
Optimizing Overlay-based Virtual Networking Through
Optimistic Interrupts and Cut-through Forwarding

Zheng Cui† Lei Xia‡ Patrick G. Bridges† Peter A. Dinda‡ John R. Lange∗

†Department of Computer Science

University of New Mexico

Albuquerque, NM 87131, USA

{cuizheng,bridges}@cs.unm.edu

‡Department of EECS

Northwestern University

Evanston, IL 60208 USA

{lxia,pdinda}@northwestern.edu

∗Department of Computer Science

University of Pittsburgh

Pittsburgh, PA 15260 USA

jacklange@cs.pitt.edu

Abstract—Overlay-based virtual networking provides a power-
ful model for realizing virtual distributed and parallel computing
systems with strong isolation, portability, and recoverability
properties. However, in extremely high throughput and low
latency networks, such overlays can suffer from bandwidth and
latency limitations, which is of particular concern if we want
to apply the model in HPC environments. Through careful
study of an existing very high performance overlay-based virtual
network system, we have identified two core issues limiting
performance: delayed and/or excessive virtual interrupt delivery
into guests, and copies between host and guest data buffers done
during encapsulation. We respond with two novel optimizations:
optimistic, timer-free virtual interrupt injection, and zero-copy
cut-through data forwarding. These optimizations improve the
latency and bandwidth of the overlay network on 10 Gbps
interconnects, resulting in near-native performance for a wide
range of microbenchmarks and MPI application benchmarks.

I. INTRODUCTION

Data centers and scientific clouds require clusters and

supercomputers interconnected with advanced networks, such

as high-speed 10 Gbps Ethernet, InfiniBand, and SeaStar

interconnects. Increasingly these environments are turning to

virtualization as a means of deploying and managing large-

scale computing systems with the “Infrastructure as a Service”

(IaaS) cloud computing model. These environments, when

combined with virtual machines and virtual overlay network-

ing, provide a powerful model to realize virtual distributed

and parallel computing with strong isolation, portability, and

recoverability properties. While giving IaaS cloud service

providers full control over physical network configurations,

it can provide the users of such services with location and

networking hardware independence.
In this paper we focus on optimizing the performance of

software-based virtual overlay network systems. We begin

by analyzing the performance challenges of a virtual overlay

network designed for HPC and Cloud systems, VNET/P [1].

Despite dramatically improved performance compared to other

virtual overlay networks, including native performance on 1

Gbps Ethernet networks, VNET/P is still limited to near-

native performance on faster networks. Specifically, in 10

Gbps Ethernet networks, VNET/P has 3 times higher latency

and 60–70% throughput of native configurations. Additionally,

latency exhibits a significant amount of variance. Our analysis

shows that these performance limitations are primarily due

to two issues: delayed and excessive virtual interrupts to guest

virtual machines (VMs), and copy operations between host and

guest buffers which reduce the number of delivered packets per

interrupt. These are general issues that are likely to occur in

any virtual overlay network.

We present two new optimizations that address the above

mentioned issues in virtual overlay network systems. Further-

more, we demonstrate that these optimizations dramatically

improve performance on high-end interconnects. Our opti-

mizations include:

• Optimistic Interrupts: An optimistic, timer-free interrupt

injection mechanism that improves both latency and

throughput in the overlay network; and

• Cut-through Forwarding: A zero-copy cut-through data

forwarding mechanism that increases the number of pack-

ets delivered per interrupt and improves the performance

of optimistic interrupt injection.

These optimizations are currently implemented in VNET/P+,

an optimized version of our VNET/P virtual overlay network

implementation.1 Compared to the VNET/P overlay imple-

mentation, VNET/P+ reduces latency by 50%, and increases

throughput by more than 30%. As a consequence, it is able

to provide native MPI application benchmark performance on

10 Gbps Ethernet networks.

VNET/P+ is implemented in the context of a lightweight

host kernel, while the original VNET/P is implemented in a

full Linux host kernel. This difference permitted a preliminary

study of the effects of noise isolation on overlay performance.

The results suggest that noise isolation can reduce the vari-

ability in performance.

In the work described here we concentrate on configurations

with dedicated device assignment. In these scenarios the

receive ring and interrupt channel of a virtual NIC is explicitly

bound to a single physical NIC. This is an important use-

case in scientific clouds, high-end data centers, and virtual

supercomputer environments which seek the management ad-

vantages of overlays without sacrificing optimal communica-

tion performance. Our results demonstrate that this model is

just as useful for optimizing virtual overlay networks as it is

for virtual NICs. Furthermore, some aspects of cut-through

forwarding (and noise isolation), can be applied even without

1VNET/P and VNET/P+ are publicly available as part of the Palacios VMM
and can be downloaded from v3vee.org.

SC12, November 10-16, 2012, Salt Lake City, Utah, USA
978-1-4673-0806-9/12/$31.00 c©2012 IEEE

the device binding constraint. VNET/P (sans optimizations)

can be run where the constraint is not possible to achieve.

The rest of the paper is organized as follows: Section II

presents background on the Palacios VMM, overlay net-

working, and the VNET/P architecture. Section III then an-

alyzes the performance of VNET/P, providing insight into

the fundamental challenges of overlay support for high-speed

network devices. Section IV follows with a description of our

new optimizations for virtual overlay networks on high-speed

interconnects. Sections V briefly describes an implementation

of the proposed optimizations and microbenchmark results,

and Section VI follows with an extensive evaluation of the im-

pact of these optimizations using more complex benchmarks.

Finally, Section VII concludes.

II. BACKGROUND

We now describe Palacios and VNET/P, the software plat-

forms in which the present work occurs, as well as the

broader context of work in virtual overlay networks and virtual

network optimization.

