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ABSTRACT

This paper describes our vision for Hobbes, an operating
system and runtime (OS/R) framework for extreme-scale
systems. The Hobbes design explicitly supports application
composition, which is emerging as a key approach for appli-
cations to address scalability and power concerns anticipated
with coming extreme-scale architectures. We make use of
virtualization technologies to provide the flexibility to sup-
port requirements of application components for different
node-level operating systems and runtimes, as well as dif-
ferent mappings of the components onto the hardware. We
describe the architecture of the Hobbes OS/R, how we will
address the cross-cutting concerns of power/energy, schedul-
ing of massive levels of parallelism, and resilience. We also
outline how the “users” of the OS/R (programming models,
applications, and tools) influence the design.

1. INTRODUCTION
Application composition is a critical capability that will

be the foundation of the way extreme-scale systems must be
used in the future. The high-performance computing (HPC)
community is already seeing the need for tighter integration
of modeling and simulation with advanced analysis, and ad
hoc solutions for coupling multiple simulations as well as
integrating simulation and analysis are being developed and
deployed. These ad hoc approaches are often hindered by
system interfaces not designed to provide the full semantic
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capability required, making it difficult to deliver scalable
high-performance implementations.

A recent workshop report [4] published by the U. S. De-
partment of Energy (DOE) describes the challenges fac-
ing OS/Rs for future extreme-scale scientific computing sys-
tems. Many of these challenges, such as the need for in-
creased reliability and the desire to reduce power and energy
use, are largely driven by limitations in hardware technology,
and the computer architecture community is vigorously pur-
suing potential approaches and solutions. While the OS/R
is an important component in exploiting hardware-based so-
lutions, addressing near-term hardware limitations without
considering application composition will lead to incomplete
solutions. A more effective approach is to consider these
challenges in the context of application composition and to
allow for integration of the hardware or algorithmic solutions
required to address them.

This paper outlines our vision for an OS/R that enables
application composition, and leverages a lightweight virtual-
ization capability to provide a system software infrastructure
for future extreme-scale scientific computing platforms. The
rest of this paper is organized as follows. Sec. 2 provides
background on the important factors that influence OS/R
design and how each of these factors influences our approach
to application composition. Sec. 3 describes the scenarios
that motivate the need for more advanced support for appli-
cation composition on current and future extreme-scale sys-
tems. Sec. 4–7 describe our approach, based on lightweight
virtualization, the architecture of the OS/R framework, the
cross-cutting concerns we consider in the design, and how
we incorporate the needs of the various “users” of the OS/R
stack into our design. Finally, we summarize the key ideas
and contributions of this paper in Sec. 8.

2. BACKGROUND
In this section, we provide our perspective of the key con-

siderations that impact the design and development of the
OS/R, briefly describe previous work on supporting application-
specific OS/R functionality, and discuss the rationale for a
development process appropriate for extreme-scale systems.

2.1 Factors Influencing OS Design
Despite the rapidly changing landscape of HPC, OS/R

design continues to be influenced by a small number of fac-
tors. We describe each of these factors in terms of extreme-
scale parallel-computing platforms and the challenges they
present, considering application composition and the per-
spective that the operating system needs to enable explo-



ration of potential solutions to these challenges, but not
necessarily dictate solutions.

Usage Model. The usage model for HPC machines is
evolving from sequences of simulation and analysis tasks,
communicating via long-term storage, toward a more dy-
namic, “compositional” approach, where applications con-
sist of complex combinations of coupled codes, data ser-
vices, and tools. Projected limitations in the I/O system
motivate the integration of simulation and analysis, cou-
pling of complex physics codes, and development of fully-
integrated application workflows [35, 27, 5]. Expected power
constraints motivate the need to co-locate applications to
avoid data movement wherever possible [27]. New HPC use
cases for streaming and graph analytics require features of
the OS/R such as global addressing, massive multithread-
ing, and event-based processing that are not well supported
on traditional HPC systems [14]. Finally, the expected re-
silience challenges for extreme scale drive the need for inno-
vative solutions throughout the software stack [8].

