
– 1 –

ISAs and Microarchitectures
• Instruction Set Architecture

• The interface between hardware and software
• “Language” + programmer visible state + I/O = ISA
• Hardware can change underneath
• Software can change above
• Example: IA32, IA64, ALPHA, POWERPC

• Microarchitecture
• An implementation of an ISA

– Pentium Pro, 21064, G4, …
• Can tune your code for specific microarchitecures

• Machine architecture
• Processor, memory, buses, disks, nics, ….
• Can also tune code for this

– 2 –

ISAs Continued
• State

• Memory in all its forms
– Registers

• I/O
• Special memory locations that are read/written by other devices
• Processor reading/writing them causes side-effects in the devices
• Interrupts

• Language
• How to interpret bits as transformations from State+I/O into

State+I/O
– How to tell the “cone of logic” what to do

– 3 –

Different models
• CISC = Complex Instruction Set Computer

• Push machine language closer to programming languages
• Hope: more abstraction => more performance
• IA32, VAX, IBM mainframe processors, …

• RISC = Reduced Instruction Set Computer
• Push machine language closer to the hardware
• Hope: easier for compiler to produce high performance
• Alpha, PowerPC, …

• Others
• (V)LIW = (Very) Long Instruction Word : IA64
• Vector processors: Cray, Hitachi
• Multithreaded: Tera
• Reconfigurable (you write the cone of logic directly)

• Transistors are first order effect in market

– 4 –

IA32 Processors
Totally Dominate Computer Market

Evolutionary Design
• Starting in mid ’70s with 8080 (8 bit)
• 1978 – 16 bit 8086

– 8088 version used in IBM PC – 1981
– Growth of PC

• Added more features as time goes on
• Still support old features, although obsolete

Complex Instruction Set Computer (CISC)
• Many different instructions with many different formats

– But, only small subset encountered with Linux programs
• Hard to match performance of Reduced Instruction Set Computers

(RISC)
• But, Intel has done just that!

– 5 –

X86 Evolution: Programmer’s View
Name Date Transistors
8086 1978 29K
• 16-bit processor. Basis for IBM PC & DOS
• Limited to 1MB address space. DOS only gives you 640K

80286 1982 134K
• Added elaborate, but not very useful, addressing scheme
• Basis for IBM PC-AT, 16 bit OS/2, and 16-bit Windows

386 1985 275K
• Extended to 32 bits. Added “flat addressing”
• Capable of running Unix, 32 bit Windows, 32 bit OS/2, …
• Linux/gcc uses no instructions introduced in later models

486 1989 1.9M
Pentium 1993 3.1M

– 6 –

X86 Evolution: Programmer’s View
Name Date Transistors
Pentium/MMX 1997 4.5M
• Added special collection of instructions for operating on 64-bit

vectors of 1, 2, or 4 byte integer data

Pentium II 1997 7M
• Added conditional move instructions
• Big change in underlying microarchitecture

Pentium III 1999 8.2M
• Added “streaming SIMD” instructions for operating on 128-bit

vectors of 1, 2, or 4 byte integer or floating point data

Pentium 4 2001 42M
• Added 8-byte formats and 144 new instructions for streaming SIMD

mode

– 7 –

Why so many transistors
ISA of P4 is basically the same as 386, but it uses 150

times more transistors

Answer:
Hardware extracts parallelism out of code stream to
get higher performance

multiple issue
pipelining
out-of-order and speculative execution

All processors do this these days

Limits to how far this can go, hence newer ISA ideas

– 8 –

New Species: IA64
Name Date Transistors

Itanium 2000 10M
• Extends to IA64, a 64-bit architecture
• Radically new instruction set designed for high performance
• Will be able to run existing IA32 programs

– On-board “x86 engine”

The principles of machine-level programming we will discuss will apply to
current processors, CISC and RISC. Some principles will also apply to
LIWs like IA64

Quantum Computers, if we can build them and if they are actually more
powerful than classical computers, will be COMPLETELY DIFFERENT

– 9 –

ISA / Machine Model of IA32

Programmer-Visible State
• EIP Program Counter

– Address of next instruction
• Register File

– Heavily used program data
• Condition Codes

– Store status information about
most recent arithmetic operation

– Used for conditional branching

E
I
P

Registers

CPU Memory

Object Code
Program Data

OS Data

Addresses

Data

Instructions

Stack

Condition
Codes

• Memory
– Byte addressable array
– Code, user data, (some) OS data
– Includes stack used to support

procedures

– 10 –

text

text

binary

binary

Compiler (gcc -S)

Assembler (gcc or as)

Linker (gcc or ld)

C program (p1.c p2.c)

Asm program (p1.s p2.s)

Object program (p1.o p2.o)

Executable program (p)