A. Palacios VMM

Palacios is an OS-independent, open source, BSD-licensed,

publicly available, embeddable VMM designed as part of the

V3VEE project (http://v3vee.org). The V3VEE project is a

collaborative community resource development project involv-

ing Northwestern University, the University of New Mexico,

the University of Pittsburgh, Sandia National Labs, and Oak

Ridge National Lab. Detailed information about Palacios can

be found elsewhere [2]. Palacios is capable of virtualizing

large scale (4096+ nodes) supercomputers with only minimal

performance overheads [3]. Palacios’s OS-agnostic design

allows it to be embedded into a wide range of different OS

architectures. Four embeddings currently exist. In this paper

we employ the Linux and Kitten embeddings.

B. Virtual Overlay Networks

Current adaptive cloud computing systems use software-

based overlay networks to carry inter-VM traffic. For example,

the user-level VNET/U system [4]–[6] upon which VNET/P

is based combines a simple networking abstraction within

the VMs with location-independence, hardware-independence,

and traffic control. Specifically, it exposes a layer 2 abstraction

that lets the user treat his VMs as being on a simple LAN,

while allowing the VMs to be migrated seamlessly across

resources by routing their traffic through the overlay. By

controlling the overlay, the cloud provider or adaptation agent

can control the bandwidth and the paths between VMs over

which traffic flows. Such systems [4], [7] and others that

expose different abstractions to the VMs [8] have been under

continuous research and development for several years. Cur-

rent virtual networking systems have sufficiently low overhead

to effectively host loosely-coupled scalable applications [9],

but their performance has been insufficient for tightly-coupled

applications [10]. Recent work on VNET/P, described in more

detail in the following section, has enhanced the performance

of virtual overlay networks for more tightly-coupled sys-

tems [1].

C. VNET/P Implementation

VNET/P is an in-VMM, overlay-based layer-2 virtual net-

working system for the Palacios VMM. As illustrated in

Figure 1, VNET/P consists of a virtual NIC in each guest

OS, an extension to the VMM (the VNET/P Core) that

handles packet routing and interfacing to virtual NICs, and

a Linux kernel module (the VNET/P Bridge) for interacting

with the host’s network interfaces and remote systems. For

high performance applications, as in this paper, the virtual

NIC conforms to the virtio interface, but several virtual NICs

with hardware interfaces are also available in Palacios.

In operation the virtual NIC conveys Ethernet packets

between the application VM and Palacios, and includes receive

and transmit rings. Interrupts are injected into the guest via a

virtual IOAPIC/APIC interrupt controller structure. Routing

and packet forwarding occur in the VNET/P Core. Routing is

based on MAC addresses with a hash-based cache system that

allows for constant time lookups in the common case. A packet

routed by the VNET/P Core to a guest is handed to a virtual

NIC, while a packet routed to an external network or machine

is routed to the VNET/P bridge. The VNET/P bridge, which is

embedded in the host kernel, encapsulates the guest’s Ethernet

packets into UDP datagrams and sends them out through host

Ethernet devices.

One key optimization employed by VNET/P is the use of an

adaptive variant of sidecore processing [11] in which otherwise

available processor cores are recruited to perform packet rout-

ing, encapsulation, and copying. This allows packet forwarding

to be done in parallel with guest interrupt and packet process-

ing, improving its performance in high-throughput cases.

Compared to VNET/U and other user-level software-based

systems, VNET/P can effectively support communication-

intensive applications in overlay networks. For example, com-

pared to VNET/U, VNET/P reduces latency on 1 Gbps net-

works by more than an order of magnitude and achieves native

throughput on these networks. This enables MPI application

benchmarks to run on the overlay at native speeds on 1 Gbps

networks. Compared to native or passthrough networking,

however, VNET/P still has performance limitations, namely:

• High latency. VNET/P’s latencies are 3 times higher than

native latencies on 1 Gbps and 10 Gbps networks, which

is particularly problematic for tightly-coupled HPC appli-

cations as well as recent DHT-based Cloud systems [12].

• Variablility. Network virtualization causes significant

throughput and latency variation [13], [14]. Consistent,

predictable network performance is critical to data-

intensive computing, and performance variability also

makes it hard to infer network congestion and bandwidth

properties from end-to-end probes (e.g. TCP Vegas [15],

PCP [16]).

• Reduced throughput. VNET/P delivers 60–70% of na-

tive throughput on 10 Gbps NICs. This impacts applica-

Guest OS Guest OS
User Space Guest OS

Application

Guest OS

Application

VNET/P

Control
Device
Driver

Device
Driver

Virtual NIC Virtual NICLinux Kernel

VNET/P Core
VNET/P

Palacios VMM

VNET/P

Bridge

Host Driver

Physical Network

Fig. 1. VNET/P architecture.

tion performance, as demonstrated in HPCC and some

NAS application benchmarks in our previous work [1].

D. Virtual Networking Optimization

There has been a wide range of work on optimizing high-

speed network interface performance in virtual machines [17]–

[20], much of it focused on paravirtualizing the NIC, or by-

passing the host OS, virtual machine monitor, and sometimes

the guest OS. The work described in this paper leverages

paravirtualized NICs to improve overlay performance, and

extends them with additional optimizations appropriate for

overlay networks. Approaches that completely bypass the host

and virtual machine monitor, on the other hand, cannot be used

in virtual network overlays because they make it impossible

for the VMM to route and manage an overlay network.

Most work on optimizing software network virtualization

has focused on interrupt processing; this focus is well-founded,

as our analysis in Section III demonstrates. In particular,

research has examined various interrupt handling schemes

for virtual networking systems such as polling, regular inter-

rupts, interrupt coalescing, and disabling and enabling inter-

rupts [21]. Studies that specifically examined virtual interrupt

coalescing techniques attempt to avoid excessive virtual in-

terrupts and improve throughput by coalescing interrupts in

virtual NICs similar to how host NICs coalesce interrupts [22],

[23]. Unfortunately, these techniques control virtual interrupt

frequency using a high-frequency periodic timer that has high

overheads and generate substantial OS noise.

III. ANALYSIS

To more fully understand the performance challenges that

high-speed networks present to virtual overlay networks, we

instrumented and traced the performance of packet reception

and transmission in VNET/P running in a Linux host OS on

AMD Opteron systems with 10Gbps Ethernet adapters (more

details on the test systems are provided in Section VI). Our

analysis highlights three major challenges to overlay networks

Fig. 2. Virtual interrupt time line

in high-speed networks: delayed virtual interrupts, excessive

virtual interrupts, and high-resolution timer noise.

