
Distributed Places

Kevin Tew1, James Swaine2, Matthew Flatt3, Robert Bruce Findler2, and Peter Dinda2

1 Brigham Young University
tew@byu.edu

2 Northwestern University
JamesSwaine2010@u.northwestern.edu, robby@eecs.northwestern.edu,

pdinda@northwestern.edu
3 University of Utah
mflatt@cs.utah.edu

Abstract. Distributed Places bring new support for distributed, message-passing
parallelism to Racket. This paper gives an overview of the programming model
and how we had to modify our existing, runtime-system to support distributed
places. We show that the freedom to design the programming model helped us
to make the implementation tractable. The paper presents an evaluation of the
design, examples of higher-level API’s that can be built on top of distributed
places, and performance results of standard parallel benchmarks.

1 Introduction

Dynamic, functional languages are important as rapid development platforms for solv-
ing everyday problems and completing tasks. As programmers embrace parallelism in
dynamic programming languages, the need arises to extend multi-core parallelism to
multi-node parallelism. Distributed places delivers multi-node parallelism to Racket by
building on top of the existing places [18] infrastructure.

The right extensions to dynamic, functional languages enable the introduction of a
hierarchy of parallel programming abstractions. Language extension allows these par-
allel programming abstractions to be concisely mapped to different hardware such as
a shared memory node or a distributed memory machine. Distributed places are not
an add-on library or a foreign function interface (FFI). Instead, Racket’s places and
distributed places are language extensions on which higher-level distributed program-
ming frameworks can easily be expressed. An RPC mechanism, map reduce, MPI, and
nested-data parallelism are all concisely and easily built on top of distributed places.
These higher-level frameworks meld with the Racket language to create extended lan-
guages, which describe different types of distributed programming.

The distributed places API allows the user to spawn new execution contexts on
remote machines. Distributed places reuse the communication channel API for intra-
process parallelism to build a transparent distributed communication system over a
underlying sockets layer. Racket’s channels for parallel and distributed communica-
tion are first-class Racket events. These channels can be waited on concurrently with
other Racket event objects such as file ports, sockets, threads, channels, etc. Together,
Racket’s intra-process and distributed parallelism constructs form a foundation capable
of supporting higher-level parallel frameworks.



2 Design

Programming with parallelism should avoid the typical interference problems of threads
executing in a single address space. Instead, parallel executions contexts should execute
in isolation. Communication between execution contexts should use message-passing
instead of shared-memory in a common address space. This isolated, message-passing
approach positions the programmer to think about the data-placement and communica-
tion needs of a parallel program to enable sustained scalability. Distributed places ex-
tend our existing implementation of isolated, message-passing parallelism which, until
now, was limited to a single node. As a program moves from multi-core parallelism to
multi-node parallelism latency increases and bandwidth decreases; data-placement and
communication patterns become even more crucial.

Much of a distributed programming API is littered with system administration tasks
that impede programmers from focusing on programming and solving problems. First,
programmers have to authenticate and launch their programs on each node in the dis-
tributed system. Then they have to establish communication links between the nodes in
the system, before they can begin working on the problem itself. The work of the dis-
tributed places framework is to provide support for handling the problems of program
launch and communication link establishment.

Racket’s distributed places API design is centered around machine nodes that do
computation in places. The user/programmer configures a new distributed system using
declarative syntax and callbacks. By specifying a hostname and port number, a pro-
grammer can launch a new place on a remote host. In the simplest distributed-places
programs, hostnames and port numbers are hard-wired. When programmers need more
control, distributed places permits complete programmatic configuration of node launch
and communication link parameters.

Distributed Places adopt Erlang’s failure model of fail fast. When a place dies or
throws an unhandled exception, its execution ends. Parent places’ are notified when a
spawned place dies, but the user is responsible for recovery from errors.

The hello world example in figure 1 demonstrates the key components of a places
program. Appearing first, the hello-world procedure is called to create hello-world
places. The main module follows and contains the code to construct and communicate
with a hello-world place.

Looking closer at the mainmodule, the hello-world place is created using dynamic-
place.

(dynamic-place module-path start-proc) → place?

module-path : module-path?

start-proc : symbol?

The dynamic-place procedure creates a place to run the procedure that is identified by
module-path and start-proc . The result is a place descriptor value that represents
the new parallel task; the place descriptor is returned immediately. The place descriptor
is also a place channel to initiate communication between the new place and the creating
place.

The module indicated by module-path must export a function with the name
start-proc . The exported function must accept a single argument, which is a place



1 #lang racket/base

2 (require racket/place

3 racket/place/distributed)

4

5 (provide hello-world)

6

7 (define (hello-world ch)

8 (printf/f "hello-world received: ∼a\n"

9 (place-channel-get ch))

10 (place-channel-put ch "Hello World\n")

11 (printf/f "hello-world sent: Hello World\n"))

12

13 (module+ main

14 (define p (dynamic-place

15 (quote-module-path "..")

16 'hello-world))

17

18 (place-channel-put p "Hello")

19 (printf/f "main received: ∼a\n"

20 (place-channel-get p))

21 (place-wait p))

Figure 1: Place’s Hello World



channel that corresponds to the other end of communication for the place channel that
is returned by dynamic-place.

The (quote-module-path "..") and 'hello-world arguments on lines 15 and
16 of figure 1 specify the procedure address of the new place to be launched. In this
example, the (quote-module-path "..") argument provides the module path to the
parent module of main, where the 'hello-world procedure is located.

Places communicate over place channels which allow structured data communi-
cation between places. Supported structured data includes booleans, numbers, charac-
ters, symbols, byte strings, Unicode strings, filesystem paths, pairs, lists, vectors, and
“prefab” structures (i.e., structures that are transparent and whose types are universally
named) 4.

