toolchain that lets us interpose on ex-
isting popular Android applications taken directly from
the Google Play store. Using this toolchain, we modify
a set of such applications so that their frontend/backend
interaction passes through code that can selectively delay
the interaction. Our additions to the applications also
include mechanisms for user feedback about satisfaction
with performance. This allowed us to conduct a user
study where we introduced varying amounts of delay
into the applications’ frontend/backend interactions, and
collected user feedback about their satisfaction with this
added delay. A core outcome of the study is that it is



possible to introduce up to 750ms of delay without a
change in user satisfaction (to within 10% with > 95%
confidence) for our test applications. We also observed
that user satisfaction with specific amounts of delay
varied considerably.

We then consider an approach which selectively delays
requests going from frontends to the backend so as
to shape the arrival process at the backend as Pois-
son arrivals (exponentially distributed interarrival times).
This is a well-known arrival process particularly suitable
for leveraging classic queuing analysis in the design of
scheduling systems. We simulate this using the traces ac-
quired from the user study. These traces also allow us to
determine the likely effect on per-user satisfaction of our
introduced delays. From this, we can evaluate the trade-
off between our backend-centric goals for introducing
the delays (Poisson arrivals), and our frontend-centric
goals (maintaining user satisfaction with performance).
There exist trade-off points where we can make the
arrival process considerably more Poisson-like while not
introducing delay that leads to dissatisfaction.

The contributions of our work are:

o We introduce the concept of shaping user-driven
requests originating from the frontend of a mobile
application and going to the cloud backend to meet
goals established by the backend. We refer to this
concept as user traffic shaping.

o We show, via a user study involving 30 users run-
ning 5 popular Android applications on their mobile
phones over a period of a week, that there is room to
do user traffic shaping by introducing delays in the
request stream. The tolerance for introduced delay
exists across the whole subject group, and it varies
across individuals.

o We describe a potential algorithm that uses this
room and varying tolerance to introduce delays that
shape the user request stream.

o We evaluate this algorithm, in trace-based simula-
tion, and find that there exist trade-off points where
we are able to more closely match the Poisson
arrival and rate limiting goals, while not reducing
user satisfaction in a significant way.

II. RELATED WORK

Achieving an effective and responsive user experi-
ence is critical to the success of cloud applications,
but at the same time there is a growing interest in
making the data centers that their backends run on
more efficient and sustainable. By late 2011, Google’s
data center operations required 260 megawatts of con-
tinuous power, with an individual search costing 0.3
watt-hours of energy [12] while a single Amazon data

center operated at 15 megawatts circa 2009 [15]. The
EPA estimated in 2007 that data centers consumed 61
terawatt-hours of energy in 2006, 1.5% of the total U.S.
consumption, that data centers were the fastest growing
electricity consumers, and that an additional 10 power
plants would be required for this growth by 2011 [41].
Research studies and reports dating back to the early
1990s (e.g., [29]) have consistently shown low server
utilization, with recent reports placing it in the 10-30%
ballpark (e.g., [2]). This low utilization feeds into the
very public “cloud factories” charge [11] that clouds
are bad for the environment and unsustainable. More
recent work estimates that cloud data centers consume
more than 2.4% of global electricity [27], and that this
consumption is expected to grow 15-20% annually [26].
In 2011 it was estimated that datacenters produced CO;
emissions equal to 2% of global emissions [4]. Our
work hopes to address these issues by incorporating the
individual user.

Numerous approaches to making data centers more
energy efficient have been proposed. The example ap-
proach of dynamically choosing the number of servers
that are powered up is that has been under investigation
for some time. AutoScale [9] is arguably the state of the
art here, and the AutoScale paper has a detailed survey
of prior work. Given an offered workload, an SLA, and
the time needed to bring up/down a server, AutoScale
dynamically chooses to bring up or down servers with
minimal headroom (additional active servers) and min-
imal chance of violating the SLAs. Other examples of
adapting, in an energy efficient manner, to the offered
workload include dynamic voltage and frequency scaling
(DVFS) for servers [6], coordinated decisions across
the data center [8], [30], and consolidation within the
datacenter [42]. Our work is likely to be applicable to
these and other approaches in that it offers the orthogonal
capability of changing the offered workload.