A. Delayed virtual interrupts

Although the VNET/P packet dispatcher raises a virtual

interrupt to the guest OS when a packet arrives in the virtual

NIC’s receive buffer, the time at which the guest starts to

process the receive queue is dramatically delayed compared

to the native case. This is because virtual interrupt handling

touches virtual device registers (e.g. both APIC and device

registers), incurring multiple rounds of trap-and-emulation.

Figure 2 illustrates the time line of a virtual interrupt. The

cost of a typical trap-and-emulation of an interrupt controller

register operation is around 5000 cycles, based on our experi-

ments on our AMD cluster. As a result, each virtual interrupt

must introduce at least 10K cycles of latency. In addition, the

VMM must perform bookkeeping on both the guest and host

states for each trap, increasing the effective length of each

trap-and-emulate cycle. For example, the average processing

from a VM exit to the next VM entry in Palacios is between

10K–200K cycles. As a result, when the virtual device driver’s

interrupt handler is invoked, around 40K cycles have elapsed

since the virtual interrupt was delivered (T0 – T2). The virtual

device driver’s interrupt handler performs additional register

accesses that must also be trap-and-emulated (T2 – T4), and

additional exits result when the guest OS switches stacks and

schedules tasks. As a result, when the guest OS finally starts

to process the virtual NIC’s receive queue, between 430K to

25M cycles have passed (T4 – T6).

B. Excessive virtual interrupts

After processing an inbound packet, the VNET/P packet

dispatcher interrupts a guest OS immediately, indicating the

packet’s readiness to the guest OS. Although this scheme

provides correctness and low per-packet latencies, it causes

excessive virtual interrupts that reduce the amount of guest

CPU time actually available for packet processing. Physical

network interfaces typically use interrupt coalescing to avoid

this problem, where interrupts are delayed a bounded amount

of time to balance interrupt delivery latency while reduc-

ing CPU interrupt processing overheads. Unfortunately, such

schemes are challenging in virtual NICs, as described in the

following subsection.

C. High-resolution timer noise

In hardware controllers, fine-grained timers are used in

conjunction with interrupt coalescing to bound the latency

of I/O completion notifications. Such timers are hard and

inefficient to use in a hypervisor. High-performance host

NICs, for example, typically bound interrupt coalescing delays

in the range of tens or hundreds of microseconds because

delays longer than this can significantly impact the perfor-

mance of latency-sensitive applications. Operating systems,

however, typically only provide timers with granularities in

the millisecond range, and even timers of this resolution are

known to cause performance problems in high-performance

environments.

IV. OPTIMIZATIONS

To address the challenges described in the previous section,

we propose a set of two main receive-side optimizations for

virtual overlay network implementations: optimistic interrupts

and cut-through forwarding. These optimizations act together

to reduce per-packet latencies and improve throughput by

overlapping VNET’s packet handling with guest interrupt

processing, by coalescing interrupts without the need for

problematic high-resolution timers, and by avoiding buffering

of encapsulated data when possible. These optimizations also

leverage the predictable environment of a low-noise host ker-

nel which we also use to reduce virtual network performance

variability. In the remainder of this section, we describe the

general approach of these optimizations and provide details on

their behavior and how they are tuned.

Our optimizations are focused on scenarios in which host

NIC receive rings and interrupt messages can be assigned

to individual virtual NICs. Such scenarios are increasingly

common in data centers, with processor and NIC vendors

introducing specific hardware support for such usage. In fact,

hardware techniques used in high-performance networking,

such as hardware passthrough and device assignment (e.g.

packet hashing, message-signaled interrupts, per-flow and per-

core receive rings, and single-root I/O virtualization), can all

also potentially be used to support assigning portions of host

NICs to virtual NICs in virtual network overlay systems such

as VNET/P.

The optimizations described below are also potentially use-

ful in cases without a one-to-one correspondence between host

and guest NICs. However, these optimizations rely on careful

prediction and control of the timing between events among

the host, VMM, and guest. Such timing is more difficult to

predict if incoming packets could be delivered to a wide range

of guests.

Fig. 3. Early virtual interrupt optimization to reduce latency

A. Optimistic Interrupts

The primary optimization we propose to reduce per-packet

latencies and interrupt processing overheads is optimistic inter-

rupts. Normally, the overlay system will inject a single inter-

rupt when it finishes copying (and deencapsulating) data from

the host NIC to the virtual NIC. With optimistic interrupts,

we instead define two specific windows during which a virtual

interrupt may be injected. First, optimistic interrupts can inject

an Early Virtual Interrupt (EVI) before it begins moving data

to the virtual NIC, thus allowing the guest to begin interrupt

handling while the overlay system is moving data from the

host NIC. Second, optimistic interrupts may inject an interrupt

when the host device driver has finished processing all of the

packets in the device queue from the arrival of a coalesced

interrupt. The decision on whether to inject an interrupt at

this point is made when an End-of-Coalesce (EoC) notification

arrives from the host device driver. The decision made depends

on whether a previous EVI was successfully handled by the

guest and on how quickly the host processes incoming packets.

1) Early Virtual Interrupt (EVI) delivery: Figure 3 illus-

trates our early virtual interrupt optimization for reducing

latency. Instead of waiting for the packet to be copied into the

virtual NIC receive buffer before raising a virtual interrupt,

EVI interrupts the virtual NIC immediately when the host

device driver identifies the data arrival event. This allows

overlay deencapsulation and packet data movement to occur

concurrently with the VMM’s emulation of virtual interrupts

and VM exits triggered by guest OS stack switches and context

switches.

In essence, virtual interrupts with EVI synchronize packet

arrival events with interrupt processing in virtual machines,

reducing the interrupt delay described in Section III-A. This

optimization is possible because device assignment allows the

overlay to know which virtual NIC a host NIC interrupt is

associated with.

