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Abstract
Virtualization has the potential to dramatically increase the usabil-
ity and reliability of high performance computing (HPC) systems.
However, this potential will remain unrealized unless overheads
can be minimized. This is particularly challenging on large scale
machines that run carefully crafted HPC OSes supporting tightly-
coupled, parallel applications. In this paper, we show how care-
ful use of hardware and VMM features enables the virtualization
of a large-scale HPC system, specifically a Cray XT4 machine,
with ≤5% overhead on key HPC applications, microbenchmarks,
and guests at scales of up to 4096 nodes. We describe three tech-
niques essential for achieving such low overhead: passthrough I/O,
workload-sensitive selection of paging mechanisms, and carefully
controlled preemption. These techniques are forms of symbiotic
virtualization, an approach on which we elaborate.
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1. Introduction
Virtualization has the potential to dramatically increase the usabil-
ity and reliability of high performance computing (HPC) systems
by maximizing system flexibility and utility to a wide range of
users [11, 13, 23, 24]. Many of the motivations for virtualization
in data centers apply also equally to HPC systems, for example al-
lowing users to customize their OS environment (e.g. between full-
featured OSes and lightweight OSes). Additionally, virtualization
allows multiplexing of less-demanding users when appropriate. Fi-
nally, virtualization is relevant to a number of research areas for
current petascale and future exascale systems, including reliability,
fault-tolerance, and hardware-software co-design.

The adoption of virtualization in HPC systems can only occur,
however, if it has minimal performance impact in the most demand-
ing uses of the machines, specifically running the capability appli-
cations that motivate the acquisition of petascale and exascale sys-
tems. Virtualization cannot succeed in HPC systems unless the per-
formance overheads are truly minimal and, importantly, that those
overheads that do exist do not compound as the system and its ap-
plications scale up.

This challenge is amplified on high-end machines for several
reasons. First, these machines frequently run carefully crafted cus-
tom HPC OSes that already minimize overheads and asynchronous
OS interference (OS noise) [9, 25], as well as make the capabili-
ties of the raw hardware readily available to the application devel-
oper. Second, the applications on these machines are intended to
run at extremely large scales, involving thousands or tens of thou-
sands of nodes. Finally, the applications are typically tightly cou-
pled and communication intensive, making them very sensitive to
performance overheads, particularly unpredictable overheads. For
this reason, they often rely on the deterministic behavior of the HPC
OSes on which they run.

In this paper, we show how scalable virtualization with≤5%
overhead for key HPC applications and guests can be achieved in
a high-end message-passing parallel supercomputer, in this case a
Cray XT4 supercomputer [2] at scales in excess of 4096 nodes. For



guests, we examined the behavior of both the custom Catamount
HPC OS [17] and the Cray CNL guest [16], an HPC OS derived
from the Linux operating system. Our performance overheads are
measured using three application benchmarks and a range of mi-
crobenchmarks.

The virtual machine monitor that we employ is Palacios, an
open source, publicly available VMM designed to support the virtu-
alization of HPC systems and other platforms. We have previously
reported on the design, implementation, and evaluation of Pala-
cios [20]. The evaluation included limited performance studies on
32–48 nodes of a Cray XT system. In addition to considering much
larger scales, this paper focuses on the essential techniques needed
to achieve scalable virtualization at that scale and how a range of
different VMM and hardware virtualization techniques impact the
scalability of virtualization.

The essential techniques needed to achieve low overhead vir-
tualization at these scales are passthrough I/O, workload-sensitive
selection of paging mechanisms, and carefully controlled preemp-
tion. Passthrough I/O provides direct guest / application access to
the specialized communication hardware of the machine. This in
turn enables not only high bandwidth communication, but also pre-
serves the extremely low latency properties of this hardware, which
is essential in scalable collective communication.

The second technique we have determined to be essential to low
overhead virtualization at scale is the workload-sensitive selection
of the paging mechanisms used to implement the guest physical
to host physical address translation. Palacios supports a range of
approaches, from those with significant hardware assistance (e.g.
nested paging, which has several implementations across Intel and
AMD hardware), and those that do not (e.g., shadow paging, which
has numerous variants). There is no single best paging mecha-
nism; the choice is workload dependent, primarily on guest context
switching behavior and the memory reference pattern.

The final technique we found to be essential to low overhead
virtualization at scale is carefully controlled preemption within the
VMM. By preemption, we mean both interrupt handling and thread
scheduling, specifically carefully controlling when interrupts are
handled, and using cooperative threading in the VMM. This control
mostly avoids introducing timing variation in the environment that
the guest OS sees, in turn meaning that carefully tuned collective
communication behavior in the application remains effective.

What these techniques effectively accomplish is to keep the vir-
tual machine as true to the physical machine as possible in terms
of its communication and timing properties. This in turn allows the
guest OS’s and the application’s assumptions about the physical
machine it is designed for to continue to apply to the virtual ma-
chine environment. In the virtualization of a commodity machine,
such authenticity is not needed. However, if a machine is part of
a scalable computer, disparities between guest OS and application
assumptions and the behavior of the actual virtual environment can
lead to performance impacts that grow with scale.

We generalize beyond the three specific techniques described
above to argue that to truly provide scalable performance for vir-
tualized HPC environments, the black box approach of commod-
ity VMMs should be abandoned in favor of a symbiotic virtual-
ization model. In the symbiotic virtualization model, the guest OS
and VMM function cooperatively in order to function in a way that
optimizes performance. Our specific techniques are examples of
symbiotic techniques, and are, in fact, built on the SymSpy passive
symbiotic information interface in Palacios.

Beyond supercomputers, our experiences with these symbiotic
techniques are increasingly relevant to system software for general-
purpose and enterprise computing systems. For example, the in-
creasing scale of multicore desktop and enterprise systems has led
OS designers to consider treating multicore systems like tightly-

coupled distributed systems. As these systems continue to scale up
toward hundreds or thousands of cores with distributed memory hi-
erarchies and substantial inter-core communication delays, lessons
learned in designing scalable system software for tightly-coupled
distributed memory supercomputers will be increasingly relevant
to them.