Hardware Architecture Advancements. We are fo-
cused on the requirements of leadership-class systems that
will be available in the 2020 time frame. These systems
will contain a very large collection of “compute nodes” con-
nected by a high-performance communication network. This
compute infrastructure will include a monitoring and control
system that provides extensive capabilities for observing the
health of the system and supports “out-of-band” communi-
cation capabilities.

The compute nodes will provide a wide range of com-
putational resources, including traditional, load-store pro-
cessors, streaming processors, and specialized processors lo-
cated near resources (e.g., in- and near-memory processors).
Parts of the memory system will have very different perfor-
mance characteristics in terms of bandwidth, latency, energy
consumption, resilience, and persistence. The inter-node
communication network will continue to be a distinguish-
ing characteristic of leadership-class systems and the net-
work endpoints will likely be more tightly integrated into
the compute nodes. Finally, we expect that the Hardware
Monitoring and Control (HMC) system will provide more
opportunity for customized monitoring and control of criti-
cal resources, enabling customized event-detection, informa-
tion routing and response.

Programming Environments and Tools. Advanced
programming models, and the application-facing runtime
systems (RTS) used to realize these models, present sev-
eral challenges. Since the introduction of massively paral-
lel processors (MPPs) in the 1990’s, advanced programming
models have emphasized methods for communication. Fu-
ture programming models will increasingly explore abstrac-
tions for other critical resources. Among these, abstractions
needed to support deep memory hierarchies (e.g., exposing
address mapping hardware), enable use of specialized pro-
cessors (e.g., shipping runtime code to near-memory or on-
network interface processors), and resilience/power manage-
ment (exposing the HMC infrastructure) will be critical.

Performance and debugging tools also present challenges.
Performance tools need to capture, filter, and communicate
observations, some of which may be difficult to collect (e.g.,
memory bus utilization). Debugging tools need low-level
access to the resources used by an application.

External Shared Services. The most important exter-
nal shared service for extreme-scale parallel machines has

been the storage system, but external services for visual-
ization and wide-area networking are also common. There
is a trend for the storage system to become more tightly
integrated into the compute platform to help address the
bandwidth limitations of spinning media. The OS/R will
need to consider the evolving requirements of this storage
hierarchy, and of other external services.

Legacy Applications. Support for legacy applications,
system services, protocols, and devices used to be a consider-
able challenge for OS/R design and implementation. Years,
and often decades of work have gone into today’s applica-
tions, and a new OS/R must provide a path to support them
rather than throw away this investment.

2.2 Previous Approaches
Over the last twenty years, the success of distributed-

memory parallel computing allowed the OS to be highly cus-
tomized. When the factors influencing OS design, described
above, become sufficiently stable, it becomes straightfor-
ward to constrain the OS to provide a minimal set of ser-
vices and tailor resource allocation and management tech-
niques to a subset of potential methods. For example, the
lightweight kernel (LWK) approach popularized by Sandia
National Laboratories in the 1990’s [26] was based on provid-
ing a limited set of system services needed for performance
and scalability for message-passing based applications run-
ning on a space-shared, batch-scheduled, distributed-memory
parallel computer with an attached parallel file system. In
contrast, a general purpose OS is designed to maximize the
throughput of all of the job sharing a node rather than max-
imize the performance of a single job using the node. How-
ever, as high-performance computing became more general-
purpose – moving from custom MPP systems to commodity
clusters – using a general-purpose OS became more feasible.
More recently, scalability issues such as OS noise [23] led to
renewed interest in understanding the benefits of an LWK
approach [11, and references therein] relative to a general-
purpose OS for extreme-scale systems.

Much OS research has been focused on offering resource
management policies that are optimized for a particular ap-
plication, and providing the ability to have an OS specialized
for the needs of a particular application [32]. An LWK can
be viewed as a specific instance of this capability targeted
at HPC applications. In Sandia’s previous attempt at pro-
viding a configurable OS [33, and references therein], we
discovered that most applications were either designed for
a LWK environment or they expected the full functionality
of a general-purpose OS like Linux. There was essentially
no middle ground where configurable services needed to be
provided or where alternative implementations of those ser-
vices was desirable given this experience. Consequently, we
believe that virtual machine technology is the most effective
approach to providing an application-specific set of system
services and coupling the OS with the application.