EVI’s overall goal is to raise the virtual interrupt so the

guest begins processing the packet queue immediately after the

first packet has been marked in the virtual NIC receive buffer.

This, however, is challenging. On our testbed, experiments

show that the time at which the first packet of a train has

been deencapsulated and routed to the virtual NIC’s receive

queue occurs ∼20M cycles after the host NIC’s device driver

identifies the underlying packet arrival event. This time can

vary, however, as illustrated in Figure 2, from 430K to 25M

cycles.

There are three different cases to consider for EVI delivery:

1) Virtual interrupts disabled: If the virtual device driver

has interrupts disabled when an early virtual interrupt is

about to be raised, the EVI interrupt will not be delivered

immediately. In this case, we discard the EVI interrupt

as opposed to deferring its delivery, implicitly coalescing

it with a later interrupt.

2) Handler runs prior to packet availability: If the guest

packet handler runs prior to the packet being marked in

the receive queue, the guest views the interrupt as invalid

and ignores it, wasting guest OS time.

3) Handler runs after packet availability: If the guest

handler runs significantly after the packet is available

at the guest NIC (i.e. the EVI was not performed early

enough), latency increases compared to the native mode.

Unoptimized VNET/P is the extreme scenario of this

case, since the interrupt is not sent until the packet is in

the virtual NIC.

Note that case (1) results in interrupts associated with packets

not being delivered to the guests; optimistic interrupts handle

this using the EoC notification mechanism described next.

2) End of Coalescing (EoC) notification: In physical hard-

ware systems, masked and dropped interrupts are not generally

significant problems because the host NIC will deliver another

interrupt later upon the expiration of its interrupt coalescing

timer. In addition, real hardware can set the length of this

timer based on fine-grained information on the shape of the

underlying traffic. To achieve the same effect with optimistic

interrupts, we introduce an end-of-coalescing notification that

the host NIC delivers to the overlay system when the host

NIC has emptied its packet queue. This notification provides

the virtual NIC an opportunity to make decisions about the

potential termination of online traffic, as well as to recover

from previous failed EVI injection attempts.

The virtual NIC handles EoC notifications based on the

success or failure of the last EVI attempt and the shape of the

traffic since the last EVI attempt. Specifically, if the last EVI

attempt failed due to a masked interrupt, an EoC notification

always results in the injection of a virtual interrupt, even if

this interrupt delivery may be delayed until the guest unmasks

interrupts.
If the previous EVI was successfully delivered, the virtual

NIC must determine whether or not to inject a virtual interrupt.

The specific case which EoC notification must guard against

is when the guest has already stopped processing its receive

queue, there will soon be additional packets in the receive

queue to handle, and a new host interrupt (which would trigger

an EVI) is unlikely to arrive soon. It does this by examining

the host receive density (RD) (bytes received per second since

the last EVI injection).

1) “Too cold”: If RD < α the overlay system assumes that

because the traffic has been sparse since the last EVI,

the data that was received has probably already been

retrieved by the guest device driver. Therefore, it does

not inject a virtual interrupt. In other words, if the traffic

has been light, then we assume delivery into the guest

has already been done using the EVIs we previously

sent.

2) “Too hot”: If RD > β the overlay system assumes that

because the traffic has been dense since the last EVI, it

is probably in the middle of a stream of heavy traffic. In

that case, EVIs are already being generated and driving

the data transfer. Therefore, the EoC is discarded to

avoid burdening the guest with an unnecessary interrupt.

3) “Just right:” If α ≤ RD ≤ β, the system assumes that

traffic density is high enough that the guest may not

have processed all of it, but not high enough that a new

EVI is likely to happen soon. Consequently, it raises a

virtual interrupt so that this traffic is handled in a timely

fashion.

The parameters α and β are experimentally determined.
3) EVI/EoC Interaction: Together, the EVI and EoC tech-

niques that comprise our optimistic interrupt mechanism inter-

act to overlap overlay packet processing with guest interrupt

processing, and coalesce interrupts without the need for high-

resolution timers. EVI’s primary goal is to minimize the

processing latency of packets received by the host NIC,

particularly if the guest is not already processing packets.

If the guest is already processing packets and interrupts are

masked, however, the EVI is suppressed in favor of late inter-

rupt injection at the EoC notification. The resulting implicit

interrupt coalescing, driven by packet processing in the host

OS and interrupt coalescing in the host NIC, reduces interrupt

processing overheads in the guest.
Consider, for example, a virtual server on an overlay with

a 9000 byte MTU that is being sent packets by a client. EVI

will allow the server to immediately begin processing of the

first packet, even for a tiny packet, minimizing the first packet

latency. When a train of large packets are sent to the host,

however, EVI injection attempts that occur after the first packet

will be deferred in favor of later delivery at EoC notifications

due to masked interrupts, which are in turn driven by the rate

at which the host can process packets, and the rate at which

the host NIC coalesces interrupts and delivers bytes to the

host. Finally, if guest packet processing after EVI injection

outpaces overlay packet processing, the EoC-injected interrupt

will assure that the guest processes the packets moved to the

virtual NIC in a timely fashion.

B. Zero-copy cut-through data forwarding

To increase the number of packets handled per interrupt

and reduce the likelihood of guest packet processing out-

pacing overlay packet processing, we introduce a zero-copy

cut-through data forwarding optimization. Building on the

capabilities of modern NICs and the ability of the host OS

to directly access guest memory, this optimization directly

forwards incoming and outgoing packets between the the guest

virtual NIC and the host NIC. This reduces overlay per-packet

processing costs by avoiding data copies between the guest

and host NIC, and page flipping costs associated with other

zero-copy techniques.

Zero-copy cut-through transmission. On the transmit side,

the overlay system delivers a virtual NIC’s outgoing packet as

a scatter/gather abstraction. This allows the overlay system

to encapsulate guest packets simply by adding the appropriate

UDP, IP, and Ethernet headers to the scatter-gather list without

copying the guest packet. This expanded scatter/gather list

can then be handed directly to the host NIC for packet

transmission. All copies between the guest’s buffer and a host

buffer are avoided.

