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Paper	in	a	Nutshell:	Not Really
• Targeted	survey	

– Aimed	at	practitioners	likely	to	use	FP
– Quizzes	for	core,	optimization,	and	suspicion	of	results
– First	study	of	this	kind

• Participants	do	only	slightly	better	than	chance	on	core	concepts
– …	and	don’t	know	it
– Some	factors	mitigate,	but	none	particularly	well

• Participants	do	not	understand	optimization	concepts
– …	and	do	know	it

• Participants	less	suspicious	than	they	should	be
– …	but	similar	to	students	in	a	sophomore	course
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Outline

• Motivation
• Study	design
• Participant	selection	and	factors
– Important	caveat!

• Core	concepts
• Optimization	concepts
• Suspicion	of	results
• What	to	do?
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For	a	Long	Time…	
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Compiler	
(Optimizations)

Hardware
(Optimizations)

Small	set	of	hardware,	IEEE	compliance	universal,	slow	
change

Small	set	of	compilers	used,	slow	change,	difficult	to	break	
IEEE	compliance

Developer Focused	on	scientific	and	engineering	uses,
Some	understanding	of	numerical	methods
Assumption/understanding	of	IEEE	floating	point

IEEE	754(-2008)
Standard

Stable,	pretty	much	universal	standard	since	early	1980s
Considerable	complexity



The	Concerns	Now
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Compiler
(Optimizations)

Fast	evolution	(e.g.,	hardware	diversity	(GPUs,	FPGAs,	
ARM),	half-floats,	different	denorm handling,		non-IEEE	
compliance,	power/energy)

Fast	evolution	(e.g.,	numerous	compilers,	automatic	precision	
reduction,	approximate	computing,	optimization	flag	choice,	
automatic	optimization	setting	search,	power/energy)

Developer Dramatic	expansion in	uses	(e.g.,	machine	learning,	
analytics,	big	data,	and	other	expanding	uses	of	FP)		Less	
knowledge	of	numerical	methods,	and	the	standard	

IEEE	754(-2008)
Standard

Stable,	pretty	much	universal	standard	since	early	1980s
Considerable	complexity

Hardware
(Optimizations)



Do	Developers	Understand….
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Compiler
(Optimizations)

Hardware
(Optimizations)

Fast	evolution	(e.g.,	hardware	diversity	(GPUs,	FPGAs,	
ARM),	half-floats,	different	denorm handling,		non-IEEE	
compliance,	power/energy)

Fast	evolution	(e.g.,	numerous	compilers,	automatic	precision	
reduction,	approximate	computing,	optimization	flag	choice,	
automatic	optimization	setting	search,	power/energy)

Developer Dramatic	expansion in	uses	(e.g.,	machine	learning,	
analytics,	big	data,	and	other	expanding	uses	of	FP)		Less	
knowledge	of	numerical	methods,	and	standard	

IEEE	754(-2008)
Standard

Stable,	pretty	much	universal	standard	since	early	1980s
Considerable	complexity

Core	Focus

Optimization	Focus

…	and	Suspicion



Study	Design
• Anonymity
• Factor	identification
• Low	time	commitment

• Survey	instrument	(web-based)
– Participant	background	(for	factor	analysis)
– Core	quiz	
– Optimization	quiz
– Suspicion	quiz

• Closed	for	study	reported	here,	but	open	again	now
– http://presciencelab.org/float
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Study	Design

• Approximation	of	practice
– Pose	questions	that	might	arise	during	software	
development

• Avoid	prompting	or	anchoring
– Don’t	test	if	they	remember	terminology,	test	if	
they	can	see	the	concept	
• In	a	snippet	of	code…
• In	a	choice	of	optimization	option...
• In	an	intern’s	question...
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Core	Quiz

• Floating	point	arithmetic	is	not	real	number	
arithmetic,	even	though	it	looks	like	it
– Commutativity,	associativity,	distributivity,	
ordering,	identity,	negative	zero,	overflow,	NaN,	
operation	precision,	denormalized numbers,	
signaling…

• Floating	point	does	not	behave	like	computer	
integer	arithmetic	either...
– Overflow	(saturation),	underflow,	NaN,	signaling
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Example
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Optimization	Quiz

• Hardware	features	change	standard	
compliance
–MADD,	Flush-to-Zero

• Compiler	optimizations	change	standard	
compliance
–What’s	the	highest	-O level	that	is	standard	
compliant?

