
Back to the Futures: Incremental Parallelization
of Existing Sequential Runtime Systems

James Swaine

Northwestern University

JamesSwaine2010@u.northwestern.edu

Kevin Tew

University of Utah

tewk@cs.utah.edu

Peter Dinda

Northwestern University

pdinda@northwestern.edu

Robert Bruce Findler

Northwestern University

robby@eecs.northwestern.edu

Matthew Flatt

University of Utah

mflatt@cs.utah.edu

Abstract
Many language implementations, particularly for high-level
and scripting languages, are based on carefully honed run-
time systems that have an internally sequential execution
model. Adding support for parallelism in the usual form—
as threads that run arbitrary code in parallel—would require
a major revision or even a rewrite to add safe and efficient
locking and communication. We describe an alternative ap-
proach to incremental parallelization of runtime systems.
This approach can be applied inexpensively to many sequen-
tial runtime systems, and we demonstrate its effectivenessin
the Racket runtime system and Parrot virtual machine. Our
evaluation assesses both the performance benefits and the
developer effort needed to implement our approach. We find
that incremental parallelization can provide useful, scalable
parallelism on commodity multicore processors at a frac-
tion of the effort required to implement conventional parallel
threads.

Categories and Subject Descriptors D.3.4 [Programming
Languages]: Processors — Run-time environments

General Terms Languages, Performance

Keywords Racket, functional programming, parallel pro-
gramming, runtime systems

1. Runtime Systems from a Sequential Era
Many modern high-level or scripting languages are imple-
mented around an interpretive runtime system, often with a
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JIT compiler. Examples include the Racket [11] (formerly
PLT Scheme) runtime system, the Parrot virtual machine,
and the virtual machines underlying Perl, Python, Ruby, and
other productivity-oriented languages. These runtime sys-
tems are often the result of many man-years of effort, and
they have been carefully tuned for capability, functionality,
correctness, and performance.

For the most part, such runtime systems havenotbeen de-
signed to support parallelism on multiple processors. Even
when a language supports constructs for concurrency, they
are typically implemented through co-routines or OS-level
threads that are constrained to execute one at a time. This
limitation is becoming a serious issue, as it is clear that ex-
ploiting parallelism is essential to harnessing performance in
future processor generations. Whether computer architects
envision the future as involving homogeneous or heteroge-
neous multicores, and with whatever form of memory co-
herence or consistency model, the common theme is that the
future is parallel and that language implementations must
adapt. The essential problem is making the language imple-
mentation safe for low-level parallelism, i.e., ensuring that
even when two threads are modifying internal data structures
at the same time, the runtime system behaves correctly.

One approach to enabling parallelism would be to al-
low existing concurrency constructs to run in parallel, and
to rewrite or revise the runtime system to carefully employ
locking or explicit communication. Our experience with that
approach, as well as the persistence of the global interpreter
lock in implementations for Python and Ruby, suggests that
such a conversion is extremely difficult to perform correctly.
Based on the even longer history of experience in parallel
systems, we would also expect the result to scale poorly as
more and more processors become available. The alternative
of simply throwing out the current runtime and re-designing
and implementing it around a carefully designed concur-
rency model is no better, as it would require us to discard



years or decades of effort in building an effective system,
and this approach also risks losing much of the language’s
momentum as the developers are engaged in tasks with little
visible improvement for a long period.

In this paper, we report on our experience with a new
technique for parallelizing runtime systems, calledslow-
path barricading. Our technique is based on the observa-
tion that the core of many programs—and particularly the
part that runs fast sequentially and could benefit most from
parallelism—involves relatively few side effects with respect
to the language implementation’s internal state. Thus, in-
stead of wholesale conversion of the runtime system to sup-
port arbitrary concurrency, we can add language constructs
that focus and restrict concurrency where the implementa-
tion can easily support it.

Specifically, we partition the set of possible operations
in a language implementation intosafe(for parallelism) and
unsafecategories. We then give the programmer a mecha-
nism to start a parallel task; as long as the task sticks to safe
operations, it stays in the so-calledfast pathof the imple-
mentation and thus is safe for parallelism. As soon as the
computation hits a barricade, the runtime system suspends
the computation until the operation can be handled in the
more general, purely sequential part of the runtime system.

Although the programming model allows only a subset
of language operations to be executed in parallel, this subset
roughly corresponds to the set of operations that the pro-
grammer already knows (or should know) to be fast in se-
quential code. Thus, a programmer who is reasonably capa-
ble of writing a fast programs in the language already pos-
sesses the knowledge to write a program that avoids unsafe
operations—and one that therefore exhibits good scaling for
parallelism. Furthermore, this approach enables clear feed-
back to the programmer about when and how a program uses
unsafe operations.

We continue our presentation by discussing parallel com-
putation in Racket and introducing our variant offutures
(Section 2), which we use as the programmer’s base mech-
anism for spawning a parallel task. We then explain in gen-
eral terms our approach to incremental parallelization (Sec-
tion 3). The core of our work is the implementation of fu-
tures in the Racket runtime system (Section 4) and Parrot
virtual machine (Section 5). Our Racket implementation is
more mature and is included in the current release. We eval-
uate the implementations both in terms of developer effort
to create them, and in terms of their raw performance and
scaling for simple parallel benchmarks, including some of
the NAS parallel benchmarks (Section 6).

The contributions of this work are the slow-path barricad-
ing technique itself, as well as an evaluation of both how dif-
ficult it is to add to Racket and Parrot and the performance
and scalability of the resulting runtime systems. Our eval-
uation suggests that the developer effort needed to use the

approach is modest and that the resulting implementations
have reasonable raw performance and scaling properties.

2. Parallelism through Futures
Racket providesfuture to start a parallel computation and
touch to receive its result:

future : (→ α) → α-future
touch : α-future → α

The future function takes a thunk (i.e., a procedure with
no arguments) and may start evaluating it in parallel to the
rest of the computation. Thefuture function returns a future
descriptor to be supplied totouch. Thetouch function waits
for the thunk to complete and returns the value that the thunk
produced. Iftouch is applied to the same future descriptor
multiple times, then it returns the same result each time, as
computed just once by the future’s thunk.