Implicit zero-copy reception and cut-through forward-

ing. On the receive side, the host NIC receives incoming

packets, including the encapsulating headers, directly into

buffers provided by the guest, without the need for page

flipping or data copies. Note that this makes the overlay’s

encapsulation visible to the guest’s virtio device driver. The

guest is responsible for stripping encapsulation headers from

incoming packets. This is enabled by the virtio NIC implemen-

tation exporting the length of the encapsulation header to the

guest driver as a new port in to the PCI configuration space.

If the encapsulation header length changes, the VMM simply

raises the interrupt that notifies the NIC of configuration space

changes.

C. Noise isolation to reduce performance variation

To reduce variation in throughput and latency, we target

OS noise. Specifically, we adopt a lightweight kernel as the

host OS into which the VMM is embedded. In addition

to directly reducing network performance variability, this

optimization also increases the effectiveness of optimistic

interrupt by providing more predictable system timing and

scheduling behavior. This latter benefit could also be provided

in heavyweight OSes like Linux, however, by using well-

known techniques for isolating virtual machines and processes

on individual cores.

Even in a mainstream cloud environment, the use of a

lightweight kernel is not as radical as it may seem. In essence,

in our system, the combination of the VMM and a lightweight

kernel provides the model of a traditional “Type I” VMM.

High performance VMMs, for example VMware ESXi, adopt

the same model.

V. IMPLEMENTATION AND MICROBENCHMARKS

To understand the impact of the optimizations described

in Section IV, we implemented them in the VNET/P overlay

network previously described in Section II. We then studied

the effects of the optimizations on a set of simple UDP, TCP,

and MPI throughput and latency microbenchmarks. Macro-

and application benchmarks are described in Section VI.

We refer to VNET/P enhanced with the optimizations as

VNET/P+.

A. Implementation

VNET/P+ includes a new implementation of the VNET/P

bridge for Kitten that includes custom UDP encapsulation

(Kitten does not currently include general TCP/IP networking

support), and extends VNET/P with three more components

which are used to implement the optimistic interrupt and cut-

through forwarding optimizations:

1) The device allocator maps host NICs to virtual NICs

and maintains device allocation tables to support EVI

and EoC notification routing.

2) The memory allocator controls direct memory access

(DMA) from the host NIC to the virtual NICs’ memory

to support zero-copy cut-through forwarding.

3) The event dispatcher handles virtual interrupt and event

delivery to virtual NICs for both EVI injection and EoC

notification.

The complete implementation of VNET/P+ in Kitten and

Palacios, including the the reimplementation of the VNET/P

bridge for Kitten comprises approximately 10,000 source lines

of code, of which approximately 2,000 are changes to support

the optimizations described above. This source code and

changes will be made available in Palacios and Kitten in the

future.

B. Testbed

Our testbed, which is used both here and in the next section,

consists of 6 physical machines each of which has dual quad

core 2.3 GHz 2376 AMD Opteron “Shanghai” processors

(8 cores total), 32 GB RAM, and a NetEffect NE020 10

Gbps Ethernet fiber optic NIC (10GBASE-SR) in a PCI-e

slot. For VNET/P and native measurements, we ran a simple

Linux 2.6.32 host with a minimal BusyBox configuration, and

the Palacios VMM. Passthrough and VNET/P+ measurements

were made with Kitten as the host operating system and the

Palacios VMM, as described in Section IV-C, unless otherwise

specified. The guest used was a Linux 2.6.30 kernel also with

a minimal BusyBox running on a virtual machine with a single

virtio network interface, 4 cores, and 1GB of memory. Unless

otherwise specified, the virtio NIC provided to the guest was

configured to use 9000 byte MTUs.

Performance measurements were made between identically

configured machines. To assure accurate time measurements

in the virtualized case, each guest was configured to use the

CPU’s cycle counter, and Palacios was configured to allow the

guest direct access to the underlying hardware cycle counter.

C. Microbenchmarks

We used simple two-node ICMP, UDP, TCP, and MPI

benchmarks to provide an initial characterization of the impact

of our proposed optimizations. UDP throughput and goodput

were measured using Iperf-2.0.4 with 8900 byte writes for 150

seconds, while TCP throughput was measured using ttcp-1.10.

For simple MPI tests, we used the Intel MPI Benchmark Suite

(IMB 3.2.2) [24] running on OpenMPI 1.3 [25], focusing on

the point-to-point messaging performance.

1) Ping Latency: Figure 4 shows the round-trip latency for

different packet sizes as measured by ping. The latencies are

the average of 100 measurements. The latency of VNET/P+ is

less than half that of VNET/P, and approaches the passthrough

latency. The passthrough itself is limited due to the need for

interrupt exiting and reinjection.

2) UDP and TCP Performance: Figure 5 shows that

VNET/P+ achieves 90% of the native UDP goodput (1.3 times

higher than VNET/P), and 94% of the native TCP throughput

(1.5 times higher than VNET/P).
3) Network Performance Variability: In addition to ICMP,

UDP, and TCP performance, we also examined ICMP and TCP

performance variability. To test latency variation, we use ping

with 64-byte messages for 5000 iterations. To test throughput

variation, we examine variation in Iperf performance with

8900 byte sends over the course of an hour.

Figure 6 shows the results of VNET/P and VNET/P+

latency and bandwidth variability experiments. VNET/P shows

large latency bursts every few hundred of iterations, while

VNET/P+ shows substantially less latency variation. Like-

wise, VNET/P+ demonstrates lower throughput variation than

VNET/P.
4) MPI: As shown in Figure 7, MPI point-to-point per-

formance with VNET/P+ is equal to the passthrough perfor-

mance, and approaches the native performance for both small

and large messages.

D. Understanding Low-level Behavior

We used the previously discussed benchmarks to better

understand the fine-grained behavior and performance impacts

of optimistic interrupts and zero-copy cut through forwarding.

