Understanding Make
Why Make?

Its easy and efficient to build small projects with
a compile command. For example,

cc nyapp.c -0 nyapp.

However, this method becomes very inefficient
for large projects such as the ones you will be
building in this class. For example, running

cc foo.c bar.c baz.c -o nyapp

when baz. ¢ changes means you are wasting time
compiling the other files. Ideally, you would
like to only compile baz. ¢ and then link it with
the other object files. You could do this yourself,
but make lets you automate it. The goal of make
is to build your project with the minimum amount
of work.

Basic Idea

You supply make with a file (whose default name
is “Makef i | e”) which describes the dependencies
between files in your project and a method for
satisfying each dependency. These dependencies
form a DAG - for example:

foo.c foo.h bar.c bar.h baz.c baz.h

A

foo.o bar.o baz.o
V(%?@w\bar$ bMyapp
myapp

Now, when make is run, for each dependency, if
the target file is older than the file it depends on,
it will execute the method to bring the target file
up to date. For example, suppose we change
foo. h. Make will recognize thatf 0co. 0 and

bar. o depend on it and will recompile them.

Next, it will relinknyapp.
Simple Makefile

A makefile consists of one or more rules which

have the form:

t ar get source(s)
[TAB] command
[TAB] command

The first character of each command line must be a
TAB. The makefile corresponding to the above
graph is

foo.0 bar.o baz.o
cc foo.o bar.o baz.o -0 nyapp

nyapp:

foo.c foo.h
cc -c foo.c

f 00. 0:

bar.c bar.h foo.h baz.h
cc -c bar.c

bar . o:

baz.c baz.h
cc -c baz.c

baz. o:

Comments
Any line beginning with a ‘#” is ignored by make.
Makedepend

One headache with makefiles is making sure that
you have specified dependencies to header files
correctly. Makedepend is a tool that will do this
for you automatically. You run makedepend on

all your source files:

makedepend foo.c bar.c baz.c

and it will add the correct dependencies to
Makefile. You can use the - MM option of gcc to do
the same thing.

Macros

Makefiles can have macro definitions and uses.
For example, with

CcC = gcc

CCOPT = -g -DDEBUG - DPRI NT
#CCOPT = -2

foo.o0: foo.c foo.h

$(CC) $(CCOPT) -c foo.c

foo.c will be compiled for debugging or with

optimization depending on which CCOPT is
uncommented.

Macros definitions can also be modified when
they are used. For example,

OBJECTS = foo.0 bar.o baz.o

dep:
makedepend $(OBJECTS: . o=. c)

will cause makedepend to be called on f 0o0. c,
bar. c and baz. ¢ when the dep target is made.

Suffix Rules

Often, a project has many rules that have common

commands applied to files with the same suffixes.

For example, each of the .o files in our example
depend on its parent .c file and is compiled with
the same command. We can replace this with a
suffix rule:

.C.0 :
$(CC) $(CCOPT) -c $*.c -0 $@

$* is a special macro for the prefix the two files
share and $@contains the target name.

Default Rules

Make has a lot of built in defaults that are used
when a user-defined rule can’t be found. For
example, it can infer that f 00. 0 depends on

f 00. ¢ and use a generic C compilation rule to
update f 00. 0. In general, AVOID USING THE
DEFAULT RULES.

A Menagerie of Makes

There are many different Makes with widely
varying features. Perhaps the most popular
alternate make is GNU Make, which has the
advantage of having a manual freely available.
Some makes exploit the parallelism of the
dependency graph to distribute the make across a
number of workstations.

To Learn More

man make
O’Reilly books in bookstore

A Larger Example

CcC = gcc

#CC = ccC

CPP = g++

INC = -ILEDA i ncl

LI B = - LLEDA

CCOPT = -g - DDEBUG - DSPACEMONI TOR\
$(1NO $(LIB)

#CCOPT = -2 $(INC) $(LIB)

CPPOPT= $(CCOPT)

GENERALS = cache. o disthandler.o \
internal s.o dispatcher.o util.o \
buil der.o group.o relation.o \
errprint.o diffmaprle.o aapair.o \
aabl ock.o stdrel _Ilb.o \
stdrel _sortseqpair.o

DI SPLAY = display.o

| NTERNALS = HPF. o

DISPLIBS = -IP -1G-IL -IW -1X11 -Im
all: fung

fung: libdist.a libfxtinmers.a fung.o \

$(Dl SPLAY)
$(CPP) $(CPPOPT) fung.o \
libdist.a |libfxtimers.a \
$(Dl SPLAY) $(DI SPLIBS) -0 fung

libdist.a : $(GENERALS) $(| NTERNALS)
ar ruv libdist.a $(GENERALS) \

$(1 NTERNALS)
$(DI SPLAY): display.C
$(CPP) $(CPPOPT) -c display.C\
-0 $(DI SPLAY)
c.0 :
$(CC) $(CCOPT) -c $*.c -0 $@
dep:

maekedepend $(1NC) \
$(GENERALS: . 0=.¢c) \
$(| NTERNALS: . 0=. ¢) \
$(DI SPLAY: . 0=. C)

