
Conor Hetland Georgios	Tziantzioulis Brian	Suchy

Kyle	Hale				Nikos	Hardavellas Peter	Dinda

Prescience	Lab	
Computer	Science	

Northwestern	University

pdinda.org
presciencelab.org

Prospects for
Functional Address Translation

Paper	in	a	Nutshell
• Page	tables	implement	address	translation	functions
• Can	we	implement	these	functions better	on	future	
(malleable)	hardware?
– Faster/more	space	efficient/easier	to	generate+update

• We	studied	four	models	for	doing	this
– How	well	do	they	work	for	actual	x64	page	tables	from	
HPC	and	other	workloads?

• Results	are	mixed
– Most	promising	technique:	multiplexor	tree

2

Outline

• Address	translation	functions
• Traditional	paging	and	alternative	models
• Our	techniques	and	results

– Perfect	hashing	for	inverted	page	tables
– Espresso-minimized	PLAs
– Task-specific	functional	language	for	FPGA	synthesis
– Multiplexor	trees

• Conclusions	and	future	work
– CARAT

3

Motivation
• Address	translation	is	a	hot	topic	again
• Driven	by…	changing	workloads

– Database	engines,	cloud	services,	unikernels
• Driven	by…	TLB	costs

– TLB	misses	=>	lower	performance
– TLB	reach	may	be	insufficient
– TLBs	consume	significant	power/energy/area
– Virtualization	compounds	these

• Our	interest:	parallel	workloads	and	HPC
– Part	of	a	project	to	rethink	the	parallel	
hardware/software	stack	(interweaving.org)

4

Address	Translation	Functions

5

Virtual	Page	Number	(VPN) Offset

Every	Address	(ifetch,	data	read/write/	control	access	/	etc)

Physical	Page	Number	(PPN) OffsetMetadata

Protection,	mode,	cacheability,	etc

Radix	tree	implements	this	function

x64:		4-level	radix	tree,	512	entries	per	node
Worst	case: 5	memory	accesses
with	VMM:	 25	memory	accesses

VAddr

PAddr

Traditional	Paging	
(x64,	others	similar)

6

core

Cache	
Hierarchy

TLB

VAddr

PAddr
VAddr

functional
mappings

All	
mappings

Address	space

Pa
ge
	ta
bl
e	

re
pr
es
en
ta
tio

n

Pagewalker

page	tablesDRAM	

(hit)

• TLB	essential
– Must	avoid	almost	all	
actual	page	table	
references

• TLB	design	and	cache	
design	are	tightly	
coupled,	limiting	
cache	design

It	Doesn’t	Need	to	be	Page	Tables

7

Virtual	Page	Number	(VPN) Offset

Every	Address	(ifetch,	data	read/write/	control	access	/	etc)

Physical	Page	Number	(PPN) OffsetMetadata

Protection,	mode,	cacheability,	etc

Inverted	page	tables
1	step	access	without	hash	collisions

Bits	to	bits	=>	Truth	Table
Reconfigurable	PLA-like	logic

Multi-level	Logic
Reconfigurable	FPGA-like	logic

Run-length-encoding	with	hardware	search	tree
FPGA	or	direct	implementation

…

Any	
representation	
of	the	function	
could	work

VAddr

PAddr

Locales	for	Functional	Address	Translation	(FAT)

8

Core-TLB

Core-Pagewalker

Edge-Pagewalker

Edge-TLB

Most	Restrictive	- Lowest	Latency	/		Smallest	State

Least	Restrictive		Highest	Latency	/		Largest	State

Integrate	with
Existing	Cache	
Structures

Change	Cache
Structures

Core-TLB

9

• Most	extreme

• Replace	TLB!
– Perhaps	without	misses!

• Must	operate	at	least	as	
fast	as	a	TLB
– Cannot	have	much	state

functional
mappings

traditional
mappings

core

Cache	
Hierarchy

VAddr

FAT
PAddr TLB

VAddr

Address	space

Co
m
pa
ct
	fu

nc
tio

n
re
pr
es
en
ta
tio

ns

PAddr

Pagewalker

page
tablesDRAM	

(hit)

Workloads
Our	tool	captures	Linux	page	table	snapshots	(processes)

• General	Purpose	Servers
– 2	machines,	19	days,	~1.2	million	snapshots

• Mantevo
– 13	snapshots,	mid-run,	of	13	benchmarks

• NAS
– 40	snapshots,	4	each	over	10	benchmarks

• PARSEC
– 70	snapshots,	4-14	each	over	7	benchmarks

• HPCCG	on	Legion
– 221	snapshots,	1	second	intervals

• Synthetic
– 3	contrived	snapshots

10

Evaluation	Criteria
• Generation	time

– How	quickly	can	we	transform	the	mapping	into	the	
function?		

• By	direct	measurement	of	cost	of	software	tool
• Space	complexity

– Estimate	hardware	resource	cost
• Ideally,	by	synthesis	to	FPGA	via	Verilog	using	Quartus,	then	
counting	logic	blocks		

• Lookup	time
– Estimate	cost	of	lookup

• Ideally	by	path	length	/	cycle	time	of	FPGA

• Caveat:	update	time	not	considered

11

Inverted	Page	Tables	with	Perfect	Hashing

12

• IPT	provides	single-level	
page	table	entry	lookup	
without	hash	collisions…

• …Perfect	hashing	makes	
hash	functions	that	have	no	
collisions

• Two	generators	considered
– Minimum	Perfect	Hashing	–

CHM	algorithm	from	CMPH
– Perfect	Hashing	– GPERF

• CHM/CMPH	is	most	
interesting

Fast	to	Generate	(CMPH/CHM)

(a) Murphy (b) Hanlon

(c) Mantevo (d) NAS

(e) PARSEC (f) Legion
Fig. 5. Minimum perfect hash function generation time using CMPH versus
number of page table entries in snapshot.