Our contributions are as follows:

• We demonstrate that it is possible to virtualize a high-end su-
percomputer at large scales (4096 nodes) with minimal perfor-
mance overhead (≤5%). As far as we are aware, our results
represent the largest scale virtualization study to date.

• We describe the three techniques essential for achieving such
low overheads at scale: passthrough I/O, workload-sensitive se-
lection of paging mechanisms, and carefully controlled preemp-
tion.

• We generalize from the mechanisms to the concept of symbiotic
virtualization, which we describe and argue will become of
increasing importance as scalable systems become ubiquitous.

2. Virtualization system overview
Our contributions are made in the context of the Palacios VMM
and Kitten lightweight kernel. For our experiments in this paper,
Palacios is embedded into Kitten, making possible a system call for
instantiating a VM from a guest OS image. A detailed description
of these systems and their interaction is available elsewhere [20].
We now summarize these systems.

2.1 Palacios

Palacios is a publicly available, open source, OS-independent
VMM designed and implemented as part of the V3VEE project
(http://v3vee.org). developed from scratch that targets the
x86 and x8664 architectures (hosts and guests) with either AMD
SVM [3] or Intel VT [14] extensions. It is designed to be embed-
dable into diverse host OSes, and we presently have embedded it
into Kitten, GeekOS, Minix 3, and Linux. When embedded into
Kitten, the combination acts as a type-I VMM—guest OSes do
not require any modification to run. Palacios can run on generic
PC hardware, in addition to specialized hardware such as Cray XT
supercomputer systems.

Palacios creates a PC-compatible virtual environment for guest
OSes by handlingexits that are raised by the hardware on guest
operations that the VMM defines as requiring interception. This is
a common structure for a VMM, often referred to as “trap-and-
emulate”. For example, VM exits frequently occur on interrupts,
reads and writes to I/O ports and specific areas of memory, and
use of particular hardware instructions and registers (e.g. CPU
control registers). These exits allow the VMM to intervene on
key hardware operations when necessary, emulating or changing
requested hardware behavior as needed. Because exit handling
incurs overhead, carefully controlling what operations exit and
what is done on each exit is essential to providing scalability and
performance.

2.2 Kitten host OS

Kitten is a publicly available, GPL-licensed, open source OS de-
signed specifically for high performance computing. The general
philosophy being used to develop Kitten is to borrow heavily from
the Linux kernel when doing so does not compromise scalability
or performance (e.g., adapting the Linux bootstrap code). Perfor-
mance critical subsystems, such as memory management and task
scheduling, are replaced with code written from scratch.

Kitten’s focus on HPC scalability makes it an ideal host OS
for a VMM on HPC systems, and Palacios’s design made it easy



to embed it into Kitten. In particular, host OS/VMM integration
was accomplished with a single interface file of less than 300 lines
of code. The integration includes no internal changes in either the
VMM or host OS, and the interface code is encapsulated together
with the VMM library in an optional compile time module for the
host OS.

The Kitten host OS exposes VMM control functions via a sys-
tem call interface available from user space. This allows user level
tasks to instantiate VM images directly. The result is that VMs can
be loaded and controlled via processes received from the job loader.
A VM image can thus be linked into a standard job that includes
loading and control functionality.

3. Virtualization at scale
In our initial experiments, we conducted a detailed performance
study of virtualizing a Cray XT 4 supercomputer. The study in-
cluded both application and microbenchmarks, and was run at the
largest scales possible on the machine (at least 4096 nodes, some-
times 6240 nodes). The upshot of our results is that it is possi-
ble to virtualize a large scale supercomputer with≤5% perfor-
mance penalties in important HPC use-cases, even when running
communication-intensive, tightly-coupled applications. In the sub-
sequent sections, we explain how and present additional studies that
provide insight into how different architectural and OS approaches
to virtualization impact the performance of HPC applications and
micro-benchmarks.

3.1 Hardware platform

Testing was performed during an eight hour window of dedicated
system time on Red Storm, a Cray XT4 supercomputer made up of
12,960 single-socket compute nodes, each containing either a dual-
core or quad-core processor. Because Palacios requires virtualiza-
tion support not present in the older dual-core processors, testing
was limited to the system’s 6,240 quad-core nodes. These nodes
each consist of a 2.2 GHz AMD Opteron Barcelona quad-core pro-
cessor, 8 GB of DDR2 memory, and a Cray SeaStar 2.1 network in-
terface. The nodes are arranged in a 13x20x24 3-D mesh topology
with wrap-around connections in the Z dimension (i.e. the system
is a torus in the Z-dimension only).

Red Storm was jointly developed by Sandia and Cray, and was
the basis for Cray’s successful line of Cray XT supercomputers.
There are many Cray XT systems in operation throughout the
world, the largest of which currently being the 18,688 node, 2.3
PetaFLOP peak “Jaguar” XT5-HE system at Oak Ridge National
Laboratory. The experiments and results described in this paper are
relevant to these systems and could be repeated on systems with
quad-core or newer processors. We are in the process of negotiating
time to repeat them on Jaguar.

3.2 Software environment

Each test was performed in at least three different system software
configurations: native, guest with nested paging, and guest with
shadow paging. In the native configuration, the test application or
micro-benchmark is run using the Catamount HPC operating sys-
tem [17] running on the bare hardware. This is the same environ-
ment that users normally use on Red Storm. Some tests were also
run, at much smaller scales, using Cray’s Linux-derived CNL [16]
operating system.

The environment labeled “Guest, Nested Paging” in the figures
consists of the VMM running on the bare hardware, managing an
instance of Catamount running as a guest operating system in a
virtual machine environment. In this mode, the AMD processor’s
nested paging memory management hardware is used to implement
the guest physical address to host physical address mapping that

is chosen by Palacios. The guest’s page tables and a second set of
page tables managed by the VMM are used for translation. Palacios
does not need to track guest page table manipulations in this case;
however, every virtual address in the guest is translated using a
“two dimensional” page walk involving both sets of page tables [6].
This expensive process is sped up through the use of a range of
hardware-level TLB and page walk caching structures.