For example, in the function

(define (f x y)

(* (+ x y) (- x y)))

the expressions(+ x y) and(- x y) are independent. They
could be could be computed in parallel usingfuture and
touch as follows:

(define (f x y)

(let ([s (future (lambda () (+ x y)))]

[d (future (lambda () (- x y)))])

(* (touch s) (touch d))))

The main computation can proceed in parallel to a future,
so that the variant

(define (f x y)

(let ([d (future (lambda () (- x y)))])

(* (+ x y) (touch d))))

indicates as much parallelism as the version that uses two
futures, since the addition(+ x y) can proceed in parallel to
the future. In contrast, the variant

(define (f x y)

(let ([s (future (lambda () (+ x y)))])

(* (touch s) (- x y))))

includes no parallelism, because Racket evaluates expres-
sions from left to right;(- x y) is evaluated only after the
(touch s) expression.

A future’s thunk is not necessarily evaluated in parallel
to other expressions. In particular, if the thunk’s computa-
tion relies in some way on the evaluation context, then the
computation is suspended until atouch, at which point the
computation continues in the context of thetouch. For ex-
ample, if a future thunk raises an exception, the exception
is raised at the point of thetouch. (If an exception-raising



(define MAX-ITERS 50)

(define MAX-DIST 2.0)

(define N 1024)

(define (mandelbrot-point x y)

(define c (+ (- (/ (* 2.0 x) N) 1.5)

(* +i (- (/ (* 2.0 y) N) 1.0))))

(let loop ((i 0) (z 0.0+0.0i))

(cond

[(> i MAX-ITERS) (char->integer #\*)]

[(> (magnitude z) MAX-DIST)

(char->integer #\space)]

[else (loop (add1 i) (+ (* z z) c))])))

(for ([y (in-range N)])

(for ([x (in-range N)])

(write-byte (mandelbrot-point x y)))

(newline))

Figure 1. Sequential Mandelbrot plotting

future istouched a second time, the second attempt raises a
fresh exception to report that no value is available.)

A future’s thunk can perform side effects that are visible
to other computations. For example, after

(define x 0)

(define (inc!) (set! x (+ x 1)))

(let ([f1 (future inc!)]

[f2 (future inc!)])

(touch f1)

(touch f2))

the possible values ofx include 0, 1, and 2. Thefuture
andtouch operations are intended for use with thunks that
perform independent computations, though possibly storing
results in variables, arrays or other data structures usingside
effects.

Thef example above has nousefulparallelism, because
the work of adding or subtracting numbers is far simpler than
the work of creating a parallel task and communicating the
result. For an example with potentially useful parallelism,
Figure 1 shows a simple Mandelbrot-set rendering program,
a classic embarrassingly parallel computation.

In an ideal language implementation, the Mandelbrot
computation could be parallelized through a future for
each point. Figure 2 shows such an implementation, where
for/list is a list-comprehension form that is used to create
a list of list of futures, and then each future istouched in or-
der. This approach does not improve performance, however.
Although a call tomandelbrot-point involves much more
computation than(+ x y), it is still not quite as much as the
computation required forfuture plustouch.

Figure 3 shows a per-line parallelization of the Mandel-
brot computation. Each line is rendered independently to a

(define fss

(for/list ([y (in-range N)])

(for/list ([x (in-range N)])

(future

(lambda () (mandelbrot-point x y))))))

(for ([fs (in-list fss)])

(for ([f (in-list fs)])

(write-byte (touch f)))

(newline)))

Figure 2. Naive Mandelbrot parallelization

(define fs

(for/list ([y (in-range N)])

(let ([bstr (make-bytes N)])

(future

(lambda ()

(for ([x (in-range N)])

(bytes-set! bstr x (mandelbrot-point x

y)))

bstr)))))

(for ([f (in-list fs)])

(write-bytes (touch f))

(newline)))

Figure 3. Per-line Mandelbrot parallelization

buffer, and then the buffered lines are written in order. This
approach is typical for a system that supports parallelism,
and it is a practical approach for the Mandelbrot program in
Racket.

Perhaps surprisingly, then, the per-line refactoring for
Mandelbrot rendering runs much slower than the sequential
version. The problem at this point is not the decomposition
approach or inherent limits in parallel communication. In-
stead, the problem is due to the key compromise between
the implementation of Racket and the needs of program-
mers with respect to parallelization. Specifically, the prob-
lem is that complex-number arithmetic is currently treatedas
a “slow” operation in Racket, and the implementation makes
no attempt to parallelize slow operations, since they may
manipulate shared state in the runtime system. Programmers
must learn to avoid slow operations within parallel tasks—at
least until incremental improvements to the implementation
allow the operation to run in parallel.

A programmer can discover the slow operation in this
case by enabling debugging profiling, which causesfuture

andtouch to produce output similar to

future: 0 waiting for runtime at 126.741: *

future: 0 waiting for runtime at 126.785: /

The first line of this log indicates that a future computation
was suspended because the* operation could not be exe-



(define (mandelbrot-point x y)

(define ci

(fl- (fl/ (fl* 2.0 (->fl y))(->fl N)) 1.0))

(define cr

(fl- (fl/ (fl* 2.0 (->fl x))(->fl N)) 1.5))

(let loop ((i 0) (zr 0.0) (zi 0.0))

(if (> i MAX-ITERS)

(char->integer #\*)

(let ((zrq (fl* zr zr))

(ziq (fl* zi zi)))

(if (fl> (fl+ zrq ziq)

(expt MAX-DIST 2))

(char->integer #\space)

(loop (add1 i)

(fl+ (fl- zrq ziq) cr)

(fl+ (fl* 2.0 (fl* zr zi))

ci)))))))

Figure 4. Mandelbrot core with flonum-specific operations

cuted in parallel. A programmer would have to consult the
documentation to determine that* is treated as a slow oper-
ation when it is applied to complex numbers.