Static libraries
(.a)

Turning C into Object Code
• Code in files p1.c p2.c

• Compile with command: gcc -O p1.c p2.c -o p
– Use optimizations (-O) (versus –g => debugging info)
– Put resulting binary in file p

– 11 –

Compiling Into Assembly
C Code

int sum(int x, int y)
{
int t = x+y;
return t;

}

Generated Assembly

_sum:
pushl %ebp
movl %esp,%ebp
movl 12(%ebp),%eax
addl 8(%ebp),%eax
movl %ebp,%esp
popl %ebp
ret

Obtain with command
gcc -O -S code.c

Produces file code.s

– 12 –

Assembly Characteristics
Minimal Data Types

• “Integer” data of 1, 2, or 4 bytes
– Data values
– Addresses (untyped pointers)

• Floating point data of 4, 8, or 10 bytes
• No aggregate types such as arrays or structures

– Just contiguously allocated bytes in memory

Primitive Operations
• Perform arithmetic function on register or memory data
• Transfer data between memory and register

– Load data from memory into register
– Store register data into memory

• Transfer control
– Unconditional jumps to/from procedures
– Conditional branches

Data Flow

Control Flow

– 13 –

Code for sum
0x401040 <sum>:

0x55
0x89
0xe5
0x8b
0x45
0x0c
0x03
0x45
0x08
0x89
0xec
0x5d
0xc3

Object Code
Assembler

• Translates .s into .o
• Binary encoding of each

instruction
• Nearly-complete image of

executable code
• Missing linkages between code in

different files

Linker
• Resolves references between files
• Combines with static run-time

libraries
– E.g., code for malloc, printf

• Some libraries are dynamically
linked
– Linking occurs when program

begins execution

• Total of 13
bytes

• Each
instruction 1, 2,
or 3 bytes

• Starts at
address
0x401040

– 14 –

Machine Instruction Example
C Code

• Add two signed integers

Assembly
• Add 2 4-byte integers

– “Long” words in GCC parlance
– Same instruction whether signed

or unsigned
• Operands:

x: Register %eax

y: Memory M[%ebp+8]
t: Register %eax

» Return function value in %eax

Object Code
• 3-byte instruction
• Stored at address 0x401046

int t = x+y;

addl 8(%ebp),%eax

0x401046: 03 45 08

Similar to
expression
x += y

– 15 –

Disassembled
00401040 <_sum>:

0: 55 push %ebp
1: 89 e5 mov %esp,%ebp
3: 8b 45 0c mov 0xc(%ebp),%eax
6: 03 45 08 add 0x8(%ebp),%eax
9: 89 ec mov %ebp,%esp
b: 5d pop %ebp
c: c3 ret
d: 8d 76 00 lea 0x0(%esi),%esi

Disassembling Object Code

Disassembler
objdump -d p

• Useful tool for examining object code
• Analyzes bit pattern of series of instructions
• Produces approximate rendition of assembly code
• Can be run on either a.out (complete executable) or .o file

– 16 –

Disassembled
0x401040 <sum>: push %ebp
0x401041 <sum+1>: mov %esp,%ebp
0x401043 <sum+3>: mov 0xc(%ebp),%eax
0x401046 <sum+6>: add 0x8(%ebp),%eax
0x401049 <sum+9>: mov %ebp,%esp
0x40104b <sum+11>: pop %ebp
0x40104c <sum+12>: ret
0x40104d <sum+13>: lea 0x0(%esi),%esi

Alternate Disassembly

Within gdb Debugger
gdb p

disassemble sum

• Disassemble procedure
x/13b sum

• Examine the 13 bytes starting at sum

Object
0x401040:

0x55
0x89
0xe5
0x8b
0x45
0x0c
0x03
0x45
0x08
0x89
0xec
0x5d
0xc3

– 17 –

What Can be Disassembled?

• Anything that can be interpreted as executable code
• Disassembler examines bytes and reconstructs assembly source

% objdump -d WINWORD.EXE

WINWORD.EXE: file format pei-i386

No symbols in "WINWORD.EXE".
Disassembly of section .text:

30001000 <.text>:
30001000: 55 push %ebp
30001001: 8b ec mov %esp,%ebp
30001003: 6a ff push $0xffffffff
30001005: 68 90 10 00 30 push $0x30001090
3000100a: 68 91 dc 4c 30 push $0x304cdc91

– 18 –

Copying Data and Registers
Moving Data (Really Copying)

movl Source,Dest: Move 4-byte (“long”) word
• Accounts for 31% of all instructions in

sample (IA32 – other machines are different)

Operand Types
• Immediate: Constant integer data

– Like C constant, but prefixed with ‘$’
– E.g., $0x400, $-533
– Encoded with 1, 2, or 4 bytes

