
September 26, 2001
Introductions

CS 395 Introduction to computer systems
WF 10:30-12
Peter Dinda, office hours: M2-4 or appt
Dong Lu, office hours: F3-5 or appt

Description
Three goals

Learn about hierarchy of abstractions that make
up a computer system so that you can flesh them
in later

This course is “what everyone should know”
Demystify the machine and the tools

Go deep
Bring you up to speed in doing systems
programming on Unix

Elements
Soup to Nuts – Physics to Distributed Systems
Strong emphasis on

Data representations (integer and floating point)
The machine model (instruction set architecture)

And understanding compiler-generated
code for it

Memory systems and memory management
Linking
Exceptions
Unix systems programming

Less emphasis on
Physics to logic
Networking programming
Concurrency
Distributed systems

Elements
C programming on Linux
De-compiling code and understanding assembly
(but it’s not an assembly language programming
course)
Understanding a bit of how the machine works
(the P3), but it’s not a computer org class

Learn by doing
Labs that will make you hack
Homeworks that will also make you hack

Where it fits into curriculum
Intended as a sophomore class
May become a regular class

May become a required class
After 211 or 311, before OS, Networking,
Compilers, etc.
A lot is riding on what you think of this

IT’S A BETA TEST
It’s been taught several times at CMU

But on a semester system
This is the first time in a quarter system
We’re going to cover networking programming,
concurrency, and performance
optimization/measurement only at a high level
and leave the rest for OS, Networking,
Compilers, and later courses

New textbook due out in 2002 (you’ll get a free
copy)

It’s a quite unique textbook.
Although we won’t go through all of it, you might
find yourself reading the parts we skip.

Although we may screw things up, your grade will
not be effected by the beta nature of the course
Feedback is helpful to us and to the authors
We’re going to evaluate the course for use here
permanently and we’re going to evaluate the book
to help with the next edition.

Mechanics
Course web site:
http://www.cs.nwu.edu/~pdinda/ics-f01
Communication

Email list will be started
IRC server for chat
Newgroup
All info will be on the web site for this

Textbook and C book
Have Dong hand out Textbooks at end of class –
if can’t make it, get copies from Olga
Textbook is also available from the web page
Limited copies – if you’re not in yet, please don’t
take a paper copy

Machine access
You will need TLAB(125) windows and linux
accounts and a cardkey for 125. See Pam for the
accounts and Olga for the cardkey
TLAB-10 through 15 will be running linux
dedicated, so you can do remote login

It’s OK to work on your own machines or with
cygwin or whatever, but everything will be graded
in the TLAB environment. It’s your responsibility
to be sure that it runs there.

Grading
10 % Homeworks
50 % Labs
20 % midterm
20 % final
Note that Homeworks may be more in-depth than
the amount of grade assigned to them. Please
consider this when you are allocating time. I
wanted completeness
Note that the book has lots of problems with the
answers in the back.

Syllabus, TLAB, Physics, Datalab handouts
Syllabus may change a bit, especially toward the
end

Survey next time to see if we need to do an
“introduction to programming on unix”

But the web page has lots of material on this
already

The Great Realities according to your textbook
Information is bits in context

A program must interpret the bits for it to make
sense
Understanding these interpretations is important
to writing good programs and debugging.
Ints are not Integers and floats are not reals

•Is x2 ≥ 0?
–Float’s: Yes!
–Int’s:
» 65535 * 65535 --> -131071 (On most
machines)
» 65535L * 65535 --> 4292836225 (On Alpha)
•Is (x + y) + z = x + (y + z)?
–Unsigned & Signed Int’s: Yes!
–Float’s:
» (1e10 + -1e10) + 3.14 --> 3.14
» 1e10 + (-1e10 + 3.14) --> 0.0

It’s important to understand these unusual
properties

Programs are translated by other programs into
different forms

Fx program – parallel fortran
Compiled to regular fortran (77)

F77 translated to C
Gcc C preprocessor(cpp) handles macros
Gcc compilers (cc1) converts to assembly
language (.s)
Assembler (as) converts to object code (.o)
Linker (ld) combines many object codes and
libraries to create an executable

It pays to understand how compilation systems
work

Linking problems
Security holes
Performance optimization
Compiler bugs
It pays to be able to look at the assembly output
and understand what the compiler has done.

Let’s you try different approaches for
performance critical code

Processors read and interpret instructions stored
in memory

Once you understand what your program is doing
at the machine level, you can understand what
parts of the system architecture and
microarchitecture it is using and when and you
can use this to spot bottlenecks and understand
it’s performance
Your book gives an example of how “hello world”
exercises the system architecture of a typical
Pentium iii machine.

Caches matter
Caches match big and slow kinds of memory with
small and fast kinds of memory
You don’t have to know about caches to write a
correct program
You probably need to think about caches when
you write a FAST correct program

Storage forms a hierarchy
On-chip registers to local disk
Think of each layer as a cache on the layer below
Your book talks about the network (and
distributed systems) as the lowest layer on the
hierarchy. This is debatable.

The Operating System Manages the hardware
Protection and abstraction

Processes, Threads, Virtual memory, I/O
abstraction
The kernel, interrupts, and System calls

Systems communicate with each other using
Networks

TCP/IP is a virtual network
Berkeley Sockets as the standard way of
programming network applications

Another View: The Abstraction Hierarchy
As computer scientists, we like to raise the level of
abstraction – Ideally, we create interfaces with
simple syntax, semantics, and timing on top of
complex things
For the most part, we can just happily use our
highest level abstractions when we program
Sometimes, though, we need to strip away an
abstraction to understand what is happening
beneath

Debugging
Performance
Security (buffer overflow exploits)
Research to develop better abstractions

Abstractions are sort of like layers on an onion,
but not quite. Sometimes and abstraction can
depend on several abstractions below it. And
sometimes on abstractions more than one layer
below it.
Show hardware graph
Show software graph
Indicate where we will be going
Physics up to ISA and micro and system in one day
Then a week on data representations – making
using of logic
Then a couple of weeks on the ISA –assembler and
the compiler
Then a couple of weeks on memory
A week on exceptions
A week on aspect of the unix virtual machine
Two+ weeks on other elements

Concurrency in programs
Network programming

…
What does this mean for a web server

Limits
Let’s say it’s written in C
Single threaded, no concurrency, one request at a
time
And it uses sockets

Compiler toolchain path
Gcc httpd.c –o httpd
As before, except now we start in C
Dynamically link with sockets and C shared
libraries

Execution
Type “httpd” into shell
Shell calls fork, which triggers an exception
OS figures out that the exception means “fork
OS creates new process with its own virtual
environment – it’s a clone of the shell process
process calls “exec”, which triggers an exception,
which the OS catches. OS cleans up the virtual
enviroment, loads the first page of httpd
OS figures out that you want to run “exec”
Loads image (really first page) into memory and
transfers control to its entry point
Entry point function loads shared libraries. They
are probably already in memory, so the OS just
maps them into httpd’s address space
Entry point calls main (stack discipline)
Main runs of the end of the page, triggering an
exception. OS sees it’s a missing page and loads
it from the httpd file
…
httpd creates, binds, and listens and accepts on a
socket. Each call is an exception that the OS has
to figure out.
Now the process “blocks” because there is no
client. By blocks, we mean the OS does not run it.
A network packet comes in and causes an
exception
The OS looks at it, passes it to network stack.
Network stack notices it’s the beginning of a TCP
three-way handshake and send back appropriate

response (OS+device drivers hide the details of
using the NIC)
Third packet arrives, network stack establishes
TCP connection, passes it to OS
OS notices connection matches httpd’s
outstanding accept request, unblocks httpd
Eventually, httpd runs again, accept finishes, now
it has a file descriptor for the open connection
At any point, extra packets arrive, get handled by
network stack and added to a buffer of received
data for the connection
Httpd reads on fd, causes exception, OS notices it
has data available, passes data back to httpd,
copying it up to app
Httpd returns from read, processes request, sends
write, causes exception, etc.
 Notice that data is pushed across memory bus, i/o
bus, and NIC.

 Make sure to get handouts and book
September 28

Survey handout
How to represent a bit

A bit as a range of voltage levels
“1” threshold
“0” threshold

Transistor device
MOSFET – CMOS technology
Show symbol, and complementary device

Transistor down
Metal, Oxide, Semiconductor -> Conductor,
insulator, semiconductor
Semiconductor

Silicon ~ Sand
Grow giant single crystals of pure silicon and cut
them up to form the base on which to work
Resistive behavior easily changed by addition of
impurities “doping”

Also changes its quantum behavior
Electric fields affect resistence

Interesting stuff happens when we put differently
doped materials, and metal and oxide together

This is how transistors are made
Electric fields can affect resistence

MOSFETs are easy transistors to think about
Photolithography

Transistors (and chips) are built up by layers, like
a stack of pancakes.
Think of each layer as a photograph
Each layer generally “deposits” a single kind of
material
The negative (or mask) determines where it is
deposited
Picture of how a MOSFET is built up in layers is
in your handout
Small – about the size of a fingernail
But 10s to hundreds on each slab
Then they get cut apart, each is tested, if it passes,
it gets mounted in a carrier and sold
One reason why they are small is defects
The other reason is that smaller=faster

Speed of light – one ns is about a foot
100 GHz -> 3 mm
Plus, electricity moves considerably slower than
light

Currently, photolithography can put about 100
million transistors on a single chip

P4 ~ 42 million transistors
Regular structures can be much denser

Moore’s Law
Resolution of the mask keeps cranking up
Doubling of the number of transistors ever year
It’s been happening since the ‘60s
First microprocessor 4004 had 2300 transistors
Likely to continue for the next 10 years.

Transistor
Transfer characteristic
Nonlinear operation “off, linear, on”
Think of it as an electrically controlled switch for
our purposes

Regular -> push the switch closed
Complementary -> pull the switch closed

Now we have bits = voltage, and we have
electrically controlled switches
Combinational Logic

Truth tables
~A, A&B, A|B, ~(A&B), A xor B A nxor B

not, and, or (either or both), not-and, xor
different, nxor – same

Implementing these using transistors

Invertor
Nand

More complex logic can be built from these
primitives

All you really need is nand
A bit adder

Xor as almost an add
But two bits in need at least two bits out, right?
What about carry?
Carry = a and b
This is a half-adder
A full adder takes three bits in (x,y,carryin) and
produces two bits out (sum, carry)

Half-add a and b giving s1 + c1
Half-add s1 and cin giving sum and c2
Carry is c1 or c2

Then we can arrange full-adders to make adders
for arbitrary length data

Logic can get quite complex. We sometimes talk
about a “cone of logic” that drives some output
Note that there is no memory

Memory
Asynchronous

DRAM cell
Leakage + refresh

SRAM cell
Synchronous

These combinational circuits work
asynchronously.