B. Study

We attempted to construct perfect hash functions for every
page table described in Figure 3. This was done sequentially,
using only a single logical CPU / hardware thread with no
competing workloads. In each case we measured:

• Generation time: the time (sys + user) to generate the
perfect hash function

• Space complexity: The size of the hash function,
combining its table space and a proxy (code size) for its
likely cost in hardware.

We also analyzed the following by examining the generated
functions and table sizes:

• Lookup time: The likely cost of a lookup given a
hardware implementation of the perfect hash function.

We had no trouble using CMPH on every page table.
GPERF is much slower, so we computed hash functions for
samples of the Murphy, Hanlon, Mantevo, PARSEC, Legion,
and Synthetic page tables. We were unable to generate GPERF
perfect hash functions for any of the NAS page tables even
after letting the tool run for several days per page table.

Fig. 6. Minimum perfect hash function space complexity versus the number
of page table entries in snapshot. Only the Murphy dataset is shown. All
others have the identical straight-line behavior.

(a) Murphy (sample) (b) Hanlon (sample)

(c) PARSEC (sample) (d) Legion (sample)
Fig. 7. Non-minimum perfect hash function space complexity versus the
number of page table entries in snapshot using GPERF. Mantevo and NAS
did not complete.

C. Observations
Figures 5 illustrates the measured generation time using

CMPH. CMPH works in time proportional to the number of
page table entries, as promised theoretically, although there
is considerable variation. We do not show results for GPERF
here—it is many orders of magnitude slower, and, in fact, the
generation time for GPERF, for large virtual address spaces, is
prohibitive. Note that we are not casting aspersions on GPERF
here—we are in fact asking it to do something (handle a vast
keyspace) that it is not designed for.

Figure 6 shows the space complexity measurements for the
Murphy dataset using CMPH. Note that this cost is not just
theoretically proportional to the number of keys (VPNs), but
is also empirically exactly the case for this application. We
exclude the other graphs as they look virtually identical in
this regard.

Figure 7 shows the space costs for GPERF as a function of
the number of PTEs. Mantevo and NAS are omitted since the
generation time is impossibly long. The behavior is roughly
linear, although not as straightforward as with CMPH. Note

13

General	purpose	database	server,	771K	page	tables

Function	Body	Is	Compact,	But	Needs	Considerable	State

(a) Murphy (b) Hanlon

(c) Mantevo (d) NAS

(e) PARSEC (f) Legion
Fig. 5. Minimum perfect hash function generation time using CMPH versus
number of page table entries in snapshot.

B. Study

We attempted to construct perfect hash functions for every
page table described in Figure 3. This was done sequentially,
using only a single logical CPU / hardware thread with no
competing workloads. In each case we measured:

• Generation time: the time (sys + user) to generate the
perfect hash function

• Space complexity: The size of the hash function,
combining its table space and a proxy (code size) for its
likely cost in hardware.

We also analyzed the following by examining the generated
functions and table sizes:

• Lookup time: The likely cost of a lookup given a
hardware implementation of the perfect hash function.

We had no trouble using CMPH on every page table.
GPERF is much slower, so we computed hash functions for
samples of the Murphy, Hanlon, Mantevo, PARSEC, Legion,
and Synthetic page tables. We were unable to generate GPERF
perfect hash functions for any of the NAS page tables even
after letting the tool run for several days per page table.

Fig. 6. Minimum perfect hash function space complexity versus the number
of page table entries in snapshot. Only the Murphy dataset is shown. All
others have the identical straight-line behavior.

(a) Murphy (sample) (b) Hanlon (sample)

(c) PARSEC (sample) (d) Legion (sample)
Fig. 7. Non-minimum perfect hash function space complexity versus the
number of page table entries in snapshot using GPERF. Mantevo and NAS
did not complete.

C. Observations
Figures 5 illustrates the measured generation time using

CMPH. CMPH works in time proportional to the number of
page table entries, as promised theoretically, although there
is considerable variation. We do not show results for GPERF
here—it is many orders of magnitude slower, and, in fact, the
generation time for GPERF, for large virtual address spaces, is
prohibitive. Note that we are not casting aspersions on GPERF
here—we are in fact asking it to do something (handle a vast
keyspace) that it is not designed for.

Figure 6 shows the space complexity measurements for the
Murphy dataset using CMPH. Note that this cost is not just
theoretically proportional to the number of keys (VPNs), but
is also empirically exactly the case for this application. We
exclude the other graphs as they look virtually identical in
this regard.