(place-channel-put ch v) → void?

ch : place-channel?

v : place-message-allowed?

(place-channel-get ch) → place-message-allowed?

ch : place-channel?

The place-channel-put function asynchronously sends a message v on channel ch
and returns immediately. The place-channel-get function waits until a message is
available from the place channel ch .

(place-wait p) → void?

p : place?

Finally the place-wait procedure blocks until p terminates.

13 (module+ main

14 (define n (create-place-node

15 "host2"

16 #:listen-port 6344))

17 (define p (dynamic-place

18 #:at n

19 (quote-module-path "..")

20 'hello-world))

21 ...)

Figure 2: Distributed Hello World

The distributed hello world example in figure 2 shows the two differences between
a simple places program and a simple distributed places program. The create-place-
node procedure uses ssh to start a new remote node on host2 and assumes that ssh is

4 http://docs.racket-lang.org/guide/define-struct.html?q=prefab#(tech._prefab)

http://docs.racket-lang.org/guide/define-struct.html?q=prefab#(tech._prefab)


configured correctly. Upon launch, the remote node listens on port 6344 for incoming
connections. Once the remote node is launched, a TCP connection to port 6344 on the
new node is established. The create-place-node returns a node descriptor object,
n, which allows for administration of the remote node. The remote place is created
using dynamic-place. The new #:at keyword argument specifies the node on which
to launch the new place.

Remotely spawned places are private. Only the node that spawned the place can
communicate with it through its descriptor object. Named places allow programmers
to make a distributed place publicly accessible. Named places are labeled with a name
when they are created.

(define p (dynamic-place

#:at n

#:named 'helloworld1

(quote-module-path "..")

'hello-world))

Any node can connect to a named place by specifying the destination node and name
to connect to. In this example, node is a node descriptor object returned from create-

place-node.

(connect-to-named-place node 'helloworld1)

3 Higher Level APIs

The distributed places implementation is a foundation that can support a variety of
higher-level APIs and parallel processing frameworks such as Remote Procedure Calls
(RPC), Message Passing Interface (MPI) [13], MapReduce [4], and Nested Data Paral-
lelism [2]. All of these higher-level APIs and frameworks can be built on top of named
places.

3.1 RPC via Named Places

Named places make a place’s interface public at a well-known address: the host, port,
and name of the place. They provide distributed places with a form of computation
similar to the actor model [10]. Using named places and the define-named-remote-
server form, programmers can build distributed places that act as remote procedure
call (RPC) servers. The example in figure 3 demonstrates how to launch a remote Racket
node instance, launch a remote procedure call (RPC) tuple server on the new remote
node instance, and start a local event loop that interacts with the remote tuple server.

The create-place-node procedure in figure 3 connects to "host2" and starts
a distributed place node there that listens on port 6344 for further instructions. The
descriptor to the new distributed place node is assigned to the remote-node variable.



1 #lang racket/base

2 (require racket/place/distributed

3 racket/class

4 racket/place

5 racket/runtime-path

6 "tuple.rkt")

7 (define-runtime-path tuple-path "tuple.rkt")

8

9 (module+ main

10 (define remote-node (create-place-node

11 "host2"

12 #:listen-port 6344))

13 (define tuple-place

14 (dynamic-place

15 #:at remote-node

16 #:named 'tuple-server

17 tuple-path

18 'make-tuple-server))

19

20 (define c (connect-to-named-place

21 remote-node

22 'tuple-server))

23 (define d (connect-to-named-place

24 remote-node

25 'tuple-server))

26 (tuple-server-hello c)

27 (tuple-server-hello d)

28 (displayln

29 (tuple-server-set c "user0" 100))

30 (displayln

31 (tuple-server-set d "user2" 200))

32 (displayln (tuple-server-get c "user0"))

33 (displayln (tuple-server-get d "user2"))

34 (displayln (tuple-server-get d "user0"))

35 (displayln (tuple-server-get c "user2")))

Figure 3: Tuple RPC Example



Next, the dynamic-place procedure creates a new named place on the remote-node.
The named place will be identified in the future by its name symbol 'tuple-server.

The code in figure 4 contains the use of the define-named-remote-server form,
which defines a RPC server suitable for invocation by dynamic-place. The RPC
tuple-server allows for named tuples to be stored into a server-side hash table and
later retrieved. It also demonstrates one-way “cast” procedures, such as hello, that do
not return a value to the remote caller.

1 #lang racket/base

2 (require racket/match

3 racket/place/define-remote-server)

4

5 (define-named-remote-server tuple-server

6

7 (define-state h (make-hash))

8 (define-rpc (set k v)

9 (hash-set! h k v)

10 v)

11 (define-rpc (get k)

12 (hash-ref h k #f))

13 (define-cast (hello)

14 (printf "Hello from define-cast\n")

15 (flush-output)))

Figure 4: Tuple Server

For the purpose of explaining the tuple-server implementation, figure 5 shows
the macro expansion of the RPC tuple server. Typical users of distributed places do
not need to understand the expanded code to use the define-named-remote-server
macro. The define-named-remote-server form, in figure 5, takes an identifier and
a list of custom expressions as its arguments. A place function is created by prepending
the make- prefix to the identifier tuple-server. The make-tuple-server identi-
fier is the symbol given to the dynamic-place form in figure 3. The define-state

custom form translates into a simple define form, which is closed over by the define-
rpc forms.