SleepServer [1] is a proxy architecture that allows a
host to enter low power sleep modes more frequently
and opportunistically. A SleepServer machine maintains
the network presence of a host and wakes it only
when required. Another work [32] simplifies the overall
architecture by using a client-side agent. Such proxies
are a potential venue for user-centric traffic shaping.

Traffic shaping has had its greatest success in com-
puter networks. It originated in ATM networks [16], [33]
and then expanded widely [7], [10], for example into
DiffServe [3], and today is widely deployed. The user-
centric traffic shaping concept is named by analogy, but
an important distinction is that we focus on shaping the
users’ offered workload to the cloud, as well as shaping



the users’ perception of the performance that workload
receives.

The results of our user study may at first seem contrary
to observations by Google [5], [13], Amazon [37], and
others that suggest that even small increases in delay
negatively impacts users who depart from the service.
However, our study differs in at least two ways. First,
we are considering mobile applications, not web applica-
tions. Much of the user interface of a mobile application
quite smooth under delay as it is implemented on the
mobile device itself, not on the backend. Second, we
are soliciting the satisfaction of the user directly by
prompting them, instead of indirectly by seeing if they
stop using the application. We claim that users should
be treated differently based on their individual tolerance
for delay.

III. FRONTEND AUGMENTATION

Our user study is based on popular Android Java
applications that are available only in object code form,
from the Google Play store. We modify these application
frontends to add the following functionality, all within
the mobile phone.

1) The ability to introduce delays to the frontend’s
network requests. Delays are selectively intro-
duced according to test cases loaded onto the
phone.

2) Continuous measurement of the phone’s environ-
ment. This includes CPU load, network character-
ization (RSSI), which radio is in use, and others.

3) An interface by which the user can supply feed-
back about performance. A user can do so at any
time, but can also be prompted to do so by a test
case.

The specific choice of applications, test cases, arrival
process for test cases, and users is the basis of our study.
Our application augmentation framework is based on
Dpartner [45] and DelayDroid. Dpartner is a general
framework for decomposing a compiled Java application
into its constituent parts, adding interposition, instru-
mentation, and other elements, repartitioning the ele-
ments differently (for example, across the client/server
boundary), and then reassembling the applications. It
is intended to support various kinds of experimentation
with existing, binary-only, distributed applications.
DelayDroid leverages Dpartner to augment mobile
Android applications. We use DelayDroid to add delay-
ing capabilities in applications. DelayDroid effectively
introduces a proxy into an application through which
both high-level (e.g. HTTPWebkit) and low-level (e.g.
TCPSocket) network requests are passed. The framework
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Fig. 1. Run-time architecture on the frontend.

interposes a delaying proxy on 110 networking-related
functions from within 5 broad categories of the An-
droid API: HTTPWebkit, HTTPApache, HTTPJaveNet,
TCPSocket, and UDPSocket. This allows us to interpose
on any network request, irrespective of the method the
original app developer chose for their network commu-
nications. The proxy can delay requests through any of
these interfaces, and is controllable via the test case. In
the case of a 0 delay test case, the overhead of the proxy
is negligible. The application binary produced as a result
of DelayDroid interposition is only about 1-2% larger
than the original binary.

In addition to the augmented application, our frame-
work introduces a separate component, the Feedback
Collector (FBCollector) that is responsible for coordinat-
ing augmented applications on the phone, and collecting
user feedback.

Figure 1 illustrates the run-time architecture of our
system when deployed in a user study. The phone
contains multiple augmented applications. For each aug-
mented application, our framework has modified or intro-
duced four kinds of classes: refactored network-relevant
classes which we interpose on to send network requests,
refactored context-relevant classes which we interpose
on to track context, DelayDroid run-time classes which
we add in order to inject delay, and unchanged classes.

