
EECS 339 Project A Dinda

 Page 1 of 9

Project A: Extending Red, White, and Blue

In this first project, you will spend an intensive three weeks understanding the
implementation of a small map-based application, Red, White, and Blue, which we will
refer to as RWB, and extending it to add additional functionality.

The project can be done individually or in groups of two. The goal here is for you to
understand, top-to-bottom how a database-backed web application works.

Before you start
Read the handout “Using Databases in the Web Of Things Environment”. This will
explain how to log in to the server, how to configure your environment, and how to
access oracle using SQL*Plus. Make sure that your environment is working correctly.

Getting and installing RWB
To install RWB, log into your account on the server and do the following:

cd ~/www
tar xvfz ~pdinda/339/HANDOUT/rwb/rwb.tgz
cd rwb
more README

The README file will give you detailed instructions on how to configure RWB and
verify that it is working. You should be able to visit your RWB instance via
http://murphy.wot.eecs.northwestern.edu/~you/rwb/rwb.pl.

What you will see is a map view centered on your current location, which is indicated
with an additional marker. The map will update as you move, and you can zoom and
scroll the map manually as well. In addition to the marker signifying you, you will also
see additional markers. These represent the locations of political committees (political
parties, election committees, PACs, SuperPACs, etc, for example) that lawfully spend
money to affect elections.

By default, you are logged into the application as an anonymous user, and can only view
the map and log in as a registered user. A registered user typically has more functions,
which appear below the map. As initially configured, the only registered user is the
“root” user, which has all functions available, including the ability to register new users,
and to grant and revoke their permissions.

What does RWB do?
The goal of RWB is to provide a user with a view of the political activity in his/her
vicinity that affects elections for national offices, a view that combines the following
sources of information.

• Federal Election Commission (FEC) data. The FEC is responsible for
implementing federal campaign finance laws that apply to all entities involved
with fundraising, spending, advertising, etc, in elections for national offices. As

EECS 339 Project A Dinda

 Page 2 of 9

part of this effort, the FEC makes available disclosures, for every election cycle,
of committees, candidates, and individual contributors. We have imported this
data into an Oracle database for use with RWB, and other parts of the class The
database currently covers election cycles (since 1981) and contains over 71,000
candidate records, over 157,000 committee records, over 1.4 million committee-
to-candidate transactions, and over 13 million individual contributions.

• Geolocation data. The FEC identifies the addresses of the entities it tracks.
Where possible, we have used an open source geolocation database to translate
these addresses into map coordinates, specifically latitude and longitude. The
geolocation database is also available to you.

• Crowdsourced data. RWB users will be able to provide additional information,
outside of the scope of the FEC data, such as an opinion of the politics of a
location, and (maybe) improved geolocation information for FEC entities. Such
data will be incorporated into the view that other RWB users see.

Out-of-the-box RWB simply shows the FEC committee data for the current election cycle
on the map. Over the course of the project, you will extend it to do the following:

• Include candidate, individual, and opinion data in the map view alongside the
committee data. The user will be able to select what information to show.

• Aggregate the FEC information to show the total political funds, and funds by
party, for the current map view. This information will be shown as both dollar
amounts and as a color, the “color of the money”, ranging from red to blue.

• Aggregate the opinion information to an overall opinion of the “color of the
opinion” of the current map view, also ranging from red to blue.

• Have the ability for existing registered users to invite new users.
• Collect opinion data from registered users.

How does RWB work?
The entire state of RWB exists in the Oracle database. There are two parts to the schema.
The FEC and geolocation data are kept in a read-only database in the CS339 account,
while the parts of the schema that need to be written by students (users, opinions, user-
supplied geolocations, etc) are kept in their own accounts. The file rwb.sql describes
the non-shared application data. This is where you may make changes.

