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Abstract

We propose an approach to remote display systems in

which the client predicts the screen update events that

the server will send and applies them to the screen im-

mediately, thus eliminating the network round-trip time

and making the system more responsive in a wide-area

or high loss environment. Incorrectly predicted events

are undone when the actual events arrive from the server.

The approach requires no server or protocol changes, and

thus can work with existing systems. Since it is core to

the feasibility of such a speculative remote display sys-

tem, we study the predictability of the events that occur

under typical workloads in two extant systems, Windows

Remote Desktop and VNC. We find that simple, state-

limited Markov models are often able to correctly predict

the next event. Based on these results, we design, imple-

ment, and evaluate a speculative remote display exten-

sion to the VNC client. In our implementation, the end

user can trade off between the responsiveness of the dis-

play and the level of temporarily displayed incorrect pre-

dictions. We evaluate VNC/SRD with two user studies.

We conclude by describing design alternatives.

1 Introduction

Remote display systems allow a distant user to control

a computer or application with a graphical user inter-

face. While this technology dates back to the 1980s and

the X Window System [18], it has only recently become

widely deployed through the success of VNC [17] and

Microsoft’s inclusion of the Remote Desktop Protocol

(RDP) in the mainstream release of Windows. Remote

display systems are also key components in thin-client

computing [9, 19]. In this paper, we particularly consider

the RDP and VNC protocols.
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Increasingly, remote display systems are being used

over wide-area networks where round-trip latencies are

inherently higher than those in local-area networks, and

have far greater variance [16, 7]. These higher latencies

dramatically reduce the utility of remote display systems

for end-users, making the remote computer seem choppy,

slow, and hard to control.

The client and server in a remote display system com-

municate through two independent event streams. User

events (keystrokes, mouse movements and clicks, etc)

flow from the client to the server, while screen events

(graphics primitives) flow from the server to the client.

While neither VNC nor RDP require that the two event

streams be synchronized, they are in fact synchronized

through the user who will frequently wait for the effects

of his actions to be shown in his display. The user is

thus subject to the round-trip time of the network path

and perceives the high mean latency and variance of the

path as slowness and jitter in the display. While impor-

tant recent work, both in academia [1], and industry [12],

have made remote display systems more efficient, the

client/server round-trip is fundamentally limited by the

physics.

We propose speculative remote display as a way of al-

leviating this problem. Speculation has been proposed

as a way to reduce the user-experienced latency in other

systems contexts [24, 13]. In this paper, we focus on

an approach to speculative remote display that requires

no server or protocol changes, and thus can be layered

over existing systems, including those previously men-

tioned. We assume that the client has spare cycles. The

key idea is for the client to predict future screen events

from the history of past screen and user events and ex-

ecute these screen updates immediately. As the actual

server-supplied screen events arrive, they are compared

against the predicted events that have already been spec-

ulatively executed. If there is a difference, the client

rolls back (undos) the effects of the erroneously pre-

dicted events. In effect, the client is always executing



a nested transaction on the frame buffer, and the updates

from the server indirectly provide commit and abort no-

tifications. Provided that (1) the event streams are suffi-

ciently predictable, and (2) users are sufficiently tolerant

of rollbacks, speculative remote display has the potential

to make wide-area remote display more usable.

A client-based speculative remote display system re-

quires significant client-side changes, and the selection

of an appropriate predictor. The client must be mod-

ified so that it can interface with a predictor, validate

predictions, and be able to roll back predicted display

changes when they prove to be wrong. The difficulty of

these modifications is protocol-dependent. RDP clients

are considerably harder to modify than VNC clients be-

cause the RDP protocol is semantically much richer, and

because RDP requires that the client maintain state be-

yond the framebuffer and cache, namely a Windows-like

device context. For this reason, we have designed, im-

plemented, and evaluated a speculative client for VNC

to begin exploring speculative remote display. However,

we have studied the predictability user and screen event

traffic in both RDP and VNC.

There are numerous approaches that one could take

to predicting the future screen events from the past user

and screen events. Our prototype system modularizes the

predictor. The initial predictor we use in our work is sim-

ple state-limited k-th order Markov model that uses the

events themselves as symbols. We describe this predictor

in more detail in Section 2.

Using this predictor, we examined the prospects for

client-based speculative remote display by studying the

predictability of traces collected during a study of users

using instrumented clients for Microsoft’s RDP and for

VNC. In both cases, our users interacted with com-

monplace Windows applications. For RDP, our sim-

ple Markov models are very successful in predicting the

next screen event from previous screen and user events.

Not only can we generate a prediction for most events,

the predictions are usually right. For VNC, our mod-

els are less successful. We generate predictions for a

smaller fraction of the events, but the predictions are usu-

ally right. However, the rate of VNC screen events is

also much lower than that of RDP. We describe our pre-

dictability analysis in detail in Section 3.

We designed and implemented client-based specula-

tive remote display within the VNC system. Our sys-

tem is described in detail in Section 4. There are several

design alternatives possible, and we explain the implica-

tions of each and how we arrived at our current design.

Our system’s user interface lets the naive user trade off

between the effective reduction in round trip time and the

degree of display artifacts appearing on the screen due to

incorrect predictions.

Because our system essentially trades off the effective

responsiveness1 and correctness2 of the display, it is es-

sential that we evaluate whether such a remote display

approach is usable, whether users can select a reasonable

tradeoff point using our interface, and to what extent we

can improve the user experience. To do so, we designed

and undertook user studies, described in Section 5.