The DelayDroid run-time consists of 3 components:
ContextService, DelayController and Rate-Message Re-
ceiver. The ContextService collects and provides infor-
mation about the context, such as the network status.
The DelayController is in charge of injecting delays into
the network requests. The DelayController chooses test
cases randomly from within a predefined set. Opera-
tionally, when any network request occurs, control flow
is detoured through the DelayController. The DelayCon-
troller then delays the request according to the test case.
The Rate-Message Receiver interacts with FBCollector,
and its operation is explained below.



Fig. 2. Rating overlay in its active state, as hovering over Pinterest.

The FBCollector is a separate application that co-
ordinates with augmented applications by sending and
receiving Android broadcast messages. This is also the
user-visible portion of the system. A Likert scale overlay
of 1-5 hovers over the application, shown in Figure 2.
The user can select a rating (i.e. rate their satisfaction) at
any time. A rating of 1 indicates complete dissatisfaction
with performance, and 5 indicates complete satisfaction
with it. In addition to unprompted feedback, the user
interface also supports prompted feedback, through the
form of making the overlay blink a red border.

During the user study, test cases are started at random
times by the DelayController. For any test case, a delay is
randomly chosen and applied to all instrumented network
requests sent over the duration of that test case. Once
the test case finishes, the DelayController will send a
message to the FBCollector (I), where it is received
by the Blink Message Receiver (2), causing the overlay
to blink, prompting the user 3). When a user provides
feedback via the overlay, the FBCollector notifies 3 the
Rate Message Receiver (5) component, which in turn logs
the feedback and all relevant contextual information.

The log files produced by the system include a times-
tamp, satisfaction rating, if the rating was prompted,
current test case, arrival time and duration of the request,
running application, OS metrics (such as CPU load), and
network metrics (WiFi or cellular, packet drops).

IV. USER STUDY

The goal of our user study is to understand how
changing performance via delaying the network requests
flowing from the frontend to the backend affects user sat-
isfaction. Simply put, how much delay can we introduce
before ordinary users employing popular applications be-
come dissatisfied? To answer this and related questions,
we leveraged the framework of Section III to augment
popular applications. We then designed a study in which
existing users of these applications could participate on
their own phones in their normal environments.

Applications: We chose five of the most popular
applications from the Google Play Store, applications
where we believed we would have no trouble recruiting

existing users. We also wanted to test applications that
had varying request rates as well as varying amounts
of “computation” that would likely be done on the
datacenter. For the study, we chose MapQuest, Pandora,
Pinterest, WeatherBug, and Google Translate as a repre-
sentative sample of popular applications.

Subjects: Our study was IRB approved!, which
allowed us to recruit participants from the broad North-
western University community. We advertised our study
by poster at several locations on campus, and also adver-
tised by email. Our selection criteria was that the subject
had to own and regularly use a mobile phone capable
of running our augmented applications, and the subject
had to self-identify as a regular user of at least one of
our applications. We selected the first 30 respondents
who met these criteria for our study.> As part of the
study, each subject also filled out a questionnaire about
their familiarity with phones, applications, etc. Each was
given a $40 gift certificate at the end of the study.

Test Cases: We designed test cases—randomly se-
lected periods of randomly selected additional delay—
with an eye to inducing perceptibly different levels of
performance in our applications as we ourselves per-
ceived them. In a test case, each network request that
occurs during a test case is delayed by a fixed amount.
Our test cases all had a duration of one minute, and
their delays were 0, 50, 250, 500, and 750 ms. Users
were prompted for feedback in the middle of the test case
(30 seconds in). Test cases themselves arrived randomly,
with a user prompted an average of 152 times over the
course of the study (one week). About 20% of prompts
resulted in a response.

The only indication the subject had that a test case
was running was being prompted, but the subject was
also so prompted during the zero delay test case.

Methodology: The subject used his or her own
personal smartphone for the duration of the study, al-
beit with our augmented test applications replacing the
original applications. All logs were kept on the subject’s
smartphone, and were removed at the conclusion of
the study, along with the augmented applications. The
duration of the study was one week.

When a subject first arrived, we had them fill out
a questionnaire designed to determine their level of
knowledge and comfort with a modern mobile device,
as well as collecting demographic information. During
this time we installed the augmented applications.