In contrast, the “Guest, Shadow Paging” mode uses software-
based memory management which disables the processor’s nested
paging hardware. Shadow paging avoids the need for a two dimen-
sional page walk, but requires that the VMM track guest page ta-
bles. Every update to the guest’s page tables causes an exit to the
VMM, which must then validate the request and commit it to a set
of protected “shadow” page tables, which are the actual page ta-
bles used by the hardware. We elaborate on the choice of paging
mechanism later in the paper.

Virtualizing I/O devices is critical to VM performance, and,
here, the critical device is the SeaStar communications inter-
face [7]. Palacios provides guest access to the SeaStar using
passthrough I/O, an approach we elaborate on later. We consider
two ways of using the SeaStar, the default way, which is unnamed
in our figures, and an alternative approach called “Accelerated Por-
tals.” The default approach uses interrupt-driven I/O and host-based
message matching1, while accelerated portals performs message
matching on the NIC and does not generally require interrupt de-
livery.

In the version of AMD SVM available on the Cray XT4, in-
tercepting any interrupt requires that all interrupts be intercepted.
Because a variety of non-SeaStar interrupts must be intercepted
by the VMM, this adds a VM exit cost to SeaStar interrupts. Es-
sentially, when the VMM detects an exit has occurred due to a
SeaStar interrupt, it immediately re-enters the guest, re-injecting
the SeaStar interrupt as a software interrupt. This process requires
O(1000) cycles, resulting in interrupt-driven SeaStar performance
having a higher latency under virtualization than natively. Because
accelerated portals uses user-level polling instead, the interrupt exit
cost described above does not occur when the guest is virtualized.
As a result, virtualized accelerated portals performance is nearly
identical to native accelerated portals performance.

It is important to point out that if future versions of AMD’s
SVM hardware (and of Intel’s VT hardware) supportedselective
interrupt exiting, we would be able to use it to avoid exiting on
SeaStar interrupts, which should make interrupt-driven SeaStar
performance under virtualization identical to that without virtual-
ization.

The guest Catamount OS image we used was based on the
same Cray XT 2.0.62 Catamount image used for the native experi-
ments. Minor changes were required to port Catamount to the PC-
compatible virtual machine environment provided by Palacios (the
native Cray XT environment is not fully PC-compatible). Addition-
ally, the SeaStar portals driver was updated to allow passthrough
operation as described in Section 4.

3.3 MPI microbenchmarks

The Intel MPI Benchmark Suite version 3.0 [15] was used to
evaluate point-to-point messaging performance and scalability of
collective operations.

3.3.1 Point-to-point performance

Figure 1 shows the results of a ping-pong test between two adjacent
nodes. Small message latency, shown in Figure 1(a), is approxi-

1 Many high-performance messaging systemsmatch incoming large mes-
sages with pre-posted user buffers into which the data is directly received,
avoiding unnecessary data copies.
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Figure 1. MPI PingPong microbenchmark (a) latency and (b) bandwidth for native and virtualized with both interrupt-driven message
delivery and message processing offloaded to the Cray XT SeaStar NIC (accelerated portals). Note that with accelerated portals, guest and
native performance are nearly identical due to the removal of interrupt virtualization overhead, resulting in overlapping lines on both graphs.

mately 2.5 times worse with nested or shadow guest environments
compared to native, though choice of paging virtualization mode
does not effect messaging latency. This is a result of the larger in-
terrupt overhead in the virtualized environment. However, note that
in absolute terms, for the smallest messages, the latency for the
virtualized case is already a relatively low 12µs, compared to the
native 5µs. Eliminating this virtualized interrupt overhead, as is
the case with accelerated portals and would be the case with more
recent AMD SVM hardware implementations, results in virtually
identical performance in native and guest environments.

Figure 1(b) plots the same data but extends the domain of the x-
axis to show the full bandwidth curves. The nested and shadow
guest environments show essentially identical degraded perfor-
mance for mid-range messages compared to native, but eventually
reach the same asymptotic bandwidth once the higher interrupt
cost is fully amortized. Bandwidth approaches 1.7 GByte/s. Avoid-
ing the interrupt virtualization cost with accelerated portals results
again in similar native and guest performance.

3.3.2 Collective performance

Figures 2, 3, 4, and 5 show the performance of the MPI Barrier,
Allreduce, Broadcast, and Alltoall operations, respectively. The op-
erations that have data associated with them, Allreduce and All-
toall, are plotted for the 16-byte message size since a common us-
age pattern in HPC applications is to perform an operation on a
single double-precision number (8 bytes) or a complex double pre-
cision number (16 bytes).

Both Barrier. Allreduce, and Broadcast scale logarithmically
with node count, with Allreduce having slightly higher latency at
all points. In contrast, Alltoall scales quadratically and is therefore
plotted with a log y-axis. In all cases, the choice of nested vs.
shadow paging is not significant. What does matter, however, is
the use of interrupt-driven versus polling-based communication
in the guest environment. Similarly to what was observed in the
point-to-point benchmarks, eliminating network interrupts by using
the polling-based accelerated portals network stack results in near
native performance. As noted previously, more recent AMD SVM
implementations support selective interrupt exiting, which would
make the virtualized interrupt-driven performance identical to the
native or virtualized accelerated portals numbers. Still, even with
this limitation, virtualized interrupt-driven communication is quite

fast in absolute terms, with a 6240 node barrier or all-reduce taking
less than 275µs to perform.

The Alltoall operation is interesting because the size of the
messages exchanged between nodes increases with node count.
This causes all of the configurations to converge at high node
counts, since the operation becomes bandwidth limited, and the
cost of interrupt virtualization is amortized.
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Figure 2. MPI barrier scaling microbenchmark results measuring
the latency of a full barrier.

3.4 HPCCG application

HPCCG [12] is a simple conjugate gradient solver that is intended
to mimic the characteristics of a broad class of HPC applications
while at the same time is simple to understand and run. A large
portion of its runtime is spent performing sparse matrix-vector
multiplies, a memory bandwidth intensive operation.