The define-rpc form is expanded into two parts. The first part is the client stubs
that call the RPC functions. The stubs can be seen at the top of figure 5. The client func-
tion name is formed by concatenating the define-named-remote-server identifier,
tuple-server, with the RPC function name, set, to form tuple-server-set. The
RPC client functions take a destination argument which is a remote-connection% de-
scriptor followed by the RPC function’s arguments. The RPC client function sends the
RPC function name, set, and the RPC arguments to the destination by calling an inter-



nal function named-place-channel-put. The RPC client then calls named-place-
channel-get to wait for the RPC response.

The second part of the expansion part of define-rpc is the server implementation
of the RPC call. The server is implemented by a match expression inside the make-

tuple-server function. Messages to named places are placed as the first element
of a list where the second element is the source or return channel to respond on. For
example, in (list (list 'set k v) src) the inner list is the message while src

is the place-channel to send the reply on. The match clause for tuple-server-set
matches on messages beginning with the 'set symbol. The server executes the RPC
call with the communicated arguments and sends the result back to the RPC client. The
define-cast form is similar to the define-rpc form except there is no reply message
from the server to client.

The named place, shown in the tuple server example, follows an actor-like model
by receiving messages, modifying state, and sending responses. Racket macros enables
the easy construction of RPC functionality on top of named places.

3.2 Racket Message Passing Interface

RMPI is Racket’s implementation of the basic MPI operations. A RMPI program be-
gins with the invocation of the rmpi-launch procedure, which takes two arguments.
The first is a hash from Racket keywords to values of default configuration options. The
rmpi-build-default-config helper procedure takes a list of Racket keyword argu-
ments and forms the hash of optional configuration values. The second argument is a list
of configurations, one for each node in the distributed system. A configuration is made
up of a hostname, a port, a unique name, a numerical RMPI process id, and an optional
hash of additional configuration options. An example of rmpi-launch follows.

(rmpi-launch

(rmpi-build-default-config

#:racket-path "/tmp/mplt/bin/racket"

#:distributed-launch-path

(build-distributed-launch-path

"/tmp/mplt/collects")

#:rmpi-module "/tmp/mplt/kmeans.rkt"

#:rmpi-func 'kmeans-place

#:rmpi-args

(list "/tmp/mplt/color100.bin"

#t 100 9 10 0.0000001))

(list (list "n1.example.com" 6340 'kmeans_0 0)

(list "n2.example.com" 6340 'kmeans_1 1)

(list "n3.example.com" 6340 'kmeans_2 2)

(list "n4.example.com" 6340 'kmeans_3 3

(rmpi-build-default-config

#:racket-path "/bin/racket"))))

The rmpi-launch procedure spawns the remote nodes first and then spawns the
remote places named with the unique name from the config structure. After the nodes



1 (module named-place-expanded racket/base

2 (require racket/place racket/match)

3 (define/provide

4 (tuple-server-set dest k v)

5 (named-place-channel-put

6 dest

7 (list 'set k v))

8 (named-place-channel-get dest))

9 (define/provide

10 (tuple-server-get dest k)

11 (named-place-channel-put

12 dest

13 (list 'get k))

14 (named-place-channel-get dest))

15 (define/provide

16 (tuple-server-hello dest)

17 (named-place-channel-put

18 dest

19 (list 'hello)))

20 (define/provide

21 (make-tuple-server ch)

22 (let ()

23 (define h (make-hash))

24 (let loop ()

25 (define msg (place-channel-get ch))

26 (match

27 msg

28 ((list (list 'set k v) src)

29 (define result (let ()

30 (hash-set! h k v)

31 v))

32 (place-channel-put src result)

33 (loop))

34 ((list (list 'get k) src)

35 (define result

36 (let ()

37 (hash-ref h k #f)))

38 (place-channel-put src result)

39 (loop))

40 ((list (list 'hello) src)

41 (define result

42 (let ()

43 (printf

44 "Hello from define-cast\n")

45 (flush-output)))

46 (loop)))

47 loop)))

48 (void))

Figure 5: Macro Expansion of Tuple Server



and places are spawned, rmpi-launch sends each spawned place its RMPI process id,
the config information for establishing connections to the other RMPI processes, and
the initial arguments for the RMPI program. The last function of rmpi-launch is to
rendezvous with RMPI process 0 when it calls rmpi-finish at the end of the RMPI
program.

The rmpi-init procedure is the first call that should occur inside the #:rmpi-

func place procedure. The rmpi-init procedure takes one argument ch, which is the
initial place-channel passed to the #:rmpi-func procedure. The rmpi-init proce-
dure communicates with rmpi-launch over this channel to receive its RMPI process
id and the initial arguments for the RMPI program.

(define (kmeans-place ch)

(define-values (comm args tc) rmpi-init ch)

;;; kmeans rmpi computation ...

(rmpi-finish comm tc))

The rmpi-init procedure has three return values: an opaque communication struc-
ture which is passed to other RMPI calls, the list of initial arguments to the RMPI pro-
gram, and a typed channel wrapper for the initial place-channel it was given. The typed
channel wrapper allows for the out of order reception of messages. Messages are lists
and their type is the first item of the list, which must be a racket symbol. A typed channel
returns the first message received on the wrapped channel that has the type requested.
Messages of other types that are received are queued for later requests.

The rmpi-comm structure, returned by rmpi-init, is the communicator descriptor
used by all other RMPI procedures. The RMPI informational functions rmpi-id and
rmpi-cnt return the current RMPI process id and the total count of RMPI processes,
respectively.

> (rmpi-id comm)

3

> (rmpi-cnt comm)

8

The rmpi-send and rmpi-recv procedures provide point-to-point communication be-
tween two RMPI processes.