– Is	--fast-math standards	compliant?
• Options	and	features	can	break	compliance
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Suspicion	Quiz

• Floating	point	condition	codes	can	point	to	
numeric	problems

• How	suspicious	should	you	be	of	your	results	
when	your	code	produces	a…
– Overflow,	underflow,	precision	(rounding),	invalid	
(NaN),	or	denormalized	result

• Lack	of	suspicion	may	mean	bad	results	get	
through
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Example
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Participant	Recruitment	Goals

• PhD	student	or	above
• Actively	involved	in	software	development	or	
management	for	science	and	engineering
– Both	as	main	and	secondary	roles

• Universities,	national	labs,	and	industry
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Biggest	Caveat:		Not	a	random	sample



Participant	Recruitment	Process

• Standardized	email	sent	to	seed	recipients
– Relevant	department	chairs,	center	directors,	
faculty,	postdocs,	and	Ph.D.	students	at	NU

– Highest-level	personal	contacts	at	national	labs
– Faculty	contacts	at	>20	universities

• Request	to	take	survey	and	forward	email	only	
to	people	relevant to	our	recruitment	goals
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Participant	Background	/	Factors
• Anonymity

• 199	Participants
– Plus	additional	52	undergrads	for	suspicion	quiz

• 11	factors	(self-reported)
– 2	pages	of	details	in	paper

• Factors	matter	much	less	than	expected
– Will	highlight	a	few	as	we	go	on
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Prepare to 
be Scared
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Contributed Codebase Floating Point Extent n %
FP incidental 77 38.7
FP intrinsic 63 31.7
FP intrinsic, I did numerical correctness 29 14.6
FP intrinsic, other team did numerical correctness 10 5.0
FP intrinsic, my team did numeric correctness 10 5.0
No FP involved 9 4.5
No Report 1 0.5

Figure 9: Contributed Codebase Floating Point Extent of
participants (within the codebase they built (Figure 8.)

Involved Codebase Sizes n %
10,001 to 100,000 lines of code 61 30.7
1,001 to 10,000 lines of code 53 26.6
>1,000,000 lines of code 36 18.1
100,001 to 1,000,000 lines of code 36 18.1
100 to 1,000 lines of code 8 4.0
<100 lines of code 2 1.0
No Report 3 1.5

Figure 10: Involved Codebase Sizes of participants.

point, most commonly one or more lectures in a course.
Almost all report informal training about floating point,
with Googling and reading being the most common. De-
pressingly, less than 20% report training from their adviser
or mentor. The participants have experience with floating
point in 55 different languages, with Python, C, C++,
Matlab, Java, and Fortran each being reported by 1/3 or
more. Over 2/3 have experience with arbitrary precision
languages/libraries, with Mathematica being by far the most
common (over 1/3).

Almost 1/2 of our participants have personally written a
codebase or made a codebase contribution of at least 10,000
lines of code, and floating point was intrinsic to almost 2/3
of those codebases. Over 2/3 have been involved with a
codebase of at least 10,000 lines of code, and floating point
was intrinsic to over half of those codebases. Less than 8%
reported codebases in which floating point was not involved.

Of course, our analysis results depend on the nature
of the sample. We believe that the combination of our
recruitment process and the resulting background of the
participants illustrated here suggest that our sample is a good
representative of software developers who write code for,
and in support of, science and engineering applications.

Additional participant group for suspicion quiz: We
also administered the suspicion quiz (Section II-D) to a

Involved Codebase Floating Point Extent n %
FP incidental 71 35.7
FP intrinsic 55 27.6
FP intrinsic, I did numerical correctness 23 11.6
FP intrinsic, other team did numerical correctness 17 8.5
No FP involved 15 7.5
FP intrinsic, my team did numeric correctness 13 6.5
No Report 5 2.5

Figure 11: Involved Codebase Floating Point Extent of
participants within the largest codebase they were involved
with (Figure 10).
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Figure 13: Histogram of core quiz scores. There are 15
questions. Chance would put the mean at 7.5.

group of 52 undergraduates at Northwestern. These students
were taking EECS 213, Introduction to Computer Systems,
which includes book [3], lecture (one week / 160 minutes),
lab (⇠1/8 of lab content in quarter), and homework (⇠1/8 of
homework content in quarter) material on floating point. The
course material did not include the floating point condition
codes (other than the x64’s oddball use of the parity bit
to indicate a NaN result). Note that this training is similar
in lecture quantity (one or more weeks) to about 1/4 of
our previous study population (Figure 3). The suspicion
quiz was given as a midterm exam problem. There were
no wrong answers, although the students did not know this
when taking the exam. This data gives us a comparison
group for the suspicion quiz for whom we know precisely
the content of the formal training given.