Figure 7 shows the space costs for GPERF as a function of
the number of PTEs. Mantevo and NAS are omitted since the
generation time is impossibly long. The behavior is roughly
linear, although not as straightforward as with CMPH. Note

14

General	purpose	database	server,	771K	page	tables

Lookups	Are	Tricky

• Hash	function	involves	two	memory	references
– With	Inverse	PT	references,	close	to	a	forward	PT…

• GPERF	has	contrasting	results
– MUCH	slower	to	generate	– no	O(n)	guarantee
– Function	body	larger,	but	state	much	smaller
– Lookup	likely	quite	fast	since	state	will	not	require	
memory	accesses

15

Espresso-Minimized	PLAs

16

All	Mappings

Espresso	Minimization

Programmable	Logic	Array

Truth	Table	
Representation
(VPN,	PPN)

Generation	
Time

Lookup	Time

Space	
Complexity

Measurements

Quartus Synthesis

PPNVPN

• Address	translation	function	as	
a	bit-by-bit	truth	table

• Classic	Berkeley	Espresso	truth	
table	minimizer	for	PLA-style	
reconfigurable	logic
– Imagine	future	processor	with	

a	PLA,	not	an	FPGA

• For	space	complexity:	synthesis	
by	Quartus for	FPGA
– Limitation	of	evaluation
– Real	hardware	would	take	

Espresso	output	directly

Generation	Costs	Are	High
• 10s	of	minutes	of	CPU	time	for	Espresso-
minimization
– Would	always	be	needed

• Hours	to	synthesize	into	FPGA	logic
– Only	needed	for	our	evaluation	approach

• Generation	time	limits	the	number	of	snapshots	we	
can	consider

17

Space	Complexity	Is	Probably	Linear	in	
Address	Space	Size	– Plus	No	Extra	State

18

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

To
ta

l L
og

ic
 E

le
m

en
ts

 (C
yc

lo
ne

 IV
 G

X
)

Page Table Entries

Logic Elements versus Page Table Size

Fig. 9. Size of the Espresso-minimized address translation function on the
FPGA as a function of the number of PTEs.

Types: 64 bit word (single type)

Terminals: 0,1,2,9,12, VPN (and components PML4,
PDP, PD, PT), and numerous masks

Operators:
not, and, or, xor, aoi, logical shifts and
rotates, neg, inc, dec, add, sub, mpy, div,
rem, and wordwise and bitwise muxes

Fig. 10. Expression language for creating or evolving pure VPN!PPN
functions.

suitable use here would be environments where a process and
has a stable page table for a much longer period, perhaps as in
some HPC environments such as capability supercomputers.

On a more positive note, Figure 9 shows that the space
complexity of the resulting FPGA block is linear in the
number of PTEs in a traditional forward page table that
the block can replace. The linear relationship is true also
of the intermediate Espresso-minimized truth table or PLA.
We also considered an alternative model in which there was
no Espresso step, but rather the truth table was generated in
Verilog and given directly to Quartus. This did not change the
results significantly.

While we had initially hoped that a small PLA or FPGA
would be sufficient to represent various address translation
functions, the linear relationship we actually see suggests that
the physical size of the PLA or FPGA needed to support
useful mappings is much larger. This rules it out as a TLB
replacement, but it could potentially serve as a pagewalker
replacement. Another intriguing possibility would be to have
the page allocator in the kernel be cognizant of the complexity
of the address translation function it is producing, shaping it
to be more easily suitable.

VI. FUNCTIONAL LANGUAGE / GENETIC PROGRAMMING

In this approach, an expression language is designed for
the sole purpose of describing pure functions that map from
VPNs to PPNs (as well as other components of the PTE). The
terminals of the language are a small set of constant values as
well as the VPN and its component parts. The operators of the
language are designed to be straightforwardly implementable
within hardware. The language allows no recursion or iteration
of any kind (it is not Turing-complete). As a consequence, any
expression in the language (a function for translating VPN
to PPN) can be trivially statically analyzed to determine its
work and depth complexity, and trivially translated to hardware

Fig. 11. Functional address translation by functional language and genetic
programming.

to determine area complexity, which is closely tied to work
complexity in any case. Figure 10 illustrates the language we
designed.

The language could be used directly by the developer or via
an indirect, but deterministic construction technique within the
OS kernel. For example, simple address space models, such as
identity-mapped address spaces (used in Nautilus by default),
mapping virtual pages to physical pages at an offset (used to
support Multiverse [32] in Nautilus), or classic overlays [55,
pp. 222], can be readily expressed with very tiny expressions
in the language. We refer to such a function as a bespoke
function.

Another alternative would be to learn the function for
any arbitrary VPN!PPN mapping. Because our expression
language involves only a single type, it is straightforward
to apply genetic programming [3], [46] to try to find such
functions. Genetic programming uses evolutionary pressure
toward fitness, combined with mutation and crossover of
candidate expressions, to evolve collections of expressions
that, over many generations, increasingly become better at
approximating the intended mapping. We define fitness as a
combination of fit (how close the approximation is) and the
size of the expression (work complexity/area). An expression
must completely fit the mapping to be selected at the end.
Our genetic search process is implemented using the GPC++
framework [27]. The result of this process is a learned
function.

Figure 11 illustrates the two stage process for both bespoke
and learned functions. As with other techniques, we consider
the generation time (how long does it take to build an
appropriate function?) and the lookup space and time (how
expensive is that function?)

A. Study

We developed bespoke functions for the Synthetic dataset.
These were straightforward to implement in our language.

We then attempted to apply genetic programming to evolve
learned functions for each of the datasets. Unfortunately, none

Lookup	Time	Likely	Fast

• PLA	is	fundamentally	
two-level	logic

• Provided	sufficiently	
high	fan-in/fan-out,	
lookup	would	be	
single-cycle

• Lots	of	caveats	here…

19

10/9/19, 7:12 PM

Page 1 of 1https://upload.wikimedia.org/wikipedia/commons/0/0e/Programmable_logic_array_%28schematic_drawing_example%29.svg

input

output

AND plane

OR plane

Motivating	Multiplexor	Trees:	Page	Table	Entries	
Respond	Well	to	Run-length-encoding

20

of these were able to complete within a reasonable period (we
ran each for a limit of one day before stopping and advancing
to the next). In no case, not even for the Synthetic dataset,
were we able to learn the function.

