Do Developers Understand
IEEE Floating Point?

Peter Dinda Conor Hetland
Prescience Lab
Department of EECS
Northwestern University

pdinda.org
presciencelab.org

Paper in a Nutshell: Not Really

Targeted survey
— Aimed at practitioners likely to use FP
— Quizzes for core, optimization, and suspicion of results
— First study of this kind

Participants do only slightly better than chance on core concepts
— ...and don’t know it
— Some factors mitigate, but none particularly well

Participants do not understand optimization concepts
— ...and do know it

Participants less suspicious than they should be
— ... but similar to students in a sophomore course

Outline

Motivation

Study design

Participant selection and factors
— Important caveat!

Core concepts

Optimization concepts
Suspicion of results

What to do?

For a Long Time...

Focused on scientific and engineering uses,
Some understanding of numerical methods
Assumption/understanding of IEEE floating point

Developer

|IEEE 754(-2008) Stable, pretty much universal standard since early 1980s

Standard Considerable complexity

Cgmpilgr Small set of compilers used, slow change, difficult to break
(Optimizations) IEEE compliance

Hardware Small set of hardware, IEEE compliance universal, slow
(Optimizations) change

The Concerns Now

Developer

IEEE 754(-2008)
Standard

Compiler
(Optimizations)

Hardware
(Optimizations)

Dramatic expansion in uses (e.g., machine learning,
analytics, big data, and other expanding uses of FP) Less
knowledge of numerical methods, and the standard

Stable, pretty much universal standard since early 1980s
Considerable complexity

Fast evolution (e.g., numerous compilers, automatic precision
reduction, approximate computing, optimization flag choice,
automatic optimization setting search, power/energy)

Fast evolution (e.g., hardware diversity (GPUs, FPGAs,
ARM), half-floats, different denorm handling, non-lEEE
compliance, power/energy)

Do Developers Understand....

Developer

Dramatic expansion in uses (e.g., machine learning,

IEEE 754(-2008)
Standard

Cons

Compiler
(Optimizations)

| e/

auto

Hardware
(Optimizations)

ics, big data, and other expanding uses of FP) Less
ge of numerical methods, and standard

Core Focus

pretty much universal standard since early 1980s
rable complexity

Optimization Focus

lution (e.g., numerous compilers, automatic precision
n, approximate computing, optimization flag choice,
tic optimization setting search, power/energy)

lution (e.g., hardware diversity (GPUs, FPGA:s,
< half-floats, different denorm handling, non-IEEE

compliance, power/energy)

... and Suspicion

Study Design

Anonymity
Factor identification
Low time commitment

Survey instrument (web-based)

— Participant background (for factor analysis)
— Core quiz

— Optimization quiz

— Suspicion quiz

Closed for study reported here, but open again now
— http://presciencelab.org/float

Study Design

* Approximation of practice

— Pose questions that might arise during software
development

* Avoid prompting or anchoring
— Don’t test if they remember terminology, test if
they can see the concept
* In a snippet of code...

* In a choice of optimization option...
* In an intern’s question...

Core Quiz

* Floating point arithmetic is not real number
arithmetic, even though it looks like it

— Commutativity, associativity, distributivity,
ordering, identity, negative zero, overflow, NaN,
operation precision, denormalized numbers,
signaling...

* Floating point does not behave like computer
integer arithmetic either...

— Overflow (saturation), underflow, NaN, signaling

Floating Point Questions

The following questions ask about your understanding of floating point behavior in code. The
syntax used is C/C++, and the syntax in Java or C# is identical or similar.

Assume that variables a, b, and ¢ are floating point variables.

== is the equality operator in C/C++

if a and b are numbers, it is always the case that (a+b) == (b +

a)

() True, it is always the case

() False, sometimes it is not the case

() Idon't know

10

Optimization Quiz

 Hardware features change standard
compliance
— MADD, Flush-to-Zero

 Compiler optimizations change standard
compliance
— What’s the highest —O level that is standard
compliant?
—|s ——fast-math standards compliant?

* Options and features can break compliance

Floating Point Optimizations

IEEE floating point behavior is standardized to help make analysis of floating point code
tractable. Hardware implementations and compilers generally obey the standard, but it is
possible for them to be configured not to. This is typically done in the context of compiler
optimization, where some optimizations use non-standard behavior or non-standard elements
of the hardware in order to compute faster.

This set of questions tests your understanding of what is standard behavior and what is not.

The floating point fused multiply-add operation integrates
multiplication and addition into a single operation for faster
operation and higher precision.

() ltis part of the standard
() Itis not part of the standard

() Idon't know

12

Suspicion Quiz

* Floating point condition codes can point to
numeric problems

 How suspicious should you be of your results
when your code produces a...