The shared FEC data model is described in ~pdinda/339/HANDOUT/rwb/fec. Note that
there is a lot of complexity to this, but for the most part, the example code in RWB
illustrates the relevant tables and columns for this project. Also, the tables we use for the
shared FEC data follow the data schemas given on the FEC web site as closely as
possible (http://www.fec.gov/finance/disclosure/ftpdet.shtml). They are described there
as “data dictionaries”. The corresponding SQL for these tables is in
~pdinda/339/HANDOUT/rwb/fec/ora. There are two primary changes that we have
made. First, the information about a given class of entities (e.g., committees) from all
election cycles is kept in the same table, and a new column indicates the specific election
cycle for a record. For example, the committee_master table contains committee records
from all cycles. If you want to find committee records for a specific cycle, you need to
query the table specifically for that cycle. The second change is that there are additional

EECS 339 Project A Dinda

 Page 3 of 9

tables that we have created that map specific entities to their geographical coordinates.
For example, the cmte_id_to_geo table, maps from committee records in the
committee_master table to their latitude and longitude. These tables are defined in
~pdinda/339/HANDOUT/rwb/geo. Note that both the fec and the geo directories
contain scripts and other tools that we use to import and construct data. You only need to
consider the SQL files.

Outside of the shared FEC data, the state of RWB consists of the following tables, which
are defined in the rwb.sql file. The rwb_users table contains the username, password1,
and email address of each RWB user, as well as the name of the user who referred him.
The rwb_actions table contains the names of all the possible actions that a user may take
in RWB. The rwb_permissions table maps from RWB usernames to the actions that they
have permission to take. An action should only be taken if the action exists in the
rwb_actions table, the user exists in the rwb_users table, and the user has permission for
the action in the rwb_permissions table. By default, the following actions are made
available:

• query-fec-data – can query the FEC data
• query-opinion-data – can query the crowdsourced opinion data
• query-cs-ind-data – can query the crowdsourced individual geolocation data
• give-opinion-data – can provide opinion data
• give-cs-ind-data – can provide individual geolocation data
• invite-users – can invite a new user to the system
• add-users – can explicitly add a new user to the system
• manage-users – can add/remove users and their permissions.

Two users are added by default: root, with password rootroot, who can do anything, and
anon, with password anonanon, who can only query the FEC and opinion data. A typical
user that is registered or invited by root will be able to query all data, give opinion data,
and invite or add new users. The actions that an invited or added user can take is a
subset of the actions the inviting or adding user can take. Notice that users form a tree,
with each user pointing to the user who invited or added him, and having a subset of that
user’s abilities.

The rwb_opinions table provides a mapping from a geolocation and user to a “color”
represented by a number in the range -1 (red) through 0 (white) to +1 (blue). The
purpose of this table is to provide a starting point for the crowdsourced opinion
component of the project. This is a starting point. You are welcome to change the
representation as you choose.

The rwb_cs_ind_to_geo table provides a mapping between an individual contribution and
the geolocation of its origin. A record in the table also points to its requesting user, the
submitting user, and third user who has validated the submission. The purpose of this
table is to provide a starting point for the crowdsourced individual geolocation extra
credit. You can ignore this table if you don’t want to do this extra credit.

1 The password is stored in clear text in the database, which is highly insecure. This is for pedagogical
purposes only – a real system should not do this.

EECS 339 Project A Dinda

 Page 4 of 9

RWB has a notion of user sessions. Most of the state of a user session exists within the
client, namely the HTML and JavaScript data that the user’s web browser display and
use. However, a portion of the state, namely the login credentials, are shared between the
client and the server. This sharing is done in the form of a cookie named RWBSession.
When users log into RWB they are given a cookie that contains their login name and
password in cleartext (this is not secure!) and is set to expire in about one hour. Without
a cookie, the user is treated as the “anon” user. When presented with a cookie, RWB
uses its contents to authenticate the user and check to see if he has the necessary
permissions (authorization) to do what he wants.

RWB is implemented in a “three tier” style. The client or “presentation tier” consists of
HTML and JavaScript that is running in the user’s web browser. The HTML is
dynamically generated by rwb.pl, while the relevant JavaScript is in the file rwb.js. The
RWB client code in rwb.js also makes use of the Google Maps API to show and decorate
the map. The client code uses the browser’s geolocation API to determine its current
location and when the location changes, and it registers a callback so that is informed
whenever the user scrolls or zooms the map. The client code may fetch more information
and manipulate the map based on it. It does so by issuing a request and having the
callback dump the results into a hidden portion of the HTML. More complicated user
interactions are done with web forms.