B. Observations
Our results are mixed. On the one hand, it is quite clear

that our language is sufficient for expressing numerous reg-
ular mappings, and that the corresponding functions are tiny
and are likely to be fast. Given this, bespoke functions for
even the most constrained integration model, Core-TLB, are
likely to be practical. At this level, we can think of our
results as supporting those of DIY address translation [1].
Pure translation functions, which we designed our expression
language for, could push the DIY concept much closer to the
processor by allowing the functions to be readily transformed
into reconfigurable hardware.

On the other hand, we have had very little success in
evolving learned functions, even for mappings that are simple
and regular by construction. This is even after many hours of
executing the evolutionary process. At this point, we do not
believe this is due to a bug in our implementation, limitation in
our expression language, or correctness in our fitness function.
Instead, we think it is either due to a bad choice of the
evolutionary process’s parameters (genetic programming is
notoriously sensitive to these), or that genetic programming
just is not a good fit for this problem. One important distinction
of learning an address translation function, compared to other
forms of machine learning problems, is that the training data
must be captured exactly, while no predictive power is needed
at all. That is, we actually need the learning process to “over
fit” the data we give it.

VII. MULTIPLEXOR TREES

Consider a memory region to be the tuple (VPN, PPN,
N), which indicates that VPN to VPN+N map to consecutive
physical addresses starting at PPN. If run-length encoding
an address translation in this manner leads to fewer regions
than PTEs, it may serve as a gateway to creating more
compact and faster address translation functions. Furthermore,
the ability to compactly represent mappings in this manner
could be amplified by having the page allocation system use
physical contiguity as a page allocation criterion, resulting
in fewer (larger) regions. An example of such a system is
HPMMAP [45], which already uses contiguity to provide
better allocations for NUMA hardware and uses larger pages.
This approach reduces the expressiveness required from the
synthesized mapping, since many virtual addresses will map
to the same physical base page.

Figure 12 shows the potential for this approach. The figure
compares the sizes of the three representations across the
datasets. Note that the horizontal axis is in log scale. In each
figure, the “PTEs” curve is a CDF of the number of active
PTEs. The “Original Regions” curve is a CDF of the number
of active regions needed to represent the same information in
run-length encoded form. Finally, the “Contigified Regions”

Contigified
Regions

Original
Regions

PTEs

Contigified
Regions

Original
Regions

PTEs

(a) Murphy (b) Hanlon
Contigified
Regions Original

Regions

PTEs

Contigified
Regions

Original
Regions

PTEs

(c) Mantevo (d) NAS
Contigified
Regions

Original
Regions

PTEs

Contigified
Regions

Original
Regions PTEs

(e) PARSEC (f) Legion
Fig. 12. CDFs of address space sizes as measured by PTEs (rightmost curves)
and by virtually (middle) and by both virtually and physically contiguous
regions (leftmost). VPN!PPN mappings are more compactly represented by
regions that PTEs, and if the page allocator can maintain physical contiguity,
the effect is particularly strong.

curve shows the CDF of the number of active regions that
would be needed assuming physical contiguity was achieved,
that is, that each contiguous chunk of the virtual address space
mapped to a contiguous chunk of the physical address space.

Run-length encoding is particularly effective for our HPC
benchmarks (Mantevo, NAS, PARSEC, Legion). For example,
in Mantevo and NAS, millions of PTEs become thousands of
regions; however, even general purpose workloads (Murphy
and Hanlon) show 2-5x fewer regions than PTEs across the
board. Note also that the “Contigified Regions” curve is
shifted dramatically to the left. If the page allocator maintained
physical contiguity, 500-1000 regions would be more than
sufficient to capture almost all of our workloads (and would
capture all the HPC workloads.)

A. Building multiplexor trees

A multiplexor tree is a parallel binary search tree structure
in which the VPN is recursively compared against regions by
starting address and length. It is similar to the search of the
red-black tree representation of the process memory map in the
Linux kernel, but the entire tree is in the form of combinational
logic suitable for synthesis in a FPGA or similar reconfigurable
logic. The leaf nodes are the actual regions. Each interior node
of the tree is a multiplexor that outputs to its parent one of
the regions produced by its two children depending on whether

PARSEC	Benchmarks

Multiplexor	Trees

21

• Think	Linux	memory	map	red-black	tree…

(VPN,	length)	->	PPN

• …	but	realized	as	a	hardware	decision	tree

A	Two-Region	Multiplexor	Tree	in	Verilog

22

always @(vpn)
if ((vpn>=reg_vpn[0]) &&

(vpn<(reg_vpn[0] + reg_num[0])))
out = reg_ppn[0] + (vpn - reg_vpn[0]);

else
if ((vpn>=reg_vpn[1]) &&

(vpn<(reg_vpn[1] + reg_num[1])))
out = reg_ppn[1] + (vpn - reg_vpn[1]);

else
out = 'hfffffffffffff;

• Search	process	is	this	hardware	tree

A	16-Region	
Multiplexor	

Tree	in	Verilog
(trust	me!)