> (rmpi-send comm dest-id '(msg-type1 "Hi"))

> (rmpi-recv comm src-id)

'(msg-type1 "Hi")



With the rmpi-comm structure, the programmer can also use any of the RMPI collective
procedures: rmpi-broadcast, rmpi-reduce, rmpi-allreduce, or rmpi-barrier
to communicate values between the nodes in the RMPI system.

The (rmpi-broadcast comm 1 (list 'a 12 "foo")) expression broadcasts
the list (list 'a 12 "foo") from RMPI process 1 to all the other RMPI processes
in the comm communication group. Processes receiving the broadcast execute (rmpi-

broadcast comm 1) without specifying the value to send. The (rmpi-reduce comm

3 + 3.45) expression does the opposite of broadcast by reducing the local value 3.45
and all the other procesess local values to RMPI process 3 using the + procedure to do
the reduction. The rmpi-allreduce expression is similar to rmpi-reduce except that
the final reduced value is broadcasted to all processes in the system after the reduction is
complete. Synchronization among all the RMPI processes occurs through the use of the
(rmpi-barrier comm) expression, which is implemented internally using a simple
reduction followed by a broadcast.

Distributed places are simply computation resources connected by socket commu-
nications. This simple design matches MPI’s model and makes RMPI’s implementa-
tion very natural. The RMPI layer demonstrates how distributed places can provide the
foundations of other distributed programming frameworks such as MPI.

3.3 Map Reduce

Our MapReduce implementation is patterned after the Hadoop [1] framework. Key
value pairs are the core data structures that pass through the map and reduce stages of
the computation. In the following example, the number of word occurrences is counted
across a list of text files. The files have been preprocessed so that there is only one word
per line.

Figure 6 shows the different actors in the MapReduce paradigm. The program node
P creates the MapReduce workers group. When a map-reduce call is made, the pro-
gram node serves as the controller of the worker group. It dispatches mapper tasks to
each node and waits for them to respond as finished with the mapping task. Once a node
has finished its mapping task, it runs the reduce operation on its local data. Given two
nodes in the reduced state, one node can reduce to the other; freeing one node to return
to the worker pool for allocation to future tasks. Once all the nodes have reduced to a
single node, the map-reduce call returns the final list of reduced key values.

The first step in using distributed place’s MapReduce implementation is to create a
list of worker nodes. This is done by calling the make-map-reduce-workers proce-
dure with a list of hostnames and ports to launch nodes at.
(define config (list (list "host2" 6430)

(list "host3" 6430)))

(define workers (make-map-reduce-workers config))

Once a list of worker nodes has been spawned, the programmer can call map-
reduce supplying the list of worker nodes, the config list, the procedure address of the
mapper, the procedure address of the reducer, and a procedure address of an optional
result output procedure. Procedure addresses are lists consisting of the quoted-module-
path and the symbol name of the procedure being addressed.



Map Reduce Program
P

Map Reduce Workers

worker pool

1 2 3 4

1 3 2 4

1 3 2 4

1 2

1

P program node

worker nodes

mapping step

reducing step

Figure 6: MapReduce Program

(map-reduce

workers

config

tasks

(list (quote-module-path "..") 'mapper)

(list (quote-module-path "..") 'reducer)

#:outputer (list (quote-module-path "..")

'outputer))

Tasks can be any list of key value pairs. In this example the keys are the task num-
bers and the values are the input files the mappers should process.

(define tasks (list (list (cons 0 "/tmp/w0"))

(list (cons 1 "/tmp/w1"))

...))

The mapper procedure takes a list of key value pairs as its argument and returns the
result of the map operation as a new list of key value pairs. The input to the mapper,
in this example, is a list of a single pair containing the task number and the text file
to process, (list (cons 1 "w0.txt")). The output of the mapper is a list of each
word in the file paired with 1, its initial count. Repeated words in the text are repeated
in the mappers output list. Reduction happens in the next step.



;;(->

;; (listof (cons any any))

;; (listof (cons any any)))

(define/provide (mapper kvs)

(for/first ([kv kvs])

(match kv

[(cons k v)

(with-input-from-file

v

(lambda ()

(let loop ([result null])

(define l (read-line))

(if (eof-object? l)

result

(loop (cons (cons l 1)

result))))))])))

After a task has been mapped, the MapReduce framework sorts the output key value
pairs by key. The framework also coalesces pairs of key values with the same key into a
single pair of the key and the list of values. As an example, the framework transforms the
output of the mapper '(("house" 1) ("car" 1) ("house" 1)) into '(("car"

(1)) ("house" (1 1)))

The reducer procedure takes, as input, this list of pairs, where each pair consists of
a key and a list of values. For each key, the reducer reduces the list of values to a list
of a single value. In the word count example, an input pair, (cons "house" '(1 1 1

1)) will be transformed to (cons "house" '(4)) by the reduction step.

;;(->

;; (listof (cons any (listof any)))

;; (listof (cons any (listof any))))

(define/provide (reducer kvs)

(for/list ([kv kvs])

(match kv

[(cons k v)

(cons k (list (for/fold ([sum 0])

([x v])

(+ sum x))))])))

Once each mapped task has been reduced, the outputs of the reduce steps are further
reduced until a single list of word counts remains. Finally, an optional output procedure
is called which prints out a list of words and their occurrence count and returns the total
count of all words.

(define/provide (outputer kvs)

(displayln

(for/fold ([sum 0]) ([kv kvs])

(printf "∼a - ∼a\n" (car kv) (cadr kv))

(+ sum (cadr kv)))))



3.4 Nested Data Parallelism

The last parallel processing paradigm implemented on top of distributed places is nested
data parallelism [9]. In this paradigm recursive procedure calls create subproblems that
can be parallelized. An implementation of parallel quicksort demonstrates nested data
parallelism built on top of distributed places.