IV. ANALYSIS RESULTS

We analyzed the dataset in a wide variety of ways with
the following questions in mind:

• Do developers understand floating point arithmetic in
terms of how it differs from real arithmetic and com-
puter integer arithmetic?

• Do developers understand how optimizations at the
hardware and compiler level may affect the behavior of
floating point arithmetic within or beyond the standard?

• What are the common misunderstandings?
• What factors have an effect on understanding?
• What might make developers suspicious of a result?

We now summarize the main results of our analysis.

A. General understanding

The most important results of our analysis are in Fig-
ure 12. Here, we show what the average (i.e. expected) score
was on the core and optimization quizzes. Our participants
generally feel they can answer the core quiz questions, but
then perform at near chance levels on those questions. The
score for the core quiz was 8.5/15, which is only slightly
better than would be expected by chance (7.5/15). Figure 13
shows a histogram of scores on the core quiz. There is a
subtlety here in that “Don’t Know” was a possible response
to a question. The incidence of this, however, was < 15%
for the core quiz. In contrast, in the optimization quiz, our

Chance



Experience	With	Code	Matters	(slightly)
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Core Quiz
# Correct # Incorrect # Don’t Know # No Answer # Chance

8.5 4.0 2.3 0.2 7.5
Optimization Quiz

# Correct # Incorrect # Don’t Know # No Answer # Chance
0.6 0.2 2.2 0.1 1.5

Figure 12: Average (expected) performance of participants on the core and optimization quizzes. For the core quiz, most
participants were comfortable giving an answer for most questions, yet the expected number of correctly answered questions
(8.5) is only slightly higher than would be expected by chance (7.5). For the optimization quiz, most participants answered
“Don’t Know” for most questions. Standard-compliant Level is not included as it is not a T/F question.

participants generally recognized their ignorance, answering
“Don’t Know” over 2/3 of the time.

The core quiz behavior is alarming, while the optimization
quiz behavior is reassuring. Our participants seem to be
appropriately wary about compiler and hardware optimiza-
tions (perhaps because that level of detail may not have
been encountered before in their limited training (Figures 3
and 4), but overconfident in basic floating point behavior
(which is encountered in these forms of training).

Figure 14 is a question-by-question breakdown of the core
quiz. As highlighted in the table, 6/15 questions are an-
swered at chance levels, while 2/15 are answered incorrectly
by most participants. Notice also that while participants
do better than chance on Associativity (69.3% correct),
Overflow (60.8%), and Exception Signal (69.3%), these are
not exactly stellar numbers for such important concepts. 30%
of our participants may think that an exceptional floating
point value (NaN, etc) will result in a signal, which it will
not. Considering Overflow and the Saturation questions, as
many as half of our participants may not fully appreciate
that floating point arithmetic is saturating arithmetic instead
of modular arithmetic.

Figure 15 is a question-by-question breakdown of the op-
timization quiz. The news here is that over 2/3 of participants
reported that they did not know whether noted optimizations
resulted in non-standard behavior. <10% (<20% with a
more generous definition) knew at which optimization level
the compiler could produce non-standard compliant code.
Less than 1/3 knew that -ffast-math, the “least con-
forming but fastest math mode” to quote the gcc manual,
could produce non-standard behavior.

B. Factor analysis for core quiz

We considered each of our background factors (Sec-
tion II-A) as a predictor of performance on the core and
optimization quizzes. We have enough data to meaningfully
consider each factor in isolation, which we did. In the
following, we report on the factors that seem to have the
largest significance only.

Although several factors are somewhat predictive, no
factor has an outsize impact on performance in the core
quiz. In the best case, the average performance rises from
8.5/15 to 11/15, and the variation across the values of the
factor is 4/15.
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Figure 16: Effect of Contributed Codebase Size on core quiz
scores.

Perhaps not surprisingly, the most predictive factor is
simply Contributed Codebase Size, the effect of which
is shown in Figure 16. The effect of Involved Codebase
Size is similar. The larger the codebase that the participant
has experienced or built, the better their understanding of
floating point. However, this is no panacea. Even those who
have built million line codebases are still getting an average
of 4 out of 15 questions wrong.