2.3 Addressing Extreme Scale
The other perspective driving HPC OS/R research and

development is scale up versus scale down. The scale-up
approach leverages a general-purpose OS like Linux and en-
hances it through excision or replacement of services to allow
it to scale up to meet the demands of extreme scale. The
alternative approach is to start with an OS designed and
proven for the extreme scale and devise a method of scaling



it down to smaller systems. In our experience, scaling down
is a much easier problem than scaling up. Again, we believe
that virtualization technology will enable an approach for
meeting the demands of extreme scale and will also provide a
viable environment for developing and running applications
at smaller scale [16]. We believe it is much more effective to
explore solutions in an unconstrained environment like an
LWK, which has a relatively small code base and a limited
amount of complexity. Once discovered, implementing a so-
lution in a more general-purpose OS is more straightforward
than trying to scale up approaches used at a smaller scale.

3. MOTIVATING USE CASES
Our goal is a flexible OS/R, capable of hosting existing

petascale applications, and supporting new operating modes
better suited to new architectures and programming models.
To motivate our approach, we present a set of use cases that
represent existing and developing codes important to the
DOE mission.

Exploratory Analytics. The “exploratory analytics” use
case represents application workflows that include a large-
scale simulation that feeds an analysis or visualization code.
The traditional approach performs analysis as a post-processing
step, storing intermediate results to the file system. On
extreme-scale systems, the sheer volume of data could make
this approach impractical for many types of analysis. In-
stead, we are interested in workflows that execute simula-
tion, analysis, and visualization concurrently. Examples of
existing exploratory analytics applications include coupling
shock physics with ParaView for fragment detection [21],
a Quantum Monte Carlo (QMC) materials code coupled
with a service to generate observables in a different coordi-
nate system [29], and the Pixie3D magnetohydrodynamics
(MHD) code coupled to PixiePlot and ParaView [24].

Streaming Analytics. In the “streaming analytics” use
case, a simulation produces small data products to be con-
sumed in an event-based control-system. The events follow
a distributed data-flow model. A streaming analytics appli-
cation can be instantiated as a directed graph of computing
components. It does not require the full features of tradi-
tional HPC runtimes, but does require mechanisms for event
routing and transfer, proper placement in a network topol-
ogy, and signals for event activation. Examples include topo-
logical analysis for the S3D combustion simulation code [6],
and streaming network analysis [20].

Graph Analytics. The “graph analytics” use case rep-
resents a host of problems including simple statistics gath-
ering of marketing profiles, strong correlating methods, and
knowledge creation with inferencing and deduction on large
data structures such as semantic networks. Graph-analytics
codes often require massive multithreading and global shared
memory not supported by traditional HPC runtimes. Ex-
amples include social and economic modeling [14], as well as
modeling of the power grid.

Code Coupling. The “code coupling” use case demon-
strates interactions between concurrent HPC simulations.
Although the coupled applications execute concurrently, they
may have dramatically different requirements for program-
ming models and runtime support. Data sharing and syn-
chronization needs may benefit from co-locating portions of
the codes on the same physical nodes. Examples include
coupling the XGC1 fusion code to the reduced-model code
XGC-1A to allow for longer running times [2], and the LIME

multiphysics coupling environment [22].
Application Frameworks. The“application frameworks”

use case focuses on approaches to coordinate execution and
management of analysis results for large numbers of parallel
jobs, for example, to conduct parameters studies or sensitiv-
ity analyses. This example represents the Many-Task Com-
puting approach used by frameworks such as Falcon [25],
Swift [34], and the Integrated Plasma Simulator (IPS) [9].
On current HPC platforms, frameworks make heavy use of
scripting languages (e.g., Python) and communicate results
through a global file system; however, we do not expect this
to be a practical use of the file system at extreme scales.