23

always	@(vpn)
if	((vpn>=reg_vpn[7])	&&	(vpn<(reg_vpn[7]+reg_num[7])))

out	=	reg_ppn[7]	+	(vpn-reg_vpn[7]);
else	if	((vpn<reg_vpn[7]))

if	((vpn>=reg_vpn[3])	&&	(vpn<(reg_vpn[3]+reg_num[3])))
out	=	reg_ppn[3]	+	(vpn-reg_vpn[3]);

else	if	((vpn<reg_vpn[3]))
if	((vpn>=reg_vpn[1])	&&	(vpn<(reg_vpn[1]+reg_num[1])))

out	=	reg_ppn[1]	+	(vpn-reg_vpn[1]);
else	if	((vpn<reg_vpn[1]))

if	((vpn>=reg_vpn[0])	&&	(vpn<(reg_vpn[0]+reg_num[0])))
out	=	reg_ppn[0]	+	(vpn-reg_vpn[0]);

else
out	=	'hfffffffffffff;

else	//	vpn>=reg_vpn[1]+reg_num[1]
if	((vpn>=reg_vpn[2])	&&	(vpn<(reg_vpn[2]+reg_num[2])))

out	=	reg_ppn[2]	+	(vpn-reg_vpn[2]);
else

out	=	'hfffffffffffff;

else	//	vpn>=reg_vpn[3]+reg_num[3]
if	((vpn>=reg_vpn[4])	&&	(vpn<(reg_vpn[4]+reg_num[4])))

out	=	reg_ppn[4]	+	(vpn-reg_vpn[4]);
else	if	((vpn<reg_vpn[4]))

if	((vpn>=reg_vpn[2])	&&	(vpn<(reg_vpn[2]+reg_num[2])))
out	=	reg_ppn[2]	+	(vpn-reg_vpn[2]);

else
if	((vpn>=reg_vpn[3])	&&	(vpn<(reg_vpn[3]+reg_num[3])))

out	=	reg_ppn[3]	+	(vpn-reg_vpn[3]);
else

out	=	'hfffffffffffff;

else	//	vpn>=reg_vpn[4]+reg_num[4]
if	((vpn>=reg_vpn[4])	&&	(vpn<(reg_vpn[4]+reg_num[4])))

out	=	reg_ppn[4]	+	(vpn-reg_vpn[4]);
else	if	((vpn<reg_vpn[4]))

if	((vpn>=reg_vpn[3])	&&	(vpn<(reg_vpn[3]+reg_num[3])))
out	=	reg_ppn[3]	+	(vpn-reg_vpn[3]);

else
out	=	'hfffffffffffff;

else	//	vpn>=reg_vpn[4]+reg_num[4]
if	((vpn>=reg_vpn[5])	&&	(vpn<(reg_vpn[5]+reg_num[5])))

out	=	reg_ppn[5]	+	(vpn-reg_vpn[5]);
else

if	((vpn>=reg_vpn[6])	&&	(vpn<(reg_vpn[6]+reg_num[6])))
out	=	reg_ppn[6]	+	(vpn-reg_vpn[6]);

else
out	=	'hfffffffffffff;

else	//	vpn>=reg_vpn[7]+reg_num[7]
if	((vpn>=reg_vpn[10])	&&	(vpn<(reg_vpn[10]+reg_num[10])))

out	=	reg_ppn[10]	+	(vpn-reg_vpn[10]);
else	if	((vpn<reg_vpn[10]))

if	((vpn>=reg_vpn[7])	&&	(vpn<(reg_vpn[7]+reg_num[7])))
out	=	reg_ppn[7]	+	(vpn-reg_vpn[7]);

else	if	((vpn<reg_vpn[7]))
if	((vpn>=reg_vpn[6])	&&	(vpn<(reg_vpn[6]+reg_num[6])))

out	=	reg_ppn[6]	+	(vpn-reg_vpn[6]);
else

out	=	'hfffffffffffff;

else	//	vpn>=reg_vpn[7]+reg_num[7]
if	((vpn>=reg_vpn[8])	&&	(vpn<(reg_vpn[8]+reg_num[8])))

out	=	reg_ppn[8]	+	(vpn-reg_vpn[8]);
else

if	((vpn>=reg_vpn[9])	&&	(vpn<(reg_vpn[9]+reg_num[9])))
out	=	reg_ppn[9]	+	(vpn-reg_vpn[9]);

else
out	=	'hfffffffffffff;

else	//	vpn>=reg_vpn[10]+reg_num[10]
if	((vpn>=reg_vpn[12])	&&	(vpn<(reg_vpn[12]+reg_num[12])))

out	=	reg_ppn[12]	+	(vpn-reg_vpn[12]);
else	if	((vpn<reg_vpn[12]))

if	((vpn>=reg_vpn[10])	&&	(vpn<(reg_vpn[10]+reg_num[10])))
out	=	reg_ppn[10]	+	(vpn-reg_vpn[10]);

else	if	((vpn<reg_vpn[10]))
if	((vpn>=reg_vpn[9])	&&	(vpn<(reg_vpn[9]+reg_num[9])))

out	=	reg_ppn[9]	+	(vpn-reg_vpn[9]);
else

out	=	'hfffffffffffff;

else	//	vpn>=reg_vpn[10]+reg_num[10]
if	((vpn>=reg_vpn[11])	&&	(vpn<(reg_vpn[11]+reg_num[11])))

out	=	reg_ppn[11]	+	(vpn-reg_vpn[11]);
else

out	=	'hfffffffffffff;

else	//	vpn>=reg_vpn[12]+reg_num[12]
if	((vpn>=reg_vpn[13])	&&	(vpn<(reg_vpn[13]+reg_num[13])))