The distributed places, nested data parallelism API – ndp-get-node, ndp-sendwork,
ndp-get-result, and ndp-return-node – is built on top of the RMPI layer. The
main program node, depicted as P in figure 7, creates the ndp-group. The ndp-group
consists of a coordinating node, 0, and a pool of worker nodes 1, 2, 3, 4. The co-
ordinating node receives a sort request from ndp-sort and forwards the request to the
first available worker node, node 1. Node 1 divides the input list in half and requests a
new node from the coordinator to process the second half of the input. The yellow bars
on the right side of figure 7 show the progression as the sort input is subdivided and new
nodes are requested from the coordinator node. Once the sort is complete, the result is
returned to the coordinator node, which returns the result to the calling program P.

NDP Quicksort Program
P

NDP Group
ndp coordinator node

0

ndp worker pool

1 2 3 4

1

1 2

1 3 2 4

P program node

coordinator node

worker nodes

divide progression

Figure 7: NDP Program

Like the previous two examples, the nested data parallel quicksort example begins
by spawning a group of worker processes.



(define config

(list (list "host2" 6340)

(list "host3" 6340)

(list "host4" 6340)

(list "host5" 6340)

(list "host6" 6340)))

(define ndp-group (make-ndp-group config))

Next the sort is performed by calling ndp-qsort.

(displayln (ndp-qsort (list 9 1 2 8 3 7 4 6 5 10)

ndp-config))

The ndp-qsort procedure is a stub that sends the procedure address for the ndp-

parallel-qsort procedure and the list to sort to the ndp-group. The work of the
parallel sort occurs in the ndp-parallel-sort procedure in figure 8. First, the partit
procedure picks a pivot and partitions the input list into three segments: less than the
pivot, equal to the pivot, and greater than the pivot. If a worker node can be obtained
from the ndp-group by calling ndp-get-node, the gt partition is sent to the newly
obtained worker node to be recursively sorted. If all the worker nodes are taken, the
gt partition is sorted locally using the ndp-serial-qsort procedure. Once the lt

partition is sorted recursively on the current node, the gt-part is checked to see if
it was computed locally or dispatched to a remote node. If the part was dispatched
to a remote node, its results are retrieved from the remote node by calling ndp-get-

result. After the results are obtained, the remote node node can be returned to the
ndp-group for later use. Finally, the sorted parts are appended to form the final sorted
list result.

4 Implementation

A key part of the distributed place implementation is that distributed places is a layer
over places, and parts of the places layer are exposed through the distributed places
layer. In particular, each node, in figure 9, begins life with one initial place, the mes-
sage router. The message router listens on a TCP port for incoming connections from
other nodes in the distributed system. The message router serves two primary purposes:
it multiplexes place messages and events on TCP connections between nodes and it
services remote spawn requests for new places.

There are a variety of distributed places commands which spawn remote nodes and
places. These command procedures return descriptor objects for the nodes and places
they create. The descriptor objects allow commands and messages to be communicated
to the remote controlled objects. In Figure 10, when node A spawns a new node B, A is
given a remote-node% object with which to control B. Consequently, B is created with
a node% object that is connected to A’s remote-node% descriptor via a TCP socket
connection. B’s node% object is the message router for the new node B. A can then
use its remote-node% descriptor to spawn a new place on node B. Upon successful
spawning of the new place on B, A is returned a remote-place% descriptor object. On



(define (ndp-parallel-qsort l ndp-group)

(cond

[(< (length l) 2) l]

[else

(define-values (lt eq gt) (partit l))

;; spawn off gt partition

(define gt-ref

(define node (ndp-get-node ndp-group))

(cond

[node

(cons #t (ndp-send-work

ndp-group

node

(list

(quote-module-path)

'ndp-parallel-qsort)

gt))]

[else

(cons #f (ndp-serial-qsort gt))]))

;; compute lt partition locally

(define lt-part

(ndp-parallel-qsort lt ndp-group))

;; retrieve remote results

(define gt-part

(match gt-ref

[(cons #t node-id)

(begin0

(ndp-get-result ndp-group node-id)

(ndp-return-node

ndp-group

node-id))]

[(cons #f part) part]))

(append lt-part eq gt-part)]))

Figure 8: NDP Parallel Sort



Node
node% place

message
router

compute
place

compute
place

compute
place

Node
node% place

message
router

compute
place

compute
place

compute
place

Node
node% place

message
router

compute
place

compute
place

compute
place

Node
node% place

message
router

compute
place

compute
place

compute
place

Figure 9: Distributed Places Nodes

node B, a place% object representing the newly spawned place is attached to B’s node%
message-router. The remote-connection% descriptor object represents a connection
to a named place. At the remote node, B, a connection% object intermediates between
the remote-connection% and its destination named-place.

Machine A Machine B
remote-node% node%

remote-place% place%

remote-connection% connection%

Figure 10: Descriptor (Controller) - Controlled Pairs

To communicate with remote nodes, a place message must be serializable. As a
message-passing implementation, places send a copy of the original message when
communicating with other places. Thus, the content of a place message is inherently
serializable and transportable between nodes of a distributed system.