The subject was then instructed how to use the
user interface for the duration of the study. This was

'Northwestern IRB Project Number STU00093881.
2Full demographics available in Northwestern TR NU-EECS-15-02.



done with a written document that was identical for
all subjects. The document stressed that our interest
was in the level of performance of the applications and
not in their content. It did not indicate to the subject
how performance might change. We indicated that it
was important to provide feedback about performance
whenever the interface flashed, and we described the
intent of the scale as “l being completely dissatisfied, 5
being the most satisfied, and 3 being neutral [with/about
performance]”. The subject would then leave the lab, and
use their phone as they normally would for one week,
answering rating prompts when appropriate.

At the conclusion of the week, the subject returned to
the lab, and filled out an exit questionnaire. As they filled
this out, we connected to their smartphone, downloaded
the study data, and removed the test applications from
their phone, replacing them with the original applica-
tions. Other than our interaction with them, and the
user interface, changes to their normal experience of the
applications was intentionally kept to a minimum.

V. STUDY RESULTS

Our study produced ratings from 27, and network
traces from 29 of the 30 subjects. Recall from Section IIT
that ratings could be provided as a result of a testcase
prompt or independently. In the following, we consider
only the prompted responses, which correspond to test
cases of any delay, including 0, on a scale of 1 to 5.

Given these constraints, our study produced 850 data
points, each of which is the outcome of an intervention
(the application of a test case) that resulted in a prompted
response from the user. Given this number, as we decom-
pose the results, for example by application or user, it
is important that we highlight which conclusions have
strong statistical support from the data. Hence, when we
present p-values, we bold those that have p < 0.05 (95%
confidence level).

To account for any anchoring effect due to user-based
interpretation of satisfaction, we did our analysis based
on the differences in satisfaction between delayed and
undelayed application ratings for each user individually.
In this way the comparisons that we make should be im-
mune to differences in how users define their satisfaction
levels.

A. Users tolerate significant added delay

If we look across all of our users and applications, we
see the results of Figure 3. Here we record the average
satisfaction for each level of delay, the average change in
satisfaction compared to that of the zero delay level, and
a p-value. In aggregate, the data points to the possibility
of introducing up to 750 ms of additional delay without

App | 50ms | 250ms | 500ms | 750ms
MapQuest | 0.591 | 0.731 n/a | 0.268
Pandora | 0.133 | 0.127 | 0.034 | 0.291
Pinterest | 0.131 | 0.025 | 0.101 | 0.356
WeatherBug | 0.303 | 0.254 | 0.158 | 0.289
Translate | 0.576 | 0.217 | 0.646 | 0.000

Fig. 4. TOST apps, threshold = 0.5, p-values for testing that average
satisfaction is no different for the given delay value and a delay of
zero. Bold values are < 0.05.

App | 50ms | 250ms | 500ms | 750ms
MapQuest | 0.488 | 0.416 n/a | 0.127
Pandora | 0.000 | 0.004 | 0.000 | 0.002
Pinterest | 0.011 | 0.000 | 0.003 | 0.034
WeatherBug | 0.105 | 0.071 | 0.023 | 0.055
Translate | 0.155 | 0.003 | 0.292 | 0.000

Fig. 5. TOST apps, threshold = 1.0, p-values for testing that average
satisfaction is no different for the given delay value and a delay of
zero. Bold values are < 0.05.

having a significant effect on user satisfaction. The p-
values reported are for a two one-sided t-test (TOST),
which measures how easily we can discard the null
hypothesis that the mean satisfaction at a given delay
level is different from the mean satisfaction at a delay of
zero. In all cases, we can discard this hypothesis with at
least 97% confidence. In such comparisons, the threshold
of difference is also important to consider. The results in
the figure are for a threshold of 0.5, or 10% of the 1-5
Likert rating scale we use. Given no other information,
it appears very clear that we can add up to 750 ms of
delay without changing the rating by more than 10%.