out	=	reg_ppn[13]	+	(vpn-reg_vpn[13]);
else	if	((vpn<reg_vpn[13]))

if	((vpn>=reg_vpn[11])	&&	(vpn<(reg_vpn[11]+reg_num[11])))
out	=	reg_ppn[11]	+	(vpn-reg_vpn[11]);

else
if	((vpn>=reg_vpn[12])	&&	(vpn<(reg_vpn[12]+reg_num[12])))

out	=	reg_ppn[12]	+	(vpn-reg_vpn[12]);
else

out	=	'hfffffffffffff;

else	//	vpn>=reg_vpn[13]+reg_num[13]
if	((vpn>=reg_vpn[13])	&&	(vpn<(reg_vpn[13]+reg_num[13])))

out	=	reg_ppn[13]	+	(vpn-reg_vpn[13]);
else	if	((vpn<reg_vpn[13]))

if	((vpn>=reg_vpn[12])	&&	(vpn<(reg_vpn[12]+reg_num[12])))
out	=	reg_ppn[12]	+	(vpn-reg_vpn[12]);

else
out	=	'hfffffffffffff;

else	//	vpn>=reg_vpn[13]+reg_num[13]
if	((vpn>=reg_vpn[14])	&&	(vpn<(reg_vpn[14]+reg_num[14])))

out	=	reg_ppn[14]	+	(vpn-reg_vpn[14]);
else

if	((vpn>=reg_vpn[15])	&&	(vpn<(reg_vpn[15]+reg_num[15])))
out	=	reg_ppn[15]	+	(vpn-reg_vpn[15]);

else
out	=	'hfffffffffffff;

All	Mappings

Transform	Mapping
into	Regions

Logarithmic	Lookup

Generation	
Time

Lookup	Time

Space	
Complexity

Measurements

Synthesize	Regions

PPNVPN

Fig. 13. Address translation by bespoke multiplexor tree.

All	Mappings

Transform	Mapping
into	Regions

Logarithmic	Bounds	Check

Generation	
Time

Lookup	Time

Space	
Complexity

Measurements

Load	Bounding	Registers

PPNVPN

Fig. 14. Address translation by registered multiplexor tree.

the search VPN is < or � a region-splitting VPN constructed
from the subtree rooted at the node. The VPN is supplied
simultaneously to all the interior nodes of the tree. Once the
root multiplexor determines the relevant region, the offset into
the region is computed with simple addition similar to segment
base+offset calculations.

We consider two approaches to producing a multiplexor
tree. In a bespoke multiplexor tree, illustrated in Figure 13, all
VPN!PPN mappings are known at synthesis time. Because
of this, all regions are constants from the perspective of
synthesis. We have developed a tool that first transforms
VPN!PPN mappings into region mappings. The tool next
generates the specific search tree needed for those regions, and
then produces a Verilog version of the tree as combinational
logic. Finally, the Verilog is synthesized into an FPGA (using
Quartus 17) in our implementation.

Figure 14 shows the process for producing a registered mul-
tiplexor tree. Here, the regions are not known a priori. Instead,
given a bound on the number of supported regions, a separate
tool produces a multiplexor tree in Verilog whose regions and
region-splitting VPNs are not constants, but registered values.
That is, it produces a multiplexor tree that is parameterized
by runtime information. The tool also produces the I/O logic
needed to dynamically configure the registers, and a software
interface that maps regions to the appropriate registers, and
determines and loads the splitting VPNs. The multiplexor tree
is synthesized only once. Any address translation function can
then be loaded into it via the software interface at the cost of
loading a number of registers proportional to the number of
regions.

 0

 50000

 100000

 150000

 200000

 250000

 0 100 200 300 400 500 600

To
ta

l L
og

ic
 E

le
m

en
ts

 (C
yc

lo
ne

 IV
 G

X
)

Number of Contiguous Regions

Logic Elements versus Contiguous Regions

Fig. 15. Space complexity as a function of the number of regions for a
bespoke multiplexor tree.

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

 0 200 400 600 800 1000 1200

N
um

be
r o

f C
el

ls
 (T

ho
us

an
ds

)

Number of Regions

Fig. 16. Space complexity as a function of the number of regions for a
registered multiplexor tree.

B. Study
We developed bespoke multiplexor trees for a sample of our

page table snapshots, and we produced registered multiplexor
trees for a range of sizes. Our target was the same FPGA as
described in Section V. We measured both processes in the
following ways:
• Generation time: The time to generate the Verilog from

input regions (bespoke) or the number of regions
(registered), plus the time to synthesize the FPGA block.

• Space complexity: The size of the resulting FPGA block
in terms of the FPGA’s native logic elements.

We did not measure the lookup time of this mapping for the
same reasons as given in Section V. We are confident this can
be done within a cycle of the FPGA for common cases.

C. Observations
The generation time for both bespoke and registered mul-

tiplexor trees is dominated by synthesis within Quartus. For
512 regions, this can take over an hour. Producing the Verilog
design itself takes negligible time.

In terms of space complexity, we would expect that any
multiplexor tree to take O(n) for n regions. Figures 15 and 16
show the empirical space complexity as a function of the
number of regions for 512 to 1024 regions. The measured
space costs clearly follow the expected linear behavior.