Another way in which an operation can be slow in Racket
is to require too much allocation. Debugging-log output of
the form

future: 0 waiting for runtime at 126.032:

[acquire_gc_page]

indicates that a future computation had to synchronize with
the main computation to allocate memory. Again, the prob-
lem is a result of an implementation compromise, because
Racket’s memory allocator is basically sequential, although
moderate amounts of allocation can be performed in parallel.

Figure 4 shows a version ofmandelbrot-point for which
per-line parallelism offers the expected performance im-
provement. It avoids complex numbers, and it also uses
flonum-specific arithmetic (i.e., operations that consume and
produce only floating-point numbers). Flonum-specific op-
erations act as a hint to help the compiler “unbox” interme-
diate flonum results—keeping them in registers or allocating
them on a future-local stack, which avoids heap allocation.
(In a language with a static type system, types provide the
same hint.) As a result, in sequential mode, this version runs
about 30 times as fast as the original version; a program-
mer who needs performance will always prefer it, whether
using futures or not. Meanwhile, for much the same reason
that it can run fast sequentially, this version also provides a
speed-up when run in parallel.

All else being equal, obtaining performance through par-
allelism is no easier in our design for futures than in other
systems for parallel programming. The programmer must
still understand the relative cost of computation and com-
munication, and the language’s facilities for sequential per-

formance should be fully deployed before attempting par-
allelization. All else isnot equal, however; converting the
initial Racket program to one that performs well is far sim-
pler than, say, porting the program to C. For more sophisti-
cated programs, where development in Racket buys produc-
tivity from the start, futures provide a transition path to paral-
lelism that keep those productivity benefits intact. Most im-
portantly, our approach to implementing futures makes these
benefits available at a tractable cost for the implementer of
the programming language.

3. Implementing Futures
Since future does not promise to run a given thunk in
parallel, a correct implementation offuture and touch is
easily added to any language implementation; the result of
future can simply encapsulate the given thunk, andtouch

can call the thunk if no previoustouch has called it. Of
course, the trivial implementation offers no parallelism.At
the opposite extreme, in an ideal language implementation,
future would immediately fork a parallel task to execute the
given thunk—giving a programmer maximal parallelism, but
placing a large burden on the language implementation to
run arbitrary code concurrently.

Thefuture andtouch constructs are designed to accom-
modate points in between these two extremes. The key is to
specify when computations can proceed in parallel in a way
that is (1) simple enough for programmers to reason about
and rely on, and (2) flexible enough to accommodate im-
plementation limitations. In particular, we are interested in
starting with an implementation that was designed to support
only sequential computation, and we would like to gradually
improve its support for parallelism.

To add futures to a given language implementation, we
partition the language’s set of operations among three cate-
gories:

• A safeoperation can proceed in parallel to any other com-
putation without synchronization. For example, arith-
metic operations are often safe. An ideal implementation
categorizes nearly all operations as safe.

• An unsafeoperation cannot be performed in parallel, ei-
ther because it might break guarantees normally provided
by the language, such as type safety, or because it de-
pends on the evaluation context. Its execution must be de-
ferred until atouch operation. Raising an exception, for
example, is typically an unsafe operation. The simplest,
most conservative implementation of futures categorizes
all operations as unsafe, thus deferring all computation to
touch.

• A synchronizedoperation cannot, in general, run in par-
allel to other tasks, but by synchronizing with other tasks,
the operation can complete without requiring atouch. It
thus allows later safe operations to proceed in parallel.



Operations that allocate memory, for example, are often
synchronized.

In a language like Racket, the key to a useful categoriza-
tion is to detect and classify operations dynamically and at
the level of an operator plus its arguments, as opposed to the
operator alone. For example, addition might be safe when
the arguments are two small integers whose sum is another
small integer, since small integers are represented in Racket
as immediates that require no allocation. Adding an integer
to a string is unsafe, because it signals an error and the cor-
responding exception handling depends on the context of the
touch. Adding two floating-point numbers, meanwhile, is a
synchronized operation if space must be allocated to box the
result; the allocation will surely succeed, but it may require
a lock in the allocator or a pause for garbage collection.

This partitioning strategy works in practice because it
builds on an implicit agreement that exists already between
a programmer and a language implementation. Program-
mers expect certain operations to be fast, while others are
understood to be slow. For example, programmers expect
small-integer arithmetic and array accesses to be fast, while
arbitrary-precision arithmetic or dictionary extension are rel-
atively slow. From one perspective, implementations often
satisfy such expectations though “fast paths” in the inter-
preter loop or compiled code for operations that are expected
to be fast, while other operations can be handled through
a slower, more generic implementation. From another per-
spective, programmers learn from experimentation that cer-
tain operations are fast, and those operations turn out to be
fast because their underlying implementations in the runtime
have been tuned to follow special, highly optimized paths.

The key insight behind our work is that fast paths in a
language implementation tend to be safe to run in parallel
and that it is not difficult to barricade slow paths, preventing
them from running in parallel. An implementation’s exist-
ing internal partitioning into fast and slow paths therefore
provides a natural first cut for distinguishing safe and un-
safe operations. Our implementation strategy is to set up a
channel fromfuture to the language implementation’s fast
path to execute a future in parallel. If the future’s code path
departs from the fast path, then the departing operation is
considered unsafe, and the computation is suspended until it
can be completed bytouch.

The details of applying our technique depend on the lan-
guage implementation. Based on our experience converting
two implementations and our knowledge of other imple-
mentations, we expect certain details to be common among
many implementations. For example, access to parallelism
normally builds on a POSIX-like thread API. Introducing
new threads of execution in a language implementation may
require that static variables within the implementation are
converted to thread-local variables. The memory manager
may need adjustment to work with multiple threads; as a first
cut, all allocation can be treated as an unsafe slow path. To

Figure 5. Incremental parallelization methodology

support garbage collection and similar global operations,the
language implementation’s fast path needs hooks where the
computation can be paused or even shifted to the slow path.

