
CS 213 Introduction to Computer Systems Dinda, Fall 2021

 Page 1 of 3

Homework 1

Integer and Floating Point Number Representations

Integer

Problem 1
Suppose you have a 4 GHz x64 core and you can execute three integer operations (additions or
subtractions) every cycle. How long (how many seconds) will the following loop run?

 uint32_t i; /* 32 bit unsigned integer */
 uint32_t s; /* 32 bit unsigned integer */
 for (i = 1 ; i != 0; i++) {
 s += i;

}

Problem 2
How can you compute the following using only shifts, adds, and subtracts? Here, x is a uint32_t.

16 * x
17 * x
23 * x
x / 16
x / 17 (Hard! Outside the scope of class, but included as a challenge)

Problem 3
Some instruction sets, including x64, provide an integer representation in addition to two’s complement.
This representation is called Binary Coded Decimal (BCD). In BCD, a decimal digit (0,1,2,3,4,5,6,7,8,9)
is encoded into a group of 4 bits using 0000 through 1001. How many unique numbers can be
represented in a 64 bit BCD quantity? Why might one use BCD to represent prices like $10.99?

Problem 4
Many instruction sets have instructions where when you multiply two k bit numbers the result is stored as
two k bit numbers. Why? Similarly, many have instructions where if you divide two k bit numbers, the
result is stored as two k bit numbers. Why?

CS 213 Introduction to Computer Systems Dinda, Fall 2021

 Page 2 of 3

Floating Point

Consider the following two small floating point formats based on the IEEE standard:

• Little Format

• Tiny Format

Except for the sizes of these formats, the rules are those of the IEEE standard.

Problem 1
For both formats, determine the following values (in decimal)

1. Largest positive finite number
2. Positive normalized number closest to zero
3. Largest negative denormalized number
4. Negative denormalized number closest to zero

Problem 2
Encode the following values in the 8 bit Little Format: ¾, -13/16, 44, –104, NaN, and negative infinity.
Show each in binary and hexadecimal.

Problem 3
Determine the values corresponding to the following Little Format bit patterns. The leftmost bit is the most
significant

1. 10101011
2. 01111000
3. 10110101
4. 01011111
5. 11000101
6. 11111111

Problem 4

Convert the following 8 bit Little Format numbers into 6 bit Tiny Format numbers. Overflow should yield
+/- infinity, underflow should yield +/- 0.0, and rounding should follow the “round-to-nearest-even” tie-
breaking rule. Show the bit pattern and its hex representation.

Sign Bit Exponent
(bias is 7)

Significand
(Mantissa)

Sign Bit Exponent
(bias is 3)

Significand
(Mantissa)

CS 213 Introduction to Computer Systems Dinda, Fall 2021

 Page 3 of 3

1. 00010010
2. 11101011
3. 10100011
4. 11001110
5. 00110101
6. 11111111
7. 01111000

Problem 5

The changing demands of scientific computation, the growing importance of machine learning
computation, and issues with the IEEE floating point standard you are learning have resulted in a range of
new alternatives that current vying for attention.1 For machine learning purposes (specifically neural
network “deep learning” computations), it is generally believed that 16 bit floating point is sufficient.

• A 16 bit version of the IEEE standard exists and is widely implemented. A float16 has 5 exponent
bits and 10 mantissa bits.

• Brain Floating Point is another important standard (also widely implemented in recent Intel and
ARM chips, and originating in Google’s TPU chips). A bfloat16 has 8 exponent bits and 7
mantissa bits. It is essentially a 32 bit IEEE floating point number with 16 bits chopped off the
end of the mantissa.

What are the comparative advantages and disadvantages of these formats in terms of the real numbers they
can represent?

Some proposed alternatives to IEEE floating point encode the split between exponent bits and mantissa bits
directly in the number itself. For example, for an n bit number, we might introduce a log2(n) bit field that
encodes the position of the last exponent bit. For 16 bits, this field would be 4 bits wide, leaving just 12
bits for the sign, exponent and mantissa. For 32 bits, the field would be 5 bits wide, and so on. What
are the advantages and disadvantages of such a scheme? What happens as the bit width of the number
increases?

1 Other important examples: unums and posits