What if output 1 arrives before output 2?
The notion of a clock

All outputs must be ready at certain intervals
The clock edge places them into a synchronous
memory
Latch, flip flop (won’t talk about these)
REGISTER (usually not visible to the
programmer) holds the STATE of the machine

Putting it together
Inputs + state => combinational logic cone =>
outputs + next state
Clock edge releases the hounds, inputs arrive
Slowest path through the logic cone determines
the speed of the chip

Microprocessor

A chip like this designed to interpret some of the
inputs as a simple language
We’ll talk more about microarch in a week or so

Bytes

8 bit quantity
Darn near universal
Sufficient to capture alphabet of western languages

Machine Word Size
Integer number of bytes
Ordinary size of integer data on the machine

What it’s good at working on
32 bit word size on IA32
64 bit on itanium, alpha, sparc64

Binary, Hexadecimal representation
0000 0001 0011 0100 1000 1001 1111 0011

0x013489f3
1101 1110 1010 1101 1011 1110 1110 1111

0xdeadbeef
Can have multiples and fractions of words

Always integer number of bytes
C data types and how they map into bytes

October 3
Mechanics

Info on the web page
Reading: 2.4-2.5
Homework out at end of class
Course newsgroups cs.cs395-ics.discussion,
cs.cs395-ics.announce
IRC Server

Dualsword, password is CSAPP
Who would like an intro to tools evening session?

Maybe Thursday at 6pm in classroom
Finish up logic

Bit-wise Logic is a “Boolean Algebra”
Integers are a ring
Boolean algebras and rings have similar, but not
identical properties – the book will tell you more
We’ve talked about Not, And, Or, nand, not, nor,
xor, nxor

Conversions
DeMorgan’s Laws – convert between ands and
ors

Xor from or, not and and
Ultimately, you only need a nand

Logic on a machine operates in parallel across the
bits of a word
Logic in C

Int a, b; // say ints are words are 32 bits
When you say A&B, you get a 32 parallel ands
Generalize to bit vectors, both < 32 bits and >32
bits
Bit vectors = sets

Or = union
And = intersection
Not = completment
Xor = symmetric difference – what isn’t in both
sets

& | ~ are different from && || and !
Treat the whole word as a giant bit
All zero = false
Any one = true
latter return 0 or 1

Shift operators << >>
Arithmetic versus logical

Xor swaps
X^=y;
Y^=x’

X^=y; Words as the unit of operation of machine
Determine size of a c type: sizeof(type)
Usually an int is the size of the word

Memory as an array of bytes ultimately
But also an array of machine words
Addresses are byte addresses
Endianness

Little endian – LSB has lowest address
Big endian – MSB has lowest address
Intel is little-endian

Showbytes code in your text to print a region of
memory in hex
All C data types end up being a sequence of bytes
in memory

Interpretation of those bytes is up to the processor
and to the language, compiler, and program
Int short char float double pointers
Pointers

Machine + OS contrive to create virtual address
space for programs

0..2^n-1-1 bytes
compiler makes pointers n bits (n usually
multiple of 8)

ALL POINTERS ARE THE SAME
Often, sizeof(int)=sizeof(char*), but not always,
common mistake

C strings:
Char = byte
Sequence of bytes ending with a null (0) byte

Programs in memory
Sequence of bytes that the processor can
interpret as a sequence of instructons

Math and logic operations
Memory operations (combined with ML
in intel)
Branches

Intel encoding is variable length instructions
RISC machines usually have fixed length
instructions

Exceptions
Integers

Lowercase -> bits, uppercase->quantity
Let’s use 3 bit examples to make things a little
easier
Unsigned versus signed

Unsigned B = -b_n-1*2^n-1 + sum(0..n-
2,b_I*2^I)
Unsigned goes from –2^n-1 to 2^n-1-1 => -4 to 3
Signed goes from 0..2^n-1 => 0..7
Signed A = sum(0..n-1, a_I*2^I)
MSB indicates sign1=>negative
But notice wacky representation
0=000, -1=111 –2=110 –3=101 –4=100
What is the complement?

~x+1
This signed number convention is called 2’s
complement arithmetic
All operations are identical, from logic pov, to
unsigned math

No extra logic
Only interpretation

Other possibility
One’s complement

Complement = ~x
Has two zeros

Sign+magnitude

How big are the ints/shorts/etc on my machine…
Compile-time constants given to you by the
compiler
K&R – look for limits.h

How do I get specific size items
Make #ifdef typedefs that adjust according to the
architecture
On many platforms, use #include <stdint.h> and
then int32_t, etc

Casting
Explicit Casts
From smaller unsigned to larger unsigned

Zero-fill extra bytes
Same number

From larger to smaller unsigned
Like zeroing out upper bytes
Potentially different number

From smaller to larger signed
SIGN EXTEND
Same number(!)

From larger to smaller signed
Like zeroing out upper bytes
Likely to be a different number!
Even sign may change!

From unsigned to signed
BIT REPRESENTATION STAYS THE SAME
Postive numbers and zero OK
Small Negative number becomes large positive
number
Large negative number becomes small positive
number

IMPLICIT CASTS
Signed arith unsigned => cast to unsigned!
Including for comparisons <, > ,etc.

-1 > 0 => no
-1 > 0U => yes!

Call to function with signed or unsigned with
args that are opposite => implicit cast
Importants of gcc –Wall

Casting order
Short x = -1;
Unsigned int x= (unsigned)(int)x;
Unsigned int x = (unsigned)(unsigned short)x;

When to use unsigned
Don’t use it just because you think the number is
going to be positive

Loop index from I=0, I<n;I++

Someone will change the loop body later on
Modular math
Extended precision (arbitrary length fixed point
math codes)
When you really really need an extra bit of
precision

Integer Math
Integer math on computers, like logic, has a
theoretical foundation

The theory of groups: modular arithmetic-
>Abelian group
Your textbook has more to say on this

Again, 3 bit examples
Unsigned addition

Draw it just like grade school math
U +v => (u+v) modulo 2^n

U+v is output if u+v < 2^n
U+v –2^n if >=

Real sum => range 0 to 2^n+1 => 0 to 2^n
The carry out is thrown away

It’s thrown into a condition bit, which we’ll talk
about later, but from the C POV, it’s thrown
away

U+v > 2^n is known as integer overflow
How do we check for overflow in C?

S=u+v; is s < u ?
Or, equivalently, is s<v ?

Signed addition with 2’s complement numbers
Exactly the same operation as with unsigned
numbers, but the interpretation of the inputs and
the results are now different
Overflows are now more complicated
S= u+v
Sum must be the range –2^w-1 to 2^w-1-1 else
overflow
If >2^w-1-1 then wrapps aroundto –2^w-1
If <-2^w-1 then wraps around to +2^w-1-1
How to check for overflow

U,v<0 and s>0 => overflow
U,v>=0 and s<0 => overflow

Subtraction
Addition with 2’s complement: u-v = u+ ~v+1

October 5
Mechanics

Should have been receiving mail messages from me
(ICS: …)
Reading 3, 3.1-3.5, 5.7
IRC moved to grayling
Lab session… next Tuesday, 6-7:30.

Finish up integer math
Comparisons

u>v ?
one approach: u-v and check if positive
all the overflow cases need to be sanity checked
Split into three tests

U<0, v>=0 ? => false
u>=0, v<0 ? => true
else (u-v)>0 (will not overflow)

At assembly level can use the carry bit
Multiplication

Unsigned
Need 2n bits as output
Range is 0 to (2^n-1)^2

Signed
Range is -2^(n-1)*(2^(n-1)-1) to(-2^(n-1))^2

Unsigned mult in C
Top n bits of product are thrown away!
Really u*v modulo 2^n

Signed mult in C
Same deal! Same operation!
Note that sign can once again flip!
Think of this as cast to unsigned, do mult, then
cast back to signed

When we do multiplications, we are assuming that
the values will actually fit within the output

Ie, for 32 bit machines, that the input values
really only use 16 bits

Casting games
Say you want to multiply two shorts and assign to
an int.
If you multiply first and then cast, you’ll get only
16 bits
So cast first, then multiply

At the machine level, the whole product is usually
generated, often put into two registers
Thus, in assembly code, it is easy to deal with it
Arbitrary precision math packages

Using shifts to do unsigned multiplies by powers of
2

X<<a => x*2^a

Compilers will make this optimization for you in
most cases
If you use shifts on signed numbers, results can
be surprising

3 bit notion: 011 << 1 => 110
3 turns into –2

Using shifts to do unsigned divides by powers of 2
X>>a => floor(x/2^a)
Also a compiler optimization
Note that floor(x/2^a) is wrong direction of round
for negative x

Instead want ceil(x/2^a)
Compute as floor((x+2^a-1)/2^a)
X+(1<<a)-1)>>k

Division
X / y = floor(x/y) – dividend if x, y > 0
X%y = remainder if x,y >0
How this is done is beyond topic of the course.

Floating Point Numbers
IEEE 754 standard, mid ‘80s

Used to many different standards
There still are, but almost all processors do IEEE
by default
Developed by numerical analysts, hard to make
really fast
Has kind of stymied moving research results in
number representations and computer math into
new processors

Log-based math
Interval math
…

Basic idea
Fractional binary numbers
Shift so that everything is 1.x and keep track of
the shift amount

What does this mean…
You can only represent numbers that look like
(int)x/2^n – ie, a subset of the rational numbers
Repeating bit patterns

1/3
1/10

Representation
Sign bit (1 = negative) s
Exponent E (exp

)Significand (mantissa) M (mant)
Normal range is 1.0 to less than 2.0

Float = sign bit 8 bit exp, 23 frac bits = 32

“single precision”
Double = sign, 11 exp, 52 frac = 64

“double precision”
Normalized Number Representational

Exp != 0 or 111111111
exp is biased…

Actual exponent E = exp – bias
Single => bias is 127, exp=1..254, E=-
126 to 127
Double => bias = 1023, exp=1..2046,
E=-1022 to 1023
Bias is generally 2^(m-1)-1 where m is
number of exp bits

Mantissa has implied leading 1
Only the bits after the binary point are
stored (free bit!)
Min=1.0 (0000)
Max=2.0-epsilon (1111111)

Example
399.0

399 = 0x18f hex
0001 1000 1111 binary
1.10001111 x 2^8

float.
M=1.10001111, mant =
10001111 (+23-8 bits of zero)
E=8, exp=E+ bias = 8+127 =
135 = 10000111
Sign = 0

Denormalized Number representation
Exp=0000000
E = -bias + 1 (-127 +1 = -126)
Signicand assumed to be 0.xxxxxxxx (x=bits in
word)
Very very small numbers – closer to zero than the
closest normalized numbers

Precision decreases as get smaller
Gradual underflow

If significand is all 0 => “true zero” (note +/-)
Special Representations

Exp=1111111111
Frac=0000000 => INF

+/- infinity

if an operation overflows, the
number becomes infinite
1.0/0.0 => +inf
1.0/-0.0 => -inf

frac!=00000 => NAN
sqrt(-1) = NAN
inf-inf = NAN
…

Number line
NAN separate
-inf … - normalized… -denorm –0 +0 +denorm
+norms +inf

Special properties of the encoding
FP Zero == Integer 0 (all bits zero)
Unsigned compare almost works with fp numbers

Operations
Rounding

FPU has much higher internal precision than the
number representaitions support
FPU first computed “exact” result, then reduces
it to the desired precision.