• Register: One of 8 integer registers
– But %esp and %ebp reserved for special use
– Others have special uses for particular

instructions
– Special cases => Non-orthogonality (BAD)

• Memory: 4 consecutive bytes of memory
– Various “addressing modes”

%eax

%edx

%ecx

%ebx

%esi

%edi

%esp

%ebp

– 19 –

movl Operand Combinations

• Cannot do memory-memory transfers with single instruction
– Example of NON-ORTHOGONALITY in the IA32 ISA

» Makes it much harder to program or compile for

movl

Imm

Reg

Mem

Reg
Mem

Reg
Mem

Reg

Source Destination

movl $0x4,%eax

movl $-147,(%eax)

movl %eax,%edx

movl %eax,(%edx)

movl (%eax),%edx

C Analog

temp = 0x4;

*p = -147;

temp2 = temp1;

*p = temp;

temp = *p;

– 20 –

Simple Addressing Modes
Normal (R) Mem[Reg[R]]

• Register R specifies memory address
movl (%ecx),%eax => int t = *p;

Displacement D(R) Mem[Reg[R]+D]
• Register R specifies start of memory region
• Constant displacement D specifies offset
movl 8(%ecx),%edx => int t = p[2];

movl 8(%ebp),%edx => int t = some_argument;

– %ebp, %esp used to reference stack. Stack contains arguments to
function

All instructions support addressing
modes, not just moves

– 21 –

Using Simple Addressing Modes

void swap(int *xp, int *yp)
{
int t0 = *xp;
int t1 = *yp;
*xp = t1;
*yp = t0;

}

swap:
pushl %ebp
movl %esp,%ebp
pushl %ebx

movl 12(%ebp),%ecx
movl 8(%ebp),%edx
movl (%ecx),%eax
movl (%edx),%ebx
movl %eax,(%edx)
movl %ebx,(%ecx)

movl -4(%ebp),%ebx
movl %ebp,%esp
popl %ebp
ret

Body

Set
Up

Finish

– 22 –

Understanding Swap
void swap(int *xp, int *yp)
{
int t0 = *xp;
int t1 = *yp;
*xp = t1;
*yp = t0;

}

movl 12(%ebp),%ecx # ecx = yp

movl 8(%ebp),%edx # edx = xp

movl (%ecx),%eax # eax = *yp (t1)

movl (%edx),%ebx # ebx = *xp (t0)

movl %eax,(%edx) # *xp = eax

movl %ebx,(%ecx) # *yp = ebx

Stack

Register Variable
%ecx yp

%edx xp

%eax t1

%ebx t0

yp

xp

Rtn adr
Old %ebp %ebp0

4

8

12

Offset

•
•
•

Old %ebx-4

– 23 –

Indexed Addressing Modes
Most General Form

D(Rb,Ri,S) Mem[Reg[Rb]+S*Reg[Ri]+ D]

• D: Constant “displacement” 1, 2, or 4 bytes
• Rb: Base register: Any of 8 integer registers
• Ri: Index register: Any, except for %esp

– Unlikely you’d use %ebp, either
• S: Scale: 1, 2, 4, or 8

Special Cases
(Rb,Ri) Mem[Reg[Rb]+Reg[Ri]]
D(Rb,Ri) Mem[Reg[Rb]+Reg[Ri]+D]
(Rb,Ri,S) Mem[Reg[Rb]+S*Reg[Ri]]

All instructions
support
addressing modes,
not just moves

– 24 –

Address Computation Instruction
leal Src,Dest

• Src is address mode expression
• Set Dest to address denoted by expression

Uses
• Computing address without doing memory reference

– E.g., translation of p = &x[i];

• Computing arithmetic expressions of the form x + k*y
– k = 1, 2, 4, or 8.

– 25 –

Some Arithmetic Operations
Format Computation

Two Operand Instructions
addl Src,Dest Dest = Dest + Src
subl Src,Dest Dest = Dest - Src
imull Src,Dest Dest = Dest * Src
sall Src,Dest Dest = Dest << Src Also called shll
sarl Src,Dest Dest = Dest >> Src Arithmetic
shrl Src,Dest Dest = Dest >> Src Logical
xorl Src,Dest Dest = Dest ^ Src
andl Src,Dest Dest = Dest & Src
orl Src,Dest Dest = Dest | Src

One Operand Instructions
incl Dest Dest = Dest + 1

decl Dest Dest = Dest - 1

negl Dest Dest = - Dest
notl Dest Dest = ~ Dest

– 26 –

Using leal for Arithmetic Expressions

int arith
(int x, int y, int z)

{
int t1 = x+y;
int t2 = z+t1;
int t3 = x+4;
int t4 = y * 48;
int t5 = t3 + t4;
int rval = t2 * t5;
return rval;