Figure 5 illustrates our general methodology. We start by
adding low-level support for parallelism, then experiment-
ing with the paths in the implementation that are affected.
Based on that exploration, we derive a partitioning of the lan-
guage’s operations into safe and unsafe. Having partitioned
the operations, we must implement a trapping mechanism
capable of suspending a parallel task before it executes an
unsafe operation. Finally, we refine our partitioning of the
operations (perhaps designating and implementing some op-
erations as synchronized) as guided by the needs of applica-
tions.

In the following two sections, we report in detail on two
experiments adding futures to an existing language. Our
first and more extensive experiment is in adding futures to
Racket. We also added a simple version of futures to the
Parrot virtual machine in order to test whether the lessons
from Racket generalized.

4. Adding Futures to Racket
The Racket runtime system is implemented by roughly 100k
lines of C code. It includes a garbage collector, macro ex-
pander, bytecode compiler, bytecode interpreter, just-in-time
(JIT) compiler, and core libraries. The core libraries include
support for threads that run concurrently at the Racket level,
but internally threads are implemented as co-routines (i.e.,
they are “user threads”).

Execution of a program in the virtual machine uses a
stack to manage the current continuation and local bind-
ings. Other execution state, such as exception handlers and
dynamic bindings, are stored in global variables within the
virtual-machine implementation. Global data also includes
the symbol table, caches for macro expansion, a registry of
JIT-generated code, and the garbage collector’s meta-data. In



addition, some primitive objects, such as those representing
I/O streams, have complex internal state that must be man-
aged carefully when the object is shared among concurrent
computations.

The virtual machine’s global and shared-object states
present the main obstacles to parallelism for Racket pro-
grams. An early attempt to implement threads as OS-level
threads—which would provide access to multiple processors
and cores as managed by the operating system—failed due
to the difficulty of installing and correctly managing locks
within the interpreter loop and core libraries. Since that early
attempt, the implementation of Racket has grown even more
complex.

A related challenge is that Racket offers first-class con-
tinuations, which allow the current execution state to be cap-
tured and later restored, perhaps in a different thread of ex-
ecution. The tangling of the C stack with execution state
means that moving a continuation from one OS-level thread
to another would require extensive changes to representation
of control in the virtual machine.

The design of futures side-steps the latter problem by des-
ignating operations that inspect or capture the current ex-
ecution state as usafe; thus, they must wait until atouch.
Meanwhile, the notions of unsafe and synchronized opera-
tions correspond to using a single “big lock” to protect other
global state in the virtual machine.

The following sections provide more details on how we
adjusted the implementation of execution state and catego-
rized operations in Racket while limiting the changes that
were needed overall.

4.1 Compilation, Execution, and Safety Categorization

Execution of a Racket program uses two phases of compila-
tion. First, a bytecode compiler performs the usual optimiza-
tions for functional languages, including constant and vari-
able propagation, constant folding, inlining, loop unrolling
(a special case of inlining in Racket), closure conversion,and
unboxing of intermediate floating-point results. The byte-
code compiler is typically used ahead of time for large pro-
grams, but it is fast enough for interactive use. Second, when
a function in bytecode form is called, a JIT compiler con-
verts the function into machine code. The JIT creates inline
code for simple operations, including type tests, arithmetic
on small integers or flonums, allocations of cons cells, array
accesses and updates, and structure-field operations. When
the JIT compiler is disabled, bytecode is interpreted directly.

The first step in supporting useful parallelism within
Racket was to make the execution-state variables thread-
local at the level of OS threads, so that futures can be ex-
ecuted speculatively in new OS-level threads. To simplify
this problem, we confined our attention to the execution
state that is used by JIT-generated code. Consequently, our
first cut at categorizing operations was to define as safe any
operation that is implemented directly in JIT-generated code
(e.g. any operation that can be translated by the JIT compiler

typedef (*primitive)(int argc,

Scheme_Object **argv);

Scheme_Object *handler(int argc,

Scheme_Object **argv,

primitive func) {

Scheme_Object *retval;

if (pthread_self() != g_runtime_thread_id) {

/* Wait for the runtime thread */

retval = do_runtimecall(func, argc, argv);

return retval;

} else {

/* Do the work directly */

retval = func(argc, argv);

return retval;

}

}

Figure 6. Typical primitive trap handler

into machine instructions which do not include function calls
back into runtime code), and any other operation was unsafe.
This first-cut strategy offered a convenient starting pointfor
the incremental process, in which we modify performance-
critical unsafe operations to make them future-safe.

When a future is created in Racket, the corresponding
thunk is JIT-compiled and then added to a queue of ready
futures. The queue is served by a set of OS-level future
threads, each of which begins execution of the JIT-generated
code. At points where execution would exit JIT-generated
code, a future thread suspends to wait on the result of an
unsafe operation. The operation is eventually performed by
the original runtime thread when it executes atouch for
the future. In our current implementation, a future thread
remains blocked as long as it waits for the runtime thread
to complete an unsafe operation.

Since the JIT compiler was designed to work for a non-
parallelized runtime system, the code that it generates uses
several global variables to manage execution state. In some
cases, state is kept primarily in a register and occasionally
synchronized with a global variable. To allow multiple JIT-
generated code blocks to execute in parallel, we changed the
relevant global variables to be thread-local variables in the
C source of the Racket implementation.1 We then adjusted
the JIT compiler to access a global variable through an
thread-specific indirection. The thread-specific indirection is
supplied on entry to JIT-generated code.

4.2 Handling Unsafe Operations

When JIT-generated code invokes an operation that is not
implemented inline, it invokes one of a handful of C func-

1 On some platforms, we could simply annotate the variable declaration in
C with thread. On other platforms, we use pre-processor macros and
inline assembly to achieve similar results.



Figure 7. Timeline for a future with an unsafe operation

Figure 8. Timeline for a synchronized operation

tions that call back into the general interpreter loop. When
a future thread takes this path out of JIT-generated code, the
call is redirected to send the call back to the runtime thread
and wait for a response. Figure 6 illustrates the general form
of such functions. Each first checks whether it is already ex-
ecuting on the runtime thread. If so, it performs the external
call as usual. If not, the work is sent back to the runtime
thread viado runtimecall.