Overflow if exp too large
Rounding to make fit into fractional part

Rounding
Zero => lob off the extra bits in the frac
Round down (towards –inf)

Result is no greater than actual
result

Round up (towards +inf)
Result is no smaller than actual
result

Round to nearest even (default)
Tiebreaker -> round so that least
sig digit is even
Statistically unbiased

Generally the default rounding mode is
all you have unless you dive down to
assembly

Multiplication is pretty easy
S =s1 xor s2
M = m1 * m2
E = e1*e2
Normaize

Shift right so that M < 2, incrementing E
each time
E out of range => overflow
Round M to fit precision

Or give denormed result

BUT
NOT ASSOCIATIVE DUE TO
OVERFLOW, ROUNDING
NOT DISTRIBUTIVE

A*(B+C) != A*B +A*C
NOT MONTONIC IN PRESENCE OF
INF AND NAN

Addition
Align mantissa
Shift mantissa with smaller exp right until same
exp
Do sign mag add of mantissas giving output
mantissa, sign. Exponent is exp of larger input
Normalize and round like in multiplication
BUT

NOT ASSOCIATIVE DUE TO
OVERFLOW + ROUNDING
CAN GET INFINITIES + NANS
INF AND NANS DON’T HAVE
ADDITIVE INVERSES
NOT MONOTONIC IN PRESENSCE
OF INF AND NAN

FP in C

Float, double
Casts between ints, floats and foubles CHANGES
BITS

FP type to int type => get truncated fractional
part. Meaningless if out of range, but usually get
saturating math
Int type->fp type => perfect if enough bits in
matissa. Otherwise will round according to
rounding mode.

Questions
Int x; float f; double d;

X==(int)(float)x ? NO
X==(int)(double)x ? YES
F==(float(double) f ? YES
D==(float)d NO
F==--(-f) ? YES
2/3 == 2/3.0 ? NO
d < 0.0 => ((2*d) < 0.0) ? YES
d > f => -f < -d YES
d*d >= 0.0 YES
(d+f)-d == f NO

Intel IA32 FP
8087(paired with 8086 or 8088) was first CPU to
implement IEEE

Merged into one chip since 486.
Hardware

Separate FPU from integer unit
Add, multiply, divide
Sometimes others (CORDIC for trig
Extended precision “long double” => 80 bits

Can sometimes be a source of trouble
because the registers are 80 bits and data
is converted on read/write

FPU is a demented stack machine – programmed
very very differently from the integer part of the
processor

We will talk a bit more about this after we have
done integer assembly

October 10
Mechanics

Handout HW2
Reading still 3, 3.1-3.5, 5.7, but add 3.6

Floating point rehash
Representation

Sign bit (1 = negative) s
Exponent E (exp
)Significand (mantissa) M (mant)

Normal range is 1.0 to less than 2.0

Float = sign bit 8 bit exp, 23 frac bits = 32

“single precision”
Double = sign, 11 exp, 52 frac = 64

“double precision”
Normalized Number Representational

Exp != 0 or 111111111
exp is biased…

Actual exponent E = exp – bias
Single => bias is 127, exp=1..254, E=-
126 to 127
Double => bias = 1023, exp=1..2046,
E=-1022 to 1023
Bias is generally 2^(m-1)-1 where m is
number of exp bits

Mantissa has implied leading 1
Only the bits after the binary point are
stored (free bit!)
Min=1.0 (0000)
Max=2.0-epsilon (1111111)

Example
399.0

399 = 0x18f hex

0001 1000 1111 binary
1.10001111 x 2^8

float.
M=1.10001111, mant =
10001111 (+23-8 bits of zero)
E=8, exp=E+ bias = 8+127 =
135 = 10000111
Sign = 0

Denormalized Number representation
Exp=0000000
E = -bias + 1 (-127 +1 = -126)
Signicand assumed to be 0.xxxxxxxx (x=bits in
word)
Very very small numbers – closer to zero than the
closest normalized numbers

Precision decreases as get smaller
Gradual underflow

If significand is all 0 => “true zero” (note +/-)
Special Representations

Exp=1111111111
Frac=0000000 => INF

+/- infinity
if an operation overflows, the
number becomes infinite
1.0/0.0 => +inf
1.0/-0.0 => -inf

frac!=00000 => NAN
sqrt(-1) = NAN
inf-inf = NAN
…

Number line
NAN separate
-inf … - normalized… -denorm –0 +0 +denorm
+norms +inf

Special properties of the encoding
FP Zero == Integer 0 (all bits zero)
Unsigned compare almost works with fp numbers

Operations
Rounding

FPU has much higher internal precision than the
number representaitions support
FPU first computed “exact” result, then reduces
it to the desired precision.

Overflow if exp too large
Rounding to make fit into fractional part

Rounding
Zero => lob off the extra bits in the frac
Round down (towards –inf)

Result is no greater than actual
result

Round up (towards +inf)
Result is no smaller than actual
result

Round to nearest even (default)
Tiebreaker -> round so that least
sig digit is even
Statistically unbiased

Generally the default rounding mode is
all you have unless you dive down to
assembly

Multiplication is pretty easy
S =s1 xor s2
M = m1 * m2
E = e1*e2
Normaize

Shift right so that M < 2, incrementing E
each time
E out of range => overflow
Round M to fit precision

Or give denormed result
BUT

NOT ASSOCIATIVE DUE TO
OVERFLOW, ROUNDING
NOT DISTRIBUTIVE

A*(B+C) != A*B +A*C
NOT MONTONIC IN PRESENCE OF
INF AND NAN

Addition
Align mantissa
Shift mantissa with smaller exp right until same
exp
Do sign mag add of mantissas giving output
mantissa, sign. Exponent is exp of larger input
Normalize and round like in multiplication
BUT

NOT ASSOCIATIVE DUE TO
OVERFLOW + ROUNDING
CAN GET INFINITIES + NANS
INF AND NANS DON’T HAVE
ADDITIVE INVERSES
NOT MONOTONIC IN PRESENSCE
OF INF AND NAN

FP in C

Float, double

Casts between ints, floats and foubles CHANGES
BITS

FP type to int type => get truncated fractional
part. Meaningless if out of range, but usually get
saturating math
Int type->fp type => perfect if enough bits in
matissa. Otherwise will round according to
rounding mode.

Questions
Int x; float f; double d;

X==(int)(float)x ? NO
X==(int)(double)x ? YES
F==(float(double) f ? YES
D==(float)d NO
F==--(-f) ? YES
2/3 == 2/3.0 ? NO
d < 0.0 => ((2*d) < 0.0) ? YES
d > f => -f < -d YES
d*d >= 0.0 YES
(d+f)-d == f NO

Intel IA32 FP
8087(paired with 8086 or 8088) was first CPU to
implement IEEE
Merged into one chip since 486.
Hardware

Separate FPU from integer unit
Add, multiply, divide
Sometimes others (CORDIC for trig
Extended precision “long double” => 80 bits

Can sometimes be a source of trouble
because the registers are 80 bits and data
is converted on read/write

FPU is a demented stack machine – programmed
very very differently from the integer part of the
processor

We will talk a bit more about this after we have
done integer assembly

Machine-level programming
The model: Instruction set architecture

Hardware software intferface
Model versus reality ISA means hardware can
change underneath
Language + programmer visible state + I/O = ISA
Defines a primitive language – how bits are to be
interpreted as instructions that do input, output,
and change the state of the machine

IA32 is a “CISC” ISA

Idea: raise level of abstraction closer to
the language to make programmers more
productive

Other archs are “RISC” ISAs
Idea: lower level of abstraction to make
hardware faster and compiler has easier
time of it anyway.

Some new archs are basically just the logic cone!
Reconfigurable machines
Custom-computing machines
FPGAs

RISC is a very nice idea. Was thought that CISC
can’t be made fast, but intel (and IBM! With 370)
managed to do it.

Lots of money
Silicon is 1st order effect
Not “insanely” CISC – Lisp machine or
VAX

State of the machine (programmer visible)
Memory in all its forms

Language: instructions
Instructions

Just another interpretation of bits
In most ISAs, instructions = words
In Intel (IA32), instructions can be 1 to
several bytes long

Data flow… Take 1-2 items from memory, apply
some logical or arithmetic operation to them, and
then write the result back to memory
Control flow… decide which instruction will be
executed next

Implicit control flow -> the next
instruction in memory
Also the fastest

State: Memory
Registers

Fastest form of memory – programmer
visible because compilers are very good
at scheduling them
Scratchpad memory

Main memory
Most of the rest of the memory hierarchy
That there is a main memory is a part of
the ISA. How it is structured is not.
Programmer can ignore how it works
and not worry about correctness, but
knowing how it works on a specific

implementation can make it possible for
her to optimize performance

I/O: special memory locations that other devices
than CPU can read and write

We’ll talk about this more later when we look at
I/O in Unix

IA32
Dates back to 8-bit archs in the mid 1970s (~8K
transistors)
Then 16 bit in late 70s, early 80s (first PCs) (30-
150K transistors)
32 bit with the 386 in 1985 (300K transistors).
P4 (42M transistors)
Essentially, IA32 = 386
What do the transistors do

Essentially optimize your code as it is running
Scheduling
Parallelism, out of order execution, speculative
execution
LOTS OF CACHE MEMORY

Compare IA64 = Itanium (10 M transistors)
IA64 very different
VLIW machine
Program it not with individual instruction but
with packets that the compiler/user guarantees
can be done in parallel
Lots of debate whether this is a disaster for intel
or not
Not clear whether compilers can do this and not
clear if hardware will scale
Floating point perf if 1st implmenetations great
Int really terrible
Ultra-slow IA32 compatibility mode

Switch to overheads at this point class 05 ~slide 7
The model

CPU / memory, addresses, data, instructions
CPU

EIP => program counter, adx of next inst
Registers
Condition codes – “extra outputs” from
instructions – ie add’s carry out

Generally use CCs to decide
branche

Memory
Byte addressable array
Per-thread stack abstraction

Used to support procedure calls

October 12-October 24 were slides
October 25, 2001

Mechanics
HW2 in
HW3 will be available later
Lab session: Monday 8-9:30 in the lab
Midterm: Tuesday, 11/6, 6-7:30, CS classroom –
makeups before or after, will cover up to but not
including linking
Reading for next time: 6.5-6.7

The memory hierarchy
Register, L1, L2 Cache, main memory, disk
Different technologies

registers – latches or similar
Cache -> typically SRAM
Main memory -> DRAM

Register
Flip-flop
Works at clock rate
Usually arranged in to register file
Typically can read 2 values and write another
simultaneously. Often can do more than that.
Typically, a few hundred bytes
Block size: word size – 4 or 8 bytes
Paces processor performance 2x every year

Cache: SRAM cell
Six transistors (as per handout)
Bit constantly circulates – auto-refreshing
Mutual feedback keeps value from degrading
Fast: ~5ns
Expensive: $100/MB
Typically 32K to a few MB
Block size: 32 bytes or so
Performance paces processors, but remains $$

Main Memory: DRAM cell
One transistor, one cap
Needs to be refreshed externally
Charge quickly leaks away
Slow: 60ns
Cheap $1/MB
Maybe 512 MB or a GB
Block size: 8 K or so

Density grows 4X per year, but performance
remains flat

Disk
Non-volatile
Ultra-slow: 10ms or so
Ultra-cheap: $0.02/MB
100 GB common
Mechanical
Density grows even quicker, but performance very
flat

Processor<->memory gap
Reg<->cache BS~=8 bytes
Cache<->memory BS ~=32 bytes
Mem<->disk BS~=8 KB (virtual memory)
Generally cheaper per byte to access a lot of
memory than a little.