We are also considering approaches to speculative re-

mote display that introduce server and protocol changes,

as well as client changes. We comment on these ap-

proaches and on the nature of protocols that seem to be

best suited for speculative remote display in Section 6

and conclude in Section 7.

Other related work

While prediction-based latency hiding has been used in

many domains, to the best of our knowledge, ours is the

first application of this idea to remote display.

A related domain is multiplayer networked games

where each client is responsible for maintaining a pri-

vate representation of the game state which is updated

by local and remote game events. Prediction-based tech-

niques to hide the latency of remote events include dead

reckoning [10], and systems that rely on knowledge of

game AI implementation to speculatively perform non-

critical actions [15]. In contrast to remote display events,

game events are both application-specific, and at a much

higher semantic level.

There is considerable interest in predicting user behav-

ior within user interfaces. Examples include predicting

Unix command-lines [4], and predicting the shapes that

a user is drawing in a CAD tool [20]. While our system

does predict in part based on past user events, we predict

future system actions, not future user actions.

Our work also bears some resemblance to the bounti-

ful work in prefetching for web [14] and file access [8].

However, speculative remote display is not prefetch as it

predicts the contents and not the request.

Finally our work can be compared to speculative exe-

cution as being explored in the context of both operating

systems [22] and distributed systems [6, 13, 23]. In con-

trast, our focus is on speculation for a specific system

service, remote display, not for the general problem of

speculative execution.

2 Predictor

Our predictor is a k-th order Markov model. The sym-

bols that the Markov model operates on are the user or

1The user sets a round-trip-time goal. The success in reaching the

goal depends on the predictability of the traffic.
2It is important to note that all incorrectness in the output of our

system is temporary. Display artifacts caused by incorrect predictions

are repaired as quickly as possible.



system events as supplied as human-readable strings. For

events that involve bitmap content, we hash the content,

maintain a mapping from the hash back to the actual con-

tent, and use the hash as part of the symbol. A typical

event contains the type of event (e.g., mouse movement)

and its parameters (e.g., (x, y) coordinates). A state is

the simple concatenation of the last k symbols.

Of course, given this simple scheme, the bound on

the state space size of a model is O(nk+1), where n is

the number of distinct input symbols. Furthermore, be-

cause we include parameters in the symbols, n can po-

tentially be astronomical. For this reason, our implemen-

tation can constrain the number of states to be between

an upper and lower limit, keeping the most visited states

and garbage collecting the rest when the upper limit is

reached.

Our implementation supports continuous model fitting

and prediction. That is, it can operate on a stream of

symbols, updating the model on each new symbol as well

as supplying a prediction of the symbol that is most likely

to occur next. If there is insufficient information (e.g., we

are in a state which currently has no outgoing arcs), then

the predictor does not attempt to predict the next state.

At any point in time, the predictor can be asked for

an arbitrary number of subsequent events. It will return

as many subsequent events as possible, up to that bound.

It can return fewer events, however, as it is possible that

given the state transitions that have been seen up to the

present time, insufficient data may exist to compute an

empirical distribution over the states for some number of

steps ahead. As a simple example, if we are presently in

a state that has not been seen before, no next state can be

computed.

Our predictor is implemented in Perl. The core con-

sists of a library of approximately 600 source lines of

code. We can use this library online, in which case an

additional 250 lines of Perl are included. This online

predictor consumes a stream of symbols (and requests

for predictions) and produces a stream of vectors of pre-

dicted symbols.

Although the choice of Perl may seem odd from a per-

formance perspective, it is important to note that a tool

like this spends most of its time in hash table lookups,

and that most Markov model update and prediction op-

erations can be implemented with high level constructs

(e.g., map). Because of this high level representation,

and the fact that Perl’s hash implementation is very effi-

cient, we believe that our predictor implementation is not

much slower than one written in a low-level language.

We note that other predictors could be applied in this

domain, for example, Prediction by Partial Matching

(PPM) [3]. As we discuss in Section 4.4, our system

allows predictors to be easily plugged in.

3 Predictability Study

A key requirement for speculative remote display is that

there be, in practice, a considerable degree of predictabil-

ity in the user and screen event streams. In the follow-

ing, we apply the simple Markov model described in Sec-

tion 2 to the problem of predicting the next screen event

from past screen events and from both past screen events

and past user events. The system we describe in Sec-

tion 4 can be configured either way, and our studies in

Section 5 use past screen and user events to predict fu-

ture screen events. We study both the RDP protocol and

the VNC protocol. We also briefly comment on predict-

ing future user events from past user events.

3.1 Windows Remote Desktop

We first consider the predictability of screen events in the

RDP protocol.

3.1.1 Traces

To collect trace data to evaluate our predictor, we instru-

mented the rdesktop [2] open source RDP client (ver-

sion 1.4.1) so that it non-intrusively records all user and

screen events to files. We then created an experimen-

tal testbed consisting of 2 PCs (P4, 2 GHz, 512 MB,

19” LCD display, Windows XP SP2 (server) or Red Hat

Linux EL4.4 (client)) connected via a private 100 mbit

network. Notice that this is an ideal remote desktop

configuration—network latency and jitter are minimized.