One might expect that given the importance of Con-
tributed Codebase Size (or Involved Codebase Size), that
Contributed Codebase Floating Point Extent (and Involved
Codebase Floating Point Extent), which measure the degree
of the participant’s interaction with floating point within
these codebases, would be high. While there is an effect—if
the participant or their team focused on numeric correctness
within a codebase, they are more likely to have a higher
score—it is a small effect. There is a gain of only about 2/15
compared to those who reported a codebase where floating
point was not intrinsic or where they were not involved.

Area follows Codebase Size closely as a predictive factor,
and is illustrated in Figure 17. It may not be surprising
that participants from areas closest to the construction of
floating point (EE, CS, CE) do better, but note that this at
best raises average performance from 8.5/15 to 11/15 and
the variation across the values is 3.5/15. What is particularly
disturbing is that “Other Physical Science Field” (PhysSci)
and “Other Engineering Field” (Eng) are performing at the
level of chance. Yet developers from these areas are likely
to be the most extensive users of floating point!

The effect of the participant’s Software Development Role

Chance



Area	Matters	(slightly)
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Question % Correct % Incorrect % Don’t Know % Unanswered
Commutativity 53.3 27.6 18.6 0.5
Associativity 69.3 14.1 15.6 1.0
Distributivity 81.9 6.0 10.6 1.5
Ordering 80.4 6.0 12.6 1.0
Identity 16.6 76.9 5.5 1.0
Negative Zero 58.8 28.1 11.6 1.5
Square 47.2 35.2 16.6 1.0
Overflow 60.8 24.1 11.1 4.0
Divide by Zero 11.6 76.4 11.1 1.0
Zero Divide By Zero 70.4 9.0 19.6 1.0
Saturation Plus 54.8 26.1 17.6 1.5
Saturation Minus 53.3 25.6 19.6 1.5
Denormal Precision 52.3 24.6 22.1 1.0
Operation Precision 73.4 9.0 16.6 1.0
Exception Signal 69.3 10.1 19.6 1.0

Figure 14: Core quiz questions. Boldfaced questions were answered correctly at the level of chance. Italicized questions
were answered incorrectly or reported as unknown more often than answered correctly.

Question % Correct % Incorrect % Don’t Know % Unanswered
MADD 15.6 10.0 72.4 2.0
Flush to Zero 13.6 7.5 76.9 2.0
Standard-compliant Level 8.5 20.7 68.8 2.0
Fast-math 29.1 3.0 65.8 2.0

Figure 15: Optimization quiz questions. All questions were reported as unknown by more than half the participants.
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Figure 17: Effect of Area on core quiz scores.
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Figure 18: Effect of Software Development Role on core
quiz scores.

follows in importance, and is illustrated in Figure 18. Those
who view their main role as software engineering do slightly
better than those who see their software engineering as done
in support of their main role.
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Figure 19: Effect of Formal Training (in floating point) on
core quiz scores.

One might hope that Formal Training (in floating point)
would have a considerable effect. While it does have an
effect (as illustrated in Figure 19, it is not a large one. The
maximum gain over the baseline is only about 1/15, and the
variation is about 2/15.

The factors we have not discussed thus far, Position, In-
formal Training (in Floating Point), Floating Point Language
Experience, and Arbitrary Precision Language Experience,
have minimal or ambiguous effects on core quiz scores.
Note that the participant supplies lists for some of these
factors. What seems to be true about them is that very short
lists predict bad scores. That is provided the participant has
reported some kind of Informal Training, etc, it does not
seem to matter what it is. A possible explanation is that these
are driven by the two Codebase Size factors. If a participant
wrote or was involved with a codebase of any significant
size, they probably experienced a range of languages and

Chance



Now Some Good News 
for Correctness, but 

Bad News for 
Innovation
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Participants	Aware	of	Not	Understanding	
Optimizations	(HW/SW)
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Figure 20: Effect of Area on optimization quiz scores.
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Figure 21: Effect of Software Development Role on opti-
mization quiz scores.

had to participate in some kind of informal training.

C. Factor analysis for optimization quiz
The main story about the optimization quiz is the domi-

nance of the response “Don’t Know” regardless of how the
data is sliced by the factors.