4. APPROACH
This section describes our approach to providing an OS/R

stack with explicit support for application composition and
virtualization. This OS/R stack, Hobbes1, is intended to
be both a practical solution to support extreme-scale ap-
plications, and a vehicle for research in critical technologies
required for the effective use of extreme-scale HPC systems.

Our ability to develop technologies that meet the require-
ments while minimizing overhead and carefully managing
application isolation is critical. Our approach leverages and
extends technologies developed for the Kitten LWK and the
Palacios lightweight virtualization system [18] as the starting
point for our work, with substantial restructuring to meet
the needs of the Hobbes software stack.

4.1 Application Composition
Ad hoc composition of applications is already taking place

in the HPC community, typically requiring that applications
be adapted to a common runtime environment. In con-
trast, we propose to support all of the use cases described
in the previous section with a unified application composi-
tion framework. This framework will support the compo-
sition of applications developed for different programming
models (e.g., MPI and UPC) with potentially incompatible
RTSs. Each application will have a single runtime envi-
ronment and will run in an independent enclave(as defined
in [4]). As such, application composition becomes “enclave
composition.”

Although most of our discussion focuses on coarse-grain
composition of applications, where there is a clear separation
in runtime requirements, we do not prevent finer-grain com-
positions, such as the desire to mix multiple threading pack-
ages within the same component (e.g., OpenMP, Threading
Building Blocks [1], and pthreads). While this is fundamen-
tally an application/runtime issue, our thread creation and
scheduling mechanisms are flexible enough to support all
common threading models.

One key challenge with our approach is the possibility
that the applications being composed may have markedly
different runtime requirements. For example, one applica-
tion may have minimal runtime requirements, while another
might require a full-featured OS, like Linux.

Another challenge involves the mapping of enclaves onto
the compute nodes of an extreme-scale system. The most
straightforward mapping would allocate independent nodes
for each enclave, using the interconnection network to join

1Hobbes is the stuffed tiger in the Calvin and Hobbes comics
created by Bill Watterson. This follows the Sandia tradition
of naming its LWKs for cats.
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Figure 1: Composition for an “exploratory analytics” use
case that uses a filter co-located with the simulation to re-
duce data communicated to the visualization enclave.

(compose) the enclaves (applications). While this mapping
is easy to implement, performance considerations dictate
that we also support mappings based on direct sharing of
node-level resources. For example, in the Exploratory An-
alytics use case (Fig. 1), a small “filter” needs to be inter-
posed between the application and visualization enclaves.
While we will describe the use case as a standard composi-
tion of applications, our intent is that the implementation
will be lightweight (e.g., a function call) and will reduce the
data communicated to the visualization enclave. Ultimately,
mapping decisions must be based on a careful analysis of
performance trade-offs and it is our intention to maintain a
separation between composition and mapping: composition
is used to describe computations, while mapping defines the
physical resources used to realize these computations.

It is worth noting that our approach in mapping enclaves
to shared physical resources provides the opportunity to,
effectively, “move code to data,” thus reducing (network)
data movement and thereby power consumption, as well as
increasing performance. With the addition of appropriate
trust, sandboxing, and resource management mechanisms,
the same approach can be used to allow interactions between
applications and shared services. For example, an applica-
tion could “push code” to an enclave implementing a storage
service (i.e., active storage”).

4.2 Virtualization
To address the challenges of variable runtime requirements

and complex application mappings, we will develop a wide
range of virtualization technologies. These technologies will
support the definition of “virtual compute nodes,” enabling
the full system virtualization that can be used to support
almost any RTS that could be required. By supporting
the creation of multiple virtual nodes from a single phys-
ical node, these technologies will also enable sharing of the
physical resources available on a compute node.

5. HOBBES ARCHITECTURE
The main components of the Hobbes architecture (Fig. 2)

include a System-Global OS, Enclave OS/R, Node OS/R,
Node Virtualization Layer, and the Global Information Bus.
In this section, we describe the role each component plays
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Figure 2: Schematic representation of the main components
of the Hobbes architecture and their interactions via APIs
(vertical arrows) and data exchange (horizontal arrows).

in the Hobbes architecture and the APIs needed to support
application composition.