To collect a trace, the user sat at one PC and used rdesk-

top (at 1280x1024 resolution and 24 bit color) to use the

other PC. The user performed the following tasks:

• Acclimatization. (5 minutes)

• Word processing with Microsoft Word 2003. The user

spent 15 minutes recreating a supplied document.

• Presentation creation with Microsoft Powerpoint 2003.

The user spent 15 minutes recreating a supplied

document with considerable drawing required.

• Web browsing using Firefox 2.0. For 15 minutes, the

user visited a news web site, read an article, and then

conducted web searches on its topic in another window.

(15 minutes).

Five users participated. They included graduate stu-

dents and faculty in the EECS Department at Northwest-

ern. The user traces contain 47 to 77 thousand events,

while the screen traces contain 712 thousand to about

one million events.

3.1.2 Results

We ran the screen and user traces generated by each user

through our online Markov predictor, varying the order



of the model and the upper and lower limits on the num-

ber of states in the model. For screen→screen prediction,

we simply use the screen trace. For screen+user→screen,

we merged the screen and user traces by timestamp, and

discarded predictions of user events. For each combina-

tion of trace, order, and limits, the predictor started with

no information at the beginning of the trace and formed

its model progressively as it saw the input symbols. This

is identical to how a predictor in a speculative remote

display system would operate.

The graphs in Figure 1 show the percentage of predic-

tion attempts that are successful, as a function of the or-

der of the model. In (a)–(c), we consider screen→screen,

with a progressive limitation on the number of states per-

mitted, while (d)–(f) considers screen+user→screen with

the same progressive limitation. Each curve corresponds

to a particular user. The key point is that with an prac-

tical 1000–2000 state model ((b) and (e)), over 90% of

attempts to predict the next screen event are successful.

If we have seen any transitions out of a state before (i.e.,

if we have seen the state before), we almost always pre-

dict the next state correctly. Note including user events

in the input to the predictor is necessary to be able to

eliminate the user event to screen event round trip noted

in the introduction.

The graphs of Figure 2 correspond exactly to those of

the previous figure with the exception being that we are

plotting the percentage of all events that are successfully

predicted. Remarkably, with our 1000–2000 state model,

we are still able to correctly predict over 60% of screen

events.

The upshot of Figures 1 and 2 is that we have found

that both RDP screen and user events are surprisingly

predictable with even an extremely naive predictor.

We are also able to predict 6–8% of user events from

past user events, with 60–80% of such predictions being

accurate.

3.2 VNC

We also evaluated the predictability of screen events in

the VNC protocol. While VNC’s user event model is

similar to that of RDP (key and mouse events), it is im-

portant to note that VNC’s screen event model is much

simpler than that of RDP. VNC’s model essentially boils

down to drawing rectangles of bitmaps to the frame-

buffer, where the bitmap content is supplied in the mes-

sage. Many encodings for the bitmap data are possible.

Note that in RDP, only about 20% of messages are of this

nature.

3.2.1 Traces

To collect trace data to evaluate our predictor, we instru-

mented a VNC [17] client, specifically Real VNC Viewer

4.1.2 for the X window system. We ran the modified

viewer on a Linux-based client computer and connected

to a Windows XP SP2 server via a private network. Fur-

ther details about the computer, screen, and network con-

figuration are given in Section 5.2.

Five users participated. They included undergraduates

and graduate students in the Computer Science Depart-

ment at the University of Victoria. The users carried out

the same tasks as described earlier. The user traces con-

tain 12 to 24 thousand events, while the screen traces

contain 8.5 to 17 thousand events.

Notice that the VNC traces include about 1/2 as many

user events and 2 orders of magnitude fewer screen

events than the RDP traces. The latter is due to the se-

mantically poorer content of the VNC screen updates. In

VNC many drawing commands at the GDI level will be

bundled together into a small number of bitmap rectan-

gle updates, while in RDP, the updates sent to the client

correspond much more closely to the GDI drawing com-

mands.

3.2.2 Results

Using a presentation that mirrors that of Section 3.1.2,

we now show our analysis of the predictability of the

VNC traces. We use the same range of model orders (1 to

8) and state size limits (100-200, 1000-2000, unlimited)

as before.

The graphs in Figure 3 show the percentage of predic-

tion attempts that are successful, as a function of the or-

der of the model. Figures 3(a)-(c) are for screen→screen,

with progressive limitation on the number of states per-

mitted, while Figure 3(d)-(f) are for screen+user→screen

with the same progressive limitation. Each curve corre-

sponds to a particular user. Similar to the RDP traces (the

comparable figure is Figure 1), we see that, provided a

sufficiently large model (again 1000-2000 states), when

we can predict the next screen event, we are usually suc-

cessful, although not quite as successful as in RDP.

The graphs of Figure 4 correspond exactly to those

of the previous figure, except that here we plot the per-

centage of all events that are successfully predicted.

The comparable figure for RDP is Figure 2. For

screen→screen (Figure 4(a)-(c)), the overall predictabil-

ity of VNC is much worse than that of RDP. Adding user

events to the input (Figure 4(d)-(f)), slightly increases

the overall predictability. While we predict just as accu-

rately when we do make a prediction, we have far fewer

instances in which we can make a prediction. This dif-

ference seems to derive from two factors. First, we see

far fewer screen events in VNC than we see in RDP. All
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Figure 1: Percentage of prediction attempts that are correct. (RDP study)
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Figure 2: Percentage of all events that are correctly predicted. (RDP study)

other things being equal, the model simply cannot grow

as robust with so much less data. Second, because a

VNC screen event contains many more GDI-level draw-

ing commands, compared to an RDP screen event, the

likelihood that two events will share the same sequence

of GDI-level events (and thus the same bitmap) is lower.