Only the factors Software Development Role (Figure 21)
and Area (Figure 20) appear in our data to have an effect
on optimization quiz scores. Even there, the effects cap
quickly (0.7/3 above chance for Role and 0.5 above chance
for Area), although the variation is considerable (1.4/3 for
Role and 0.8/3 for Area). The effect of Informal Training (in
floating point) is ambiguous in our data, although it could
be interpreted as producing considerable variation, albeit the
maximum effect we see is only slightly better than chance.

It is surprising that factors like the codebase sizes and
floating point experience within codebases have no effect
here. On the other hand, the limited impact of Formal
Training (in floating point) could be explained by the fact
that most of those who have received training in our sample
have received a level similar to that of an introductory
computer systems or machine organization course. Such an
introduction will not touch on optimizations at all.

D. Suspicion analysis
There is of course no ground truth for the suspicion

quiz component of our survey, and it really depends on

the application. However, as we described earlier, some
exceptional conditions are generally more suspicious than
others—an arguably reasonable ranking is that generating a
NaN (Invalid) is by far more suspicious than generating an
infinity (Overflow), which is in turn much more suspicious
than generating any of the other three conditions.

Figure 22(a) shows the distribution of reported suspicion
for the five exceptional conditions within our 199 participant
main group, while Figure 22(b) shows the corresponding
distribution for our separate 52 participant student group.
The groups behave quite similarly, although the student
group is overall less suspicious about Underflow and De-
norm, possibly because the topic is fresh in their minds
given the course. The student group is also less suspicious
of Overflow.

As we might hope, both groups do tend to be more
suspicious of Invalid and Overflow than the other conditions.
However, consider Invalid more carefully: About 1/3 of both
groups reported a suspicion level less than the maximum for
a computation that somewhere encountered a NaN!

V. CONCLUSIONS

Stepping back from the data and analysis, we believe that
some generalizations can be made, along with actions to
address them.

Observation: Many developers do not understand core
floating point behavior particularly well, yet believe they do.
This suggests that some existing and future codebases may
have hidden numeric correctness issues. This is probably
more likely to be the case in smaller and newer projects
where there is no specialist whose role is in part to mitigate
these issues. As use of floating point rapidly expands outside
of the traditional domains of science and engineering, the
problem is likely becoming widespread.

Action: The HPC community should make an effort to
make developers in general more suspicious about floating
point behavior. The analogy might be how the programming
languages and operating systems communities have raised
awareness about C’s undefined behavior and its interaction
with modern compilers [12], [14].

Action: Although our study found that formal training
in floating point has only a small effect on understanding,
we believe the issue is not that training does not work per
se, but rather that the community has just not found the
right training approach yet. A rigorous process to develop
effective training for a broad range of developers is an action
that the HPC community, for example via SIGHPC, could
undertake. We would then also need to convince the broader
(and ever expanding) non-CS community of developers that
such training is necessary.

Action: Static and dynamic analysis tools that can ex-
amine existing codebases and point developers to potentially
suspicious code would likely have significant impact. Several
such tools exist [1], [11], [8], but the tools would also need
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Figure 20: Effect of Area on optimization quiz scores.
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Figure 21: Effect of Software Development Role on opti-
mization quiz scores.

had to participate in some kind of informal training.

C. Factor analysis for optimization quiz
The main story about the optimization quiz is the domi-

nance of the response “Don’t Know” regardless of how the
data is sliced by the factors.

Only the factors Software Development Role (Figure 21)
and Area (Figure 20) appear in our data to have an effect
on optimization quiz scores. Even there, the effects cap
quickly (0.7/3 above chance for Role and 0.5 above chance
for Area), although the variation is considerable (1.4/3 for
Role and 0.8/3 for Area). The effect of Informal Training (in
floating point) is ambiguous in our data, although it could
be interpreted as producing considerable variation, albeit the
maximum effect we see is only slightly better than chance.

It is surprising that factors like the codebase sizes and
floating point experience within codebases have no effect
here. On the other hand, the limited impact of Formal
Training (in floating point) could be explained by the fact
that most of those who have received training in our sample
have received a level similar to that of an introductory
computer systems or machine organization course. Such an
introduction will not touch on optimizations at all.