5.1 System-Global OS
The System-Global OS (SGOS) is the portion of the sys-

tem responsible for scheduling, monitoring, controlling, and
coordinating the resources of a single system. We pay par-
ticular consideration to how applications use shared system
services, such as shared storage or visualization systems; in-
deed, the need to effectively use shared services is a primary
motivator for our approach to application composition. In
Hobbes, however, a shared service is simply a specialized,
possibly long-running application whose enclave may include
specialized nodes, e.g., storage or visualization nodes.

The APIs for the the SGOS include interfaces to a schedul-
ing and resource management subsystem responsible for map-
ping enclaves and assemblies of enclaves onto physical re-
sources; interfaces to hardware management and control sys-
tems that manage information about the health and pro-
ductivity of associated hardware and software in the sys-
tem, possibly gathered from sensors; interfaces for auto-
nomic management [31] that support a wide range of poli-
cies for adapting resource allocations, for example based on
power or resilience constraints [15, 30]; and interfaces to ba-
sic global services like authentication and authorization.

In addition to the core APIs for the SGOS, application
composition requires a much richer specification of jobs than
in the past. Job descriptions may include OS/R selections
for enclaves, information to guide the mapping of the logi-
cal computation structure onto the physical resources, and
policies to be enforced by the autonomic management sys-
tems. We will draw on related work in the cloud and grid
computing communities to inform our designs [3, 17].

5.2 Enclave OS/R
An enclave is a partition of the system allocated to a

single application or service [4]. As such, an enclave is pri-
marily a container and a unit of coordination. The Enclave
OS/R (EOS) as a distinct component of the OS architecture
extends the enclave concept with functionality, in much the
same way that an object extends a data structure with func-
tionality. The primary reason for introducing the EOS as a
distinct component of an extreme-scale OS is to allow each
enclave to operate with a degree of autonomy, rather than
current practice of explicit top-down control of all aspects
of the system from the equivalent of the SGOS.

The APIs of the EOS provide support for enclave member-
ship, collective operations for launching, terminating, pause,



and resume enclaves; and autonomic management similar to
what is provided in the SGOS. Enclave membership is a key
capability of the EOS. Since we intend to support dynamic
enclaves, negotiations for addition or removal of resources
may be initiated by the RTS, the SGOS, or by the EOS
itself, for example due to a node failure.

The composition of enclaves in order to assemble complex
applications is the most important and novel feature of the
EOS. The idea that, by definition, each enclave uniformly
executes a single OS/R configuration also implies that each
one can be tailored to the needs of the application. Compo-
sition of enclaves, then, is the selective breaking of the nor-
mal isolation between enclaves to allow direct interactions
between Node OS/R instances. At the lowest level, com-
position of enclaves on distinct sets of nodes involves the
network, while enclaves on virtual nodes co-located on the
same physical nodes share hardware (e.g., memory), (Fig. 3).
However, we propose to develop suitable abstractions to pro-
vide a uniform mechanism so users can decide how to map
composite applications onto the hardware simply based on
the performance requirements of the coupling.

5.3 Node OS/R
The Node OS/R (NOS) provides interfaces and abstrac-

tions to the underlying compute, memory, and network re-
sources and also provides APIs for use by the Enclave OS/R
(EOS) and System Global OS (SGOS) to support higher-
level allocation and management of node-level resources.

Important features of the NOS relate to managing com-
pute, memory, and network resources. The NOS will need
to expose compute capabilities from an increasingly complex
set of compute resources, for example logic layers embedded
in sophisticated devices like the Hybrid Memory Cube [7].
Memory hierarchies will become much more complex and
the NOS needs to provide interfaces allowing the runtime to
manage this memory effectively. Finally, to maximize net-
work efficacy and isolation, we will develop an infrastructure
for differentiated network services that provides latency and
bandwidth guarantees to traffic participants.