HPCCG was used in weak-scaling mode with a “100x100x100”
sub-problem on each node, using approximately 380 MB of mem-
ory per node. This configuration is representative of typical usage,
and results in relatively few and relatively large messages being
communicated between neighboring nodes. Every iteration of the
CG algorithm performs an 8-byte Allreduce, and there are 149 iter-
ations during the test problem’s approximately 30 second runtime.
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Figure 3. MPI all-reduce scaling microbenchmark results measur-
ing the latency of a 16 byte all-reduce operation.
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Figure 4. MPI broadcast scaling microbenchmark results measur-
ing the latency of a broadcast of 16 bytes.

The portion of runtime consumed by communication is reported by
the benchmark to be less than 5% in all cases. Interrupt-driven com-
munication was used for this and other application benchmarks.
Recall that the microbenchmarks show virtualized interrupt-driven
communication is the slower of the two options we considered.

As shown in Figure 6, HPCCG scales extremely well in both
guest and native environments. Performance with shadow paging
is essentially identical to native performance, while performance
with nested paging is 2.5% worse at 2048 nodes.

3.5 CTH application

CTH [8] is a multi-material, large deformation, strong shock wave,
solid mechanics code used for studying armor/anti-armor inter-
actions, warhead design, high explosive initiation physics, and
weapons safety issues. A shaped charge test problem was used
to perform a weak scaling study in both native and guest environ-
ments. As reported in [9], which used the same test problem, at 512
nodes approximately 40% of the application’s runtime is due to
MPI communication, 30% of which is due toMPI Allreduce op-
erations with an average size of 32 bytes. The application performs
significant point-to-point communication with nearest neighbors
using large messages.

Figure 7 shows the results of the scaling study for native and
guest environments. At 2048 nodes, the guest environment with
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shadow paging is 3% slower than native, while the nested paging
configuration is 5.5% slower. Since network performance is virtu-
ally identical with either shadow or nested paging, the performance
advantage of shadow paging is likely due to the faster TLB miss
processing that it provides.

3.6 SAGE application

SAGE (SAIC’s Adaptive Grid Eulerian hydrocode) is a mul-
tidimensional hydrodynamics code with adaptive mesh refine-
ment [18]. The timingc input deck was used to perform a weak
scaling study. As reported in [9], which used the same test prob-
lem, at 512 nodes approximately 45% of the application’s runtime
is due to MPI communication, of which roughly 50% is due to
MPI Allreduce operations with an average size of 8 bytes.

Figure 8 shows the results of executing the scaling study in the
native and virtualized environments. At 2048 nodes, shadow paging
is 2.4% slower compared to native while nested paging is 3.5%
slower. As with CTH, the slightly better performance of shadow
paging is due to its faster TLB miss processing.

4. Passthrough I/O
One of the principle goals in designing Palacios was to allow a
large amount of configurability in order to target multiple diverse
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environments. This allows us to use a number of configuration op-
tions specific to HPC environments to minimize virtualization over-
heads and maximize performance. The special HPC configuration
of Palacios makes a number of fundamental choices in order to
provide guest access to hardware devices with as little overhead as
possible. These choices were reflected both in the architecture of
Palacios as configured for HPC, as well as two assumptions about
the environment Palacios executes in.

The first assumption we make for HPC environments is that
only a single guest will be running on a node at any given time.
Restricting each partition to run a single guest environment en-
sures that there is no resource contention between multiple VMs.
This is the common case for large-scale supercomputers as each
application requires dedicated access to the entirety of the system
resources, and is also the common case for many smaller space-
shared high performance systems. The restriction vastly simplifies
device management because Palacios does not need to support shar-
ing of physical devices between competing guests; Palacios can di-
rectly map an I/O device into a guest domain without having to
manage the device itself.

The second assumption we make for HPC environments is that
we can place considerable trust in the guest OS because HPC
system operators typically have full control over the entire software
stack. Under this assumption, the guest OS is unlikely to attempt to

compromise the VMM intentionally, and may even be designed to
help protect the VMM from any errors.

4.1 Passthrough I/O implementation

In Palacios, passthrough I/O is based on a virtualized PCI bus. The
virtual bus is implemented as an emulation layer inside Palacios,
and has the capability of providing access to both virtual as well as
physical (passthrough) PCI devices. When a guest is configured to
use a passthrough device directly, Palacios scans the physical PCI
bus searching for the appropriate device and then attaches a virtual
instance of that device to the virtual PCI bus. Any changes that a
guest makes to the device’s configuration space are applied only to
the virtualized version. These changes are exposed to the physical
device via reconfigurations of the guest environment to map the
virtual configuration space onto the physical one.

As an example, consider a PCI Base Address Register (BAR)
that contains a memory region that is used for memory-mapped ac-
cess to the device. Whenever a guest tries to change this setting by
overwriting the BAR’s contents, instead of updating the physical
device’s BAR, Palacios updates the virtual device’s BAR and re-
configures the guest’s physical memory layout so that the relevant
guest physical memory addresses are redirected to the host physi-
cal memory addresses mapped by the real BAR register. In this way,
Palacios virtualizes configuration operations but not the actual data
transfer.

Most devices do not rely on the PCI BAR registers to define
DMA regions for I/O. Instead the BAR registers typically point
to additional, non-standard configuration spaces, that themselves
contain locations of DMA descriptors. Palacios makes no attempt
to virtualize these regions, and instead relies on the guest OS to
supply valid DMA addresses for its own physical address space.
While this requires that Palacios trust the guest OS to use correct
DMA addresses as they appear in the host, it is designed such that
there is a a high assurance that the DMA addresses used by the
guest are valid.