A memory chip as an array of bits
SRAM (typicall)

N x m sram:
A linear array of n m bit words (blocks)
Array drives sense amplifiers at bottom that give
bits and/or allow us to write
Address decode selects appropriate row
Read and/or write

DRAM
N x m dram:
N blocks, arranged in a square (sqrt(n)^2)
Bottom is a sqrt(N)*m bit row buffer and a
multiplexor
Each block contains m bits
Address given in two parts
Supply row address, do RAS, copies row to buffer

This is slow
Supply column address, do CAS, m bits in that
column are supplied

This is fast
Fast access: RAS, multiple CAS
Writing: RAS, CAS+write (multiple) and the copy
entire row back into the array.

SIMM/DIMM
Linear array of DRAMS, each m bits wide

8 DRAMs x 8 bits each => 64 bits wide

Parity “ECC”, SECDED and higher level error
correcting codes on memory systems

Disk
Ferromagnetic coatings

Think of cassette tape
Domains – minimagnets that can be made to point
in one direction or another
Areal Density – bits/area

Areal density has become phenomenal and
continues to grow faster than in any other memory
technology
Platters, cylinder, head, sector
Arm, HSAs, and heads – flight!
Low end disks: 5400 RPM, typical: 7200 rpm
High end: 15000 RPM
Typically variable number of sectors per track
Sector markers
Standards for treating the disk as a linear array of
logical disk blocks or sectors

EIDE / ATA
SCSI

Access a sector at a time
Select appropriate head (fast)
Kick the arm into motion (SLOW)
Wait for it to settle, then read sector marker
Repeat until on the right track (SLOW)

SEEK TIME
Now wait until the sector comes around (slow)

ROTATIONAL LATENCY
Read bits and send to controller
Controller writes them into memory

TRANSFER TIME
The System’s Buses

CPU
Reg file, ALU
Bus Interface

I/O Bridge
Main memory
I/O Bus
Disk controller
Disk

CPU/Memory

Movl A, %eax
Generate address
Put address on bus
Memory responds with data
Bus interface puts data in register

Movl %eax, A
Generate address
Put address on bus
Put data on the bus

Memory/Disk
Initiation from CPU -> bus->io bridge/io
bus/controller
Controller writes memory
Controller produces interrupt

Locality
Temporal
Spatial
Consider instruction fetch

Temp – happens one after the other
Spatial – typically in order

Consider sum of 1d array
Temp: loop iteration
Spatial: sequential

Consider sum of a 2d array
Order of the loops matters
Columns in inner loop -> better spatial locality

Caches exploit locality
Put a small amount of faster, more expensive
memory in from of a larger, slower, and cheaper
memory
Caches keeps copies of data in the larger memory
Managed so that cache “usually” has the data that
we will want next
Caches are managed in units of cache blocks

For processor<->main memory, 32 bytes is typical
L1, L2 caches managed by hardware
Memory as cache of disk blocks managed by
software

Cache hit, cache miss
Recently used data is likely to be in the cache ->
exploit temporal locality

Cache blocks are big and contain nearby data ->
exploit spatial locality
Cache hit rate
Average access time

Hitrate*speed of cache + missrate*speed of
memory + overhead

Next time…
Types of caches and how to write code that that
makes them behave well

October 31, 2001
Mechanics

HW3 out
Problem 3 bug:
Do for direct mapped, fullyassoc, and 4-way set
associative

HW1 solutions on web
Bug in solutions for problem 4 in floating point
Gave a cross-the-board point boost

HW2 solutions on the web on Friday to allow for
late handinds
Bomblab in tonight

Snapshot of mail spool file tonight at midnight for
first grading
If late, please send mail to that effect and then
send mail again when you are done and want to
be graded

Bufbomblab out
Reading: chapter 7
Midterm: Tuesday, 6-7:30, classroom, one 8.5x11
sheet OK. Look at homeworks

The system architecture
Disk

Ferromagnetic coatings
Think of cassette tape
Domains – minimagnets that can be made to point
in one direction or another

Want to make domain as small as possible, but
still distinguishable from agacent domains

Reading using induction – coil+head+differences
Areal Density – bits/area

Areal density has become phenomenal and
continues to grow faster than in any other memory
technology
Platters, cylinder, head, sector
Arm, HSAs, and heads – flight!
Low end disks: 5400 RPM, typical: 7200 rpm
High end: 15000 RPM
Typically variable number of sectors per track
Sector markers
Standards for treating the disk as a linear array of
logical disk blocks or sectors

EIDE / ATA
Pretty simple, grew out of PC MFM disks
Really rightly coupled to storage, and
particularly hard disks
Cheap
Slower disks
Two devices plus controller
Runs on wire

SCSI
Complex and powerful
General purpose – scanners, etc.
Fastest disks and hardware
Runs on wire and on fiber
Six devices plus controller plus subdevices
(logical units)

Access a sector at a time
Select appropriate head (fast)
Kick the arm into motion (SLOW)
Wait for it to settle, then read sector marker
Repeat until on the right track (SLOW)

SEEK TIME
~10 ms

Now wait until the sector comes around (slow)
ROTATIONAL LATENCY
7200 RPM,

Read bits and send to controller
Controller writes them into memory

TRANSFER TIME
Tseek+trot+ttransfer

Disk in the tlab machines
Lab machines: IBM Deskstar 45 GXP (DTLA-
307045)
EIDE/ATA
11 gbits/in^2

3 platters
6 heads
7200 rpm => 120/s => 8.3 ms for one revolution
27,724 cylinders => 166,344 tracks
512 byte sector => 88 million sectors
Variable densisty encoding
avg #sectors per track => 530 sectors per track
avg bytes/sec off disk = 530*512 / 8ms = 33 MB/s

max is about 56 MB/s
max from cache is about 100 MB/s (rarely
achieved)

t_seek= 8.5 ms (15 ms from first to last
cylinder,1.2 track to track)
t_rot = 8.3/2 = > 4.2 ms
t_xfer = 8ms/530 = 15 us
time to read a sector (512 bytes):

t_seek+t_rot+t_xfer
8.5+4.2+0.015 = 12.7 ms
~40 KB/s

time to read the average track (530*512 = 271K)
8.5+0+8.3 = 16.8 ms
16 MB/s

time to read the average cylinder (530*512*6 =
1.6 MB)

8.5+0+6*8.3 = 58.3 ms
28 MB/s

time to read 10 ajacent cylinders
(530*512*6*10=160 MB)

8.5 +0+9*(1.2+6*8.3) = 468 ms
~33 MB/s

RAID
Basic idea: spread data across the disks so that
sequential sectors (or larger blocks in, say, a file)
spread to different disks
Then, a large request gets spread out to all the
disks, which work in parallel on it, increasing the
bandwidth to the data
Speedup is rarely linear
Striping
Higher levels of RAID add redundancy using
error correcting codes (erasure codes)

Code words also striped across the disk
If a disk fails, the raid controller can still
reconstruct the data from the other disks

When you plug in a new disk, the raid controller
reconstructs the data that was on the failed disk
rebuilding your redundancy
Hot Plug

Lab machines: IBM Deskstar 45 GXP (DTLA-
307045)
11 gbits/in^2
3 platters
6 heads
7200 rpm => 120/s => 8.3 ms for one revolution
27,724 cylinders => 166,344 tracks
512 byte sector => 88 million sectors
avg #sectors per track => 530 sectors per track
avg bytes/sec off disk = 530*512 / 8ms = 33 MB/s

Locality and caches
Temporal

If we accessed it now, we’re likely to access it
again in the near future
So, caches prefer data that we’ve accessed
recently

Spatial
If we accessed it now, we’re likely to access things
near it in the memory map in the near future
So, caches prefer data that’s near data we’ve
accessed before

Caches usually fetch big chunks around the
addresses that we ask for
Consider instruction fetch

Spatial – typically in order
Temporal - loops

Consider sum of 1d array
Temp: loop iteration, access to sum var
Spatial: sequential

Consider sum of a 2d array
Order of the loops matters
Columns in inner loop -> better spatial locality

Caches for main memory (others similar!)
Put a small amount of faster, more expensive
SRAM in from of a larger, slower, and cheaper
DRAM
An access is a memory address read or write
The memory address is used to find a word in the
cache (if it’s there)

Details are in managing this memory
General rule is that the management rules are
derived from looking at lots of memory reference
traces taken from programs that we want our
processor to be fast on

SPEC benchmarks
Newer ideas: Make memory references explicit
ahead of time

Prefetch instruction
Pipelined load in DSPs
Predict next access
Predict next value!