The middle tier or “logic tier” consists of rwb.pl, a Perl CGI script that is run by the web
server. There are basically three kinds of interaction modes between the client and
server. First, rwb.pl generates the entire HTML and JavaScript for the client. Second,
rwb.pl handles forms submitted by the client. Finally, rwb.pl can return raw data to the
client-side JavaScript. The code is designed so that every invocation of rwb.pl is
essentially handled as an HTML form submission. The script’s activity is governed by
the cookie, and the act and run parameters. A special debug parameter, when set to 1
will add information to the HTML about the parameters, cookies, SQL commands being
run, and their outputs.

The third tier, or “data tier” consists of the database, which combines the rwb.sql and
shared FEC data schemas. The logic tier (rwb.pl) speaks to the data tier using Perl’s
DBI interface, which is an example of a “dynamic SQL” interface. In response to an
invocation, rwb.pl will generate and run one or more statements of SQL, and then
generate HTML based on their results.

The following is a more detailed description of an RWB session:

! The user visits http://murphy.wot.eecs.northwestern.edu/~you/rwb/rwb.pl
! rwb.pl notices there is no cookie, and thus assumes that the user is anonymous.

Since no action is given, it also assumes the action is “base”, which means to
generate the baseline client page. It therefore generates a default HTML page,
with embedded references to rwb.js and other components.

! The user’s browser parses and displays the HTML. As part of this, it executes the
associated JavaScript in rwb.js.

o rwb.js issues a request for the current location, registering a callback
function.

EECS 339 Project A Dinda

 Page 5 of 9

o Once the location is determined, the callback executed, and it edits the
HTML to add a new map object, centered at that location. It also registers
callbacks for any change in the bounds, center, or zoom-level of the map,
and a callback for any change in position.

! Once the map is created, the bounds callback fires. The callback function then
determines the current map center and bounds, and issues a new request back to
the server, invoking rwb.pl again, but this time with the “near” action, which will
return data about committees within the view. This request includes another
callback function.

! rwb.pl is invoked again, with the “near” action and the bounds. It then issues a
database query to find the relevant committees, and returns them as a very simple
HTML document.

! When the document has made its way back to the client, the request callback
function (in rwb.js) is fired. It takes the data and places it into a hidden division
in the HTML, caching it locally. It then parses the data and uses it to add markers
to the map for each of the committees.

! Whenever the map view changes or the location changes, the callback functions
that are fired essentially repeat the previous three steps.

Beyond map interaction, which is mediated by rwb.js, the user can also invoke forms.
The following description is what happens for a login form:

! If the user presses the login link, rwb.pl is invoked again, with the “login” action,
and “run” set to zero. As a result, the page rwb.pl generates will consist of a login
form.

! The user fills out the login form and hits submit.
! rwb.pl is invoked with the “act” parameter set to “login”, and the “run” parameter

set to 1.
o rwb.pl extracts the “user” and “password” parameters provided by the

form, and does a SQL query to see if the combination exists in the
database.

o If the combination exists, it creates a cookie with the combination and
passes it back to the user’s browser. Next, it displays the base page again.
On generating the base page, for every action the user could take, it will
produce a link. At minimum, this will now include a “logout” link.
Logout is handled by expiring the client cookie.

Debug Functionality
If you invoke rwb.pl with the debug flag, for example
http://murphy.wot.eecs.northwestern.edu/~you/rwb/rwb.pl?debug=1, it will provide a
detailed view of the cookies, parameters, and SQL operations that are performed, as well
as their results.

Syntax errors in rwb.pl can be annoying, since they will be reported by your browser as
an internal server error. If you run rwb.pl from the command-line on murphy, it will
show any syntax errors in a cleaner way.

EECS 339 Project A Dinda

 Page 6 of 9

Sometimes it is essential to see what is happening on the server side on a script
execution. We have made the server side logs visible to you for such debugging. The
logs are in /var/log/httpd/*, with access_log and error_log being the most important.