The worse case of the parallel lookup through the tree
is O(logn). Given how compactly real address translation
functions can be represented as regions (Figure 12), n ⇡
103 . . . 104 can cover a wide range of cases, particularly

Bespoke	Multiplexor	Trees

24

• Generate	stateless
search	tree	specific
to	the	run-length	
encoded	address	
translation	function

All	Mappings

Transform	Mapping
into	Regions

Logarithmic	Bounds	Check

Generation	
Time

Lookup	Time

Space	
Complexity

Measurements

Load	Bounding	Registers

PPNVPN

Registered	Multiplexor	Trees

25

• Generate	generic
multiplexor	tree	of	
n	regions	that	can	
be	loaded with	any	
run-length-encoded	
function	that	has	n	
or	fewer	regions

Generation	Costs

• Generally	high	(hours)
– Milliseconds	to	generate,	hours	to	synthesize

• Matters	for	bespoke

• Does	not	matter	for	registered
– We	can	reuse	the	synthesized	hardware	just	by	
loading	its	registers	with	other	values

26

Space	Complexity	is	Reasonable	(Bespoke)

27

All	Mappings

Transform	Mapping
into	Regions

Logarithmic	Lookup

Generation	
Time

Lookup	Time

Space	
Complexity

Measurements

Synthesize	Regions

PPNVPN

Fig. 13. Address translation by bespoke multiplexor tree.

All	Mappings

Transform	Mapping
into	Regions

Logarithmic	Bounds	Check

Generation	
Time

Lookup	Time

Space	
Complexity

Measurements

Load	Bounding	Registers

PPNVPN

Fig. 14. Address translation by registered multiplexor tree.

the search VPN is < or � a region-splitting VPN constructed
from the subtree rooted at the node. The VPN is supplied
simultaneously to all the interior nodes of the tree. Once the
root multiplexor determines the relevant region, the offset into
the region is computed with simple addition similar to segment
base+offset calculations.

We consider two approaches to producing a multiplexor
tree. In a bespoke multiplexor tree, illustrated in Figure 13, all
VPN!PPN mappings are known at synthesis time. Because
of this, all regions are constants from the perspective of
synthesis. We have developed a tool that first transforms
VPN!PPN mappings into region mappings. The tool next
generates the specific search tree needed for those regions, and
then produces a Verilog version of the tree as combinational
logic. Finally, the Verilog is synthesized into an FPGA (using
Quartus 17) in our implementation.

Figure 14 shows the process for producing a registered mul-
tiplexor tree. Here, the regions are not known a priori. Instead,
given a bound on the number of supported regions, a separate
tool produces a multiplexor tree in Verilog whose regions and
region-splitting VPNs are not constants, but registered values.
That is, it produces a multiplexor tree that is parameterized
by runtime information. The tool also produces the I/O logic
needed to dynamically configure the registers, and a software
interface that maps regions to the appropriate registers, and
determines and loads the splitting VPNs. The multiplexor tree
is synthesized only once. Any address translation function can
then be loaded into it via the software interface at the cost of
loading a number of registers proportional to the number of
regions.

 0

 50000

 100000

 150000

 200000

 250000

 0 100 200 300 400 500 600

To
ta

l L
og

ic
 E

le
m

en
ts

 (C
yc

lo
ne

 IV
 G

X
)

Number of Contiguous Regions

Logic Elements versus Contiguous Regions

Fig. 15. Space complexity as a function of the number of regions for a
bespoke multiplexor tree.

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

 0 200 400 600 800 1000 1200

N
um

be
r o

f C
el

ls
 (T

ho
us

an
ds

)

Number of Regions

Fig. 16. Space complexity as a function of the number of regions for a
registered multiplexor tree.

B. Study
We developed bespoke multiplexor trees for a sample of our

page table snapshots, and we produced registered multiplexor
trees for a range of sizes. Our target was the same FPGA as
described in Section V. We measured both processes in the
following ways:
• Generation time: The time to generate the Verilog from

input regions (bespoke) or the number of regions
(registered), plus the time to synthesize the FPGA block.

• Space complexity: The size of the resulting FPGA block
in terms of the FPGA’s native logic elements.

We did not measure the lookup time of this mapping for the
same reasons as given in Section V. We are confident this can
be done within a cycle of the FPGA for common cases.

C. Observations
The generation time for both bespoke and registered mul-

tiplexor trees is dominated by synthesis within Quartus. For
512 regions, this can take over an hour. Producing the Verilog
design itself takes negligible time.

In terms of space complexity, we would expect that any
multiplexor tree to take O(n) for n regions. Figures 15 and 16
show the empirical space complexity as a function of the
number of regions for 512 to 1024 regions. The measured
space costs clearly follow the expected linear behavior.

The worse case of the parallel lookup through the tree
is O(logn). Given how compactly real address translation
functions can be represented as regions (Figure 12), n ⇡
103 . . . 104 can cover a wide range of cases, particularly

Space	Complexity	is	Reasonable	(Registered)

28

All	Mappings

Transform	Mapping
into	Regions

Logarithmic	Lookup

Generation	
Time

Lookup	Time

Space	
Complexity

Measurements

Synthesize	Regions

PPNVPN

Fig. 13. Address translation by bespoke multiplexor tree.

All	Mappings

Transform	Mapping
into	Regions

Logarithmic	Bounds	Check

Generation	
Time

Lookup	Time

Space	
Complexity

Measurements

Load	Bounding	Registers

PPNVPN

Fig. 14. Address translation by registered multiplexor tree.

the search VPN is < or � a region-splitting VPN constructed
from the subtree rooted at the node. The VPN is supplied
simultaneously to all the interior nodes of the tree. Once the
root multiplexor determines the relevant region, the offset into
the region is computed with simple addition similar to segment
base+offset calculations.