The key design choice that provides high assurance of secure
DMA address translation from the guest physical addresses to the
host physical addresses is the shape of the guest’s physical address
space. A Palacios guest is initially configured with a physically
contiguous block of memory that maps into the contiguous portion
of the guest’s physical address space that contains memory. This
allows the guest to compute a host physical address from a guest
physical address by simply adding an offset value. This means that
a passthrough DMA address can be immediately calculated as long
as the guest knows what offset the memory in its physical address
space begins at. Furthermore, the guest can know definitively if
the address is within the bounds of its memory by checking that it
does not exceed the range of guest physical addresses that contain
memory, information that is readily available to the guest via the
e820 map and other standard mechanisms. Because guest physical
to host physical address translation for actual physical memory is
so simple, DMA addresses can be calculated and used with a high
degree of certainty that they are correct and will not compromise
the host or VMM.

It is also important to point out that as long as the guest uses
physical addresses valid with respect to its memory map, it cannot
affect the VMM or other passthrough or virtual devices with a
DMA request on a passthrough device.

To allow the guest to determine when a DMA address needs to
be translated (by offsetting) for passthrough access, Palacios uses
a shared memory region to advertise which PCI devices are in fact
configured as passthrough. Each PCI bus location tuple (bus ID,
device ID, and function number) is combined to form an index into
a bitmap. If a device is configured as passthrough the bit at its given
index will be set by the VMM and read by the guest OS. This



bitmap allows the guest OS to selectively offset DMA addresses,
allowing for compatibility with both passthrough devices (which
require offsetting) and virtual devices (which do not). Furthermore,
when the guest is run without the VMM in place, this mechanism
naturally turns off offsetting for all devices.

Comparison with other approaches to high performance
virtualized I/O: Due to both the increased trust and control over
the guest environments as well as the simplified mechanism for
DMA address translation, Palacios can rely on the guest to cor-
rectly interact with the passthrough devices. The passthrough I/O
technique allows direct interaction with hardware devices with as
little overhead as possible. In contrast, other approaches designed
to provide passthrough I/O access must add additional overhead.
For example, VMM-Bypass [21], as designed for the Xen Hypervi-
sor, does not provide the same guarantees in terms of address space
contiguity. Furthermore, its usage model assumes that the guest en-
vironments are not fully trusted entities. The result is that the imple-
mentation complexity is much higher for VMM-Bypass, and fur-
ther overheads are added due to the need for the VMM to validate
the device configurations. Furthermore, this technique is highly de-
vice specific (specifically Infiniband) whereas our passthrough ar-
chitecture is capable of working with any unmodified PCI device
driver.

Self-Virtualization [26] is a technique to allow device sharing
without the need for a separate virtual driver domain. While self vir-
tualization permits direct guest interaction with hardware devices,
it uses a simplified virtual interface which limits the usable capabil-
ities of the device. It also requires specially architected hardware,
while our passthrough implementation supports any existing PCI
device.

Finally, recent work on assuring device driver safety in tradi-
tional operating systems [29] could also be used to supplement
passthrough device virtualization. In particular, these techniques
could be used to validate safety-critical guest device manipulations
in virtual machines. This would enable the high performance of
passthrough I/O while providing additional guest isolation in envi-
ronments that where guest OSes are less trusted than in HPC envi-
ronments.

4.2 Current implementations

We have currently implemented passthrough I/O for both a collec-
tion of HPC OSes, such as Catamount and Kitten, as well as for
commodity Linux kernels. The Catamount OS specifically targets
the Cray SeaStar as its only supported I/O device, so Catamount
did not require a general passthrough framework. However, Kitten
and Linux are designed for more diverse environments so we have
implemented the full passthrough architecture in each of them. In
each case, the implementation is approximately 300 lines of C and
assembler built on the SymSpy guest implementation (Section 7).
The actual DMA address offsetting and bounds checking imple-
mentation is about 20 lines of C.

Both Kitten and Linux include the concept of a DMA address
space that is conceptually separate from the address space of core
memory. This allows a large degree of compatibility between dif-
ferent architectures that might implement a separate DMA address
space. The environment exposed by Palacios is such an architec-
ture. Every time a device driver intends to perform a DMA opera-
tion it must first transform a memory address into a DMA address
via a DMA mapping service. Our guest versions of both Linux and
Kitten include a modified mapping service that selectively adds the
address offset to each DMA address if the device requesting the
DMA translation is configured for passthrough. Our modifications
also sanity check the calculated DMA address, thus protecting the
VMM from any malformed DMA operations. These modifications
are small, easy to understand, and all-encompassing, meaning that

the VMM can have a high degree of confidence that even a com-
plicated OS such as Linux will not compromise the VMM via mal-
formed DMA operations.

4.3 Infiniband passthrough

To verify that Palacios’s passthrough I/O approach also resulted in
low-overhead communication on commodity NICs in addition to
specialized hardware like the Cray SeaStar, we examined its perfor-
mance on a small Linux cluster system built around the commodity
Infiniband network interface. Specifically, we examined the per-
formance both a low-level Infiniband communication microbench-
mark (the OpenFabricsibv rc pingpong test) and the HPCCG
benchmark described earlier. Tests were run on a 4-node 2.4GHz
AMD Barcelona cluster communicating over 64-bit PCI Express
Mellanox MLX4 cards configured for passthrough in Linux. For
ping-pong tests, the client system which performed the timings ran
native Fedora 11 with Linux kernel 2.6.30, and the client machine
ran a diskless Linux BusyBox image that also used Linux kernel
2.6.30 with symbiotic extensions either natively or virtualized in
Palacios. For HPCCG tests, all nodes ran the Linux BusyBox im-
age, and timings were taken using the underlying hardware cycle
counter to guarantee accuracy.
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Figure 9. Infiniband bandwidth at message sizes from 1 byte to
4 megabytes averaged over 10000 iteration per sample. 1-byte
round-trip latency for both native and virtualized environments was
identical at 6.46µsec, with peak bandwidth for 4 MB messages at
12.49 Gb/s on Linux virtualized with Palacios compared to 12.51
Gb/s for native Linux.

As Figure 9 shows, Palacios’s pass-through virtualization im-
poses almost no overhead on Infiniband message passing. In partic-
ular, Palacios’s passthrough PCI support enables virtualized Linux
to almost perfectly match the bandwidth of native Linux on Infini-
band, and because Infiniband does not use interrupts for high-speed
message passing with reliable-connected channels, the 1-byte mes-
sage latencies with and without virtualization are identical. Sim-
ilarly, HPCCG ran an average of only 4% slower (43.1 seconds
versus 41.4 seconds averaged over 5 runs) when virtualized using
passthrough I/O and nested paging.