High level concerns:
Caches are managed in units of cache blocks

For processor<->main memory, 32 bytes is typical
L1, L2 caches managed by hardware
Memory as cache of disk blocks managed by
software

Cache hit, cache miss
Cache misses

Capacity
Conflict
Tension between these two kinds of misses\

Working set of a program/loop
Average access time

Hitrate*speed of cache + missrate*speed of
memory + overhead
0.95*10ns + 0.05*60ns = 12.5 ns
Making the hit rate even a little bit better makes a
big difference

Cache management basics
Replacement policy – who is the victim

Replace the one that will next be accessed furthest
in the future
LRU and its approximations

Write policy
Write-through
Write-invalidate
Write-back
Write-allocate

Instructions or data or unified
Cache structure

Linear array of cache lines grouped into sets
Cache line contains cache block, tag, valid bit
B=2^b bytes in the block
Line contains B byte block, t bit tag, and valid and
dirty bit
S=2^s sets in the cache
E lines per set
Cache size=B*S*E
Correspond to partition of the address into t | s | b

Cache access (read)
Chop address into t, s and b
Select set indexed by s bits
Scan within that set looking for tag t bits
If match, and is valid, select data item from block
using b bits plus data item length
If not match or match and not valid, return fail,
and now read goes to main memory

But the read will be for the whole block associated
with the address
When read comes back, select oldest line in the set
and replace it

If the replaced line is dirty, write it back to
memory first

Note that we are really just hashing on the address.
You can think of this as a hash table with buckets
or trees

Trees more typical – log lookup within the set
In hardware, the tree is n log n size, and usually
bigger
Why not use the higher order bits? Think about
what a hash needs to do – it needs to randomly
smear out agencent things

Direct-mapped caches
Each set is a single line
Cheap, less effective.
Lots of conflict misses
Common layout for L2 cache, which are big
Easy to do in hardware
Note how collisions can happen easily

Memory copy code, for example

One way to get around this is to be very cognizant
of where objects are allocated in memory that are
likely to be used together in loop nests.
Essentially, you can manage the cache yourself by
placing objects carefully and structuring loop nests
well

Blocked matrix multiply
n-way associative caches

Each set is of size n
More expensive, more effective
Fewer conflict misses
Common for L1 caches, which are small
Harder to do in hardware
Easier to resolve collisions

Fully associative caches
There is only one set
Expensive, very effective
No conflict misses
Rarely done in hardware
Commonly done in software

Disk cache often does this
Buffer cache for disk in the OS
Virtual memory in the OS
Network filesystem caches
Web caches

Basic principle behind all caches
Exploit spatial and temporal locality
Hash on the address (or key) to select a subset of
the data in the cache then search within that subset
for the actual address – or other ways to do this
Associativity tradeoff between hit rate and time to
do search.
Degree of associativity largely determined by
disparity in performance between the two
components that cache is impedance matching.

Memory mountain characterization
Communication in a parallel or distributed system
Memory to memory copys tend to dominate so you
try to eliminate them.

But some you often can’t – gather of data in
application space into application buffer for
handoff to send
Parallel arrays and strided reference patterns for
this gather
Memory mountain characterizes in terms of
temporal locality by manipulating the working set
size and spatial locality by manipulating the stride

Other interesting points
Processor memory gap means that if you’re going
to main memory anyway, you have more time to
compute addresses – can store addresses in clever
ways

Inspector / executor
November 2

Mechanics
Buffer lab delayed until next week
Midterm: T 6-7:30, classroom, one sheet

Hi-level view of linking
Combine .o files and .a files from different sources
to produce an executable
The loader can then load that executable into
memory and start it running
Works at a pretty low level on on symbols

Symbol = functions and global variables
Symbol definition: named blob of data with a
rudimentary type
Symbol reference: a name with a rudimentary
type

Does two pretty simple things (devil is in the
details)

Resolve references to external symbols
Relocate symbols

Dynamic linking
Delay part or all of the linking step to compile
time
Lets us update pieces of the software without
relinking
Lets us keep only one copy of shared software in
memory (more on this latter in VM)

Why?
Separate compilation

Modularity
Libraries
Shared libraries

Toolchain
Compiler driver -> cpp -> cc1 -> as -> ld

As generates a relocatable object file (.o)
Can be patched to work at any address
Has external references that must be resolved

Ld takes multiple relocatable object files and
libraries (.a files, which basically contain lots of .o
files) and generates an executable in which all
references are interna

Example
a.c:

#include <stdio.h>
int foo();
int x=5;
int main() {

printf(“%d\n”,foo());
}

b.c
extern int x; int foo() {… return x; }

The ELF format for .os
Slides
All .os start from zero
Executable and shared library format is the same –
different magic numbers and special symbols

Entry point
All references are internal and resolved

Symbol table
Definitions

Strong versus weak definitions
Strong = functions+initialized global variables
Weak = uninitialized global variables

a.o:
Function main, size 50 initial value 0, is in .text at
offset 30 and is strong
Global variable x, size4, initial value 5, is in .data
at offset 55 and is strong

b.o:
Function foo, size 30, initial value 0, is in .text at
offset 3 and is strong

Declarations (external references)
a.o

Function foo, size unknown, initial value
unknown, … is an external ref
Function printf, size unknown, initial value
unknown, is an external reference

b.o
Global variable x, size 4, initial value unknown, is
and external reference

Symbols in C++
Carry namespace and typeid information encoded
in the name

Name-mangling
You write void Packet::Serialize(const int fd)
const
Symbol is like

Serialize__C6Packeti
Symbol resolution

Read each .o file’s symbol table into memory.
Look for multiple definitions

Multiple definitions for strong symbols are not
allowed

If you have them, fail
Strong symbol definition takes precedence over
weak symbol definitions
If you only have weak symbol defs, pick one.

Note nondterminism?
What if a had int y; and b and float y

Now you’ve got one definition for each symbol
Now look through all the external references and
match them to your definitions
Unresolved external references -> fail
No unresolved -> done
Now you have a mapping from each symbol name
to the symbol location (.o file, section, which offset)

Symbol relocation
Assembler has to generate code whether it knows
the ultimate location of the symbol or not

Jumps and calls
References to external global variables

So, whenever it doesn’t know the ultimate location,
it makes a note of it in.relo.text or .relo.data

Note indicates where the reference is, in terms of
the segment and the segment offse., which symbol
it is using, and how it is using that symbol

Linker needs to know the addressing mode

Easy one: absolute
Location represents the ultimate absolute address
of the symbol

Harder one: PC relative
Location represents the offset from the
instruction pointer when it is executing this
instruction.

When we merge all the .o files, we will have to
move symbols from their “initial” locations to their
final locations in the merged ELF file’s sections

Each section is also assigned a location where it
will be placed when the program is loaded
We patch to get to the locations that the symbols
will have at load time.

Once the new locations are determined, we need to
patch all of the references that we noted in the .relo
segments so that they point (either directly or
indirectly) to the appropriate things.

Final fixup
Write the appropriate entry point into the elf file

_start
Loading

The exec family of OS calls
Create virtual address space from 0 to 2^n-1 (more
on this later)
Split address space into kernel and user space
Map kernel (more on this later)
Create a read-only memory segment at “bottom”
of memory and “copy” ELF’s .init, .text, and
.rodata into it.
Create a read-write segment above that and
“copy” .data and .bss into it.
Set OS concept of “brk” (end of heap) above
read/write segment
Set %esp (top of stack) to top of memory
The _start
_start->…->cstartup (RTL)->main

Libraries
.a files
Basically, a convenient concatentation of .o files
Can change one .o file and then replace it in the .a
file

Linker looks inside of .a files in strange ways
(symbol resolution)
Load the library
Scan through the .o files in it to fix external
references
Keep scanning until the set of external refs doesn’t
change any more.
Then throw out the .o files and keep going
Library interdependencies

Dynamic linking
Basic idea: partially link the executable and have
the loader fully link it when it is run
Lets us change modules without recompiling and
re-linking
Lets us reuse modules that are already in memory
Compilation with -fPIC
Link step (-shared)

Don’t copy data into executable, just copy enough
info so that you can do relocation and resolution
at run-time.
.interp section

loader runs the dll loader here
DLL loader

Creates a segment between heap and stack for
each shared object.
Relocates the shared object to that position
Relocates references to symbols in those libraries

PIC
Make it possible for each process to map the
library into a different segment location without
being updated by the dll loader
Basically, do external refs through a global offset
table whose position is known
Lazy update of the table and the functions they
point to so that calls are basically just one extra
indirection

November 7, 2001
Mechanics

hw2 back
exploit lab out
reading for today: 8,8.1-8.4
reading for next time: 8.5-8.8

control flow: order in which instructions are executed
flow from I1 to I2 to I3 ….
high level movement of eip (successive
instructions)
branches and jumps and call/return cause eip to
change drastically

Exceptional control flow
but eip can also change in response to external and
internal events not captured by program state
Events

Network packet arrives
Disk read finishes
user hit ctrl-c
division by zero
timer

Exceptional control flow exist at all levels of
abstraction

Application
Handling program errors

Langauge:
C++ or java exceptions: try/catch
setjmp longjmp

operating system
signals
process context switch
error returns

General idea
process chugging along, get to instruction Icurr
event happens, next eip is in an exception handler
exception handler finishes execution
control passes back to either Icurr or Inext
depending on type of exception (or it may not
return at all)

Exceptions at the operating system level
Hardware and software
Hardware defines the types of exceptions that are
possible. OS supplies a handler for each type
Exception table

maps from the exception number to a pointer to
the exception handler for that exception
Processor detects when exception occurs and
jumps through the table to the exception handler

When we jump through the table, the machine is
put into supervisor/kernel mode (as opposed to
user mode)

Protection model in i386 is actually way more
powerful and cooler than what we describe here,
but the market has seen fit not to use it.

exception handler runs code to fix the problem or
otherwise address it, and then “returns”
Memory map

Kernel mapped into user space, free space at
bottom for exception table. Special hardware
register points to start of table.
Now running in supervisor mode, the kernel code
and data can be accessed.

Types of exceptions
Fault

Synchronous
examples:

divide by zero, general protection fault
page fault

Abort
Synchronous
Typically a hardware error or a serious software
problem
Handler does not return
example:

parity check
machine check
double fault

Trap
Intentional exception
Special INT instruction
For system calls
Synchronoous

Interrupt
Caused by external event (signal from I/O device)
A wire going to the processor. voltage change-
>interrupt asserted
Asynchronous
Draw processor/memory/io/controller, interrupt
controller
returns to next instruction
Examples:

I/O event: network packet, disk read,
keyboard, serial, TIMER
Reset button
CTRL-ALT-DEL

maskable versus unmaskable

Process abstraction
Imagine that we can have as many of these
address spaces in the system as we want (tell you
how later in VM)
Imagine that they are independent
Imagine that we can select between them pretty
quickly.
Can use exceptional flow control to switch
between them.

Exception handler can select ANOTHER address
space and then return control to IT.

Exception handler must change the whole
execution context

Registers, including eip
Address space

Code, stack, heap, …
OS-structures

open files, environment vars, ..
This execution context is called a process

Operating system lets you have many of them
Each process “thinks” it’s the only program
running on the system
private address space
logical control flow
to the process, it just looks like certain
instructions take a really long time to finish.
Not allowed to touch kernel space, though.

Has to request that the kernel do things
through a trap.
Kernel can then “vet” what the process
wants it to do.