— Overflow, underflow, precision (rounding), invalid
(NaN), or denormalized result

e Lack of suspicion may mean bad results get
through

13

Floating point condition code interpretation

IEEE floating point hardware records exceptional conditions as they occur. Using this
capability, it is possible to determine whether any of a set of possible exceptional conditions
occurred one or more times during the execution of a function.

Suppose you are given the following code:

int scientific_simulation()

{
clear_floating_point_exceptional_conditions();
do_scientific_simulation();
conditions = get_floating_point_exceptional_conditions();
}

For each of the following exceptional conditions, indicate how suspicious you would be of the
function do_scientific simulation()'s results if the condition occurred. This is not a ranking.

There are no "right" answers for these questions.

Overflow - the result of some floating point instruction in
do_scientific_simulation() was an infinity.

1 2 3 4 5

Low Suspicion () O O O () High Suspicion

Participant Recruitment Goals

e PhD student or above

* Actively involved in software development or
management for science and engineering

— Both as main and secondary roles

* Universities, national labs, and industry

/\

Participant Recruitment Process

e Standardized email sent to seed recipients

— Relevant department chairs, center directors,
faculty, postdocs, and Ph.D. students at NU

— Highest-level personal contacts at national labs
— Faculty contacts at >20 universities

* Request to take survey and forward email only
to people relevant to our recruitment goals

16

Participant Background / Factors

* 199 Participants
— Plus additional 52 undergrads for suspicion quiz

e 11 factors (self-reported)
— 2 pages of details in paper

e Factors matter much less than expected
— Will highlight a few as we go on

Prepare to
be Scared

0 5 10 15
Core Questions Correct

Experience With Code Matters (slightly)

Chance

SRR

S

i o S S S R R)
SRRRRRRRRRA

O

R R R e

e e e e e e e, N N,

N O
-

SU0IISaNY JO JaquinN

8—6 <

(@

100K-1M 10K-100K 1K-10K 100-1K
B # Correct # #Incorrect T # Don't Know

>1M

20

Unanswered

-

S

S

++++++++++

CE Math PhysSci Eng

CS

21

Unanswered

o

A]
B A

Area Matters (slightly)

SR

\®) < oN o o0 \®) < oN o
=1 = @

Suollsanp Jo JaqunnN

EE
B # Correct ® # Incorrect H# Don't Know

Now Some Good News
for Correctness, but
Bad News for
Innovation

Participants Aware of Not Understanding
Optimizations (HW/SW)

Number of Questions
[N
un

o

EE CE CS Math PhysSci Eng

M # Correct ® #Incorrect H# Don't Know ™ # Unanswered 23

Participants Aware of Not Understanding
Optimizations (HW/SW)

Number of Questions
[N
un

o

EE CE CS Math PhysSci Eng

M # Correct ® #Incorrect H# Don't Know ™ # Unanswered Y

Now Some News that
iIs Hard to Characterize

Percent Reporting

1007,

-+ Qverflow
®-Underflow
80/ # Precision X
% [nvalid g
60 ©-Denorm

N
o

IIIIIIIIIIIIIIIIIIIIII

1

upy

N
=

)
lllllllllllllllllllll

\
\

\
\

3 4 >
Suspicion Level

Percent Reporting

100,

Q0
o

== QOverflow
©-Underflow
% Precision
¥ |nvalid
©-Denorm

Suspicion Level

Percent Reporting

100+,

=+ Qverflow
©-Underflow
80| % Precision X
$¢=Invalic K
650" .e. Denorm

N
o

IIIIIIIIIIIIIIIIIIIIII

1

upy

N
=

)
lllllllllllllllllllll

\
\

\
\

3 4 >
Suspicion Level

Caveats

Participants are not a random sample

Anonymity and self-reporting

— We cannot be sure we have hit our recruitment
goals

Confusion/lack of time for participant
— Survey design was iterated based on feedback

Only 199+52 data points
— But these are users

Potential Actions

* HPC community should sow suspicion

— Much like PL and compilers community did with
undefined behavior in C

e HPC community should develop better training

30

Potential Actions

Better static/dynamic analysis tools
— Work in progress

Blurring the boundary between FP and arbitrary
precision arithmetic

Developer knowledge-limited access to software
and hardware optimizations

— “Achievement Unlocked”
— Work in progress

Paper in a Nutshell: Not Really

Targeted survey
— Aimed at practitioners likely to use FP
— Quizzes for core, optimization, and suspicion of results
— First study of this kind

Participants do only slightly better than chance on core concepts
— ...and don’t know it
— Some factors mitigate, but none particularly well

Participants do not understand optimization concepts
— ...and do know it

Participants less suspicious than they should be
— ... but similar to students in a sophomore course

32

For More Information

Peter Dinda

— pdinda@northwestern.edu

— http://pdinda.org

Conor Hetland

— ConorHetland2015@u.northwestern.edu
Take the survey

— http://presciencelab.org/float
Prescience Lab

— http://presciencelab.org
Acknowledgements

— NSF, DOE