JavaScript (rwb.js) and HTML is best debugged in the browser. If you are using Chrome,
you can select Tools->Developer Tools from the menu. This will open a set of very
useful tools. The “Elements” tab will show you a breakdown of your HTML, as Chrome
has parsed it. Any JavaScript or related errors will show up in the Console tab, and if you
click on an error, it will show you the specific line of code that’s failing. The Sources tab
gives you access to the JavaScript Debugger. The Network tab will show you the
network requests that are being made.

Project Steps
In this project, you will extend RWB to provide the following functionality. Each
extension is marked with a percentage that is intended to reflect its perceived difficulty
level. You may do the extensions in any order, although we believe the order presented
will be the easiest. We believe the best approach to building each extension is the
following:

1. Read and understand rwb.sql, the fec and geo sql files, rwb.pl, and rwb.js. You
may find it very useful to use the debugging tools described above to help you.

2. Design the SQL statements that are needed
3. Test the SQL statements using SQL*Plus.
4. Embed the SQL statements into Perl functions (see UserAdd(), for example)
5. Write the Perl logic to call the functions based on form parameters
6. Write the JavaScript (if needed) to use the data returned by rwb.pl

You should avoid becoming bogged down in the Perl, and, especially, the JavaScript and
HTML, parts of the code. As this is a databases course, you will be graded on
correctness, not the appearance of the final product. Just ask us for help in person or on
the discussion group if you can’t figure something out.

Extending queries (40%) : As handed out, only committee data for the map region and
the current election cycle is included in the map view. Extend this to include candidate
and individual data for a selection of election cycles. The user should be able to select
(using checkboxes, for example) which FEC data they want to see (any combination of
committee, candidate, and individual) and for which election cycles. In your
implementation all filtering of the data by the selections needs to happen in SQL. That
is, the only data that should be transferred from rwb.pl to your client is the data that will
be shown. The most straightforward way to achieve this is to extend the “near” action
with additional parameters and have the code for the action construct the appropriate
SQL queries based on those parameters. Also, your implementation must determine the
available election cycles dynamically, by querying the database. In this way, your code
will work correctly for future election cycles.

Crowdsourcing opinions (30%) : Here, you will add the ability for users to extend the
database with opinions. As the starting point of implementing this functionality, you will
need to add the ability to invite users. Out of the box, RWB really only lets root

EECS 339 Project A Dinda

 Page 7 of 9

explicitly add users. If a user has the “invite-users” permission, the application should
give him a form in which he gives the email address of a user he’d like the invite. The
system should then send mail to that user with a special, one-time-use link they can use to
create an account. The created account should have a subset of the permissions of the
inviter.

Any user with the “give-opinion-data” permission should see a simple interface where
they can assign a political “color” to their current location. This assignment will then be
sent back to rwb.pl, which will put it into the rwb_opinion table. In turn, your query
interface should be extended to include these opinions along with the FEC data. Any
user with the “query-opinion-data” permission will be able to see the opinion markers on
their map.

Aggregated view (30%) : In this part of the project, you will add the display of summary
statistics about the information shown in the map. This summary information needs to be
computed by the database – that is, you will further extend the “near” action to generate
queries that compute the summary information and return it. We want you to compute
the following summaries:

• If the user has “committees” selected, then compute the total amount of money
involved by the committees in the current view. The cs339.comm_to_cand and
cs339.comm_to_comm tables contain such information. Color the background
of this summary with a color from blue to red based on the difference between
contributions to the Democratic and Republican parties.

• If the user has “individuals” selected, then compute a similar display for
individual data.

• If the user has “opinions” selected, include the average and standard deviation of
the “colors” in the map region. Color the background of this summary from blue
to red, as above.

An important issue is how to determine the aggregate view when there are few or no data
points in the region specified by the query. In this case, your code should use queries to
progressively larger regions, centered around the user, until you find enough data to
produce an aggregate view.

