
CS 395, Section 22 Introduction to Computer Systems  Dinda, Fall 2001 
 

 Page 1 of 2 

Exploit Lab 
10% of lab grade, 5% of overall grade 
out: 11/7 in class; in: 11/16 at midnight 

 
In this lab, you will write two buffer overflow exploits.  The purpose of this is to give you a 
good, low-level feel for how procedure calls and stack discipline work.   However, the skills you 
will learn here can also be put to use for evil purposes.  Please note that actually attacking or 
breaking into a computer system is a criminal offense punishable under federal law.  You may 
work in groups of up to two people. 

Getting the code 
On a TLAB machine, copy the file /home1/pdinda/HANDOUT/exploitlab.tar to your working 
directory and then untar it with tar xvf exploitlab.tar.  You will find the following files: 
 

• Makefile 
• attackee.orig 
• attacker.c 
• attackee.c 
• exploitlab.pdf 

 
Running “make” will build four things: attacker, attackee, attacker.s, and attackee.s.    

Description 
Attackee contains the code that you will be attacking.  It reads up to 256 bytes from standard in 
into a buffer which is only 125 bytes long.  Unlike the book’s example and the example shown in 
class, it does not use gets(), but rather it calls read() directly.  This is intended to make it easier 
for you to create your exploit code.  Unlike gets(), read() will not stop reading on a newline 
character, and thus you don’t have to worry about avoiding newlines in your exploit code.   
 
Attacker takes two arguments – an offset (how much filler space to write before your exploit), 
and the number (0 or 1) of the exploit code that should be written.  An attack will look like this: 
 
unix> attacker 35 0 | attackee

 
That means “write 35 zero bytes, then write my exploit 0”. 
 
Exploit 0 
In exploit zero, your goal is to get attackee to run its “cracked()” function, which will print the 
string “Drat! I’m cracked.”  Notice that all the code that you need to run is already in attackee – 
you just have to figure out how to get attackee to jump to it. 

Exploit 1 
In exploit one, your goal is to get attackee to print “Hi!”  In this case, you will need to send code 
to attackee and then get attackee to jump to the code that you sent.   It is possible to do exploit 1 
without writing any assembly code yourself, but you may do so if you wish. 



CS 395, Section 22 Introduction to Computer Systems  Dinda, Fall 2001 
 

 Page 2 of 2 

What you can do 
You may write attacker in any way you choose.  You may modify attackee in any way you 
choose, but your code will ultimately be graded using attackee.orig.  You may build and run 
attacker and attackee in any way you choose and anywhere you choose, but grading will 
ultimately happen on a tlab machine using /usr/local/bin/gcc. 

Advice 
We strongly suggest that you start by working on exploit zero.   Exploit one will build on what 
you learn there.  You should also reread the description of buffer overflow exploits from the 
book. 
 
For exploit zero, you basically want core() to return to cracked() instead of to main().  Your 
attacker should generate a write that goes beyond the end of the buf array and overwrites the 
return address on attackee’s stack with the address of cracked().  
 
For exploit one, you want to place your exploit code on attackee’s stack and then overwrite the 
return address so that core() jumps into that code.  This means you need to know the address at 
which your exploit code will begin in attackee’s stack.   The exploit code itself can be a function 
in attacker.   You can read the machine code of the function in C: 
void exploit1_exploit() {
// code

}
void exploit1_code(…) {
memcpy(output_buffer,exploit1_exploit,EXPLOIT1_LEN);

}
To figure out EXPLOIT_LEN, you will need to examine attacker.s. 
 
You can read registers in gdb using syntax like “p/x $esp” and “p/x $ebp”.  You can read words 
on the stack using syntax like  “p/x *((int*)($ebp+4))”.  You can have a continuously updating 
display of variables using syntax like “disp /x *((int*)($ebp+4))”. 
 
You may find it helpful to save your exploits in a file and then use that file to driver attackee 
running in gdb: 
 
unix> ./attacker 34 0 > exploit.out
unix> gdb attackee
(gdb) break core
(gdb) run < exploit.out

Hand in 
To hand in the lab, rename your attacker.c to attacker-uid1-uid2.c, chmod +r it, and copy it to 
/home1/pdinda/HANDIN before the due date/time.  In addition, hand in a file named attacker-
uid1-uid2.README which describes the appropriate arguments to your attacker to create a 
successful exploit and gives other details you think we should know. 
 