Exception handler changing context (and
switchting to another process is called a
CONTEXT SWITCH

Possible point of confusion… context switch
versus call to exception handler
exception handler operates in context of the
current process, but it is in kernel mode so it can
touch the kernel stuff
Call to exception handler is cheap
Context switch is expensive

When do context switches happen?
Timer interrupt handler

~100 times per second on linux
Context switch if there is another
process ready to run and the current
process’s quantum is done. quantum
typically >10ms

System call
read from disk slow, so OS initiates the
read and then context switches to
another process

I/O interript handler
read from disk done. So OS can now
switch back to the process that called
read.

Scheduler
Actually, you can think that when the
handlers are done, they call the
scheduler. Scheduler decides whether a
context switch is now appropriate and
which process to switch to.
Scheduling outside scope of class

Process control in programs
Error handling for unix systems calls

negative return value indicates error has
occurred.
error code stored in the global variable
errno, translate to string using sterrror,
print unsing perror
Typical schemes

error => exit
book uses wrappers for
the system calls that
basically just print the
error string and then exit.

Translate error code into app
error code and pass back for
higher levels to deal with.
translate error into C++ or java
exception and pass up the call
chain

Processes are arranged as a tree
Each process has a pid and a ppid
getpid, getppid
pstree –a
ps auxww
The root of the tree is the init process,
which the kernel starts after it has
booted.

Process state from programmers perspective
Running or ready to run
stopped due to signal (suspended)
terminated

by signal
return or exit

Process progress
sleep(secs) / usleep(usecs) / pause()
system calls that context switch away
from the process

read/write/lseek/open/close/selec
t…

Signals
Process environment

argc and argv[] and envp[] passed in to
main
getenv to get environment variables
setenv to set environment variables

only for itself and its children
Process execution returns a value to its parent
when it terminates

via return from main or by exit(rc) call
Processes are created by cloning parent processes

The fork() call
rc=fork();

<0 => error
=0 => am child process
>0 => pid of child process

RETURNS TWICE when sucessful
Child process has a new address space
that is separate from, but a duplicate of
the parent.
Child process executes concurrently with
the parent process
Child but shares open files (file
descriptors) of the parent)

The parent must explicitly request the child’s
return code

waitpid(pid,&status,options)
normal case – stall until child with pid
terminates, get return code back in status
Can set to be non-blocking
Also, regular wait() call to wait for any
one
status encodes the return value from the
child AND the circumstances of how it
was terminated. Macros in book discuss
how to get each component book
Zombies: processes that have terminated
but their parent process hasn’t called
wait on them yet. Kernel needs to keep
the return value around until it can give
it to a parent.

A process can run a new program in place of the
program it currently contains

exec family of functions
execve(char *filename, *argv[], char
*envp[]

argv=>multilevel array
argv[argc]=0;
stack layout on after call

env strings
arg strings
env points [0] is lowest in
memory
argv pointers [0] is lowest in
memory
envp, argv, argc (high to low
address)
stack from from main

Putting it together -> shell
normal state – stalled in read waiting for
user, other processes running
command typed -> interrupts ->
keystrokes -> read returns -> fgets
When complete command line, does
parse

example: ls *.c
Shell expands wildcards

ls foo.c bar.c
shell forks

parent waits on child
child execs ls with foo.c and
bar.c and environment
when ls finishes, parent gets its
return code.

shell goes back to reading
ls *.c &

same except don’t call wait right
away
instead, ask kernel to send you a
SIGCHILD when any of your
children die. Then you just do
waitpids to find out which one
More on signals on Friday.

Aside: virtual machines
An operating system that handles all exceptions
in such a way that it appears to its “applications”
that they are running on the raw hardware.

The “applications” can then be entire operating
systems with their applications – or more virtual
machines.
Old idea from the ‘70s that’s hot once again

IBM mainframe VM OS
Typical: run VM, under VM run MVS
for batch/transaction processing, also run
a bunch of interactive CMSes (ie,
mainframe DOS). Run development
VM and its children, run development
OSes

Current IBM idea
run multiple copies of linux on
mainframe hardware – a whole virtual
cluster.
As your traffic grows, you migrate some
of the virtual linux machines to real
hardware to make them fast.

VMWare
Run linux on windows, run windows on
linux, …

November 9, 2001
Mechanics

Expect to have midterms back next Wednesday
Bomblab performance back today – good job
HW 4 and Malloc lab shifted back (new syllabus
for info)
Reading for next time: 10, 10.1-10.6

Exceptions as underlying mechanism that OS can use
to create the process abstraction
Beyond the process abstraction – threads

We’ll only talk briefly about this here and then a
little bit more at the tail end of the course when we
consider Concurrency within an application
Weak area of the book is that it concentrates on
threads as concurrency, ignoring other approaches
that are also commonly used. We’ll try to touch on
them all
Much more on concurrency and its issues in an
operating system class

Kernel Threads
So far: single thread of execution in a process
Context switch means we go to a completely
different address space, completely different

register set, and a completely different kernel
context (open files)
Thread context switch – we only change the
register sets
Multiple threads of execution in a process =>
multiple stacks
Have to be careful stacks don’t collide
The threads communicate through their shared
address space – this also means that access to
shared region has to be very carefully controlled

Hard to get right
One of the reasons why there are non-thread
approaches to concurrency
Two threads, each doing I++;

I=0 at start
movl (location of i), %eax;
incl %eax
movl %eax, (location of i)
What is value of I after both execute function?

Believe it or not, we can also build thread context
switches entirely at user level

Signals
Exceptions pushed up to the application level
Can be many different signals – it’s an OS
abstraction
Intended to look similar to an interrupt
Process provides signal handler instead of kernel
When kernel delivers the signal, it calls the
handler out of the blue – control suddenly jumps
there.
Sending a signal

kill(process id|process group ,signal number)
Or from from command line using the kill
command

What’s a process group?
All the processes that have the same process
group number

getpgid();
Processes inherit process group numbers from
parents
Processes can change their or other process’s
pgids

setpgid(pid,pgid)

Shell uses this to group processes into jobs
(especially background jobs) so that it’s easy to
stop/kill/etc jobs

What are some signals?
SIGHUP – user disconnected
SIGINT – ctrl-c
SIGILL – illegal instruction
SIGFPE – floating point exception
SIGBUS – trying to access memory that doesn’t
exist
SIGSEGV – trying to access memory you don’t
have rights to
SIGABRT – Abort!
SIGKILL – kill immediately
SIGQUIT. SIGTERM, – please quit gracefully
SIGSTOP , SIGCONT
SIGCHLD – a child stopped or died
SIGALRM – user timer went off
SIGWINCH – window size changed
SIGPWR – power just died (sent due to a UPS)
SIGIO – I/O now possible on some file you asked
me to keep an eye on.
SIGURG – urgent data on some network
connection
SIGUSR1, SIGUSR2 – user signals

How do we react to signals by default?
Terminate
Terminate and dump core

postmortem debugging
gdb myprocesss corefile

Stop until get SIGCONT
Ignore it

How do we change how we react?
signal and sigaction
oldhandler* =signal(signalnum,our handler*)

void handler(int num);
Special handlers

SIG_IGN
SIG_DFL

signal(SIGINT,myctrlchandler)
signal(SIGPIPE,mypipehandler);
signal(SIGSEGV,myrepairhandler);
Can’t do it with all signals – some are
unmaskable

SIGKILL will always terminate. You
can’t override it.
SIGSTOP will always stop

How do we get periodic signals
alarm(seconds_between_ticks);
signal(SIGALRM,myalarmhandler);

Kind of like a timer interrupt, eh?
Combine SIGALRM,
setjmp/longjump(later), SIGIO and you
have the building blocks to implement
threads at user-level within your
process!
Lots of packages that do this

signal semantics are a bit of a mess (different on
different unix implementations)

interaction with system calls
posix sigaction call
interaction with threads

Setjmp/longjmp
Non-local jumps
tag where you are in the stack (perhaps one of
many), and then later can return instantly to that
place.

setjmp(jmpbuffer);
la la la
longjmp(jmpbuffer);

Perhaps even a signal handler can do a longjmp
in response to a signal

SIGPIPE in web server => cleanup connection,
longjmp back to accept
SIGALRM => figure out current location in
current thread, setjmp that context, then longjmp
to saved context of another thread

November 14, 2001
Mechanics

reading
today: 10-10.5
next time: 10.7-10.8

exploit lab extra time to Monday
malloc lab out this Friday
exams back

distributions
props

disk, simm, processor
Playing around with the tools

ps auxww
pstree –a loop
strace a process to see system calls
gdb foo core
kill3
The /proc filesystem

The /dev devices
Virtual memory

So far we’ve made a identity mapping from
addresses our program generates to addresses that
we send to the memory system

Physical addressing
And we assumed that all the data was kept in main
memory
We talked a little about multiple address spaces
and how when we switch from process to process,
we need to “copy” in the new process’s memory

Remember that the process thinks that it has
memory from 0 to 2^n-1
But EACH process thinks this.
And what happens if the machine doesn’t really
have 2^n bytes of memory????

How can we be smarter than copying while still
maintaining protection?

Address space abstraction is what we want. The
idea of copying is just a possible implementation.

Virtual addressing
Basic idea: pass addresses generated by program
through a function or table that maps them to
actual physical addresses.
Now our process can have its 0..2^n address
space but the actual data can be at arbitrary
memory locations

But I still don’t have enough memory!
Translation can fail => you’re trying to access
parts of your address space that you don’t have
physical memory for

Not as much of a problem as you might think –
remember that the address space of a linux
process has lots of giant holes in it.
Can either completely fail when we try to access
memory in a “hole”, or the operating system can
allocate memory for us and update the
translation table.

Translation can be to memory that is currently on
disk (CACHING!)

Translation fails, OS brings memory in from disk
and places it SOMEWHERE in physical memory,
updates translation table, and tries again.
All the issues of caching exist here too

miss rate, hit rate, average access time
cache structure (usually fully associative
because disk is so slow)
replacement policy, write policy, etc.

Disk is called “backing store”
Usually you think of caching as being over a swap
partion or paging file, but we can also think of a
regular FILE as being the backing store for pages
of memory

But isn’t this really really slow – after all, you’re
adding a translation to each memory reference

Page granularity
Entries are contiguous blocks of memory, not one
byte
Page size on Intel: 4K
Like blocksize in a cache – big benefit if there is
spatial locality in the references

Translation table -> page table
Page Table Base Register
Page tables are stored in main memory
But the pages that they are on are marked as
accessible only by the kernel

Address is
virtual page number | page offset
do virtual page number -> physical page number,
concat with page offset
send to memory

Hardware cache the translations
Translation lookaside buffer (TLB)

Generally very small and very associative
But won’t these page tables themselves be big?

multi-level page tables (just like multi-level
arrays)
Split VP number into VP number for 1st table, 2nd
table, …
On some hardware: giant pages

What’s the path?
common case

generate virtual address in program
mapping is in the TLB and permissions are
appropriate
generate physical address
goto main memory

uncommon case
generate address in the program
mapping is in TLB, but permissions wrong: raise
protection fault and let OS figure out what to do.

mapping is not in the TLB
(on intel) hardware looks through page tables in
main memory to find translation, updates TLB

translation found and permissions OK:
update TLB, translate and go
translatikon found and permissions not
OK: raise a protection fault
translation not found: raise a page fault
page fault and protection fault handlers
takes care of situation

permissions are really bad (there
are some tricks that are played
here – copy on write) => send
process signal
permissions are only appear to
be bad (copy on write, mark
writable, allocate) => update
memory, PT, and restart
instruction
entry is missing => should we
allocate page? If so, do it and
restart. If not, send process a
signal.
entry is invalid => page fault =>
Is the page on disk? If so, bring
it back into memory and restart
instruction

Note, scheduler gets
involved here.