5.4 Node Virtualization Layer
The Node Virtualization Layer (NVL) provides manage-

ment of virtual node instances on physical nodes and pro-
vides hardware abstractions, through the Hardware Abstrac-
tion Layer (HAL). The NVL, which is not called out in the
workshop report, is central to our approach to composition,
as well as providing a flexible environment capable of sup-
porting the diverse Node OS/R requirements of applications.

The NVL must handle three distinct use cases: (1) the
ability to support an application running with a minimal
(native) node OS; (2) the ability to support full featured
operating systems; and (3) the ability to create a multi-
plicity of “virtual nodes” to support the sharing of physical
resources between applications in distinct enclaves. In pre-
vious work, we used the Kitten/Palacios [18] code base to
address the first two cases. The third use case provides mo-
tivation for much of the fundamental research that will be
required for Hobbes. The mechanisms developed to create
multiple virtual nodes must be efficient enough to realize
the full benefit of shared resources, but flexible enough to
provide the required degree of isolation between enclaves.

5.5 Global Information Bus
The Global Information Bus (GIB) is the logical software

layer that encapsulates mechanisms for sharing status infor-
mation needed by other components in the OS/R. Core func-
tionality in the GIB will support the gathering, publication
and subscription of status information. This includes basic
performance information (e.g., current energy consumption
for each node) and information defined by a runtime (e.g.,
length of the unexpected message queue for MPI). Informa-
tion communicated through the GIB has two distinguishing
characteristics: first, the information is communicated in
small parcels (perhaps a few words) and second, there is
no expectation of coherence in this information (it is very
unlikely that a scan through all of the nodes would result
in a consistent view of the machine). The intention is to
provide hints about the status of nodes that can be used
in initial management decisions by the EOS, an adaptive
runtime system, or tools.

In many respects, the GIB represents an abstraction of
the information collection and dissemination portion of the
SGOS Hardware Monitoring and Control (HMC) subsystem,
which on high-end HPC systems is implemented on distinct
Reliability, Availability, and Serviceability (RAS) hardware.
We expect to implement the functionality of the GIB on the
RAS system where possible, but also using the main high-
performance network on commodity clusters that may not
have a separate RAS system.

6. CROSSCUTTING AREAS
To effectively address existing and upcoming requirements

of extreme-scale systems, Hobbes must support and enable
research and development in a number of crosscutting areas.
Perhaps the most critical of these are power and energy,
scheduling, and resilience.

6.1 Power and Energy
Power and energy consumption will be significant con-

straints on next-generation systems. Accordingly, we need
to ensure that Hobbes is “power aware” so that it can be
a suitable tool for power management research, as well as
production operation of power-managed systems.

Hobbes provide APIs for measurement and control of power
throughout the system. We will leverage our recent work [13,
12, 19] to develop a broad system power API specification.
The power-measurement API will support measurement at
the component, node, enclave, and system granularities (at
a minimum). The API will also facilitate measuring exist-
ing and new processors, memory, or network technologies.
The power control API provides a mechanism to manage
the power consumption of devices that expose these features.
Although this type of control is not common among comput-
ing devices, recent activity to expose more controls for man-
aging power is encouraging. For example, power clamping
has recently been introduced on Intel Sandy Bridge proces-
sors [28], and similar mechanisms exist on IBM Power-7 and
AMD Bulldozer processors. Our API will provide an ab-
straction to explicitly control these devices as well as reason
about their usage.

6.2 Scheduling
Virtually every one of the APIs defined in the earlier sec-

tions will have a scheduling component. A key challenge
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is the design of bi-directional interfaces to support coor-
dination of scheduling decisions between multiple layers in
the OS/R stack. These interfaces must support scheduling-
related dialog between an upper-level component that es-
tablishes policy and a lower-level component that provides
the mechanisms needed to implement the policy. As an ex-
ample, the SGOS establishes policies for the full machine;
however, the mechanisms needed to affect these policies will
be provided by the EOS, the NOS and possibly the NVL.
The needed dialog is frequently complicated by the fact that
the lower-level component is the first to be invoked when a
scheduling decision is needed.