We found that, during high-bandwidth packet reception, the

combination of EVI and EoC notifications results in 1 to

1.5 virtual interrupts being injected into the guest for every

physical interrupt raised by the (coalescing) host NIC. Only

0.5% of EVI injections are premature, limiting the impact of

the guest discarding premature interrupt as invalid. In addition,

around 10% of EVIs failed due to masked interrupts by guests.

Our results also found that cut-though forwarding was

important for improving the performance of VNET/P, but

only when used in conjunction with optimistic interrupts. Our

results show that zero-copy cut-through forwarding without

optimistic interrupts results in less than a 3% improvement in

throughput and no improvement in latency. When optimistic

interrupts are also enabled, in contrast, cut-through forwarding

results in throughput improvements of 10%, although no

improvement in small message latencies.

VI. PERFORMANCE EVALUATION

Beyond the microbenchmarks we described in the previous

section, we also evaluated VNET/P+ using the HPC Chal-

lenge and NAS benchmarks, with the goal of characterizing

the performance impact of fast overlay networking and our

optimizations on communication-intensive applications.

A. HPC Challenge benchmarks

The HPC Challenge (HPCC) benchmarks [26] are a set of

macro and application benchmarks for evaluating various as-

pects of the performance of high performance computing sys-

tems. We used the communication-oriented macro-benchmarks

and application benchmarks to compare the performance of

VNET/P+ with native, passthrough, and VNET/P approaches.

For these tests, each VM was configured with 4 virtual cores,

1 GB RAM, and a virtio NIC. For passthrough and VNET/P

testing, each host had one VM running on it. We ran tests with

2, 3, 4, 5, and 6 VMs with 4 HPCC processes started on each

VM. Thus our performance results are based on HPCC with

8, 12, 16, 20, and 24 processes. In the native cases, no VMs

are used and the processes ran directly on the host.

1) Latency-Bandwidth Benchmark: This benchmark con-

sists of the ping-pong test and the ring-based tests, where

the former measures the latency and bandwidth between all

distinct pairs of processes. The ring based tests arrange the

processes in a ring topology and then engage in collective com-

munication among neighbors in the ring, measuring bandwidth

and latency. The ring-based tests model the communication

behavior of multi-dimensional domain-decomposition applica-

tions. Both naturally ordered rings and randomly ordered rings

are evaluated. Communication is done with MPI non-blocking

sends and receives, and MPI SendRecv. Here, the bandwidth

per process is defined as total amount of message data divided

by the number of processes and the maximum time needed in

all processes. We report the ring test bandwidths by multiply-

ing them with the number of processes in the test.

Figure 8 shows the results of the HPCC Latency-Bandwidth

benchmark for different numbers of test processes. Ping-Pong

Latency and Ping-Pong Bandwidth results are consistent with

what we saw in the previous microbenchmarks: in VNET/P+,

bandwidths are within 90% of native, and latencies are about

1.3 times that of native latencies. In VNET/P, bandwidths are

within 60–70% of native, and latencies are about 2.5–3 times

that of native latencies. The results show that our optimizations

can substantially enhance the performance of a software-based

overlay virtual network like VNET/P.

2) HPCC application benchmarks: We considered the three

application benchmarks from the HPCC suite that exhibit the

largest volume and complexity of communication: MPIRan-

domAcceess, PTRANS, and MPIFFT.

In MPIRandomAccess, random numbers are generated and

written to a distributed table, with local buffering. Performance

is measured in billions of updates per second (GUPs) that

are performed. Figure 9(a) shows the results of MPIRando-

mAccess, comparing the VNET/P+, VNET/P, Passthrough,

Fig. 4. End-to-end round-trip latency of VNET as a function of ICMP packet size. Small packet latencies are: VNET/P+—72µs, Passthrough—65µs,
Native—58µs, VNET/P—169µs.

Fig. 5. End-to-end UDP goodput and TCP throughput of VNET/P+ and VNET/P on 10 Gbps network. VNET/P+ performs better then VNET/P for the 10
Gbps network

(a) 5000 iterations of 64 bytes latency variation (b) 1 hour TCP throughput variation.

Fig. 6. 64-byte packets ICMP latency and TCP throughput variation results on 10 Gbps Ethernet. VNET/P+ shows near-zero variation except the first two
probing packets, while VNET/P has large latency bursts. VNET/P+ also shows less variation of TCP throughput.

and Native cases. VNET/P+ achieves 87% of native perfor-

mance, while VNET/P achieves 60-65% application perfor-

mance compared to the native cases.

PTRANS does a parallel matrix transpose, exercising the

simultaneous communications between pairs of processors.

The performance is measured in the total communication

capacity (GB/s) of the network. Figure 9(b) shows the result of

PTRANS for the VNET/P+, VNET/P, Passthrough, and Native

cases. VNET/P+ achieves 100% of the native performance,

while VNET/P achieves 60–70% of the of native case.

Fig. 7. Intel MPI PingPong microbenchmark showing bidirectional bandwidth as a function of message size on the 10Gbps Ethernet

(a) HPCC Latency on 10G (b) HPCC Bandwidth on 10G

Fig. 8. HPCC Latency-Bandwidth benchmark for all of Native, Passthrough VNET/P+, and VNET/P. The results are generally consistent with the previous
microbenchmarks, while the ring-based tests show that latency and bandwidth of VNET/P+ scale and perform better than VNET/P.

MPIFFT implements a double precision complex one-

dimensional Discrete Fourier Transform (DFT). Its perfor-

mance is measured in Gflop/s. Figure 9(c) shows the result of

MPIFFT for the VNET/P+, VNET/P, Passthrough, and Native

cases. VNET/P+ again achieves 100% of native performance,

while the VNET/P achieves only 60-70%.

These results suggest that the impact of our optimizations

to the VNET/P networking system are likely to strongly be

felt in application codes.

B. NAS Benchmarks

We compared the performance of VNET/P+, VNET/P,

passthrough, and the native environment on the complete NAS

parallel benchmark suite (NPB) [27]. NPB consists of five

kernels and three pseudo-applications, and is widely used in

parallel performance evaluation. We specifically use NPB-

MPI 2.4 in our evaluation. In our description, we name

executions with the format ”name.class.procs”. For example,

bt.B.16 means to run the BT benchmark on 16 processes with

a class B problem size.