To make place channels distributed, place-socket-bridge% proxies need to be
created under the hood. The place-socket-bridge%s listen on local place channels
and forward place messages over TCP sockets to remote place channels. Each node
in a Racket distributed system must either explicitly pump distributed messages by
registering each proxy with sync or bulk register the proxies, via the remote-node%

descriptor, with a message router which can handle the pumping in a background thread.
Figure 11 shows the layout of the internal objects in a simple three node distributed

system. The node at the top of the figure is the original node spawned by the user. Early
in the instantiation of the top node, two additional nodes are spawned, node 1 and node
2. Then two places are spawned on each of node 1 and node 2. The instantiation code
of the top node ends with a call to the message-router form. The message-router
contains the remote-node% instances and the after-seconds and every-seconds

event responders. Event responders execute when specific events occur, such as a timer
event, or when messages arrive from remote nodes. The message router de-multiplexes
events and place messages from remote nodes and dispatches them to the correct event
responder.

Finally, function overloading is used to allow place- functions, such as place-

channel-get, place-channel-put, and place-wait, to operate transparently on
both place and distributed place instances. To accomplish this, distributed place descrip-
tor objects are tagged as implementing the place<%> interface using a Racket structure
property. Then place- functions dynamically dispatch to the distributed place version
of the function for distributed place instances or execute the original function body for
place instances.

5 Distributed Places Performance

Two of the NAS Parallel Benchmarks, IS and CG, are used to test the performance of
the Racket distributed places implementation. The Fortran/C MPI version of the bench-
marks were ported to Racket’s distributed places. Performance testing occurred on 8
quad-core Intel i7 920 machines. Each machine was equipped with at least 4 gigabytes
of memory and a 1 gigabit Ethernet connection.

Performance numbers are reported for both Racket and Fortran/C versions of the
benchmarks in figure 12. Racket’s computational times scaled appropriately as addi-
tional nodes were added to the distributed system. Computational times are broken out
and graphed in isolation to make computational scaling easier to see.

Racket communication times were larger than expected. There are several factors,
stacked on top of one another, that explain the large communication numbers. First, five
copies of the message occur during transit from source to destination. In a typical oper-
ation, a segment of a large flonum vector needs to be copied to a destination distributed
place. The segment is copied (1) out of the large flonum vector into a new flonum vector
message. The message vector’s length is the length of the segment to be sent. Next, the
newly constructed vector message is copied (2) over a place channel from the compu-
tational place to the main thread which serializes and copies (3) the message out a TCP
socket to its destination. When the message arrives at its destination node, the mes-
sage is deserialized and copied (4) a fourth time over a place channel to the destination



node% - top
message-router

remote-node% - 1
spawned-process%

socket-connection%

remote-places

remote-place%
parent-node

place-socket-bridge%

remote-place%
parent-node

place-socket-bridge%

after-seconds

every-seconds

remote-node% - 2
spawned-process%

socket-connection%

remote-places

remote-place%
parent-node

place-socket-bridge%

remote-place%
parent-node

place-socket-bridge%

node% - 1
socket-connection%

superivised places

place%

place-socket-bridge%

place%

place-socket-bridge%

node% - 2
socket-connection%

superivised places

place%

place-socket-bridge%

place%

place-socket-bridge%

Figure 11: Three Node Distributed System



computational place. Finally, the elements of the message vector are copied (5) into the
mutable destination vector.

Racket’s MPI implementation, RMPI, is not as sophisticated as the standard MPICH [14]
implementation. MPICH has nonblocking sends and receives that allow messages to
flow both directions simultaneously. Both the NAS Parallel Benchmarks used, IS and
CG, use non-blocking MPI receives. RMPI on the other hand, always follows the typ-
ical protocol design of sending data in one direction and then receiving data from the
opposite direction.

The largest contributor to Racket’s excessive communication times is the serializa-
tion costs of the Racket primitive write. On Linux, serialization times are two orders
of magnitude larger than the time to write raw buffers. One solution would be to replace
distributed place’s communication subsystem with FFI calls to an external MPI library.
This solution would bypass the expensive write calls currently used in distributed
places. Another viable solution would be to recognize messages that are vectors of
flonums and use a restricted-form of write that could write flonum vectors as efficiently
as raw buffers. Finally, it should be noted that using Racket’s write is advantageous in
cases where the message to be sent is a complex object graph instead of a simple raw
buffer.

6 Related Work

Erlang [16] Erlang’s distributed capabilities are built upon its process concurrency
model. Remote Erlang nodes are identified by name@host identifiers. New Erlang pro-
cesses can be started using the slave:start procedure or at the command line. Erlang
uses a feature called links to implement fault notification. Two processes establish a link
between themselves. Links are bidirectional; if either process fails the other process dies
also. Erlang also provides monitors which are unidirectional notifications of a process
exiting. Distributed Places and Erlang share a lot of similar features. While Erlang’s dis-
tributed processes are an extension of its process concurrency model, Distributed Places
are an extension of Racket’s places parallelism strategy. Erlang provides a distributed
message passing capability that integrates transparently with its inter-process message
passing capability. The Disco project implements map reduce on top of an Erlang core.
User level Disco programs, however, are written in Python, not Erlang. In contrast, the
implementation and user code of distributed places’ map reduce are both expressed as
Racket code. Erlang has a good foundation for building higher-level distributed comput-
ing frameworks, but instead Erlang programmers seem to build customized distributed
solutions for each application.