4.4 Future extensions

Future advances in hardware virtualization support may obviate the
need for the passthrough techniques described above. For example,
AMD’s IOMMU adds hardware support for guest DMA transla-
tions. However, we should note that our approach includes a very
minimal amount of overhead and it is not clear that hardware tech-
niques will necessarily perform better. An IOMMU would intro-



duce additional performance overhead in the form of page table
lookups, something which our approach completely avoids. As we
will show in the next section and as others have demonstrated [1],
software approaches can often operate with demonstrably less over-
head than hardware approaches.

5. Workload-sensitive paging mechanisms
In our scaling evaluations, we focused on the two standard tech-
niques for virtualizing the paging hardware: shadow paging and
nested paging as described in Section 3.2. These results demon-
strate that while memory virtualization can scale, making it do so
is non-trivial; we discuss the implications of these results in this
section. Based on these results, we also present the results of sev-
eral additional experiments that examine how more sophisticated
architectural and VMM support for memory virtualization impacts
HPC benchmark performance.

5.1 Scaling analysis

The basic scaling results presented earlier in Section 3 demonstrate
that the best performing technique is dependent on the application
workload as well as the architecture of the guest OS. As an exam-
ple, Catamount performs a minimal number of page table opera-
tions, and never fully flushes the TLB or switches between differ-
ent page tables. This means that very few operations are required
to emulate the guest page tables with shadow paging. Because the
overhead of shadow paging is so small, shadow paging performs
better than nested paging due to the better use of the hardware
TLB. In contrast, Compute Node Linux (CNL), another HPC OS,
uses multiple sets of page tables to handle multitasking and so fre-
quently flushes the TLB. For this OS, there is a great deal more
overhead in emulating the page table operations and any improve-
ment in TLB performance is masked by the frequent flush opera-
tions. As a result, nested paging is the superior choice in this case.
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Figure 10. Strong scaling of HPCCG running on CNL. Nested
paging is preferable, and the overhead of shadow paging com-
pounds as we scale up. This is due to the relatively high context
switch rate in CNL.

As these results demonstrate, behavior of the guest OS and ap-
plications have a critical impact on the performance of the virtu-
alized paging implementation. We have found this to be true in
the broader server consolidation context [5] as well as the HPC
context we discuss here. Figures 10 and 11 (previously published
elsewhere [20]) illustrate this point for HPC. Figure 10 shows the
results of the HPCCG benchmark being run with a CNL guest envi-
ronment as we scale from 1 to 48 nodes of a Cray XT. As the results
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Figure 11. Strong scaling of HPCCG running on Catamount. Here
shadow paging is preferable. This is due to the relatively low
context switch rate in Catamount revealing shadow paging’s better
TLB behavior.

show, the overhead introduced with shadow paging is large enough
to dramatically degrade scalability, while the nested paging config-
uration is able to still perform well as it scales up. Figure 11 shows
the same benchmark run on the Catamount guest OS. Here, the
situation is reversed. Shadow paging clearly performs better than
nested paging due to the improved TLB behavior and lower over-
head from page table manipulations.

5.2 Memory virtualization optimizations

In light of these results, we also examined the performance of key
optimizations to nested and shadow paging. In particular, we stud-
ied the aggressive use of large pages in nested page tables and two
different optimizations to shadow paging. For these evaluations,
we used HPC Challenge 1.3 [22, 27], an HPC-oriented benchmark
suite that tests system elements critical to HPC application perfor-
mance.

5.2.1 2 MB nested page tables

Aggressively using large pages in nested page tables is an optimiza-
tion that could dramatically improve the performance of nested
paging on applications and benchmarks that are TLB-intensive. For
example, using 2MB nested page tables on the x8664 architecture
reduces the length of full page table walks from 24 steps to 14
steps. Note that using large pages in shadow paging is also possi-
ble, but, like using large pages in a traditional operating system, can
be quite challenging as the guest may make permission and map-
ping requests at smaller page granularities that could require the
VMM to split large pages or merge smaller pages.

To evaluate the potential impact of using 2MB nested page
tables on HPC applications, we implemented support for large-page
nested page tables in Palacios. We then evaluated its performance
when running the Catamount guest operating system, the guest
on which nested paging performed comparatively worse in our
scaling study. Because Catamount can make aggressive use of large
pages, this also allowed us to study the impact of these different
paging choices on guests that used 4KB pages versus guests like
Catamount that make aggressive use of 2MB pages.

Our evaluation focused on the HPL, STREAM Triad, and Ran-
domAccess benchmarks from HPC Challenge. HPL is a compute-
intensive HPC benchmark commonly used to benchmark HPC sys-
tems [28], STREAM Triad is a memory bandwidth intensive bench-



mark, and RandomAccess is a simulated large-scale data analytics
benchmark that randomly updates an array approximately the size
of physical memory, resulting in a very high TLB miss rate.

Figure 12 shows the relative performance of nested paging with
different nested and main page table sizes, with shadow paging
and native paging numbers included for comparison. HPL perfor-
mance shows little variability due to its regular memory access
patterns in these tests, though 2MB nested page tables does im-
prove nested paging performance to essentially native levels. Us-
ing large pages with nested paging makes a dramatic difference on
the TLB miss-intensive RandomAccess benchmark. In particular,
using large pages in the nested page tables reduces the penalty of
nested paging from 64% to 31% for guests that use 4KB pages and
from 68% to 19% for guests that use 2MB pages.

The RandomAccess results also show that nested paging is bet-
ter able to support guests that aggressively use large pages com-
pared to shadow paging. While nested paging performance is 19%
worse than native, it is significantly better than shadow paging per-
formance, which is limited by the performance of its underlying
4KB page-based page tables. With guests that use only 4KB pages,
however, shadow paging achieves native-level performance while
nested paging with 2MB pages is 30% slower than native.