D. Suspicion analysis
There is of course no ground truth for the suspicion

quiz component of our survey, and it really depends on

the application. However, as we described earlier, some
exceptional conditions are generally more suspicious than
others—an arguably reasonable ranking is that generating a
NaN (Invalid) is by far more suspicious than generating an
infinity (Overflow), which is in turn much more suspicious
than generating any of the other three conditions.

Figure 22(a) shows the distribution of reported suspicion
for the five exceptional conditions within our 199 participant
main group, while Figure 22(b) shows the corresponding
distribution for our separate 52 participant student group.
The groups behave quite similarly, although the student
group is overall less suspicious about Underflow and De-
norm, possibly because the topic is fresh in their minds
given the course. The student group is also less suspicious
of Overflow.

As we might hope, both groups do tend to be more
suspicious of Invalid and Overflow than the other conditions.
However, consider Invalid more carefully: About 1/3 of both
groups reported a suspicion level less than the maximum for
a computation that somewhere encountered a NaN!

V. CONCLUSIONS

Stepping back from the data and analysis, we believe that
some generalizations can be made, along with actions to
address them.

Observation: Many developers do not understand core
floating point behavior particularly well, yet believe they do.
This suggests that some existing and future codebases may
have hidden numeric correctness issues. This is probably
more likely to be the case in smaller and newer projects
where there is no specialist whose role is in part to mitigate
these issues. As use of floating point rapidly expands outside
of the traditional domains of science and engineering, the
problem is likely becoming widespread.

Action: The HPC community should make an effort to
make developers in general more suspicious about floating
point behavior. The analogy might be how the programming
languages and operating systems communities have raised
awareness about C’s undefined behavior and its interaction
with modern compilers [12], [14].

Action: Although our study found that formal training
in floating point has only a small effect on understanding,
we believe the issue is not that training does not work per
se, but rather that the community has just not found the
right training approach yet. A rigorous process to develop
effective training for a broad range of developers is an action
that the HPC community, for example via SIGHPC, could
undertake. We would then also need to convince the broader
(and ever expanding) non-CS community of developers that
such training is necessary.

Action: Static and dynamic analysis tools that can ex-
amine existing codebases and point developers to potentially
suspicious code would likely have significant impact. Several
such tools exist [1], [11], [8], but the tools would also need

“don’t	know”
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(a) Main Group (n = 199) (b) Student Group (n = 52)
Figure 22: Distribution of suspicion for different exceptional conditions.

to have interfaces suitable for a non-CS community and
have a low barrier to use. Perhaps commercial tools like
Coverity [2] will expand their purview to include floating
point. We ourselves have been developing a simple runtime
monitoring tool to spy on unmodified binaries and track
exceptional conditions using floating point condition codes,
similar to the structure of the suspicion quiz.

Action: The boundary between floating point and arbi-
trary precision arithmetic is too thick. A system that would
allow code written using floating point to be seamlessly
compiled to use arbitrary precision would enable developers
to easily sanity check the behavior of their code (and any
optimizations they chose). A particularly paranoid developer
could just opt for slow, arbitrary precision results.

Observation: Many developers recognize their lack of
knowledge of how hardware and software optimizations
affect floating point behavior. As the space of such opti-
mizations expands, it could be that developers simply use
them without understanding the consequences, or developers
could simply avoid them out of fear of incorrect results,
which would reduce their impact. There may be a parallel
with the OS developer community, where optimizations that
leverage C’s undefined behavior are carefully avoided lest
they break working kernel code or make it insecure.

Action: We need to assess to what extent developers
wittingly or unwittingly use hardware and software opti-
mizations without knowing their consequences. Are they
as conservative about what they use as they are about
what they think they know? If not, then the introduction
of optimizations may be leaving a hidden trail of incorrect
results behind it.

Action: Optimization implementations should take de-
veloper knowledge into account—ideally, a developer would
not be able to use an optimization without demonstrating that
they understand it. How can we create an effective interface
for this that would not be gameable or too onerous to use?
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to have interfaces suitable for a non-CS community and
have a low barrier to use. Perhaps commercial tools like
Coverity [2] will expand their purview to include floating
point. We ourselves have been developing a simple runtime
monitoring tool to spy on unmodified binaries and track
exceptional conditions using floating point condition codes,
similar to the structure of the suspicion quiz.

Action: The boundary between floating point and arbi-
trary precision arithmetic is too thick. A system that would
allow code written using floating point to be seamlessly
compiled to use arbitrary precision would enable developers
to easily sanity check the behavior of their code (and any
optimizations they chose). A particularly paranoid developer
could just opt for slow, arbitrary precision results.