B. User tolerance for additional delay varies by appli-
cation

We also considered the effects of introducing delay
into individual applications, while still grouping all users
together. Once again, we used TOST tests to identify
where user satisfaction changed significantly compared
to the no-delay case. These results are shown in Figures 4
(threshold of 0.5) and 5 (threshold of 1.0).

As one might expect, some applications experience
more detrimental effects from introduced delays than
others. For Pandora and Pinterest, we find that for a
threshold of 1.0 (that is, one satisfaction rating) there is
no statistically significant change in satisfaction caused
by injecting delays (p < 0.05). For Google Trans-
late more variation occurs, and for WeatherBug and
MapQuest we can see that these applications are much
more sensitive to additional delays. If we lower the
TOST threshold to 0.5, we have less confidence that
there is no change to satisfaction, although this may be



Average | Average Change | p-value for Comparison

Delay [ms] | Satisfaction in Satisfaction to No Delay
No Delay 4.0773 0 n/a
50 4.1000 0.0227 0.002

250 4.1233 0.0460 0.001

500 3.9408 0.1725 0.022

750 4.1975 0.1202 0.005

Fig. 3. User satisfaction is largely unaffected by the introduction of delays of up to 750 ms into network requests made from Pandora, Pinterest,
WeatherBug, and Google Translate. The p-values indicate that there was no statistically significant change in user satisfaction as request delay
was added. The threshold here is 0.5 (10% of the rating scale).

App | Oms | 50ms | 250ms | 500ms | 750ms

Satisfaction Variance for MapQuest

MapQuest | 0.91 | 2.25 1.39 0.00 0.25
Pandora | 1.10 | 0.96 1.22 1.08 0.88
Pinterest | 1.08 1.49 0.95 0.89 2.06
WeatherBug | 0.88 1.96 1.65 1.41 1.64
Translate | 0.14 1.69 0.54 1.86 0.07

Fig. 6.  User satisfaction varies considerably across users. Rating
variance across users for each combination of application and delay.
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user request arrivals, and delays each incoming request
according to the specified shaping method. In this way,
we are able to simulate shaping that might occur at any
point along the request path, and stay agnostic to any
final system, but rather explore the potential of shaping.

A. Algorithm

Our algorithm attempts to shape request arrivals such
that they appear to have been drawn from a Poisson
distribution. Poisson arrivals are a desirable property
both in terms of easing the analysis of a system from
a queuing theory perspective, and because they are less
prone to the Noah Effect [43] in which traffic bursts
aggregate across multiple timescales. It is important to
note that other forms of shaping are certainly possible—
our algorithm is intended as a demonstration of the
concept of using the leeway provided by user delay
tolerance to do shaping of some form.

Our algorithm has three main components: a delay
generator, and two rate estimators. The algorithm is
driven by request arrivals. First, the arrival rate is es-
timated via an exponentially weighted moving average
(EWMA). This rate is then compared to the desired
rate, and used to generate the delay. Each delay is
picked from a exponential random distribution, since a
Poisson process has interarrivals that are exponentially
distributed. Because the rate of the input arrivals can
fluctuate significantly, we employ a PI controller to con-
tinuously adjust the mean of the exponential distribution
to keep the output rate close to the desired rate. As the
system emits the delayed requests a second EWMA is
used to estimate the output rate, which in turn is used
to calculate the error for the PI controller. The whole
algorithm is described in Figure 8.

B. Evaluation

We evaluate the algorithm in simulation by feeding it
with traces that we collected during the user study. The
traces collected contained tuples of the form

{time, appName, user, totalTime, delay, testCase}

Recall that each test case ran for one minute, and
during this time all network requests were delayed. For
this reason, we have considerably more requests than
test cases, and for our simulation we use all 140,401
collected records. For each simulation, the trace was
segmented into “sessions”, where a session was defined
to be any section of requests where no interarrival was
greater than 10 seconds. In other words, we consider
bursts of arrivals that correspond to application activity
that is typically driven by the user.
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Fig. 9. Example of the effect of the algorithm on shaping an input.
The input (top graph) has been improved byAR? = 0.1822, leading
to the much more Poisson-like output (bottom graph).