It is possible to simply use the database to collect the relevant data, send that to your
JavaScript, and then compute the summary on the client side. This may be much easier
to do in some cases and is OK as a starting point, but you ultimately need to compute
your aggregates in the database using SQL for this part of the project. Our purpose here
is to get you to think about the data, the summaries, and how to use joins and group by to
do the work. The learning challenge for this part of the project is joins and group by.

Where to go for help
The goal of this project is to learn how a database-backed web application works. Don’t
fall into the trap of spending lots of time generating pretty HTML, cool JavaScript, or
particularly elegant Perl. Get the SQL right first and make the Perl return what you need.
We don’t want you to get stuck on the details of Perl, CGI, JavaScript, or HTML, so
please use the following resources:

! Use the built-in debug functionality, logs, and Chrome as described earlier.

EECS 339 Project A Dinda

 Page 8 of 9

! The discussion group as described on the course web page. Don’t forget to help
others with problems that you’ve already overcome.

! Office hours. Make sure to use the office hours made available by the instructor
and the TAs.

! Handouts: we have prepared handouts on using databases in the WOT
environment, a high-level introduction to the Perl programming language, and a
high-level introduction to the JavaScript programming model.

! Web content. You will find many examples of Perl, JavaScript, and SQL
programming on the web. We have links to several particularly noteworthy
resources on the web site.

! Additional examples. You will find additional examples on Perl, SQL, etc, in
~pdinda/339/HANDOUT

Hand-in
To hand in the project, you will do the following:

! Get a copy of your extended RWB up and running in your account on the server.
! Email the instructor and the TAs with a copy of all the files that you have

modified or added. At minimum, this will be rwb.pl, rwb.js, rwb.sql. In the
email, also supply a URL for your running app and the root account name and
password. Be sure to note your partner’s name, if you have a partner.

Extra Credit (30% Maximum)
You can gain extra credit by trying the following extensions. If you are interested in
these, please talk to us first so that we can determine the possible credit.

Geolocating individual contributions through a game with a purpose: The FEC data,
for various reasons, only locates individual contributors to the granularity of zip codes.
In our data, we have geolocated them to “10 main street, city, state, zip”. The result is
that all their markers will appear at this location. Improve this by creating a “game with
a purpose”. The idea here is that a user can request a more accurate geolocation of a
particular contribution. These requested geolocations will then be randomly assigned to
users in the general vicinity who have the “give-cs-ind-data” permission. These requests
will just pop up during their normal use of the application. If two randomly selected
users (the submitter and the validator) give roughly the same geolocation data, this data is
then considered good, and provided as a more accurate information for any user who has
the “query-cs-ind-data” permission.

Security: RWB is horrendously insecure because passwords are stored in cleartext in the
database and cookie file, and are sent in cleartext over the network. Read about more
secure approaches to session management and implement one of them.

iPhone App or Android App. Improve the mobile client experience by writing an app.

Deeper analysis queries. Examine the FEC data model and develop additional queries
that characterize the monetary side of electioneering for national offices.

Integrating voting data. Our data does not indicate the specific elections, or who won
each election. Find a source of data that does and integrate it into RWB. A starting point

EECS 339 Project A Dinda

 Page 9 of 9

might be the Congress’s statistical reports on congressional elections from 1920 to the
present: http://clerk.house.gov/member_info/electioninfo/. An initial version of this
functionality would simply allow the user to see election contests in the map view. A
more sophisticated version would correlate committee expenditures and election contest
outcomes to let a user see how important political contributions are to deciding outcomes
within the current map view.

Better geolocation. Many of the entries in the FEC data do not have any geolocation
data at all, and others have poor data. We use a free public domain geocoding database
(geocode.us). Find and recode the FEC data with a better one.

Precomputed or cached summaries. A weakness of the “Aggregated View” part of
the project is that whether you compute summaries in the database or on the client, you
may be repeating work. This is particularly important for summaries since they are
expensive to compute. But i an urban area like Chicago, an app like RWB may have
many users making similar or identical summary queries. The FEC data is static (it only
changes once per year). We could either precompute the answers to common queries in
advance or cache query results for reuse. For extra credit, implement one or both of these
ideas.