We consider two approaches to producing a multiplexor
tree. In a bespoke multiplexor tree, illustrated in Figure 13, all
VPN!PPN mappings are known at synthesis time. Because
of this, all regions are constants from the perspective of
synthesis. We have developed a tool that first transforms
VPN!PPN mappings into region mappings. The tool next
generates the specific search tree needed for those regions, and
then produces a Verilog version of the tree as combinational
logic. Finally, the Verilog is synthesized into an FPGA (using
Quartus 17) in our implementation.

Figure 14 shows the process for producing a registered mul-
tiplexor tree. Here, the regions are not known a priori. Instead,
given a bound on the number of supported regions, a separate
tool produces a multiplexor tree in Verilog whose regions and
region-splitting VPNs are not constants, but registered values.
That is, it produces a multiplexor tree that is parameterized
by runtime information. The tool also produces the I/O logic
needed to dynamically configure the registers, and a software
interface that maps regions to the appropriate registers, and
determines and loads the splitting VPNs. The multiplexor tree
is synthesized only once. Any address translation function can
then be loaded into it via the software interface at the cost of
loading a number of registers proportional to the number of
regions.

 0

 50000

 100000

 150000

 200000

 250000

 0 100 200 300 400 500 600

To
ta

l L
og

ic
 E

le
m

en
ts

 (C
yc

lo
ne

 IV
 G

X
)

Number of Contiguous Regions

Logic Elements versus Contiguous Regions

Fig. 15. Space complexity as a function of the number of regions for a
bespoke multiplexor tree.

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

 0 200 400 600 800 1000 1200

N
um

be
r o

f C
el

ls
 (T

ho
us

an
ds

)

Number of Regions

Fig. 16. Space complexity as a function of the number of regions for a
registered multiplexor tree.

B. Study
We developed bespoke multiplexor trees for a sample of our

page table snapshots, and we produced registered multiplexor
trees for a range of sizes. Our target was the same FPGA as
described in Section V. We measured both processes in the
following ways:
• Generation time: The time to generate the Verilog from

input regions (bespoke) or the number of regions
(registered), plus the time to synthesize the FPGA block.

• Space complexity: The size of the resulting FPGA block
in terms of the FPGA’s native logic elements.

We did not measure the lookup time of this mapping for the
same reasons as given in Section V. We are confident this can
be done within a cycle of the FPGA for common cases.

C. Observations
The generation time for both bespoke and registered mul-

tiplexor trees is dominated by synthesis within Quartus. For
512 regions, this can take over an hour. Producing the Verilog
design itself takes negligible time.

In terms of space complexity, we would expect that any
multiplexor tree to take O(n) for n regions. Figures 15 and 16
show the empirical space complexity as a function of the
number of regions for 512 to 1024 regions. The measured
space costs clearly follow the expected linear behavior.

The worse case of the parallel lookup through the tree
is O(logn). Given how compactly real address translation
functions can be represented as regions (Figure 12), n ⇡
103 . . . 104 can cover a wide range of cases, particularly

Lookup	Cost

• Log	depth	circuit	(n=number	of	regions)
• Single	cycle	for	what	we	synthesized

– But	this	is	for	a	slow	FPGA
– And	depends	on	scale

• Bespoke	versus	registered	does	not	matter

• Kernel	can	potentially	control	these	costs	through	
memory	allocation	model
– Enhance	virtual->physical	contiguity	->	”contigify”

29

Speculation About	Best	Fits

30

Core-TLB
Multiplexor	Trees	(Registered)

Core-Pagewalker
Perfect	Hashing/IPT

Edge-Pagewalker
Perfect	Hashing/IPT

Edge-TLB
Espresso/PLA

Most	Restrictive	- Lowest	Latency	/		Smallest	State

Least	Restrictive		Highest	Latency	/		Largest	State

Integrate	with
Existing	Cache	
Structures

Change	Cache
Structures

Related	Work

• DIY	Address	Translation	(Alam et	al,	ISCA	17)
• Hash,	Don’t	Cache	(Yaniv et	al,	SIGMETRICS	16)
• Translation	Caching/SpecTLB (Barr	et	al,	ISCA	10)
• Segments	/	RLE	tables	(Basu et	al,	ISCA	13)
• Nested	Paging	(Bhargava	et	al,	ASPLOS	08)
• Bhattacharjee et	al	(numerous,	present)
• Numerous	ideas	from	the	last	time	address	
translation	was	a	hot	topic	(mid	‘90s)

31

Current	Direction:	CARAT

• Compiler- and	Runtime-based	Address	Translation

• No address	translation	– all	physical addressing
– Optionally	– no	page	abstraction

• Compiler	and	runtime	jointly	enforce	protection	
and	enable	data	mobility

• Paper	forthcoming!

32

Paper	in	a	Nutshell
• Page	tables	implement	address	translation	functions
• Can	we	implement	these	functions better	on	future	
(malleable)	hardware?
– Faster/more	space	efficient/easier	to	generate+update

• We	studied	four	models	for	doing	this
– How	well	do	they	work	for	actual	x64	page	tables	from	
HPC	and	other	workloads?

• Results	are	mixed
– Most	promising	technique:	multiplexor	tree

33

For	More	Information

• Peter	Dinda
– pdinda@northwestern.edu
– http://pdinda.org

• Interweaving	Project
– http://interweaving.org

• Prescience	Lab
– http://presciencelab.org

• Acknowledgements
– NSF,	DOE,	Intel

34