Observation: Many developers recognize their lack of
knowledge of how hardware and software optimizations
affect floating point behavior. As the space of such opti-
mizations expands, it could be that developers simply use
them without understanding the consequences, or developers
could simply avoid them out of fear of incorrect results,
which would reduce their impact. There may be a parallel
with the OS developer community, where optimizations that
leverage C’s undefined behavior are carefully avoided lest
they break working kernel code or make it insecure.

Action: We need to assess to what extent developers
wittingly or unwittingly use hardware and software opti-
mizations without knowing their consequences. Are they
as conservative about what they use as they are about
what they think they know? If not, then the introduction
of optimizations may be leaving a hidden trail of incorrect
results behind it.

Action: Optimization implementations should take de-
veloper knowledge into account—ideally, a developer would
not be able to use an optimization without demonstrating that
they understand it. How can we create an effective interface
for this that would not be gameable or too onerous to use?
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to have interfaces suitable for a non-CS community and
have a low barrier to use. Perhaps commercial tools like
Coverity [2] will expand their purview to include floating
point. We ourselves have been developing a simple runtime
monitoring tool to spy on unmodified binaries and track
exceptional conditions using floating point condition codes,
similar to the structure of the suspicion quiz.

Action: The boundary between floating point and arbi-
trary precision arithmetic is too thick. A system that would
allow code written using floating point to be seamlessly
compiled to use arbitrary precision would enable developers
to easily sanity check the behavior of their code (and any
optimizations they chose). A particularly paranoid developer
could just opt for slow, arbitrary precision results.

Observation: Many developers recognize their lack of
knowledge of how hardware and software optimizations
affect floating point behavior. As the space of such opti-
mizations expands, it could be that developers simply use
them without understanding the consequences, or developers
could simply avoid them out of fear of incorrect results,
which would reduce their impact. There may be a parallel
with the OS developer community, where optimizations that
leverage C’s undefined behavior are carefully avoided lest
they break working kernel code or make it insecure.

Action: We need to assess to what extent developers
wittingly or unwittingly use hardware and software opti-
mizations without knowing their consequences. Are they
as conservative about what they use as they are about
what they think they know? If not, then the introduction
of optimizations may be leaving a hidden trail of incorrect
results behind it.

Action: Optimization implementations should take de-
veloper knowledge into account—ideally, a developer would
not be able to use an optimization without demonstrating that
they understand it. How can we create an effective interface
for this that would not be gameable or too onerous to use?
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1/3	do	not	find	NaN
Maximally	Suspicious



Caveats

• Participants	are	not	a	random	sample
• Anonymity	and	self-reporting
–We	cannot	be	sure	we	have	hit	our	recruitment	
goals

• Confusion/lack	of	time	for	participant
– Survey	design	was	iterated	based	on	feedback

• Only	199+52	data	points
– But	these	are	users

• …
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Potential	Actions

• HPC	community	should	sow	suspicion
–Much	like	PL	and	compilers	community	did	with	
undefined	behavior	in	C

• HPC	community	should	develop	better	training
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Potential	Actions

• Better	static/dynamic	analysis	tools
– Work	in	progress

• Blurring	the	boundary	between	FP	and	arbitrary	
precision	arithmetic

• Developer	knowledge-limited	access	to	software	
and	hardware	optimizations
– “Achievement	Unlocked”
– Work	in	progress
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Paper	in	a	Nutshell:	Not Really
• Targeted	survey	

– Aimed	at	practitioners	likely	to	use	FP
– Quizzes	for	core,	optimization,	and	suspicion	of	results
– First	study	of	this	kind

• Participants	do	only	slightly	better	than	chance	on	core	concepts
– …	and	don’t	know	it
– Some	factors	mitigate,	but	none	particularly	well

• Participants	do	not	understand	optimization	concepts
– …	and	do	know	it

• Participants	less	suspicious	than	they	should	be
– …	but	similar	to	students	in	a	sophomore	course
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For	More	Information
• Peter	Dinda
– pdinda@northwestern.edu
– http://pdinda.org

• Conor Hetland
– ConorHetland2015@u.northwestern.edu

• Take	the	survey
– http://presciencelab.org/float

• Prescience	Lab
– http://presciencelab.org

• Acknowledgements
– NSF,	DOE

33