(on some other machines) – if it’s not in TLB,
simply generate a page fault and let the OS figure
out what to do (normally just runs through page
tables and does the above itself)

But what about multiple programs?
each process has its own page table.

Page table is part of the OS context of the process
Each entry has permissions associated with it

valid, dirty, read write exec (user), read write
exec (kernel)

Only the kernel can change the translation table,
so the kernel can protect one process from
another

And itself from the process!
What are some useful things to do here

aid to multiprogramming / protection
keep processes separate from each other
keep them from touching the kernel except
through system calls

aid to linking and loading
linker sees simple linear address space model…
process is always 0..2^n-1
loader is easy -> make regions of the executable
file be backing store for their appropriate regions
in the address space (remember that ELF is
really basically a memory image). Then the OS
will “page-in” the executable as it runs – demand
paging

Sharing
Can map a physical page into MULTIPLE
processes’ address spaces. That page is then
shared between them and can be used for
communication
Even read only pages -> map the libc shared
library file into everyone’s address space

Malloc
Memory allocators can treat the heap as being
physically continguous memory

November 16, 2001
Mechanics

Exams back
HW3 back
Reading: 10.9-10.12
malloc lab out
exploit lab due Monday – note comments about
what your readme should contain

Summarize VM so far…
OS wants to provide the following abstractions

Each process has a 0..2^n-1 address space
Simplifies linking/loading
Simplifies dynamic memory allocation within the
program
Address space may have holes

Not all addresses have data
Each process’s address space can be larger than
the amount of physical memory in the machine

“extra” data seamlessly stored on the disk
Physical memory is thus a cache over actual
memory on the disk

There are multiple processes, each with a separate
address space

Processes can not touch each other’s memory
unless permission is explicitly provided.

Some parts of the address spaces can be shared
shared memory for shared libraries,
communication

A process’s address space (virtual address space) is
split up into pages (virtual pages)

4K pages on the intel
Each address now consists of a virtual page
number and an offset within the page

The machine’s memory (physical address space) is
also split up into pages (frames or physical pages)
For each process, the OS maintains a page table,
which maps from a virtual page number to a
physical page number

virtual page number is index into table
content of table is

valid bit (ie, in memory?)
Does that virtual page number currently
map to any physical page?
An invalid page may simply be on disk –
the OS has auxillary structures to figure
this out.

permissions (read/write/execute for user and
kernel mode)
physical page number (if valid)

often a disk block if it does not
The table is itself stored in memory and may be
pageable.

OS tells hardware where the page table is via a
special register (page table base register) accessible
only in kernel mode

This means that switching from one table to
another (ie, on a context switch) is just a register
load

each memory reference is translated by the
hardware through the page table

If the PT entry is invalid or the permissions are
not sufficient for the kind of access, the hardware
raises an exception and the OS becomes involved

invalid + really on disk? load and resume
process.
invalid+not really on disk+on stack? allocate
bad permissions? sends the process a signal

plus other tricks like COW
The hardware makes this acceptably fast by
having a cache on translations, a translation
lookaside buffer (TLB) so that it doesn’t always
have to go to the page tables.

Multilevel page tables
Since virtual address space has lots of “holes”
having one large table for it can be inefficient
Instead, create a table of tables. Or table of tables
of tables.
Split virtual page number part of address into
sections corresponding to each table

For example, 32 bit address, 4K page => 20 bits of
virtual page number => 2^20 entry table
Split into 2 10 bit regions. => 2^10 entry table,
each entry is a pointer to another 2^10 entry
table.
1st table is indexed by 1st 10 bits of address. Thus,
each entry represents 2^22 bytes in the address
space (2^12 byte page * 2^10 pages)
if 1st level entry is “blank”, then translation stops.
Thus we can chop up holes into 1024 page chunks
and only have one page table entry for each
chunk

Virtual memory on Intel + Linux (Slides)
November 21, 2001 (SLIDES)

Mechanics
HW4 delayed until after thanksgiving
Delay on grading, HW4, etc due to, ironically, a
security breech this weekend
ssh compensation attack patch has a kind of stack
overflow bug itself, machine cracked. 2.5 days to
clean out from the mess so far.
Note that reading is all of chapter 10
Responsible for more sophisticated allocators,
garbage collection
Reading for next time: 12-12.4

SLIDES
November 28, 2001

Essentially, this covers the unix systems programming
in a nutshell handout and the book’s material
Mechanics

Exploit labs back
HW4 out
Final exam: December 11, 9 am, cs class room

Reading: Today 12-12.4, next time: 12.5 + unix
systems programming handout and sockets
programming handout.

Revisit mmap
mapping chunks of files into the address space

The file abstraction
A stream of bytes without interpretation

The namespace for files
single rooted hierarchy
maps from a pathname to an inode number
mount points
links and symlinks
filename versus pathname\
absolute path versus relative path

the current diretory
may be multiple pathnames for a file

The partition and inode number
Each file has only one partition+inode number
Flat
inode has detailed info about the file
int stat(pathname,struct stat *s)
inode properties

owner, group
permissions for owner, group, all

Stdio versus the Unix interface
File descriptors and what they mean to the OS

Inode table
cached inode data from the disk + reference
counts

The OS’s open file table
inode, refcount, position, type of access

The process’s file descriptor table
pointers to open file table entires
On fork, get copy of this table + open file table
counts are increased.

The open/read/write/lseek/close interface
Unix error handling -> return –1 and set errno
fd = open(pathname, flags)

O_RDONLY, O_RDWR, O_WRONLY
fd is a handle to the open file
implicit position, initially set to zero.

count = read(fd,buf,len)

may read fewer than the requested number of
bytes, returns –1 on error. returns 0 on end-of-
file
increments position by the count.
Blocks until there is data (can change this)

count = write(fd,buf,len)
may write fewer than requested number, returns –
1 on errors
increments position by count
blocks but can be set to non-blocking

position=lseek(fd,offset,whence);
Seeks to a new position offset from current
position, beginning of file, or end of file.

close(fd)
Non-blocking I/O

open with O_NONBLOCK
or use ioctl to set to non-blocking
“blocking” functions now return “EAGAIN”

Signal-driven I/O
fcntl(fd,F_SETSIG)
OS sends you a SIGIO signal whenever there is
data available on the fd or it can be written
It’s up to your signal handler to figure out which
fd caused the signal and why

Select and poll
What if you have a bunch of file descriptors and
you want to read from them as data becomes
available? ie, you have multiple I/O things
happening in arbitrary order and you must handle
them.

could do a thread per fd
could do non-blocking I/O and just keeps scaning
over the fds.

int num=select(int maxfd, fd_set *read, fd_set
*write, fd_set *except, timeval *timeout).
blocks the process until one or more fds become
available for read, write, have exceptions, or a
timeout occurs, or (in some systems) a signal is
delivered.
Event-driven programming based on select is
common

Beyond files

Unix attempts to map many things into the
filesystem model and lets you access them using the
same read/write/etc interface

But the abstraction breaks down in different ways
for different devices

/proc filesystem
/proc/processid/mem – the virtual address space of
the process
/proc/… various locations in the kernel and device
drivers, presented in nice ways

Non-unix filesystems
mounted on the namespace
“virtual filesystem” drivers create “virtual inode”
layer on top of underlying filesystem
remote filesystems: nfs, afs, alex

/dev devices
communication with device drivers
/dev/hda – your hard drive
/dev/hda1 – a parition on the hd
/dev/st0 – the first scsi tape drive
/dev/dsp – the sound card

fd=open(“/dev/dsp”,O_WRONLY);
write(fd,data,len)
whamo, you’re playing sound.

ttys (terminals) and pttys (pseudoterminals)
Your process automatically inherited your open
ptty when it was forked
fd 0 -> stdin
fd 1 -> stdout
fd 2 -> stderr

pipes
anonymous (unnamed) files that support oneway
communication

fifos (named pipes)
named files, mkfifo call, otherwise like pipes

unix domain sockets
named meeting points for establishing
connections between processes using sockets
interface.

ioctl – the kitchen sink of device-specific stuff
fd is /dev/dsp fd
ioctl(fd,…) might be used to set the the type of
data, or to adjust the mixer, etc.

November 30, 2001

Essentially, this covers the sockets in a nutshell
handout and the reading in the book
Mechanics

Reading: 11-11.4, sockets in a nutshell handout,
systems programming in a nutshell, concurrency
handout TBA

The network stack as another hierarchy of abstractions
“stack” here means “layered architecture”
Each layer may also have several components
Internet protocol stack model and our presentation

physical – wires, signaling
copper, optical Ethernet; atm; modem line
bit encodings

data link – MAC, LAN stuff (Ethernet)
Ethernet collision control
Ethernet switch and hub auto-configuration
Learning bridges

network – routing
IP

transport – end-to-end communication
TCP

application
HTTP

Also OSI stack model
Abstractly, a network is a graph

nodes are either hosts or “routers”
Packet switching

Slice up messages into little chunks. Stamp their
destination address on them, and inject them into
the network
Each router gets the chunk a little bit closer to its
destination

A network (ours and beyond)
Ethernet network: TLAB, 125, (100 mbit switches)

NIC in machine
switch -> full connectivity given permutation
hub -> only one NIC speaks at a time

2nd+3rd floors
Ethernet network: 100 mbit port -> 100 mbit
switches -> gigabit links to router
Ethernet network: 10 mbit port -> 10 mbit hub ->
100 mbit switch -> gigabit

Networks of networks

the birl router – ties these networks and the
outside world together
Outside connections: 2 gigabit links to campus
network
campus network peers with other networks
NON ETHERNET NETWORKS

ATM-based
modems
DSL

Point of IP: virtual network on top of these networks of
networks

Think of a network as being a node as far as IP
routing is concerned
But IP is also end-to-end, so application doesn’t
have to know the details. Can just use IP.