MapReduce [4] is a specialized functional programming model, where tasks are au-
tomatically parallelized and distributed across a large cluster of commodity machines.
MapReduce programmers supply a set of input files, a map function and a reduce
function. The map function transforms input key/value pairs into a set of intermedi-
ate key/value pairs. The reduce function merges all intermediate values with the same
key. The framework does all the rest of the work. Google’s MapReduce implementation
handles partitioning of the input data, scheduling tasks across distributed computers,
restarting tasks due to node failure, and transporting intermediate results between com-



Fortran Wall-clock Time
Integer Sort (IS) Conjugate Gradient (CG)

Processes

Se
co

nd
s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

S 1 2 3 4 5 6 7 8

Processes

Se
co

nd
s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

S 1 2 3 4 5 6 7 8

Total Time Compute Time Communication Time
Fortran Compute Wall-clock time

Integer Sort (IS) Conjugate Gradient (CG)

Processes

Se
co

nd
s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

S 1 2 3 4 5 6 7 8

Processes

Se
co

nd
s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

S 1 2 3 4 5 6 7 8

Racket Wall-clock time
Integer Sort (IS) Conjugate Gradient (CG)

Processes

Se
co

nd
s

0
10
20
30
40
50
60
70
80
90

S 1 2 3 4 5 6 7 8

Processes

Se
co

nd
s

0
2.5
5
7.5
10
12.5
15
17.5
20
22.5
25
27.5
30

S 1 2

Total Time Compute Time Communication Time
Racket Compute Wall-clock time

Integer Sort (IS) Conjugate Gradient (CG)

Processes

Se
co

nd
s

0

2

4

6

8

10

12

14

S 1 2 3 4 5 6 7 8

Processes

Se
co

nd
s

3

3.5

4

4.5

5

5.5

6

6.5

S 1 2

Figure 12: IS, CG, and MG class A results



pute nodes. The MapReduce model can be applied to problems such as word occurance
counting, distributed grep, inverted index creation, and distributed sort.

Termite [8] Termite is a distributed concurrent scheme built on top of Gambit-
C Scheme. Direct mutation of variables and data structures is forbidden in Termite.
Instead mutation is simulated using messages and suspended, lightweight processes.
Lookup in Termite’s global environment is a node relative operation and resolves to
the value bound to the global variable on the current node. Termite supports process
migration via serializable closures and continuations. Termite follows Erlang’s style of
failing hard and fast. Where Erlang has bidirectional links, Termite has directional links
that communicate process failure from one process to another. Failure detection only
occurs in one direction from the process being monitored to the monitoring process.
Termite also has supervisors which like supervisors in Erlang, restart child processes
which have failed. Distributed Places could benefit from Termites superior serialization
support, where nearly all Termite VM objects are serializable.

Akka [19] is a concurrency and distributed processing framework for Scala and
Java. Like Erlang, Akka is patterned after the Actor model. Akka supports Erlang like
supervisors and monitors for failure and exit detection. Like Erlang, Akka leaves the
creation of higher-level distributed frameworks to custom application developers.

Kali [3] is a distributed version of Scheme 48 that efficiently communicates pro-
cedures and continuations from one compute node to another. Kali’s implementation
lazily faults continuation frames across the network as they are needed. Kali’s prox-
ies are really just address space relative variables. Proxies are identified by a globally
unique id. Sending a proxy involves sending only its globally unique id. Retrieving a
proxies value returns the value for the current address space. Kali allow for retrieval of
the proxy’s source node and spawning of new computations at the proxy’s source.

Distributed Functional Programming in Scheme (DFPS) [17] uses futures se-
mantics to build a distributed programming platform. DFPS employs the Web Server
collection’s serial-lambda form to serialize closures between machines. Unlike Racket
futures, DFPS’ touch form blocks until remote execution of the future completes.
DFPS has a distributed variable construct called a dbox. For consistency, a dbox should
only be written to once or a reduction function for writes to the dbox should be pro-
vided. Once a dbox has be set, the DFPS implementation propagates the dbox value
other nodes that reference the dbox,

Cloud Haskell [5, 6] is a distributed programming platform built in Haskell. Cloud
Haskell has two layers of abstraction. The lowest layer is the process layer, which is a
message-passing distributed programming API. Next comes the tasks layer which pro-
vides a framework for failure recovery and data locality. Communication of serialized
closures requires explicit specification from the user of what parts of environment will
be serialized and sent with the code object.

On top of its message-passing process layer, Cloud Haskell implements typed chan-
nels that allow only messages of a specific type to be sent down the channel. A Cloud
Haskell channel has a SendPort and a ReceivePort. ReceivePorts are not serializable
and cannot be shared, which simplifies routing. SendPorts, however, are serializable
and can be sent to multiple processes, allowing many to one style communication.



High-level Distributed-Memory Parallel Haskell (HdpH) [12] builds upon Cloud
Haskell’s work by adding support for polymorphic closures and lazy work stealing.
HdpH does not require a special language kernel or any modifications to the vanilla
GHC runtime. It simply uses GHC’s Concurrent Haskell as a systems language for
building a distributed memory Haskell.

Dryad [11] is an infrastructure for writing coarse-grain data-parallel distributed
programs on the Microsoft platform. Distributed programs are structured as a directed
graph. Sequential programs are the graph vertices and one-way channels are the graph
edges. Unlike Distributed Places, Dryad is not a programming language. Instead it pro-
vides a execution engine for running sequential programs on partitioned data at compu-
tational vertices. Although Dryad is not a parallel database, the relational algebra can be
mapped on top of a Dryad distributed compute graph. Unlike distributed places which is
language centric, Dryad is infrastructure piece, which doesn’t extend the expressiveness
of any particular programming language.

Jade [15] is a implicitly parallel language. Implemented as a extension to C, Jade is
intended to exploit task-level concurrency. Like OpenMP, Jade consists of annotations
that programmers add to their sequential code. Jade uses data access and task granularity
annotations to automatically extract concurrency and parallelize the program. A Jade
front end then compiles the annotated code and outputs C. Programs parallelized with
Jade continue to execute deterministically after parallelization. Jade’s data model can
interact badly with the programs that write to disjoint portions of a single aggregate data
structure. In contrast, Distributed Places is an explicitly parallel language where the
programmer must explicitly spawn tasks and explicitly handle communication between
tasks.