The runtime thread does not execute the indirect call
until touch is called on the corresponding future. Figure 7
illustrates the way that an unsafe operation suspends a future
thread until its value can be computed by the runtime thread
in response to atouch. Note that thetouch function itself
is considered unsafe, so iftouch is called in a future thread,
then it is sent back to the runtime thread. Thus, thetouch

function need only work in the runtime thread.

4.3 Synchronized Operations

Like unsafe operations, synchronized operations always run
on the runtime thread. Unlike unsafe operations, however,
the runtime thread can perform a synchronized operation on
a future thread’s behalf at any time, instead of forcing the
future thread to wait untiltouch is called.

As part of its normal scheduling work to run non-parallel
threads, the runtime system checks whether any future
thread is waiting on a synchronized operation. If so, it im-
mediately performs the synchronized operation and returns
the result; all synchronized operations are short enough tobe
performed by the scheduler without interfering with thread
scheduling.

Currently, the only synchronized operations are alloca-
tion and JIT compilation of a procedure that has not been
called before. More precisely, allocation of small objects
usually can be performed in parallel (as described in the
next section), but allocation of large objects or allocation

Figure 9. Per-future allocation

of a fresh page for small objects requires cooperation and
synchronized with the memory manager. Figure 8 illustrates
the synchronized allocation a new page with the help of the
runtime thread.

4.4 Memory Management

Racket uses a custom garbage collector that, like the rest of
the system, was written for sequential computation. Specif-
ically, allocation updates some global state and collection
stops the world. As in many runtime systems, the virtual
machine and its garbage collector cooperate in many small
ways that make dropping in a third-party concurrent garbage
collector prohibitively difficult. Similarly, convertingthe
garbage collector to support general concurrency would
be difficult. Fortunately, adapting the collector to support
a small amount of concurrency is relatively easy.

The garbage collector uses a nursery for new, small ob-
jects, and then compacting collection for older objects. The
nursery enables inline allocation in JIT-generated code by
bumping a pointer. That is, a memory allocation request
takes one of the following paths:

• Fast Path— the current nursery page has enough space
to accommodate the current request. In this case, a page
pointer is incremented by the size of the object being
allocated, and the original page pointer is returned to the
caller. This path is executed purely in JIT-generated code.

• Slow Path— the current page being used by the allo-
cator does not have enough space to accommodate the
current request. In this case, a new page must either
be fetched from either the virtual machine’s own inter-
nal page cache, or must be requested from the operating
system. If the entire heap space has been exhausted, a
garbage collection is triggered.

The nursery itself is implemented as a collection of pages,
so adding additional thread-specific pages was straightfor-
ward. As long as it is working on its own page, a future



thread can safely execute the inline-allocation code gen-
erated by the JIT compiler. Figure 9 illustrates the use of
future-specific nurseries.

Acquiring a fresh nursery page, in contrast, requires syn-
chronization with the runtime thread, as described in the pre-
vious section. The size of the nursery page adapts to the
amount of allocation that is performed by the future request-
ing the page.

Garbage collection still requires stopping the world,
which includes all future threads. The JIT compiler gen-
erates code that includes safe points to swap Racket-level
threads. When JIT-generated code is running in a future, it
never needs to stop for other Racket threads, but the same
safe points can be repurposed as garbage-collection safe
points. That is, the inlined check for whether the compu-
tation should swap threads is instead used as a check for
whether the future thread should pause for garbage collec-
tion. Meanwhile, garbage collection in the runtime thread
must not be allowed unless all future threads are blocked at
a safe point.

Besides providing support for thread-specific nursery
pages, the garbage collector required minor adjustments to
support multiple active execution contexts to be treated as
roots. Roughly, the implementation uses fake Racket threads
that point to the execution state of a computation in a future
thread.

4.5 Implementing touch

To tie all of the preceding pieces together, the implementa-
tion of touch is as follows:

• If the future has produced a result already, return it.

• If a previoustouch of the future aborted (e.g., because
the future computation raised an exception), then raise
an exception.

• If the future has not started running in a future thread,
remove it from the queue of ready futures and run it
directly, recording the result (or the fact that it aborts,
if it does so).

• If the future is running in a future thread, wait until it
either completes or encounters an unsafe operation:

If the future thread has encountered an unsafe oper-
ation, perform the unsafe operation, return the result,
and wait again. If performing the unsafe operation re-
sults in an exception or other control escape, tell the
future thread to abort and record the abort for the fu-
ture.

If the future completes in a future thread, record and
return the result.

In addition, the scheduler loop must poll future threads
to see if any are waiting on synchronized operations; if so,
the operation can be performed and the result immediately

returned to the future thread. By definition, a synchronized
operation cannot raise an exception.

5. Adding Futures to Parrot
Parrot is a register-based virtual machine with heap-allocated
continuation frames. Compilers target Parrot by emitting
programs in the Parrot intermediate language, which is a
low-level, imperative assembly-like programming language,
but with a few higher-level features, including garbage col-
lection, subroutines, dynamic container types, and a extensi-
ble calling convention.

Three key characteristics made adding futures to the Par-
rot VM machine relatively easy:

1. an existing abstraction and wrapping of OS-level threads;

2. a concurrency or green thread implementation that ab-
stracts and encapsulates thread of execution state; and

3. a pluggablerunloop(i.e., interpreter loop) construct that
allows switching between different interpreter cores.

With such groundwork in place, the following enhancements
to the Parrot C implementation were needed:

• refactoring of representation of threads to allow it to be
reused for futures,

• allowing an unfinished future computation to be com-
pleted by the main interpreter after a OS-level join, and

• creating a new runloop that executes only safe (for paral-
lelism) operations and reverts back to the main thread for
unsafe operations.