IP is UNRELIABLE DATAGRAMS
may not arrive
may not be corrupted
may not be reordered
Visible at application layer as the UDP protocol
(UDP is a thin layer on top of IP)
No connections

TCP implements RELIABLE BYTE STREAMS on top of
IP

bidirectional
A byte pushed in one end of a TCP connection will
eventually emerge at the other end uncorrupted
and in the order in which it was pushed in.
Connection oriented

Application-level protocols such as HTTP, FTP,
database protocols, etc. typically implemented on top
of TCP
Streaming media typically done on UDP

Programming
Berkeley socket interface

windows has it to, although it’s been subsetted and
then extended so it’s a little different

Core idea:
“opening” and “closing” a connection is different
from a file
What’s the name? There are two principles now

Clients and servers

Active open
Passive open

Associations:
(client ip, client port, proto, server ip, server port)
opening means basically to fill in these parameters
on both client and server side

Opening is a little inverted:
create a socket (gives you a file descriptor for a
socket with proto)
give it a name (ip + port)
Connect the other end
use the fd just like a file

except no seeking
reliability

Client:
int fd = socket(AF_INET, SOCK_STREAM,…)
connect(fd, sockaddr *address_of_server, int len);

Local side is automatically bound to some
available port and INADDR_ANY

sockaddr_in
address family (AF_INET)
ip address of host (network byte order)
port in network byte order

read/write
close(fd);

Server
int fd = socket(AF_INET,SOCK_STREAM,…)
bind(fd,sockaddr
*address_on_this_machine,intlen);
listen(fd,5);
int fd2 = accept(fd,…)
read/write fd2

accept more connections on fd!
close(fd2)

December 5, 2001
Essentially, this covers the reading and the
concurrency handout (the handout in more detail)
Mechanics

Malloclab and HW4 due Friday
Final: Tuesday, December 11, 9-10:30, covers
linking to end of class, non-cumulative, one 8.5x11
paper sheet allowed, calculator recommended

Reading for next time: 12.6-12.9, handout TBA
Key reasons for concurrency in programs

Need to respond to events that arrive in an
unknown order

ssh
Program logically decomposes into tasks that can
run in parallel

word processor
connections to a web server

Performance: exploiting multiprocessors and
distributed environments

Concurrency and communication typically go together
Communicating tasks
Two high-level models

message passing (send/receive)
messages ordered in the communication channel
messages generally buffered, but buffers are not
infinitely large

shared memory
synchronization primitives needed to control
access

Each has theoretical basis
Each includes data transfer and synchronization
Neither lets you avoid critical issues like deadlock

Concurrency/Communcation and its goals
Model

Application consists of tasks that must be
executed to completion
Tasks communicate with each other

Goals
One task blocking should not make other tasks
block
Every task should make progress
Tasks should be treated fairly (notion of fairness
depends on application – ie, priorities)
Concurrency and communication must avoid
deadlock, livelock, and data corruption/bugs
Minimize overhead
Extensibility to multiprocessors and distributed
environments

Subtlety of concurrency/communication bugs – the
software engineering side of choosing a concurrency
model

Bugs can now show up under specific timing
conditions that may be difficult to reproduce

“Heisenbugs”
Often painful to debug

software is deployed, deadlocks…
No core file, no one at customer site to connect to
program with gdb and see what’s going on
Little information about the chain of events that
what lead to the deadlock (logs, perhaps)

More synchronization than is “Sufficient”
(defensive programming) may make the program
less likely to contain such bugs, but it will also
probably make it slower… where is the right
tradeoff?
The benefits and costs of using pre-emptive multi-
tasking instead of cooperative multitasking

pre-emption – less code
cooperative – exact control over when context
switches happen

Concurrency Approaches with application to a web
server

Web server socket pseudocode
Want to accept new connections as they come in
Want to handle existing connections as they
become ready for reading/writing
Will ignore synchronization in this…

Processes
Fork-based web server

1. startup
2. accept connection
3. fork new process

4. child does read/write/close
close fd in parent
5. non-blocking waitpids for outstanding
children
6. goto 2
Writing logs – perhaps in parent before step 6
Or have children do it, but they must lock the file
- flock
Or, shared semaphore among all children

Creation overhead for processes – Process pools
mechanism for passing fd to a process

Threads
OS schedules thread contexts

thread context = registers + stack

Thread executes in context of a process, sharing
address space, open files, other OS-level

pthread interface
int pthread_create(pthread_t *tid, pthread_attr_t
*attributes, void * (*f)(void*), void *arg)
int pthread_detach(tid)
int pthread_exit(void *threadret)

joins all threads if called from main
int pthread_cancel(tid)
int pthread_join(tid, void **return)

Semaphores
int sem_init(sem_t *sem, int pshared, int val);
int sem_wait(sem_t*) – (P) (atomic: while
(sem<=0) {}; sem--;
int sem_post(sem_t*) - V: atomic sem++

Web server with threads
1. startup
2. accept connection
3. spawn thread + detach to handle connection

thread function does read/write/close
4. goto 2
Synchronization – log file

Creation overhead for threads - Thread pools
Started talking about select-based I/O here.
Contents in next lecture.

December 7, 2001
Mechanics

HW4 due at exam
Lab due at midnight tonight, handin as described
Exam: 12/11, Tuesday, 9am here, sheet of paper,
calculator

Today’s goal: finish up select and signal-driven I/O,
talk at a high-level about protocols like http, talk at a
high level about distributed systems
Cooperative versus pre-emptive approaches to
concurrency

cooperative approaches put total control in your
hands, but require that you implement state
maintenance, and scheduling. Also has very low
overhead.

Big advantage: when your task is running, it
executes just like a purely sequential program –
easier to debug, easy to incorporate other code,
etc.
Big disadvantage: you personally have to insure
liveness – that all tasks make progress.

pre-emptive approaches tend to make state
maintenance easier, and take care of scheduling
for you, but you no longer have as much control.
Higher overheads

Big advantage: liveness is taken care of by the
thread or process scheduler.
Big disadvantage: synchronization – your task is
no longer equivalent to a sequential program

Task state and context switches
In thread-based or process-based concurrency,
task state can live in stack and registers. It is
automatically saved and restored through the
process of context switches

Not completely correct – you can have state
outside of these in which case you need to manage
it yourself

In cooperative schemes like select, it is your
responsibility to do save/restore of state.

Harder to get right, but potentially much faster
Applies also to partially pre-emptive, partially
cooperative approaches like signal-driven I/O.

Select-based I/O: an example of cooperative
multitasking

The connection list: file descriptors, current state
(how much read, how much written, what phase of
the protocol, etc)
Have OS wait on multiple events
setup
put acceptfd on read list
create fd lists for read, write, exception
call select
scan output fd lists for active fds

if accept, do accept and put new fd in read list
if fd, do read/write/close as necessary

This is the same as we discussed in I/O
No preemption!
However, must explicitly maintain the state of
each fd from select call to select call
What if something blocks or takes a long time? Uh
Oh. Programmer’s responsibility to see that this
doesn’t happen.

Signal-driven I/O: an interesting in-between case –
preemption and cooperation.

Have OS send a signal to you whenever an fd is
readable/writable
setup
install signal handler for sigio
fcntl(acceptfd,F_SETFL,O_NONBLOCK);
fnctl(acceptfd,F_SETSIG,0);
goto sleep
signal handler wakes up, sees what fd is active
if acceptfd, do accept, add connectionfd to list, do
fcntls on it, return

if other, do I/O, possibly close, return
Signal handler is sequential, so can just access log-
file directly

Note that main line of program CAN get pre-
empted and thus there should be careful
synchronization between it and the signal handler
Note that the handler has to maintain the state of
each of its fds so that when it is called again it
knows where to pick up from
What if signal handler blocks or takes a long
time? Uh oh. It’s the programer’s responsibility
to see that this doesn’t happen.

HTTP protocol
Text-based
Request/response (Like RPC, but with only a few
methods, GET, PUT, etc)
Request

GET filename HTTP/version
Attributes
empty line
GET / HTTP/1.0

Response
HTTP/version return_code text_status
Attributes
Content-Length: length of following data in bytes
Content-Type: MIME type of content
HTTP/1.1 200 OK
Date: Fri, 07 Dec 2001 15:39:18 GMT
Server: Apache/1.3.12 (Unix) (Red Hat/Linux)
Last-Modified: date

Content-Length: 12543
Content-Type: text/html
empty line
html document

Client and server like the echo server in the book
CGI is basically just running a program to
generate the response
Book has example of an iterative web server with
CGI

Distributed and parallel systems (most of this will be
discussion of the handout materials)

Why?
Resource requirements
Reliability
Performance

Algorithms
Distributed algorithms must work in the face of
errors, failed connections, etc.

Consensus algorithm example (voting) I have a
database that’s replicated across many sites.
The databases are loosely consitent. Write an
algorithm so that if I can communicate with any
m of the n databases, I can reconstruct the actual
value of a record.
Given a distributed database, make sure that all
updates to a record are perceived by all users
within a fixed amount of time

DNS
Parallel algorithms try to go to a new level of
performance.

Sorting takes O(nlogn) on a single machine. How
much faster can it be on a parallel machine with
infinite processors
Work complexity – the number of operations
performed in total
Depth complexity – the length of the longest
dependent chain of operations.
Sorting

Sequential: O(nlogn) work (depth
irrelevant)
Parallel: O(nlogn) work, O(logn) depth –
what this means is that given an infinite
number of processors, you complete as
sort in O(logn) time while not doing any
more work than the sequential version

For lots of tasks, depth complexity is much
smaller than work complexity, so there is
tremendous potential for speedup.

Processes and communication (sockets or message
passing) are the assembly language of higher
layers – very primitive
Unfortunately, abstractions have not raised much
beyond that, at least from the perspective of the
typical developer. Lots of good research results,
few products.
Higher-level communication abstractions

Message Passing
Collective Communication
Remote Procedure Call (RPC) and friends
Disributed Shared Memory (DSM)

Languages – mostly from parallel computing, not
that much work has been done on languages for
distributed computing.

automatic parallelization and vectorization
Explicitly parallel languages

array-oriented,
collection-oriented

Interface definition languages (IDLs)
Consensus and Consistency

Consensus problem occurs at all levels of a system
Data shared in some way among multiple tasks
Each task has a view of the data
How to make these views consistent with each
other?

Consistency models
Observe the updates to the shared data that some
other task is making. What is the order in which
they are seen
Sequential consistency

Seen in the order they are issued.
Corresponds to SOME interleaved
execution of the tasks
Very difficult and costly to achieve in
practice

Release consistency
Total order between releases (or
barriers)
No ordering guaranteed for updates
happening between two barriers

Even more “relaxed” forms of consistency.
Virtual Synchrony

Hope the class has been enjoyable. Don’t forget to do
the CTECs and please give me any feedback you’d like.
Recall that we want to determine whether to adopt this
class for sophomores.