}

arith:
pushl %ebp
movl %esp,%ebp

movl 8(%ebp),%eax
movl 12(%ebp),%edx
leal (%edx,%eax),%ecx
leal (%edx,%edx,2),%edx
sall $4,%edx
addl 16(%ebp),%ecx
leal 4(%edx,%eax),%eax
imull %ecx,%eax

movl %ebp,%esp
popl %ebp
ret

Body

Set
Up

Finish

– 27 –

Understanding arith
int arith
(int x, int y, int z)

{
int t1 = x+y;
int t2 = z+t1;
int t3 = x+4;
int t4 = y * 48;
int t5 = t3 + t4;
int rval = t2 * t5;
return rval;

}

movl 8(%ebp),%eax # eax = x
movl 12(%ebp),%edx # edx = y
leal (%edx,%eax),%ecx # ecx = x+y (t1)
leal (%edx,%edx,2),%edx # edx = 3*y
sall $4,%edx # edx = 48*y (t4)
addl 16(%ebp),%ecx # ecx = z+t1 (t2)
leal 4(%edx,%eax),%eax # eax = 4+t4+x (t5)
imull %ecx,%eax # eax = t5*t2 (rval)

y

x

Rtn adr
Old %ebp %ebp0

4

8

12

Offset
Stack

•
•
•

z16

– 28 –

Another Example

int logical(int x, int y)
{
int t1 = x^y;
int t2 = t1 >> 17;
int mask = (1<<13) - 7;
int rval = t2 & mask;
return rval;

}

logical:
pushl %ebp
movl %esp,%ebp

movl 8(%ebp),%eax
xorl 12(%ebp),%eax
sarl $17,%eax
andl $8185,%eax

movl %ebp,%esp
popl %ebp
ret

Body

Set
Up

Finish

movl 8(%ebp),%eax eax = x
xorl 12(%ebp),%eax eax = x^y (t1)
sarl $17,%eax eax = t1>>17 (t2)
andl $8185,%eax eax = t2 & 8185

213 = 8192, 213 – 7 = 8185

– 29 –

CISC Properties
Instruction can reference different operand types

• Immediate, register, memory

Arithmetic operations can read/write memory
Memory reference can involve complex computation

• Rb + S*Ri + D
• Useful for arithmetic expressions, too

Instructions can have varying lengths
• IA32 instructions can range from 1 to 15 bytes

RISC
• Instructions are fixed length (usually a word)
• special load/store instructions for memory

– Generally simpler addressing modes
• Other operations use only registers (but there are lots of registers)

– 30 –

Summary: Abstract Machines

1) loops
2) conditionals
3) goto
4) Proc. call
5) Proc. return

Machine Models Data Control
1) char
2) int, float
3) double
4) struct, array
5) pointer

mem proc

C

mem regs alu

processor

Assembly
1) byte
2) 4-byte long word
3) 8-byte quad word
4) contiguous byte allocation
5) address of initial byte

3) branch/jump
4) call
5) ret

Stack Cond.
Codes

– 31 –

Pentium Pro (P6)
History

• Announced in Feb. ‘95
• Basis for Pentium II, Pentium III, and Celeron processors

Features
• Dynamically translates instructions to more regular format

– Very wide, but simple instructions
• Executes operations in parallel

– Up to 5 at once
• Very deep pipeline

– 12–18 cycle latency

PentiumPro Block Diagram

Microprocessor Report
2/16/95

– 33 –

PentiumPro Operation
Translates instructions dynamically into “Uops”

• 118 bits wide
• Holds operation, two sources, and destination

Executes Uops with “Out of Order” engine
• Uop executed when

– Operands available
– Functional unit available

• Execution controlled by “Reservation Stations”
– Keeps track of data dependencies between uops
– Allocates resources

Consequences
• Indirect relationship between IA32 code & what actually gets

executed
• Difficult to predict / optimize performance at assembly level

– 34 –

Whose Assembler?

Intel/Microsoft Differs from GAS
• Operands listed in opposite order

mov Dest, Src movl Src, Dest
• Constants not preceded by ‘$’, Denote hexadecimal with ‘h’ at end

100h $0x100

• Operand size indicated by operands rather than operator suffix
sub subl

• Addressing format shows effective address computation
[eax*4+100h] $0x100(,%eax,4)

lea eax,[ecx+ecx*2]
sub esp,8
cmp dword ptr [ebp-8],0
mov eax,dword ptr [eax*4+100h]

leal (%ecx,%ecx,2),%eax
subl $8,%esp
cmpl $0,-8(%ebp)
movl $0x100(,%eax,4),%eax

Intel/Microsoft Format GAS/Gnu Format