In Parrot, spawning afuture consists of creating a new
interpreter and specifying what data, if any, to share between
the parent and child OS-level threads. Parrot futures have
their own execution stack, but they share the same heap and
bytecodes. To implementtouch, Parrot waits for the future
thread to return and then checks to see if the future returned
a value, in which case the value is returned. If the future
encountered an unsafe instruction, the future thread returns
a computation, which is completed in the caller.

Parrot’s runloop is the core of the interpreter, where byte-
codes are fetched and executed. Parrot has several different
runloops that provide debugging, execution tracing, profil-
ing, and experimental dispatching. Parallel futures adds a
future runloop that checks each bytecode just before it is ex-
ecuted to see if it is safe to execute or if the future needs
to be suspended and executed sequentially in the main inter-
preter. This runtime safety checking includes argument type
checking and bounds checking on container data structures.

Parrot is a highly dynamic virtual machine. Many byte-
codes are actually virtual function calls on objects that can
be defined by the users. For example, Parrot has typical array
get and set opcodes, but the opcode are translated into vir-
tual method calls on a wide variety of container object types.
Some container object types are a fixed size at construction



Person hours
Task expert non-expert

General Steps
Naive implementation 6 40
Exploration and discovery - 480
Unsafe-operation handling 6 16
Blocked-future logging 1 -
Total General: 13 536

Implementation-specific Steps
Thread-local variables 8 -
Future-local allocation 8 -
Garbage-collection sync 6 -
Thread-local performance 6 -
Total Specific: 28 -
Overall Total: 41 536

Figure 10. Racket implementation effort by task. Adding a
release-quality futures implementation to Racket using our
approach required only one week of expert time, and one
academic quarter of non-expert time.

time; others grow dynamically. This indirection inherent in
the bytecode makes compile-time safety checking difficult.
To compensate, the future runloop does checks at run time
that an operand container object is of the fixed-size variety
(and thus safe to run in parallel), not a dynamically growing
variant (which would not be safe to run in parallel).

For our Parrot experiment, we stopped short of imple-
menting any operations as synchronized or implementing
future-local allocation, and the Parrot future runloop treats
most opcodes as unsafe operations. Arithmetic, jump, and
fixed-container access and update are the only operations
designated as safe—enough to run a parallel benchmark and
check that it scales with multiple processors. Our experience
working with the Parrot VM and Racket VM suggest that
the work required to add those features to the Parrot VM
would be very similar to the work we did to add them to
the Racket VM and would achieve similar improvements in
performance.

6. Evaluation
Our evaluation supports the hypothesis that our approach to
incremental parallelization of existing, sequential runtime
systems is (a) developer-efficient, and (b) leads to reason-
able performance gains for parallelized programs. Our eval-
uation of the first claim is based on measurements of the
overall amount of developer time (person-hours) invested in
Racket and the Parrot VM implementation work. Our evalu-
ation of the second claim is based on measuring both raw
performance and scaling of several benchmarks, focusing
primarily on the Racket implementation.

Person hours
Task expert

General Steps
Naive implementation 8
Exploration and discovery 24
Unsafe-operation handling 8
Total General: 40

Implementation-specific Steps
Wrapping OS-level threads 8
Future runloop 4
Total Specific: 12
Overall Total: 52

Figure 11. Parrot implementation effort by task. Adding a
proof-of-concept implementation of futures to Parrot using
our approach required only about a week of expert time.

6.1 Developer Effort is Low

Because our approach was developed in the context of the
Racket runtime system, our parallel Racket implementation
is the most mature. Given that, one might expect to see
substantial development effort; however, this is not the case.
Figure 10 lists the overall development costs (in person-
hours) required to apply our approach to Racket. Costs are
partitioned into two categories: general and implementation-
specific. The general category reflects the first three steps
described in Figure 5; the implementation-specific category
reflects the incremental parallelization step, which includes
work that was necessary for Racket, but may not apply in
other runtime adaptation work.

The columns in Figure 10 show the efforts of two de-
velopers, the expert being the designer and primary imple-
menter of the Racket runtime and the non-expert being a
first-year graduate student (working in a different city). No-
tice that with roughly one week of expert time, and one aca-
demic quarter of non-expert time, it was possible to apply
our approach to a widely used,2 mature3 runtime system and
achieve reasonable performance results. Furthermore, theef-
fort produced a parallel futures implementation that is now
a part of the main-line release of Racket.

Having gained experience with our approach, we also
applied it to the Parrot VM to ensure our experience is
not Racket-specific. Figure 11 lists the development time
we required to add a first-cut futures implementation. The
Parrot effort was undertaken by a third-year Ph.D. student
who, while not a core developer of Parrot, is intimately
familiar with its internals. He also was familiar with the
Racket effort. The upshot of Figure 11 is that adding a proof-
of-concept implementation of futures to Parrot using our
approach required only about a week of expert time.

2 The Racket distribution is downloaded more than 300 times per day.
3 The runtime system has been in continuous development since1995.



Penghu Cosmos
OS OS X 10.6.2 CentOS 5.4
Processor Type Intel Xeon AMD Opteron 8350
Processors 2 4
Total Cores 8 16
Clock Speed 2.8 GHz 2.0 GHz
L2 Cache 12 MB 4x512 KB
Memory 8 GB 16 GB
Bus Speed 1.6 GHz 1 GHz

Racket 5.0 5.0
32-bit mode 64-bit mode

GCC 4.2.1 (Apple) 4.1.2 (Red Hat)
Java Java SE 1.6 OpenJDK 1.6

Figure 12. Machine configurations used for benchmarks

That the same approach has been applied successfully and
efficiently to two very different runtime systems suggests
that it is quite general.

6.2 Testbed, Metrics, and Benchmarks

We evaluated the performance of our futures implementa-
tions using two different machines and five benchmarks. We
use the commonplace parallel systems performance metrics
of strong scalability and raw performance, and we also com-
pare our results against the same algorithms implemented in
other languages.