We run each benchmark with at least two different scales

and one problem size. One VM is run on each physical

machine, and it is configured as described in Section VI-A.

The test cases with 8 processes are running within 2 VMs

and 4 processes started in each VM. The test cases with 9

processes are run with 4 VMs and 2 or 3 processes per VM.

Test cases with 16 processes have 4 VMs with 4 processes

per VM. We report each benchmark’s Mop/s total result for

all four cases.
Figure 10 shows the NPB performance results, comparing

the VNET/P+, VNET/P, Passthrough, and Native cases. The

optimizations implemented in VNET/P+ make it possible to

achieve native performance in a number of cases where the

unoptimized VNET/P was unable to, particularly for MG, FT,

LU, cg.B.16, and bt.B.9.
In a few cases, VNET/P+ did not achieve full native perfor-

mance. In particular, VNET/P+ achieves passthrough levels of

performance but only 87% of native in the case of cg.B.8.

Similarly, VNET/P+ achieves 91% of native performance

in bt.B.9, while VNET/P only delivers 78% of native. The

performance differences at smaller scales between VNET/P+

and passthrough virtualized cases compared to native are

due to basic interrupt and memory virtualization overheads.

These overheads are comparatively smaller at larger node

counts, where a greater fraction of application time is spent

on communication.

(a) HPCC MPIRandomAccess (b) HPCC PTRANS (c) HPCC MPIFFT

Fig. 9. HPCC application benchmark results. VNET/P+ achieves near-native and scalable application performance when supporting parallel application
workloads on 10 Gbps networks with rigorous network communication.

Mop/s Native Passthrough VNET/P VNET/P+ Passthrough
Native (%)

V NET/P
Native (%)

V NET/P+

Native (%)

ep.B.8 102.18 102.17 102.12 102.12 99.9% 99.9% 99.9%

ep.B.16 208 207.96 206.25 207.93 99.9% 99.3% 99.9%

ep.C.8 103.13 102.76 102.14 103.08 99.6% 99% 99.9%

ep.C.16 206.22 205.39 203.98 204.98 99.6% 98.9% 99.4%

mg.B.8 5110.29 4662.53 3796.03 4643.67 91.2% 74.3% 90.9%

mg.B.16 9137.26 8384.93 7405 8262.08 91.8% 81% 90.4%

cg.B.8 2096.64 1824.05 1806.57 1811.14 87% 86.2% 86.4%

cg.B.16 592.08 592.05 554.91 592.07 99.9% 93.7% 99.9%

ft.B.8 2055.435 2055.4 1562.1 2055.3 99.9% 76.2% 99.9%

ft.B.16 1432.3 1432.2 1228.39 1432.18 99.9% 85.7% 99.9%

is.B.8 59.15 59.14 59.04 59.13 99.9% 99.8% 99.9%

is.B.16 23.09 23.05 23 23.04 99.8% 99.6% 99.8%

is.C.8 132.08 132 131.87 132.04 99.9% 99.8% 99.9%

is.C.16 77.77 77.12 76.94 77.1 99.9% 98.9% 99.9%

lu.B.8 7173.65 6730.23 6021.78 6837.06 93.8% 83.9% 95.3%

lu.B.16 12981.86 11630.65 9643.21 12198.65 89.6% 74.3% 94%

sp.B.9 2634.53 2634.5 2421.98 2634.5 99.9% 91.9% 99.9%

sp.B.16 3010.71 3009.5 2916.81 2954.16 99.9% 96.8% 98.1%

bt.B.9 5229.01 4750.4 4076.52 4798.63 90.8% 78.0% 91.8%

bt.B.16 6315.11 6314.1 6105.11 6242.83 99.9% 96.7% 99%

Fig. 10. NAS performance on VNET/P, VNET/P+, Native, and Passthrough configurations. The optimizations implemented in VNET/P+ can help us achieve
full native performance on almost all of the benchmarks.

The results of our evaluations on NPB strongly suggest that

the optimizations implemented in VNET/P+ make it possible

for a software-based overlay virtual network to provide native

performance for communication-intensive applications on 10

Gbps networks.

VII. CONCLUSIONS

In this paper, we presented a quantitative study of general

virtual overlay network performance on 10 Gbps Ethernet.

We observe that high latency, reduced throughput, and perfor-

mance variability are the primary problems existing in current

virtual overlay networks. We observed that delayed virtual

interrupts, excessive virtual interrupts, and high-resolution

timer noise are the challenges in network overlay I/O vir-

tualization. To overcome these challenges, we adopt two

main optimization approaches, optimistic interrupts and cut-

through forwarding. Together with LWK-based noise isolation,

these techniques cut overlay network latency in half, improve

throughput by more than 30%, reduce network performance

variability, and frequently deliver native application perfor-

mance.

REFERENCES

[1] L. Xia and Z. Cui and J. Lange and Y. Tang and P. Dinda and P. Bridges,
“VNET/P: Bridging the cloud and high performance computing through
fast overlay networking,” in Proceedings of the 21st ACM International

Symposium on High-performance Parallel and Distributed Computing

(HPDC), June 2012.
[2] J. Lange, K. Pedretti, T. Hudson, P. Dinda, Z. Cui, L. Xia, P. Bridges,

A. Gocke, S. Jaconette, M. Levenhagen, and R. Brightwell, “Palacios
and Kitten: New high performance operating systems for scalable

virtualized and native supercomputing,” in Proceedings of the 2010 IEEE
International Symposium on Parallel Distributed Processing (IPDPS),
April 2010, pp. 1 –12.