Despite the lower overall predictability of screen

events in the VNC protocol, it is important to point out

that we do, in fact, see some predictability. With appro-

priate choices for the model order and the state size lim-

its, 2-7% of screen events can be accurately predicted.

With enough states, and most predictions are accurate.

For predicting user events from past user events, we

would the overall predictability in VNC is slightly higher

than that in RDP.
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Figure 3: Percentage of prediction attempts that are correct. (VNC study)
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Figure 4: Percentage of all events that are correctly predicted. (VNC study)

4 Design and implementation of VNC/SRD

We now describe the overall design and implementation

of a version of VNC that incorporates client-based spec-

ulative remote display. VNC/SRD consists of the pre-

dictor described in Section 3 and extensions to the Real

VNC Viewer 4.1.2 code base. Our extensions are imple-

mented in ∼ 2300 lines of C++. No protocol changes are

made. The VNC/SRD client connects to an unmodified

VNC server.

Figure 5 illustrates the design of VNC/SRD. The pre-

diction framework that we have incorporated into VNC

intercepts user and screen events, maps them into appro-

priate event signatures, feeds the signatures to the exter-

nal predictor, requests predictions as needed, maps pre-

dicted event signatures back to screen events, and applies

the screen events to change the display. As actual screen

events arrive from the server, it also reconciles them with

predictions, and repairs the display as needed.
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Figure 5: Design of VNC/SRD.

4.1 Why not RDP/SRD?

Given the results of Section 3, which show that RDP

screen events are generally more predictable than VNC

screen events, the reader may wonder why we chose to

work in the context of VNC. While we plan an RDP/SRD

client based on the rdesktop code base, we chose to de-

sign and implement VNC/SRD first because the proto-

col is much simpler, and requires very little client-side

state. The VNC protocol consists of 4 different events,

while RDP contains many more. The on-screen result of

a VNC event depends only on the event and the current

display, while an RDP event’s result depends addition-

ally on separate state (essentially a device context), and

it causes side effects on that state. The path from event

to screen in VNC Viewer is very straightforward, while

the rdesktop path is more complex. Furthermore, it is

important to note that while we are generally more suc-

cessful at predicting the next screen event in RDP, indi-

vidual VNC screen events occur at a much lower rate and

generally affect far more pixels. Finally, we note that if

client-based speculative remote display is acceptable to

users at some prediction error rate, it is surely even bet-

ter at a lower one.

4.2 Event interception

Intercepting VNC events requires a number of changes to

the VNC event handling architecture. By default, VNC

streams events through the display client with minimal

processing. We changed the implementation to buffer

full events before applying them. Buffering the events

is necessary for us to validate events against predictions

and also to simplify the generation of event signatures.

VNC user events are trivially buffered since they con-

sist of only a few parameters—we simply capture them

as they are written to the network. VNC screen events,

however, are streamed directly to one of a set of decoders

which then streams the decoded image directly to the

user’s framebuffer. To buffer these screen events we redi-

rect the decoder’s output to an internal framebuffer that

is dynamically created for the incoming event. The inter-

nal framebuffer is then forwarded on to be rendered once

the event has been fully received.

4.3 Event/prediction mapping

There is an inherent tradeoff in how the system maps be-

tween the semantic information for an event and the sym-

bols that the predictor operates on. This mapping must

be maintained by either the predictor or the client. Con-

sider a design that optimizes for the run-time costs of the

predictor. In this case the symbols sent to the predictor

would need to be as compact as possible. This would re-

quire the client to maintain mappings for all the events

that it receives, even if many of the mappings will never

be used. If we optimized for the run-time cost of the

client, we would move the responsibility for mapping

to the predictor. This would require transferring all of

the event’s semantic information to the predictor. In the

worst case, this would result in transporting full screen

updates to the predictor.

In our implementation, we split the mapping between

the client and the predictor. For each event the client gen-

erates an event signature that includes any semantic in-

formation that can be represented compactly. For VNC,

this includes all events, except for the actual pixel data of

a screen update. For any information that cannot be com-

pacted, the client stores the original data in a local cache,

and adds the cache index to the event signature. The lo-

cal cache is managed by the client using an LRP (Least

Recently Predicted) policy. To apply an event, the event

semantics are extracted from the predicted event signa-

ture. If the event includes a cache index, the relevant

information (e.g., actual pixel data) is extracted from the

cache. If there is a cache miss, resulting from an earlier

cache eviction, then the predicted event is dropped.

4.4 Predictor interface

When designing the interface between the display client

and the predictor, we wanted to minimize the perfor-

mance overhead suffered by the client due to additional

processing caused by the predictor. At the same time, we

wanted to be able to readily plug in different predictors.