Machines

We conducted performance evaluations on both a high-
end desktop workstation with two quad-core processors (8
cores), and a mid-range server machine with four quad-core
processors (16 cores). The detailed configuration of these
machines is given in Figure 12. During the execution of a
given benchmark, no other significant load was placed on
the machine. We verified that separate threads of execution
used by the runtime system were in fact mapped to separate
processing cores.

Metrics

The number of threads used by each of our benchmarks is a
runtime parameter. We measured the wall-clock execution
time of each benchmark as a function of this parameter,
and we present both the raw numbers and a speedup curve.
The speedup curve shows the wall-clock time of the parallel
implementation using a single thread divided by the wall-
clock time of the parallel implementation using the indicated
number of threads. The problem size remains constant as
we increase the number of threads; thus the speedup curve
measures “strong scaling.”

For several benchmarks, we also measured the wall-clock
time of sequential implementations in various languages,
including optimized C and Java.

Program Implementation
Microbenchmarks (self-developed)

MV-Sparse Racket
Mergesort Racket
Signal Convolution Racket, Parrot

NAS Parallel Benchmarks [4]
Integer Sort Racket, Java
Fourier Transform Racket, Java

Figure 13. Benchmarks, sources, and parallel implementa-
tions. Sequential implementations in C, Java, Racket, and
Parrot are also used for comparison.

Benchmarks

Figure 13 lists the benchmarks we used to evaluate the per-
formance of parallel futures in the Racket and Parrot VM
implementations. Several of the evaluation programs are not
drawn from a particular benchmark suite; rather, they are
common implementations of well-known algorithms. Note
that not all programs have a Parrot VM implementation.

Signal convolutionis a signal-processing algorithm used
to determine the output signal of a system given itsimpulse
responseor kernel, which defines how the system will re-
spond given an impulse function applied to the input signal.
For any input signalx, we can compute each value in the
corresponding output signaly using the following equation:

yn
=

k∑

−k

xk
· hn−k

wherek is time andh is the impulse response/kernel. Our
implementation computes an output signal given a one-
dimensional input signal and kernel, both of which are made
up of floating-point values.

We have implemented signal convolution in sequential
Racket, Racket with futures, sequential Parrot, Parrot with
futures, and sequential C.

Mergesort sorts a vector of floating-point numbers. We
consider two variants of the mergesort algorithm, one that
is readily parallelizable, and one that is not, but runs sig-
nificantly faster than the parallel version on one proces-
sor [16]. We implemented both of the algorithms in sequen-
tial Racket, Racket with futures, and sequential C.

MV-Sparse does sparse matrix-vector multiplication us-
ing the compressed row format to store the matrix. For those
unfamiliar with compressed row format, the essential idea
is to flatten the matrix into a single 1D array and combine it
with parallel 1D arrays indicating both where rows begin and
what the column indices are. We implemented MV-Sparse
in sequential Racket, Racket with futures, and sequential C.
Our Racket version employs the higher-level nested data par-
allel primitive called agather, which we have implemented
using futures.



The NAS Parallel Benchmarks [4] are a suite of bench-
marks derived from computational fluid dynamics applica-
tions of interest to NASA. They are widely used in the paral-
lel systems community as application benchmarks. We con-
sider two of them here.

NAS Integer Sort (IS) sorts an array of integer keys
where the range of key values is known at compile-time.
Sorting is performed using the histogram-sort variant of the
bucket sort algorithm. We implemented NAS IS in sequen-
tial Racket and Racket with futures. We compare against the
publicly available sequential and parallel Java referenceim-
plementations [13].

NAS Fourier Transform (FT) is the computational ker-
nel of a 3-dimensional Fast Fourier Transform. Each itera-
tion performs three sets of one-dimensional FFT’s (one per
dimension). We implemented NAS FT in sequential Racket
and Racket with futures. We again compare against the pub-
licly available sequential and parallel Java reference imple-
mentations.

6.3 Performance is Reasonable

Using futures implemented via our approach to incremen-
tally parallelizing existing sequential runtime systems,it is
possible to achieve both reasonable raw performance and
good scaling for the benchmarks we tested.

Racket

Figure 14 shows running time and speedup curves for the
Racket implementations of the three microbenchmarks listed
in Figure 13. The results confirm that using futures, im-
plemented using our developer-efficient incremental paral-
lelization approach, it is feasible to achieve reasonable par-
allel performance on commodity desktops and servers, both
in terms of raw performance and speedup.

Though the Racket implementations are slower than the
optimized C versions in the sequential case, all three par-
allel Racket versions are able to yield better performance
than sequential C after employing relatively small numbers
of processors (2 for both convolution and MV-sparse, and 6
for mergesort). The parallel convolution implementation ex-
hibits good scaling through the maximum number of proces-
sors available on both machine configurations, owing to the
tight nested-loop structure of the algorithm, which involves
only floating-point computations. Here the parallel convolu-
tion is able to avoid slow-path exits by using Racket’s float-
ing point-specific primitives, as discussed in Section 2. The
Racket benchmarks also use unsafe versions of the arith-
metic and array indexing operations.

Figure 15 shows running time and speedup curves for the
Racket implementations for the NAS IS and FT benchmarks.
We compare performance with both sequential and parallel
Java implementations.

While sequential Racket implementations for these bench-
marks are considerably slower than the Java implementa-
tions, the parallel implementations scale better. However,

this scaling does not allow us to catch up with the paral-
lel Java implementation in absolute terms. We suspect that,
especially in the case of the IS benchmark, this is due to
the majority of work being performed in the parallel por-
tion of the benchmark being array accesses (e.g.vector-ref

and vector-set! in Racket), operations, which are more
heavily optimized in the Java runtime system. The Racket
with futures implementation of NAS FT, however, is able to
outperform sequential Java after 3 processors (on the Cos-
mos machine configuration), and generally exhibits similar
scaling characteristics to the reference parallel Java imple-
mentation.

As with the self-developed benchmarks (Signal Convo-
lution, Mergesort, and MV-Sparse), the results demonstrate
that our approach to incremental parallelization of sequential
runtimes can lead to reasonable parallel performance.

