CS 339 Using Oracle In the TLAB Dinda

Using Oracle in the TLAB

During this class, you will have Linux accounts on both the tlab workstation machines
(tlab-01 and up) and on the tlab server machine (tlab-login). The server machine is
running the Apache web server and the Oracle database. Your server account includes a
directory that is served by the web server and is CGI-enabled. Each of you will also
have a database account that will give you a private area to create tables, indexes,
sequences, procedures, packages, etc.

Logging in

You can log into the tlab workstations and the server from anywhere on campus using an
ssh client that support ssh2. Once you log into a machine with the username and
password we’ll supply you, you’ll land in you home directory, ~you. Your home
directory is the same regardless of which machine you log into. Generally, however,
you’ll find it easiest to log into the server, as that is where Apache and Oracle will be
running. Unless you ask otherwise, your login shell is /bin/bash. All shell scripts in this
class will assume that shell.

What’s in your home directory?

In ~you, you will see ~you/public_html. The contents of this directory will be served by
apache as http://tlab-login/~you. The directory is CGI-enabled in Apache’s configuration
files. This means that any file you place in there with a .cgi or .pl extension, and with the
right permissions (chmod 755 file) will be run by Apache when it is requested, instead of
being simply sent verbatim to the web browser making the request. When invoked in this
way, your scripts will run as user apache, group apache.

~you/oraenv.sh is a shell script that contains the minimum set of environment variables
that need to be set to make Oracle’s client tools work. You need to source this file
(source ~you/oraenv.sh) before you run any Oracle tools. You may want to source this in
your ~you/.bashrc file so that this happens automatically when you log in. Note that
because a CGI script will run as apache, not you, it is necessary to do something similar
to ~you/oraenv.sh within your script.

Running SQL*Plus

SQL*Plus is the basic Oracle client. It provides a command-line interface to essentially
all of the Oracle database functionality. To run SQL*Plus, do the following:

source ~you/oraenv.sh

sglplus you/orapasswd
orapasswd is your oracle password, which is different from your login password. “you”
is also a different account, although, for convenience, we have given it the same name as
your Linux user name. If everything is OK, you’ll see something like this:

SQL*Plus: Release 9.0.1.0.0 - Production on Mon Sep 1 18:20:42 2003

(c) Copyright 2001 Oracle Corporation. All rights reserved.

Page 1 of 3

CS 339 Using Oracle In the TLAB Dinda

Connected to:

Oracle9i Enterprise Edition Release 9.0.1.0.0 - Production
With the Partitioning option

JServer Release 9.0.1.0.0 - Production

SQL>

That last line is the SQL*Plus interactive prompt. You can now type in a SQL*Plus
command (“help” to learn what they are), a SQL statement, or a PL/SQL block. For
example:

SQL> create table students (id number, lastname varchar (32)):

will create a table.

You will often want to write a whole bunch of SQL or PL/SQL in a file and then have
SQL*Plus evaluate it. Here’s how:

SQL> @file.sql

You can also do the same thing from the command line:

sqglplus you/orapasswd @file.sqgl

Running SQL*Plus in Emacs

XEmacs (run as “xemacs”) and GNU Emacs (run as “emacs’’) have a mode that can run
SQL*Plus for you, allowing you to edit using Emacs instead of with the primitive line-
editing possible in SQL*Plus. To do this, run “M-x sql-oracle RET”. You may find it
useful to deal with the Unix shell in the same way “M-x shell RET”. You’ll also find
that Emacs understands both .sql and .pl files.

Using Oracle from Perl
One way to use Oracle from Perl is to simply shell out SQL*Plus to do the work, such as:

use FileHandle;

open (SQL,”| sglplus you/orapasswd”) or die “Can’t open sqlplus!”;
SQL->autoflush (1) ;

print SQL “create table students (id number, lastname varchar (32);\n”;
print SQL “quit\n”;

close (SQL) ;

A much faster and elegant way to do this is to use Perl’s DBI, the standard database
interface. The advantage is that DBI is database-independent, meaning that you can take
your Perl code that runs with Oracle and make it run with MySQL or DB2 or Postgres
very easily. There are some caveats on that “independence”, but it is essentially true.
Here is a short snippet showing an example of DBI in use:

Page 2 of 3

CS 339 Using Oracle In the TLAB Dinda

use DBI;
my S$querystring=
"create table students (id number, lastname wvarchar(32))”;
my S$Sdbh = DBI->connect ("DBI:Oracle:",”you”,”orapasswd”)
or die "Can't connect to database";
my $sth = $dbh->prepare ($querystring)
or die "Can't prepare S$querystring because”.$dbh->errstr;
$Ssth->execute ()

or die "Can't execute S$querystring because of ".S$dbh->errstr;
my Qdata;
while (Q@data=$sth->fetchrow array()) {
print join (“\t”,@data), “\n”;

}
$sth->finish () ;
Sdbh->disconnect () ;

That code snippet will work for any $querystring, including select statements. It will
print the result rows as the return from the executing statement.

There is a lot to DBI. In fact, O’Reilly publishes a whole book on DBI. You can find out
more on the web as well.

Using Oracle From Other Languages

Oracle, and most databases, can be used from multiple languages. For each language,
there is a standard database interface API, which is usually very much like Perl’s DBI.
Java’s interface is called JDBC, while the interface for C/C++ is typically ODBC.

Consulting Your Own Oracle, Ye Delphians

All of Oracle’s software (and there is a lot of it) is available for download from
oracle.com. If you like, you can set up a similar configuration to ours on your own
machine so that you don’t have to use the lab. Oracle is available for every platform
known to man, including Linux and Windows. In essence, if you download it, it is
licensed only for development use. If you want to deploy Oracle-based software, you
need to pay the piper. IBM’s DB2 is available under similar constraints. Microsoft’s
SQL Server is another commercial RDBMS. MySQL and Postgres are two open-source,
free alternatives, although they have compromises.

Please note that your projects will be graded only in the tlab-login environment.
Also, understand that setting up an RDBMS can be a painful process, and we cannot
provide any help if you decide to do it. Be careful if you run

$ORACLE HOME/sibylline verses.sql.

Page 3 of 3