For these reasons, in our design the predictor runs asyn-

chronously and in parallel to the display client as a sepa-

rate process connected with a pair of pipes. This allows

the client to interface with the predictor using the same

mechanisms used to interface with the server, and also to

prioritize events from the server over events sent by the

predictor. Since all prediction processing is done outside



Symbol Meaning

User input

TTarget Desired round-trip time

Per-event control variables

n Number of predicted events

needed per event

m Number of immediate predicted

events per event

Estimates

r Smoothed screen event rate

rinst Estimated instantaneous rate

of screen events

TRTT Estimated network round-trip time

Parameters

∆ Interval for event rate estimator

(typical: 10 ms)

α Gain for estimator of r
(typical: 0.001)

β Variation factor for r
(typical: 0.5)

Figure 6: Symbols used in description of prediction ap-

plication policy.

of the client, there is no performance penalty due to the

overhead of the prediction engine itself, only for com-

municating with it. Finally, despite keeping the VNC

Viewer code base single-threaded, this design allows us

to straightforwardly make use of an unused processor

core, if available.

4.5 Prediction application policy

While there are many possible ways to use predictions to

improve the performance of a remote display system, we

restrict ourselves here to implementations that only affect

the client. Furthermore, we focus on two scenarios that

are challenging for current remote display implementa-

tions:

• Network connections in which packets experience high

and/or highly variable latency (e.g., connections over

WANs).

• Network connections in which packets experience high

and/or highly variable loss rates (e.g., connections over

wireless networks).

In both VNC and RDP, network connections are im-

plemented using TCP. This causes a common problem

in both scenarios: the message latency the client experi-

ences can be high, and/or highly variable—many screen

or user events will take a long time to traverse from client

to server, or vice versa. Each message can contain mul-

tiple events, and can span multiple packets at the net-

work layer. Packet loss or delay can result in the delay

of multiple events. From the perspective of the client,

however, the goal is to have user events arrive promptly

at the server, and correlated screen events to be returned

promptly from the server.

A speculative remote display client uses prediction

to overcome the network-induced event latency (and la-

tency variance)—to trade the possibility of screen arti-

facts for a lower effective event latency (and lower vari-

ance). In order to employ a predictor that consumes user

and screen events and can produce any number of pre-

dicted screen events, a speculative remote display client

needs to answer several questions:

1 How many predicted screen events to ask for?

2 When to apply the predicted events?

We refer to how these questions are answered as the pre-

diction application policy.

We now describe the policy that we designed, imple-

mented, and evaluated in the context of a purely client-

based variant of the VNC system, using the symbols in-

troduced in Figure 6.

The user determines the goal of the system, Ttarget,

the target event round-trip time. Ttarget can be changed

at any time. The system continually estimates the current

event round-trip time, TRTT . This can be done using a

ping estimate or the TCP RTT estimate.

As screen events flow into the system, it computes

an estimate of their rate, r. Note that the instantaneous

screen event rate is highly dynamic and dependent on

user activity. Events can also be very closely spaced, in-

deed, the spacing can effectively be zero since multiple

events can be packed into one message. Furthermore, the

mechanisms for resolving time that the operating system

makes available can affect the measurement of the in-

stantaneous rate. For these reasons, we introduce an in-

terval over which we estimate the instantaneous rate, ∆.

For every ∆ second window, we count the number of

screen events, k, that occur within it, and estimate the

instantaneous event rate as rinst = k/∆. In the work

reported here, we use ∆ = 10ms.

We derive a smoothed event rate estimate from these

instantaneous estimates using exponential averaging.

This smoothed event rate estimate is our prediction of

the rate of events in the near future. The smoothed event

rate estimate is computed:

r = αrinst + (1 − α)Prev (r)

The value of α that we use in our experiments is 0.001.

Based on our smoothed screen event rate r, we now

compute how many events we must predict on each new

event that arrives, in order to reach the target:

m = (TRTT − Ttarget)r

Note that this analysis assumes that a prediction can be

made on each event arrival. However, it is allowable for



a predictor in our system not to do so, or to return fewer

than m predictions. 3

We can also consider the system in terms of phase

and frequency. Our estimate r is the frequency at which

the system is operating. If the normal phase of the sys-

tem is TRTT , then Ttarget is the phase offset (“advanced

phase”) we seek to achieve. In order to do so, we need to

have executed the next m = (TRTT − Ttarget)r events

at any point in time. Furthermore, we need to be able to

continue to execute events at rate r, regardless of whether

they are predicted or server-provided events.

It is important to note that in our system predictions

are produced in response to events, including screen

events. This implies that a variation in message (and thus

event) latency results in variation in the number of avail-

able predictions at any point in time. A long delay in

receiving a new screen event means a long delay in pro-

ducing predictions for events subsequent to it. Such a de-

lay can result in an “underrun” of available predictions.

We address such underruns (and the inability to make all

needed predictions in some situations as described ear-

lier) by requesting additional predictions on each event.

In particular, we request n = (1 + β)m predictions on

each event. In our studies, β = 0.5.

The first m predictions are immediately applied to

achieve the desired Ttarget, while the remaining βm pre-

dictions are kept in reserve in case predictions cannot be

produced at the target rate r in the near future.

4.6 Reconciling predictions

The system maintains two queues for predicted screen

events. A validation queue to track applied predictions

and to enable error correction, as well as a pending queue

to prevent prediction underruns. The queues are kept

totally ordered by a (locally generated) event sequence

number.