Dreme [7] is a distributed Scheme. All first-class language objects in Dreme are
mobile in the network. Dreme describes the communication network between nodes us-
ing lexical scope and first class closures. Dreme has a network-wide distributed memory
and a distributed garbage collector. By default, Dreme sends objects by reference across
the network, which can lead to large quantities of hidden remote operations. In contrast,
distributed places copies all objects sent across the network and leaves the programmer
responsible for communication invocations and their associated costs.

7 Conclusion

Building distributed places as a language extension allows the compact and clean con-
struction of higher-level abstractions such as RPC, MPI, map reduce, and nested data
parallelism. Distributed places programs are more compact and easier to write than tra-
ditional C MPI programs. A Racket MPI implementation of parallel k-means was writ-
ten with distributed places using less than half the lines of code of the original C and
MPI version. With distributed places, messages can be heterogeneous and serialization
is handled automatically by the language.

In addition to distributed parallel computing, Racket has many features that make it
a great coordination and control language. Racket provides a rich FFI (foreign function
interface) for invoking legacy C code. Racket also includes extensive process exec ca-
pabilities for launching external programs and communicating with them over standard



IO pipes. Racket’s FFI, process exec capabilities, and distributed places gives program-
mers a powerful distributed coordination and workflow language.

With distributed places, programmers can quickly develop parallel and distributed
solutions to everyday problems. Developers can also build new distributed computing
frameworks using distributed places as a common foundation. Distributed places ex-
tension of places augments the Racket programmer’s toolbox and provides a road map
other language implementers to follow.

Bibliography

[1] Apache Software Foundation. Hadoop. , 2012. http://hadoop.apache.org

[2] Guy E. Blelloch. Programming Parallel Algorithms. Communications of the
ACM, 1996.

[3] Henry Cejtin, Suresh Jagannathan, and Richard Kelsey. Higher-Order Distributed
Objects. ACM Transactions on Programming Languages and Systems (TOPLAS),
1995.

[4] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data Processing on
Large Clusters. OSDI’04: Sixth Symposium on Operating System Design and
Implementation, 2004.

[5] Jeff Epstein, Andrew P. Black, and Simon Peyton-Jones. Haskell for the Cloud. In
Proceedings of the 4th ACM symposium on Haskell (Haskell ’11), 2011.

[6] Jeffrey Epstein. Functional programming for the data centre. MS thesis, Univer-
sity of Cambridge, 2011.

[7] Matthew Fuchs. Dreme: for Life in the Net. PhD dissertation, New York Univer-
sity, 1995.

[8] Guillaume Germain, Marc Feeley, and Stefan Monnier. Concurrency Oriented
Programming in Termite Scheme. In Proc. Scheme and Functional Programming,
2006.

[9] Guy E. Blelloch, Jonathan C. Hardwick, Siddhartha Chatterjee, Jay Sipelstein,
and Marco Zagha. Implementation of a portable nested data-parallel lang. In Pro-
ceedings of the fourth ACM SIGPLAN symposium on Principles and practice of
parallel programming (PPOPP ’93), 1993.

http://hadoop.apache.org


[10] Carl Hewitt, Peter Bishop, and Richard Steiger. A Universal Modular ACTOR
Formalism for Artificial Intelligence. In Proceedings of the 3rd International Joint
Conference on Artificial Intelligence (IJCAI’73), 1973.

[11] Michael Isard, Mihai Budiur, Yuan Yu, Andrew Birrell, and Dennis Fetterly.
Dryad: Distributed Data-Parallel Programs from Sequential Building Blocks. Eu-
ropean Conference on Computer Systems (EuroSys), 2007.

[12] Patrick Maier, Phil Trinder, and Has-Wolgang Loidl. High-level Distributed-
Memory Parallel Haskell in Haskell. Symposium on Implementation and Appli-
cation of Functional Languages, 2011.

[13] Message Passing Interface Forum. MPI-2: Extensions to the Message-Passing
Interface. http://www.mpi-forum.org/docs/mpi2-report.pdf, 2003. http://www.
mpi-forum.org/docs/mpi2-report.pdf

[14] MPICH. MPICH. http://www.mcs.anl.gov/mpich2, 2013.

[15] M. C. Rinard and M. S. Lam. The Design, Implementation, and Evaluation of
Jade. ACM Transactions on Programming Languages and Systems 20(1), pp. 1–
63, 1998.

[16] Konstantinos Sagonas and Jesper Wilhelmsson. Efficient Memory Management
for Concurrent Programs that use Message Passing. Science of Computer Pro-
gramming 62(2), pp. 98–121, 2006.

[17] Alex Schwendner. Distributed Functional Programming in Scheme. MS the-
sis, Massachusetts Institute of Technology, 2010. http://groups.csail.mit.
edu/commit/papers/2010/alexrs-meng-thesis.pdf

[18] Kevin Tew, James Swaine, Matthew Flatt, Robert Bruce Findler, and Peter Dinda.
Places: Adding Message-Passing Parallelism to Racket. Dynamic Language Sym-
posium 2011, 2011.

[19] Typesafe Inc. Akka. http://akka.io, 2012.

http://www.mpi-forum.org/docs/mpi2-report.pdf
http://www.mpi-forum.org/docs/mpi2-report.pdf
http://groups.csail.mit.edu/commit/papers/2010/alexrs-meng-thesis.pdf
http://groups.csail.mit.edu/commit/papers/2010/alexrs-meng-thesis.pdf

	Distributed Places

