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Project C: BTree 
 
In this last project, you will implement a BTree index in C++.  At the end of the project, 
you will have a C++ class that conforms to a specific interface.  Your class is then used 
by various command-line tools.  The tools will let you create and manipulate persistent 
BTree indexes stored in virtual disks and accessed through a buffer cache that 
manipulates disk blocks or pages.  The tools will also tell you what the performance is, in 
terms of how long individual operations take and how many disk reads and writes you do.  
The I/O model of computation is used – we only count disk time.  
 
You can assume that requests to the BTree are serialized, meaning that you can finish a 
request before starting the next one.  In a real database system, however, locking and 
logging are used to allow multiple requests to simultaneously execute on the tree.  If you 
really feel ambitious, you can add support for this for extra credit.   
 
You can assume that keys and values in the Btree are of fixed size and given when the 
Btree is initialized.  In a real database system, however, keys and values can be of 
variable size.  You are welcome to add support for variable length keys and values for 
extra credit.   
 
You will be implementing a “pure” BTree.  Many databases implement a B+Tree, which 
is a relatively straightforward extension and makes doing range queries much faster.  You 
are welcome to do a B+Tree for extra credit.  
 
Your class will be evaluated using a test harness that will evaluate its correctness and 
performance.  The test harness will generate a random, but repeatable stream of requests, 
run them through your implementation and a reference implementation, compare the 
outputs, pointing out errors in your implementation, and presenting a performance 
number.  We will grade your project based on correctness and performance using a 
random request stream generated from a particular seed.   We won’t tell you which seed, 
but you can test your program using lots of different seeds.  At the end of the class, we 
will make available a web page showing the performance/correctness of each 
implementation in an anonymized form.    We may also provide opportunities for 
competition earlier during the project for those who are interested. 
 
This project may be done in groups of up to three people.   
 

Getting and installing the framework 
To install the framework, log into your account on tlab-login and do the following: 
 
cd ~ 
tar xvfz ~pdinda/HANDOUT/btree_lab.tgz 
cd btree_lab 
more README 
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The README file will give you detailed instructions on how to configure the framework 
and verify that it is working.   You will be writing btree.cc and btree.h.  Note test.pl – it is 
the test harness mentioned above.  ref_impl.pl is the reference implementation.   Your 
implementation will be executed via sim.cc   
 

Btree operations and the command-line 
At a high-level of abstraction, a Btree is a mapping from keys to values.  Btrees can 
require that all keys be unique, but it’s not necessary – there is a distinction between a 
key in a Btree and a key in relational database terminology.   This is also necessary for 
SQL.  In SQL, it is perfectly OK to create an index on some attribute or set of attributes 
that form neither a key or superkey.  If the index is implemented as a Btree, then it must 
be possible for the “key” (the values that the set of attributes takes on) not to be unique. 
 
A Btree implementation must perform the following operations: 

• Initialize:  create a new Btree structure on the disk – “format” or “mkfs” in a file 
system 

• Insert (key, value) 
• Update (key, value) 
• Delete (key) 
• Lookup (key) : returns value associated with the key 
• Range Lookup (key1,key2): returns a list of (key,value) pairs, ranging from those 

associated with key1 to those associated with key2. 
 
In addition, your Btree implementation will also support the following operations: 

• Sanity Check: do a self-check of the tree looking for problems – “chkdsk” or 
“fsck” in a file system. 

• Display: do a traversal of the BTree, printing out the sorted (key,value) pairs in 
ascending order of the keys. 

 
The btree_* tools that are built implement these operations.  This lets you manipulate a 
btree from the command line.  At the end of each execution, the performance statistics 
are printed.  
 
The sim tool reads a sequence of these operations, starting with an initialization, from 
standard input and applies them.  The results of each operation are printed.  At the very 
end, the performance statistics for the entire run are printed. 

What does the Btree look like on the disk? 
A BTree on the disk looks a lot like a file system on a disk.  The blocks of the disk are 
used to store BTree nodes.  BTree nodes come in two forms: 

• Internal nodes:  These store keys and pointers. 
• Leaf nodes: These store keys and their associated values. 
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By pointer, what I mean is a disk block number (the blocks are numbered from 0 to the 
total number of blocks minus one.   Do not worry about pointer swizziling. 
 
The size of a block is determined when the disk is created.  The size of a key and the size 
of a value are determined when the BTree is initialized and need not be the same (and 
generally are not).  Because of this variation, you will probably have to write 
serializers/unserializers that read and write disk blocks into appropriate in-memory 
structures.    
 
Generally, it a good idea to give your disk a superblock, a block, typically stored in block 
number zero, that describes the BTree (size of key, size of value, pointer to root block, 
pointer to free list). 
 
You will also want to have a data structure to keep track of free and allocated blocks on 
the disk.  Notice that you can always discover all the allocated blocks by doing a traversal 
of the tree.  However, this is quite inefficient.  Some approaches you could track free 
blocks: 

• Use a free space bitmap:  you can create an in-memory bitmap of the allocation 
status of the blocks by doing a traversal at startup time.   This doesn’t really scale 
(eventually the bitmap is big enough that you have to put *it* on the disk, in 
which case you have the same problem you started with).  However, it’s OK for 
the project. 