The validation queue stores those predicted screen

events that have already been drawn to the screen. The

predicted event at the head of the queue is the next event

expected from the server. If an event from the server ar-

rives and matches the predicted event at the head of the

validation queue, the predicted event is removed from the

queue and discarded (the prediction was correct). If the

actual event does not match the predicted event then the

system enters the error correction state. We discuss this

state and its handling in Section 4.7.

The pending queue stores predictions that have not

yet been applied. Predicted events are drained from the

pending queue at rate r, at which time the drained event

is applied and placed in the validation queue.

3Our kth order Markov predictor can only make m predictions if it

has previously seen the last k events followed by at least one sequence

of an additional m events.

On every event that produces the n = (1 + β)m pre-

dictions described in Section 4.5, m of them are im-

mediately drawn and placed into the validation queue.

The βm “extra” predictions are placed into the pending

queue. Note that every new group of n predictions over-

laps in n − 1 places with the previous group of predic-

tions. Several cases result from pairs of such overlapping

events:

• If the earlier event has already been validated, the later

event is discarded (and not drawn).

• If the earlier event has already been applied, but has not

yet been validated, then the later event is discarded (and

not drawn).4

• If the earlier event has not yet been applied (it is in the

pending queue), then we replace the earlier event with

the more recent one.

4.7 Prediction error correction

When the predicted and drawn event at the head of the

validation queue is invalidated by the arrival of an actual

screen event from the server, we know that the screen

being displayed to the user is incorrect and we must re-

pair it. There are numerous ways to do such a repair.

Our system currently implements a simple, out-of-band

approach.

On an invalidation, we know that the head event is

wrong, and all subsequent events in the validation queue

are suspect. Furthermore, even if a subsequent event is

in fact correctly predicted, it can depend on the now in-

correct screen state produced by the head event, and thus

have resulted in an incorrect update of the screen. We

thus consider all of the subsequent predicted events to be

incorrect.

Predicted events in the pending queue are simply dis-

carded. Nothing more needs to be done, as these events

had not yet been drawn to the screen.

We compute a bounding rectangle over all of the

events in the validation queue and request an update for

that rectangle from the server. The events in the vali-

dation queue are then discarded. Although we do not

implement it, it is clear that another approach would be

to have a true undo log in the client that would permit

entirely local rollback of the screen state.

The update we request from the server results in one or

more screen events asynchronously being returned from

4The other possible choice would be to treat the earlier event as

being invalidated by the later event, and thus prompt error correction.

The problem with that approach is that the event with a given sequence

number could be invalidated, and error corrected, up to m times—the

new prediction could itself be invalidated, and so on. Additionally,

although the newer prediction is more likely to be correct, it is not the

case that the older prediction is now guaranteed to be incorrect. Given

the cost of error correction, we decided to simply wait for validation

by the actual screen event, which means that invalidation can occur at

most 1 time per actual screen event.



the server. Currently, we do not handle these actual

screen events in any special way. To do so would require

that we modify the VNC protocol to indicate that the re-

quest is of a special type, and that the server response

would include that type. For example, a “for repair”

flag could be added to the request and the server could

be modified to replicate this flag to any screen event it

sends in response. In this paper, we focus on approaches

to speculative remote display that require only client-side

changes to existing systems. As we discuss in Section 6,

we are exploring joint client/server speculative remote

display protocols that enable this and several other opti-

mizations.

4.8 User interface

In any speculative remote display system, the screen is

allowed to become temporarily incorrect. Outside of

having an oracle for a predictor, there is a tradeoff be-

tween the target RTT (Ttarget) goal and the degree of

temporary screen artifacts introduced by bad predictions.

We have repeatedly found that user satisfaction with

any specific systems software configuration or choice of

parameters exhibits high variation, and that this variation

can be exploited [5, 11]. Hence, we believe the tradeoff

in this system should be made on an individual basis.

Other researchers have also considered the effectiveness

of putting the end user in direct control of systems-level

decisions [21].

How do we let the individual user trade off between re-

sponsiveness and noise? In our system, we allow the user

to set Ttarget directly, from 0 to TRTT . The only exten-

sion to the VNC interface, is a simple gradient display

representing the range of choices. The gradient floats

above the VNC display on the right hand side of the

screen . The display indicates the current choice by a

bar and the current Ttarget number. The user can change

the tradeoff at any time simply by clicking or dragging

on the gradient.

5 User studies

We evaluated VNC/SRD by conducting two user studies.

5.1 Users

We conducted parallel user studies in the CS department

at the University of Victoria (UV) and the EECS depart-

ment at Northwestern University (NU). Our users con-

sisted of six students at UV and seven students at NU,

who were recruited via posters and email. As part of each

study, the user rated his familiarity, on a 1–10 (10=most

familiar) scale, with the OS and applications used in the

study. Each user also rated his familiarity with remote
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Figure 7: Self-ratings of users in studies.

display systems in general, their use in WAN and wire-

less environments, and with VNC specifically. This sur-

vey information summarizing the relevant background of

our users is provided in Figure 7.5 Each user contributed

approximately 90 minutes of his time. Users were not

compensated.