5.2.2 Shadow paging optimizations

With stable guest page tables, shadow paging has the benefit of
having shorter page walks on a TLB miss than nested paging.
However, context switches in the guest ameliorate this advantage
in a basic shadow paging implementation because they force a
flush of the “virtual TLB” (the shadow page tables). Subsequent to
this, a stream of exits occurs as page faults are used to rebuild the
shadow page tables. We have considered two techniques in Palacios
to reduce this cost: shadow page table caching and shadow page
table prefetching.

In contrast to a basic shadow paging implementation, both
caching and prefetching introduce a new overhead as they must
monitor the guest page tables for changes so that the corresponding
cached or prefetched shadow page table entries may be updated or
flushed. While conceptually simple, preserving x8664 page table
consistency requirements is quite challenging, leading to consid-
erably higher software complexity in the VMM. In particular, be-
cause portions of page tables may be shared across address spaces,
page table updates in one address space may affect page tables
mapping additional address spaces. Furthermore, a physical page
containing a page table is allowed to appear at multiple levels in a
page table hierarchy.

In a shadow page table caching implementation, when the guest
switches from one context to another and the VMM already has the
corresponding shadow context in its cache, the cost of the context
switch is dramatically reduced. In the best case, where the guest
makes frequent context switches but rarely edits its page tables, a
context switch requires only that the VMM load the page table base
register and continue. In the worse case, the guest frequently edits
its page tables, but rarely performs context switches.

In a shadow page table prefetching implementation, a guest con-
text switch acts as in a basic implementation, flushing the shadow
page tables. However, on a single page fault, multiple guest page
table entries are visited and reflected into the shadow page table.
Our implementation prefetches an entire page’s worth of entries on
each page fault, so in the best case, where the guest makes frequent
context switches but rarely edits its page tables, the overhead of a
context switch is reduced by a factor of 512 (PAE) or 1024 (non-
PAE). In the worst case, the guest frequently edits page tables but
rarely performs context switches. In contrast to shadow page ta-
ble caching, shadow page table prefetching requires no more space
than basic shadow paging.

Approach Run-time (s)
Native 15.7
Shadow 798.9
Shadow+Prefetching 1305.6
Shadow+Caching 32.9
Nested (4KB pages) 24.7

Figure 13. Performance of HPC Challenge benchmark suite in
Palacios for different memory virtualization approaches.

To further evaluate the potential benefits of caching and prefetch-
ing, we studied their overall performance on the HPC Challenge
benchmark suite. It is important to point out that this evaluation
involved configuring HPC Challenge to emphasize the effects of
address translation performance instead of to maximize overall
benchmark performance. In particular, we configured the bench-
marks to run with four processes per core, resulting in a signifi-
cant context switch rate. The combination of context switches and
memory reference behavior in the benchmark processes interacts
differently with the different paging approaches, and represents a
particular challenge for shadow paging. HPC Challenge includes
seven benchmarks, with two, Random Access and HPL, accounting
for almost all the variation among the different paging approaches.
The experiments were run on a Dell PowerEdge SC1450 system
with an AMD Opteron 2350 “Barcelona” processor with 2GB of
RAM. The guest operating system was running Puppy Linux 3.01
(32-bit Linux kernel 2.6.18). The study is further described else-
where [5].

Figure 13 shows the results. While shadow paging with prefetch-
ing is not an effective optimization for this workload, shadow pag-
ing with caching brings performance much closer to nested pag-
ing performance, although there remains a gap. We also evaluated
shadow paging with caching using the more mature implementa-
tion in the KVM VMM. There, a run time of 24.3 s was measured,
right on par with nested paging. Note that performance remains
distant from native due to the Random Access benchmark.

5.3 Summary

These results show that the choice of virtual paging techniques is
critically important to ensuring scalable performance in HPC envi-
ronments and that the best technique varies across OSes, hardware,
and applications. This suggests that an HPC VMM should provide a
mechanism for specifying the initial paging technique as well as for
switching between techniques during execution. Furthermore, an
HPC VMM should provide a range of paging techniques to choose
from. Palacios supports this through a modular architecture for pag-
ing techniques. New techniques can be created and linked into the
VMM in a straightforward manner, with each guest being able to
dynamically select among all the available techniques at runtime.
We are also currently exploring adaptive runtime modification of
guest paging virtualization strategies.

6. Controlled preemption
We now consider the third technique we found to be essential to
low overhead virtualization at scale, controlled preemption.

6.1 Overview

It is well understood that background noise can have a serious
performance impact on large scale parallel applications. This has
led to much work in designing OSes such that the amount of noise
they inject into the system is minimized and that the impact of
necessary noise on application performance is minimized. Palacios
is designed to support such efforts by minimizing the amount of
overhead due to virtualization, placing necessary overheads and
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Figure 12. Performance of 2MB Nested Paging running HPC Challenge HPL, STREAM Triad, and RandomAccess benchmarks on a Cray
XT4 node with a Catamount guest OS.

work into deterministic points in time in an effort to minimize the
amount of noise added to the system by virtualization, and allowing
system deployers control over when guests are preempted.

Palacios runs as a non-preemptable kernel thread in Kitten. Only
interrupts and explicit yields by Palacios can change control flow.
Palacios controls the global interrupt flag and guest interrupt exit-
ing and uses this control to allow interrupts to happen only at spe-
cific points during exit handling. This allows Palacios to provide
well-controlled availability of CPU resources to the guest. Back-
ground processes and deferred work are only allowed to proceed
when their performance impact will be negligible.

When a guest is configured it is allowed to specify its execution
quantum which determines the frequency at which it will yield
the CPU to the Kitten scheduler. It is important to note that the
quantum configured by Palacios is separate from the scheduling
quantum used by Kitten for task scheduling. This separation allows
each guest to override the host OS scheduler in order to prevent the
host OS from introducing additional OS noise. Furthermore this
quantum can be overridden at runtime such that a guest can specify
critical sections where Palacios should not under any circumstances
yield the CPU to another host process.