Parrot

We tested our prototype implementation of Parrot with fu-
tures using only the convolution benchmark. The results, as
can be seen in Figure 16, are comparable to those we saw
with Racket with futures in terms of speedup (compare to
Figure 14(a)-(d)). This is supportive of our claim that our
approach leads to reasonable parallel performance.

It is important to point out that the raw performance is not
comparable, however. This is the result of our implementa-
tion being preliminary (contrast Figure 10 and Figure 11).
More specifically, our current implementation is based on a
version of Parrot in which the JIT is in a state of flux. Our
benchmark results reflectinterpretedperformance without
the JIT, and thus should be taken with a grain of salt. Our
current implementation of futures in Parrot only supports op-
erations on unboxed floating-point numbers.

Caveats notwithstanding, our results for the Parrot with
futures proof-of-concept implementation suggest that our
approach can be generalized to other high level language
implementations.

7. Related Work
Our work builds on the ideas of futures from MultiLisp [14],
a parallel dialect of Scheme. Parallelism in MultiLisp is also
expressed viafuture. However, MultiLisp does not require
an explicit touch on the part of the programmer. Instead,
touches are implicitly performed whenever the value of a
future is needed. Also unlike our work, futures in Multilisp
always execute in parallel, whereas ours only execute in
parallel when it is safe (based on the constraints of the
runtime system).

Many language communities face the problem of retrofitting
their implementations to support parallelism. The typical
approach is to allow arbitrary threads of computation to
run in parallel, and to adapt the runtime system as neces-
sary. Some succeed in the transition through substantial re-
implementation efforts; threads in the original Java 1.1 vir-
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Figure 14. Raw performance and speedup of microbenchmarks using Racket with futures: lower dotted line is sequential,
optimized C, upper dotted line is sequential Racket, dots indicate Racket with futures. Numbers next to “Racket” labelsgive
the ratio of speed of the C version to the speed of the Racket version. The solid lines in speedup graphs indicate ideal speedup.
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Figure 15. Raw performance and speedup for NAS parallel benchmarks in Racket with futures: upper dotted line is sequential
Racket, lower dotted line indicates sequential Java, dots indicate Racket with futures, squares indicate parallel Java. The solid
lines in speedup graphs indicate ideal speedup.

tual machine where implemented as user threads, but many
re-implementations of Java now support threads that use
hardware concurrency. Others succeed in the transition with
the help of their language designs; Erlang and Haskell are
prime examples of this category, where the purely functional
nature of the language (and much of the language implemen-
tation) made a transition to support for parallelism easier,
through it required substantial effort [3, 15]. Finally, many
continue to struggle with the transition; our own attempts to
map Racket-level threads to OS-level threads failed due to
the complexity of the runtime system, and frequent attempts
to rid the main Python and Ruby implementations of the
global interpreter lock (GIL) have generally failed [1, 17].
An attempt to support OS-level threads in OCaml has so far
produced an experimental system [7].

Our approach of introducing parallelism through con-
strained futures is somewhat similar to letting external C
code run outside the GIL (and therefore concurrently) in
Python or Ruby. Instead of pushing parallelism to foreign li-
braries, however, our approach draws parallelism into a sub-
set of the language. Our approach is also similar to adding
special-purpose parallel operators to a language, as in data-
parallel operations for Data Parallel Haskell [8]; insteadof
constraining the set of parallel operations a priori, however,
our approach allows us to gradually widen the parallelism
available through existing constructs.

In adding support for parallelism to Racket, we hope to
move toward the kind of support for parallelism that is pro-
vided by languages like NESL [5], X10 [10], Chapel [9],
Fortress [2], Manticore [12], and Cilk [6], which were all
designed to parallelism from the start. Adding parallelism
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Figure 16. Raw performance and speedup of microbenchmarks using Parrot with futures: dotted line is sequential Parrot, dots
indicate Parrot with futures. The solid lines in speedup graphs indicate ideal speedup.

to a sequential run-time system is a different problem than
designing a parallel language from scratch, but we take in-
spiration from designs that largely avoid viewing parallelism
as concurrent threads of arbitrary computation.

8. Conclusion
We have proposed and describedslow-path barricading, a
new approach for incrementally parallelizing sequential run-
time systems, and we have implemented and benchmarked
it in two real-world runtime systems. In both cases, slow-
path barricading allowed programs to safely take advantage
of all the processor cores available in commodity multicore
machines. These efforts required modest amounts of devel-
oper effort, and the scalability of parallel benchmarks that
we wrote using the futures implementations was surprisingly
good. Using our approach, implementers can quickly pro-
duce a mature parallel adaptation of an existing sequential
runtime system.

The key insight behind our approach is that in existing se-
quential runtime systems, fast-path operations are generally
already safe to run in parallel, while slow-path ones may
not be. Furthermore, we can use this decomposition to in-
strument the codebase to find and improve problematic fast-
paths. Finally, the application developer interested in paral-
lelizing a part of a program is already likely using fast-path
constructs for maximum sequential performance, or should
be. In essence, we leverage both the runtime system imple-
menters’ extensive efforts to optimize fast-path operations
and the application developers’ use of these fast-path opera-
tions in optimized sequential code.

In this paper, we focus on adding the low-level paral-
lel construct of futures to existing runtime systems. While
it is clearly feasible to write to write parallel programs di-

rectly with futures (much like one can write them in a lower-
level language with threads), we envision futures as only
the starting point. We have already used futures in Racket
to construct a prototype library of higher-level parallel con-
structs, specifically nested data-parallel constructs. Weare
currently working on expanding that library and determining
which higher-level constructs need to be implemented in the
runtime system for performance reasons. Efforts are also in
place to improve the futures implementation in Racket, par-
ticularly to enhance support for nested futures and schedul-
ing/mapping of futures. Another effort involves the design
and implementation of parallel constructs for NUMA archi-
tectures and distributed memory machines.

We believe that our approach could be applied to a wide
range of runtime systems, and obvious possibilities are
scripting languages such as Perl, Python, and Ruby, as well
as JavaScript/ECMAScript.
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