For each session, we compare the original and shaped
session using quantile-quantile (or Q-Q) plots, an exam-
ple of which is shown in Figure 9. The desired shape in
each plot is the solid diagonal line. If the points were
to line up exactly on that line, we could confidently say
that the two data sets plotted were drawn from the same
distribution. We fit a line to each graph using a least
squares fit and quantify the fit with an R? value. We
can then compare the original and shaped graphs via the
difference in R? values, which we refer to as AR2. In
the figure, the AR? is 0.1822. R? ranges from —1 to 1,
so this represents a fairly significant shape in changing.

It is important to note that evaluations were done
across sessions, in order to capture local shaping (as ses-
sions may have differing rates), however the algorithm
has no awareness of such structure, and simply operates
on the rate provided via the estimators, thus needing no
a priori knowledge.



1: procedure SHUFFLE(arrival, intery)
2: inter,, < EWMA(input)
3: inters < EWMA (output)

m < man(inter,, intery)

err < inters — intery

nudge < PI(err)

m < maz(0.001, m + nudge)
delay < exp(m)

9: arrival += delay

10: end procedure

® R

Fig. 8.

For each of the evaluations, the shaping was run 30
times on each trace, and the results averaged in order
to estimate the ensemble average behavior. In addition,
for each session the Q-Q comparison is run 30 times, as
the distribution being compared to in the plot is itself
randomly generated each time. For the PI controller
and EWMA estimator, we conducted multiple runs and
settled on constant values of K, = 0.9, K; = 0.5,
a = 0.8 as optimal.

We additionally want to see how the algorithm per-
forms across varying loads. To do so, we set the desired
rate according to a variable system load, where load
is defined as loadsys = %, and interyace was
defined as the average of the trace. It is important to
note that this information is not needed during shaping,
it simply provides us with a method of evaluating

performance across various loads.

Figure 10 presents the results of running the algorithm
on an individual user. For each load factor, we report
the average AR?, the average delay introduced to each
request, as well as the 95" and 90" percentile of the
delay introduced. For this evaluation, we consider the
point where the 95" percentile delay grows beyond the
acceptable tolerance envelope as the limit for shaping.
We can see from the figure that for User 1, the limit
occurs at a load of 0.5, with AR2 = 0.0665. We ran
the same analysis on each user from the study, and the
results are enumerated in Figure 12. We can see that the
ability to shape and the load at which we can shape
traffic without annoyance varies quite a bit between
users, which indicates that shaping at the user level will
produce the most beneficial results overall.

To evaluate the performance of the algorithm on an
entire user base, we combined all of the user traces from
the study into one aggregate stream and fed this into the
simulator. The results are shown in Figure 11. We see
that the limit of shaping for aggregate users occurs at

> Estimate interarrivals of input using EWMA
> Estimate interarrivals of output using EWMA

> Limit the shaping interarrival
> how much is the shape off

> nudge with PI controller

> ensure nudging is not negative

User Traffic Shaping Algorithm.

Load AR? | Avg Delay | 95 %ile | 90 %ile
0.1 | 0.0102 0.0389 | 0.1479 | 0.1054
0.2 | 0.0236 0.1014 | 0.2963 | 0.2118
0.3 | 0.0408 0.0947 | 0.4448 | 0.3186
0.4 | 0.0537 0.2548 | 0.5925 | 0.4239
0.5 | 0.0665 0.2206 | 0.7403 | 0.5324
0.6 | 0.0771 0.2458 | 0.8949 | 0.6394
0.7 | 0.0892 0.4656 | 1.0505 | 0.7472
0.8 | 0.0990 0.2271 1.1949 | 0.8515
0.9 | 0.1071 0.3547 1.3407 | 0.9604
1.0 | 0.1204 0.4582 | 1.4912 | 1.0669

Fig. 10. Shaping of trace of User 1. Ability of the algorithm to

shape an individual user’s traffic increases with load. For this user,
the algorithm can produce a AR? = 0.0665 while staying within the
delay tolerance envelope supported by the user study 95% of the time
(bold). It produces AR? = 0.1204 by staying in envelope on average
(italic).