• Tie together the free blocks in their own data structure.  For example, since the 
block is free, you might as well store a pointer in it.  Using one pointer per block, 
you can tie all the free blocks into a linked list.   

Allocation of free space is very important in disk systems because they have non-uniform 
access.  Allocating a block that is “close” to other blocks that are used with it is very 
important for performance.  If you allocate blocks all  in random locations, you’ll have 
lousy performance because you’ll be doing big seeks as you walk the tree. 

What are the interfaces? 
The framework provides the following interface to you.  Notice that the interface is of a 
buffer cache, an intermediary between the data storage and indexing systems and the raw 
disk system.   It keeps track of reads and writes to the actual underlying disk system.  To 
see how to use the interface, take a look at the btree_*, and *buffer tools.  
 
We use the I/O model of computation here and assume that your performance is 
dominated by these read and writes.  The framework also keeps track of virtual time – the 
time in milliseconds that has passed since you started using the buffer cache.  Virtual 
time passes according to I/Os. 
 
Block:  This abstracts a linear array of bytes and provides memory management. 
 
DiskSystem:  This simulates a single disk disk system.  Think of this as an IDE disk.  
You read and write Blocks from and to a DiskSystem.    To see how to use this, look at 
the various *disk tools. 
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BufferCache: This is your main interface to the disk.  It has the following properties: 

• Write back:  Writes are caches as well as reads. 
• Write allocate: A write to a block that is not in the cache puts it into the cache. 
• LRU: When a block needs to be evicted, the one that was used the longest time 

ago is chosen. 
The interface also provides prefetching, meaning that you can request blocks at any time 
and come back for them later, thus letting you overlap I/O with other work, and also to 
generate parallelism for the cache and to give it a chance to plan a seek strategy.  NOTE: 
This is currently UNIMPLEMENTED and is available for extra credit.   To see how to 
use the buffer cache, look at the various *buffer tools. 
 
BTreeIndex: The interface you will provide is that of a BTree index for fixed length 
binary keys.   Notice that a range scan is possible.  If you implement a B+Tree (see extra 
credit), range scans will be much faster.  A detailed, commented version of the interface 
is available in btree.h 
 

Project Steps 
We suggest that you take the following steps: 

1. Carefully read and understand the BTree information in the book.   You do not 
want to start this project without understanding what a BTree node should 
contain, and how BTrees are kept balanced. 

2. Design your on-disk data structures:  superblock, interior node, and leaf node. 
3. Decide on how to do free space management and design your data structures for 

that.   
4. Write serializers/unserializers for your superblock, interior node, leaf node, and 

any free space management data structures.  A serializer takes an in-memory 
representation (an interior node, for example), and writes it to a disk block in an 
appropriate way.  An unserializer does the reverse.  If you are particularly clever, 
you may be able to make these very “thin”.   

5. Write and test your code for initialization.  (Write  the superblock to format, read 
the superblock to initialize) 

6. Write and test your code for free space management (allocate and deallocate 
blocks).  If you tell BufferCache when you allocate or deallocate a block, it will 
also keep track of things in its own internal representation.  The advantage of this 
is that it may simplify debugging because it will warn you when you try to 
allocate a block that’s already allocated or deallocate a block that was never 
allocated.) 

7. Implement the BTree without balancing.    Notice that if you set the key size large 
enough, you can effectively force this to be a binary tree, which is helpful for 
getting started.   You should be able to get insert, update, delete, and lookup 
working and test correctness at this stage.  

8. Implement balancing.  We suggest that you start with the balance steps needed for 
insertion and then do the ones needed for deletion. 

9. Do extra credit if you have time! 
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Where to go for help 
 Take a look at Comer’s Ubiquitous B-Tree article (linked from the course web 

page) 
 You might find the B+-tree code in the MacFS filesystem to be interesting.  The 

Macintosh’s HFS and HFS+ filesystems use B+Trees to store directories and 
logical to physical block mappings.  However, note that it is rather Mac-specific, 
and it implements variable-length keys.  See 
http://www.cs.northwestern.edu/~pdinda/codes.html for more.  Please note that 
attempting to copy+paste from this code will be nearly impossible.   

 Newsgroups and instant messaging, as described on the course web page.  Don’t 
forget to help others with problems that you’ve already overcome. 

 Office hours.  Make sure to use the office hours made available by the instructor 
and the TAs. 

Hand-in 
We will send email about this. 
 

Extra Credit (30% Maximum) 
Here are extra credit directions, ordered from easy to hard (in our estimation): 
 

• B+Tree:  Add B+Tree support and modify the range query to use it.  Essentially, 
you will now need to store two pointers in each leaf node. 

• Prefetch: Add prefetch support to the BufferCache. 
• Roll back: Make it possible to take your BTree “go back in time” using an undo 

log.  For extra points, put the undo log on the virtual disk. 
• Atomicity and durability:  Tag transaction begins and ends in your log and use 

them to provide these transactional semantics. 
• Concurrency: Allow multiple threads to manipulate your BTree simultaneously.  

Note: outside of the obvious, very slow “big giant lock on the whole enchilada” 
approach, this is subtle and interesting.  We can point you to a survey paper on 
BTree locking if you’re interested.  We strongly suggest you try the other extra 
credit first 

• Independence.  If you have logs and you have concurrency, you can implement 
independence.  Again, check with us before you decide to do this. 

 