5.2 Testbed

Both the UV and NU testbeds consisted of two machines

(client and server) on a private network. At UV, each

machine had an AMD Athlon 64 3500 series processor

running at 2.2 GHz, 2 GB of RAM, and an NVIDIA

8800GTX graphics card running at 1280x1024 with 32

bit color. The monitors were 19 inch LCD displays. At

NU, each machine had a 2.0 GHz Intel P4, 512 MB of

RAM, and a Matrox G550 graphics card at 1600x1200

with 32 bit color driving a 20 inch LCD display. The

user interacted solely with the client machine which ran

Linux (Ubuntu “Gutsy Gibbon” version 7.10) and our

VNC/SRD client. On the client machine, we used the

netem extension of the iproute2 networking implementa-

tion in the Linux 2.6 kernel to allow controlled network

conditions. The server machine ran Windows XP SP2

and an unmodified Real VNC server. Microsoft Office

5The specific survey instruments and protocol documents for the

studies are available from http://virtuoso.cs.northwestern.edu/vnc-srd-

study.



SRD configuration for User Studies

Cache size limit 100 MB

Markov state size limit 2000 states

Markov order k 2

Maximum number of predictions 64

α 0.001

β 0.5

Initial Ttarget 1/2 the actual RTT

Figure 8: Configuration settings for SRD client in User

Studies.

Latency values for User Studies

50ms Regional connections

100ms National connections

300ms International connections

10 ms with 10% loss Bad wireless connection

Figure 9: Network scenarios.

2003 was installed on the server machine, as was Firefox

2.0.

Each user was presented with VNC/SRD running in

full-screen, 24 bit mode, which, for the applications in

our studies, is visually indistinguishable from using Win-

dows XP natively. Superimposed at the lower right of

the display was small grayscale slider described in Sec-

tion 4.8. During the studies they were instructed to ma-

nipulate the slider as needed to make the system com-

fortable for them.

5.3 Parameters and scenarios

Figure 8 shows the parameters used to configure

VNC/SRD in our studies. The cache size was set to 100

MB and the predictor limit was set to 2000 states. k was

chosen based on the predictability study of Section 3,

while α and β were chosen based on author experience

with the system. Although it would be ideal to study the

sensitivity of the choices for k, α, β and the memory

limits of the cache and model, it’s important to note that

each individual data point in our work represents about

two hours of proctor time.

In our studies, we consider four different network-

ing scenarios, as illustrated in Figure 9. Three of these

scenarios represent increasing network latencies, while

the fourth represents a wireless scenario with moderate

loss. Note that as VNC communicates with TCP, the high

loss rate scenario also represents one where the effective

bandwidth is low.

5.4 Study design

A user in each of our studies performed the following

tasks:
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Figure 10: Results from acclimatization questionnaire in

studies.

• Introduction (As long as needed). The user read a

standardized one page description of the study, and

description of the user interface.

• Self-rating (5 minutes). The user filled out a short survey

rating familiarity with various software, and with remote

desktop systems and VNC. (Figure 7 gives the results)

• Acclimatization (15 minutes). The user used the remote

computer, particularly the three test applications, and

became familiar with the VNC/SRD user interface. No

network emulation was run at this point. The user then

filled out a survey comparing the responsiveness of the

computer to his most familiar one, his comfort with

using the applications on the computer, and to what

extent he understood the grayscale slider and its effects.

This information is summarized in Figure 10.

• Word processing with Microsoft Word 2003. The user

spent 15 minutes recreating a supplied document. Three

network scenarios (R1,R2,R3) were chosen at random

form among those in Figure 9 and given in a random

order:

• R1: The prediction model was cleared, the user

interacted with the system for 5 minutes, and then

answered three questions, given later.

• R2: Same as R1, but with a different network

scenario.

• R3: Same as R1, but with a different network

scenario.

• Presentation creation with Microsoft Powerpoint 2003.

The user spent 15 minutes recreating a supplied



document with considerable drawing required. The same

scenarios, questions, etc, as with Word were used.

• Web browsing using Firefox 2.0. For 15 minutes, the

user visited a news web site (cnn.com), read an article,

and then conducted web searches using Google on its

topic in another window. The same scenarios, questions,

etc, as with Word were used.

Notice that we evaluated only three of the four network

scenarios with each individual user.

The original documents for the Word and Powerpoint

tasks were supplied by us and were the same for all users.

Word and Powerpoint ran in full screen mode. The users

were not required to finish duplicating the document,

only to get as far as they were comfortably able. For

the web browsing task, the article and search windows

were tiled side by side on the screen.

After each scenario-application pair, the user was

asked to answer each of the following:

• Rate the statement “I was able to find a setting on the

scale that was comfortable.” (1 (Strongly Disagree) to 10

(Strongly Agree) (5=Neither))

• At the most comfortable setting I could find, the

computer’s responsiveness was (1 (Very bad) to 10 (Very

Good) (5=Neither)).

• At the most comfortable setting I could find, the display

errors were (1 (Unacceptable) to 10 (Unnoticeable)

(5=Acceptable)).

5.5 Results

Figure 11 summarizes user responses to the three state-

ments given in the preceding section. Figures 11(a)-(c)

give the results for UV, while Figures 11(d)-(f) give the

results for NU. The results are shown using Box plots

where the whiskers correspond to minimum and maxi-

mum. The results shown in each individual figure are

grouped first by the network scenario (which are ar-

ranged roughly in order of increasing latency) and sec-

ond by the application. For example, Figure 11(a) sum-

marizes UV user responses to “I was able to find a set-

ting on the scale that was comfortable” (1 (Strongly Dis-

agree) to 10 (Strongly Agree) (5=Neither)). The first

three ranges in the graph correspond to user responses

for the Word, Powerpoint, and Browsing tasks, all at 50

ms latency. The next three ranges are the same applica-

tions at 100 ms, and so on.