Load AR? | Avg Delay | 95 %ile | 90 %ile
0.1 | 0.0053 0.1316 | 0.4518 | 0.3246
0.2 | 0.0101 0.2632 | 0.9048 | 0.6494
0.3 | 0.0170 0.3948 1.3543 | 0.9654
0.4 | 0.0223 0.5265 1.8060 1.2982
0.5 | 0.0299 0.6581 | 2.2828 | 1.6272
0.6 | 0.0337 0.7898 | 2.7273 | 1.9482
0.7 | 0.0386 0.9214 | 3.1769 | 2.2785
0.8 | 0.0462 1.0531 3.6138 | 2.6083
0.9 | 0.0509 1.1847 | 4.0911 2.9127
1.0 | 0.0552 1.3163 | 4.5210 | 3.2436

Fig. 11. Ability of the algorithm to shape aggregate traffic increases

with load. Bold indicates staying within delay tolerance 95% of the
time. Italic indicates staying within delay tolerance on average.

a lower load of 0.1, with a AR? of 0.0053, and 95"
percentile delay of 0.4518.

VII. CONCLUSIONS

We have considered the prospects for shaping the
interactions between the frontends and cloud/datacenter



User 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
AR? 0.067 | 0.012 | 0.007 0.017 | 0.000 | 0.012 | 0.019 | 0.005 | 0.008 | 0.005 0.011 0.012 | 0.006 | 0.005 0.008
Load 0.5 0.2 0.2 0.2 0.1 0.5 0.2 0.1 0.1 0.1 0.2 0.3 0.1 0.1 0.1
User 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
AR? 0.006 | 0.018 | 0.012 | 0.003 0.000 | 0.056 | 0.009 | 0.009 | 0.009 | 0.033 0.003 | 0.039 | 0.009 | 0.024 n/a
Load 0.1 0.3 0.1 0.1 0.1 0.4 0.1 0.1 0.2 0.3 0.5 0.3 0.2 0.2 n/a

Fig. 12. Shaping results for each individual user, showing the maximum load and AR? achievable while staying within the 750 ms delay

tolerance envelope supported by the user study 95% of the time.

backends of mobile applications. In particular, we con-
sidered delaying requests produced by the frontend and
sent to the backend. Introducing such delays could be
the mechanism for shaping the arrival process of the
requests at the backend. Of course, too many delays or
delays that are too large could irritate users.

There seems to be considerable opportunity to in-
troduce delays without affecting user satisfaction. We
developed a system that augments Android mobile appli-
cations with a delay component, and applied it to a range
of popular applications. We then conducted an “in the
wild” user study in which users employed our augmented
applications instead of the ones they would normally use.
The augmented applications would randomly add delays
and accept user feedback about satisfaction. Analysis of
the study data shows, among other things, the surprising
result that delays of up to 750 ms can be introduced
most of the time for most users without a major change
in their measured satisfaction.

As a proof of concept of user traffic shaping, we
developed an algorithm that introduces delay to requests
in a controlled manner to attempt to make their arrival
process at the backend have exponential interarrival
times (Poisson arrivals). We simulated the algorithm
using the trace data from the study. While keeping the
introduced delays within the tolerance determined by
the study, the algorithm is able to appreciably affect the
arrival process, pushing it significantly closer to Poisson
arrivals.

We are currently expanding these results along three
lines. First, we are working on user interfaces that
provide continuous individual user satisfaction feedback
with little to no cognitive effort on the part of the user
(e.g. [17], [31], [34], [36]). The more successful such
a technique is, the more we would be able to take
advantage of the variation in delay tolerance among
users. Second, we are trying to expand the delay toler-
ance of users by tying the concept to environmentalism,
sustainability, and peer pressure. We are currently testing
whether a user interface that allows the user to set a delay
tolerance and provides feedback about the environmental
and/or sustainability impact of their setting, as well as
how the user’s peer group has set it. Finally, we are
considering other ways in which to use delay tolerance
in shaping user traffic.
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