6.3 Resilience
The OS/R must handle faults in all of its layers, masking

faults when appropriate, and providing sufficient informa-
tion and mechanisms to other OS layers and applications to
handle unmasked faults. We expect Hobbes to be a vehicle
for research in resilience mechanisms to handle faults in dif-
ferent layers of the software stack and to understand fault
sensitivity and coverage.

One area of particular interest is the development of mech-
anisms that identify critical OS/R data structures (those
most susceptible to failures and critical for stability) and
creating a methodology for resilient OS/R data structures.
For example, previous analysis [10] of dynamic memory pro-
files of Kitten and Linux indicates ample opportunities for
enhancements, such as using hashes, redundant data, and
self-checks and repairs, of OS/R data structures for spe-
cific allocation regions (e.g., memory/process management,
kernel/shared memory), which we will incorporate into the
Hobbes OS/R components as appropriate.

7. USER SUPPORT
To effectively address the needs of the HPC community,

Hobbes must support the entire set of HPC system “users”,
including support for developers of existing and experimen-
tal programming models, application developers, and per-
formance and debugging tool developers. The following de-
scribes the key interfaces in our design.

7.1 Programming Model Support
Programming model support is a critical enabling feature

of the proposed OS/R infrastructure. Hobbes provides both
low level OS mechanisms and global privileged services for
system management. The low level mechanisms need to en-
able both RTS and OS support, while global services pro-
vide for functionality outside the purview of applications.
Our main goal is to enable better system management by
providing a path for the flow of information from the RTS
to the NOS and SGOS.

7.2 Application Support
Much of the required work in the APIs and cross-cutting

areas is motivated by the requirements and challenges asso-
ciated with integrating analytics and simulation. In partic-
ular, we expect support for composition of applications with
different OS/R requirements to have a dramatic impact on
development, deployment, and usability of integrated ana-
lytics codes on extreme-scale systems. For example, con-
sider recent work for the National Nuclear Security Ad-
ministration Advanced Simulation and Computing program
(NNSA/ASC) to explore integrated simulation analysis. As
part of that project, an SNL team has developed both “in
situ” and “in transit” analysis techniques that use ParaView
to detect material fragments from simulation results of the
CTH shock physics code [27]. This work revealed a number
of weaknesses in existing HPC systems that could be dra-
matically improved by technologies included in the Hobbes
design. In particular, this type of application requires, at a
minimum, portable mechanisms for inter/intra-enclave com-
munication and coordinated scheduling. Advanced features
like dynamic allocation, contraction, and expansion of en-
claves; control over placement of data and code; and data-
movement scheduling would significantly expand the capa-
bility and utility of this type of approach.

7.3 Tools Support
As with programming models and applications, tools de-

fine requirements for the components of Hobbes. Our goal is
to ensure that Hobbes includes technologies to enable scal-
able and efficacious debugging, performance, and system ad-
ministration tools. Traditional OS/Rs have sufficient sup-
port for intra-enclave tools; however, we must also support
tools that work with multiple enclaves. For instance, we
must provide the support for a debugger to inspect and con-
trol processes of a software composition running in multiple



enclaves, so that the user can debug interactions between
the parts running in the various enclaves.

8. SUMMARY
We have described our vision for the Hobbes extreme-scale

OS/R framework. The design is motivated by anticipated
changes in the architecture of extreme-scale systems, as well
as by trends in applications as they respond to the same
hardware changes. In particular, we incorporate explicit
support for application composition into the OS/R design.
We rely on virtualization technologies to provide the flexibil-
ity to support different node-level OS/R requirements that
different application components may have, as well as to al-
low co-location of components on the same physical nodes,
for performance reasons. The design addresses rising con-
cerns for extreme-scale computing, including power and en-
ergy management, dealing with massive (“billion-way”) par-
allelism, and resilience. We also incorporate requirements
arising not only from the applications, but also from cur-
rent and novel programming models, and from tools, such
as debuggers and performance analyzers.
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