The data indicates that the majority of users tend to

view the display artifacts as acceptable (Figures 11(c)

and (f)). User perception of responsiveness, however, is

highly variable (Figure 11(b) and (e)). For most scenario

and application combinations, the majority of users reg-

istered agreement that to some extent that they were able

to find comfortable settings.

5.6 Caveats

The primary issue with our studies, beyond their scale,

is that there were not many instances where predictions

were made, and thus the probability of prediction errors

and screen artifacts was reduced. This is due to two

factors. First, as we noted in Section 3.2, VNC screen

event traffic exhibits only a small amount of predictabil-

ity, much less than RDP screen event traffic. Second,

our study design avoids ordering effects by, in part, cre-

ating a new model on each network/app scenario. How-

ever, this means that there are not as many past events

on which predictions can be based, reducing the rate of

predictions.

The users at NU were more familiar with remote dis-

play systems, and VNC in particular, than those at UV

(Figure 7). The UV users generally found VNC/SRD’s

responsiveness to be closer to the computer they were

most familiar with than did the NU users (Figure 10).

This is likely due to the performance difference between

the testbeds.

6 Design alternatives

We have so far described a design for a client-based

speculative remote display system that allows a user to

choose a desired message latency. As we described ear-

lier, we use a Markov model-based predictor to generate

predictions from repeated event sequences. However we

note that there are many possible alternatives for incor-

porating event prediction into a display client.

Improving the client-based approach The most

straightforward design alternative is to choose a different

predictive model. VNC/SRD is designed in such a way

that it is straightforward to integrate other online predic-

tors. One approach would be to separately predict event

types and parameters. For example, coordinates might be

more readily, and cheaply, predicted using linear time se-

ries models. In separating types and parameters, it is not

clear what the definition of an incorrect prediction would

be. For instance, if an event’s action was correctly pre-

dicted but its location was wrong, error correction could

entail refetching all of the affected areas, or the predicted

action could simply be moved to the correct location.

Another design option is further pre- and post-

processing of event data. For example, currently, event

locations are absolute coordinates, so two events are con-

sidered different if their locations differ by a single pixel,

even if their actions are identical. Using differencing

would be one method of handling this discrepancy.

There are also many alternatives in regards to the pre-

diction application policy. Our current design tracks the
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Figure 11: User study response analysis for survey questions described in Section 5.4

event arrival times but does not use them in the predic-

tor or the policy decisions. A design that incorporated

this information could use the Markov model to predict

specific events and then use an estimator of some kind

to determine at what time it should apply each of the

predicted events. Such a scenario would allow a user to

specify more precisely how far into the future they want

the system to predict.

Currently our system uses a very simplistic mecha-

nism for error recovery that involves retransmitting all

the regions that were changed before an error was de-

tected. We already mentioned that a simple undo-log

to handle rollback would further improve performance,

however there are other aspects of this problem to con-

sider. We currently measure the user’s tolerance of er-

rors to control the aggressiveness of our prediction pol-

icy. However, this measurement could also be used to

control an error correction policy. For instance, we could

determine the error threshold that a user is willing to tol-

erate and enter error correction only when this threshold

is exceeded. We could also selectively correct errors in-

stead of correcting everything at once. For instance we

could prioritize errors based on the number of pixels and

the screen location.

Exploiting semantically richer protocols As we dis-

cussed in Section 3, the screen event predictability of the

semantically richer RDP protocol is much higher than

that of the simple VNC protocol, although the rate of

events in RDP is also much higher. This raises the pos-

sibility that speculative remote display is more suitable

for semantically richer protocols, be they RDP or X11.

If it is the case that semantically richer protocols bene-

fit more, perhaps very high-level interactions, such as in

AJAX web applications, are suitable for speculation.

Server-side cooperation and protocol extensions

With server-side cooperation, and necessary protocol ex-

tensions, a speculative remote display system could re-

duce the bandwidth demands of a remote display archi-

tecture. In such a system the client would make and

apply predictions and send back the event signatures to

the server. Upon receiving the predicted signatures the

server could determine the correctness of the prediction

and send either a revocation containing the signature or a

full correction to the client. This would allow the server

to avoid sending screen updates at all when a correct pre-

diction was made, and would also allow the system to

quickly detect and correct errors.

7 Conclusions

This paper introduced the idea of client-based specu-

lative remote display, in which the client predicts and

speculatively executes screen update events in order to

ameliorate the high latencies and high loss rates seen on

wide area and wireless networks, respectively. To eval-

uate the concept, we studied the predictability of Win-

dows Remote Desktop (RDP) and VNC traffic, finding

predictability in both, although much more in RDP than

VNC. We developed a prototype speculative remote dis-

play client for VNC. VNC/SRD works without server



or protocol modifications, and gives the user an inter-

face through which he can adjust the tradeoff between

the aggressiveness of predictions (and thus effective re-

duction in latency) and the incidence of display artifacts.

Two user studies were conducted to measure the usabil-

ity of the system. The predictability studies, analysis of

VNC/SRD’s design, and the usability studies, argue for

the feasibility of the speculative remote display concept,

but raise a range of new questions regarding the structure

of a speculative remote display system and protocol that

we plan to address in the future.
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