As a result of this, Palacios adds minimal additional noise to
guests and applications that run on top of it, particularly compared
to other VMMs not designed for use in HPC systems. To quan-
tify this, we compiled the selfish noise measurement benchmark
frequently used to measure OS interference in HPC systems into
a minimal kernel with interrupts disabled to measure the amount
of interference the VMM presents to guest operating systems. This
benchmark spins the CPU while continually reading the timestamp
counter, which is configured by the VMM to passthrough to hard-
ware. We ran this guest kernel on a Cray XT4 node on both a min-
imal Linux/KVM VMM ( init, /bin/sh, and/sbin/sshd were
the only user-level processes running) and on Palacios.

In these tests, the Linux/KVM virtual machine used almost ex-
actly 10 times as much CPU for management overhead as Pala-
cios (0.22% for Linux/KVM versus 0.022% for Palacios). This
is largely due to the increased timer and scheduler frequency of
KVM’s Linux host OS compared to the Kitten host OS, which
can use a much larger scheduling quantum because of its focus on
HPC systems. While these overheads both appear small in abso-
lute terms, they are in addition to any overhead that the guest OS
imposes on an application. Because past research has shown that
even small asynchronous OS overheads can result in application
slowdowns of orders of magnitude on large-scale systems [9, 25],
minimizing these overheads is essential for virtualization to be vi-
able in HPC systems.

6.2 Future extensions

An extant issue in HPC environments is the overhead induced
via timer interrupts. An eventual goal of Kitten is to implement a
system with no dependence on periodic interrupts, and instead rely
entirely on on-demand one shot timers. However, periodic timers
are occasionally necessary when running a guest environment with
Palacios, in order to ensure that time advances in the guest OS.
Because some guest OSes do require periodic timer interrupts at a
specified frequency, the VMM needs to ensure that the interrupts
can be delivered to the guest environment at the appropriate rate.
We are developing a method in which the guest OS is capable of
both enabling/disabling as well as altering the frequency of the
host’s periodic timer. This would allow a guest OS to specify its
time sensitivity2, which will allow Palacios and Kitten to adapt
timer behavior to the current workload.

7. A symbiotic approach to virtualization
While our experiences have shown that it is indeed possible to vir-
tualize large scale HPC systems with minimal overhead, we have
found that doing so requires cooperation between the guest and
VMM. Each of the three techniques we have described (Sections 4–
6) relies on communication and trust across the VMM/guest inter-
face for the mutual benefit of both entities. In other words, the rela-
tionship between the VMM and the guest issymbiotic. We have
been working to generalize the interfaces involved in our tech-
niques into a general purposesymbiotic interface that provides
VMM↔guest information flow that can be leveraged in these and
future techniques.

Our symbiotic interface allows for both passive, asynchronous
and active, synchronous communication between guest and VMM.
The symbiotic interface isoptional for the guest, and a guest which
does use it can also run on non-symbiotic VMMs or raw hardware
without any changes. We focus here on the passive interface,Sym-
Spy; the active interface,SymCall, is described elsewhere [19].

SymSpy builds on the widely used technique of a shared mem-
ory region that is accessible by both the VMM and guest. This
shared memory is used by both the VMM and guest to expose se-
mantically rich state information to each other, as well as to provide
asynchronous communication channels. The data contained in the
memory region is well structured and semantically rich, allowing
it to be used for most general purpose cross layer communication.
Each of the three techniques we have given in this paper are imple-
mented on top of SymSpy. We have implemented SymSpy support
in Catamount, Kitten, and in non-HPC guest OSes such as Linux.

2 You can think of this as being loosely correlated to the guest’s timer
frequency setting



SymSpy is designed to be enabled and configured at run time
without requiring any major structural changes to the guest OS.
The discovery protocol is implemented using existing hardware
features, such as CPUID values and Model Specific Registers
(MSRs). When run on a symbiotic VMM, CPUID and MSR access
is trapped and emulated, allowing the VMM to provide extended
results. Through this, a guest can detect a SymSpy interface at boot
time and selectively enable specific symbiotic features that it sup-
ports. Due to this hardware-like model, the discovery protocol will
also work correctly if no symbiotic VMM is being used; the guest
will simply not find a symbiotic interface.

After the guest has detected the presence of SymSpy it chooses
an available guest physical memory address that is not currently
in use for the shared memory region and notifies the VMM of
this address through a write to a virtualized MSR. The precise
semantics and layout of the data on the shared memory region
depends on the symbiotic services that are discovered to be jointly
available in the guest and the VMM. The structured data types and
layout are enumerated during discovery. During normal operation,
the guest can read and write this shared memory without causing
an exit. The VMM can also directly access the page during its
execution.

8. Conclusion
Our primary contribution has been to demonstrate that it is possi-
ble to virtualize the largest parallel supercomputers in the world3 at
very large scales with minimal performance overheads. In particu-
lar, tightly-coupled, communication-intensive applications running
on specialized lightweight OSes that provide maximum hardware
capabilities to them can run in a virtualized environment with≤5%
performance overhead at scales in excess of 4096 nodes. In addi-
tion, other HPC applications and guest OSes can be supported with
minimal overhead given appropriate hardware support.

These results suggest that HPC machines can reap the many
benefits of virtualization that have been articulated before (e.g., [10,
13]). Another benefit that other researchers have noted [4] but that
has not been widely discussed is that scalable HPC virtualization
also opens the range of applications of the machines by making it
possible to use commodity OSes on them in capacity modes when
they are not needed for capability purposes.

We believe our results represent the largest scale study of HPC
virtualization by at least two orders of magnitude, and we have de-
scribed how such performance is possible. Scalable high perfor-
mance rests on passthrough I/O, workload sensitive selection of
paging mechanisms, and carefully controlled preemption. These
techniques are made possible via a symbiotic interface between the
VMM and the guest, an interface we have generalized with Sym-
Spy. We are now working to further generalize this and other sym-
biotic interfaces, and apply them to further enhance virtualized per-
formance of supercomputers, multicore nodes, and other platforms.
Our techniques are publicly available fromv3vee.org as parts of
Palacios and Kitten.
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