[3] J. R. Lange, K. Pedretti, P. Dinda, P. G. Bridges, C. Bae, P. Soltero,
and A. Merritt, “Minimal-overhead virtualization of a large scale
supercomputer,” in Proceedings of the 7th ACM SIGPLAN/SIGOPS

International Conference on Virtual Execution Environments, ser. VEE
’11. New York, NY, USA: ACM, 2011, pp. 169–180. [Online].
Available: http://doi.acm.org/10.1145/1952682.1952705

[4] A. Sundararaj and P. Dinda, “Towards virtual networks for virtual
machine grid computing,” in Proceedings of the 3rd USENIX Virtual

Machine Research And Technology Symposium (VM 2004), May 2004,
earlier version available as Technical Report NWU-CS-03-27, Depart-
ment of Computer Science, Northwestern University.

[5] A. Sundararaj, A. Gupta, , and P. Dinda, “Increasing application
performance in virtual environments through run-time inference and
adaptation,” in Proceedings of the 14th IEEE International Symposium

on High Performance Distributed Computing (HPDC), July 2005.
[6] J. Lange and P. Dinda, “Transparent network services via a virtual

traffic layer for virtual machines,” in Proceedings of the 16th IEEE

International Symposium on High Performance Distributed Computing

(HPDC), June 2007.
[7] P. Ruth, X. Jiang, D. Xu, and S. Goasguen, “Towards virtual distributed

environments in a shared infrastructure,” IEEE Computer, May 2005.
[8] D. Wolinsky, Y. Liu, P. S. Juste, G. Venkatasubramanian, and

R. Figueiredo, “On the design of scalable, self-configuring virtual
networks,” in Proceedings of 21st ACM/IEEE International Conference

of High Performance Computing, Networking, Storage, and Analysis

(Supercomputing 2009), November 2009.
[9] C. Evangelinos and C. Hill, “Cloud computing for parallel scientific HPC

applications: Feasibility of running coupled atmosphere-ocean climate
models on Amazon’s EC2,” in Proceedings of Cloud Computing and its

Applications (CCA), October 2008.
[10] S. Ostermann, A. Iosup, N. Yigitbasi, R. Prodan, T. Fahringer, and

D. Epema, “An early performance analysis of cloud computing services
for scientific computing,” Delft University of Technology, Parallel and
Distributed Systems Report Series, Tech. Rep. PDS2008-006, December
2008.

[11] S. Kumar, H. Raj, K. Schwan, and I. Ganev, “Re-architecting VMMs for
multicore systems: The sidecore approach,” in Proceedings of the 2007

Workshop on the Interaction between Operating Systems and Computer

Architecture, June 2007.
[12] A. Lakshman and P. Malik, “Cassandra: A structured storage system

on a P2P network,” in Proceedings of the 28th ACM Symposium on

Principles of Distributed Computing. New York, NY, USA: ACM,
2009.

[13] G. Wang and T. Ng, “The impact of virtualization on network perfor-
mance of Amazon EC2 data center,” in Proceedings of IEEE INFOCOM

2010, march 2010, pp. 1 –9.
[14] A. Gulati, A. Merchant, and P. Varman, “mclock: Handling throughput

variability for hypervisor IO scheduling.”
[15] L. S. Brakmo and L. L. Peterson, “TCP Vegas: End to end congestion

avoidance on a global internet,” IEEE Journal on Selected Areas in

Communications, vol. 13, pp. 1465–1480, 1995.
[16] T. Anderson, A. Collins, A. Krishnamurthy, and J. Zahorjan, “PCP: Effi-

cient endpoint congestion control,” in Proceedings of Third Symposium

on Networked Systems Design and Implementation (NSDI’06), 2006.
[17] J. Sugerman, G. Venkitachalan, and B.-H. Lim, “Virtualizing I/O devices

on VMware workstation’s hosted virtual machine monitor,” in Proceed-

ings of the USENIX Annual Technical Conference, June 2001.
[18] J. Liu, W. Huang, B. Abali, and D. Panda, “High performance VMM-

bypass I/O in virtual machines,” in Proceedings of the USENIX Annual

Technical Conference, May 2006.
[19] H. Raj and K. Schwan, “High performance and scalable I/O virtual-

ization via self-virtualized devices,” in Proceedings of the 16th IEEE

International Symposium on High Performance Distributed Computing

(HPDC), July 2007.
[20] L. Xia, J. Lange, P. Dinda, and C. Bae, “Investigating Virtual

Passthrough I/O on Commodity Devices,” Operating Systems Review,
vol. 43, no. 3, July 2009, initial version appeared at WIOV 2008.

[21] K. Salah, K. El-Badawi, and F. Haidari, “Performance analysis
and comparison of interrupt-handling schemes in gigabit networks,”
Comput. Commun., vol. 30, no. 17, pp. 3425–3441, Nov. 2007.
[Online]. Available: http://dx.doi.org/10.1016/j.comcom.2007.06.013

[22] Y. Dong, D. Xu, Y. Zhang, and G. Liao, “Optimizing network I/O
virtualization with efficient interrupt coalescing and virtual receive side
scaling,” in Cluster Computing (CLUSTER), 2011 IEEE International

Conference on, sept. 2011, pp. 26 –34.
[23] X. Chang, J. K. Muppala, Z. Han, and J. Liu, “Analysis of interrupt

coalescing schemes for receive-livelock problem in gigabit ethernet
network hosts.” in ICC’08, pp. 1835–1839.

[24] Intel, “Intel Cluster Toolkit 3.0 for Linux,” http://software.intel.com/en-
us/articles/intel-mpi-benchmarks/.

[25] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarra, J. M.
Squyres, V. Sahay, P. Kambadur, B. Barrett, A. Lumsdaine, R. H.
Castain, D. J. Daniel, R. L. Graham, and T. S. Woodall, “Open MPI:
Goals, concept, and design of a next generation MPI implementation,”
in Proceedings of the 11th European PVM/MPI Users’ Group Meeting,
September 2004.

[26] Innovative Computing Laboratory, “HPC challenge benchmark,”
http://icl.cs.utk.edu/hpcc/.

[27] R. Van der Wijngaart, “NAS parallel benchmarks version 2.4,” NASA
Advanced Supercomputing (NAS Division), NASA Ames Research
Center, Tech. Rep. NAS-02-007, October 2002.

