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From Physics to Logic 
 
This course aims to introduce you to the layers of abstraction of modern computer 
systems.  We won’t spend much time below the level of bits, bytes, words, and functional 
units, but I think you should at least be aware of the richness that exists below this level 
and what implications it has for the higher layers.   
 

Simulating Classical Physics With Quantum Physics 
Modern computer systems are based ultimately on quantum physics.  However, they use 
the quantum effects of materials essentially to simulate classical physics.  Most 
mathematical theories of computation also assume classical physics.  How we built 
computers and how we think about computers have matched for over half of a century.   
To a reasonable approximation, all current computers can be thought of as Universal 
Turing Machines, we can think of UTMs in terms of a Newtonian game of billiards, and 
we can implement that game by exploiting the quantum physics of certain materials. 
 
Starting in the early 1980s, models of computation based directly on quantum physics 
have been developed.   These models may be more powerful than UTMs in a theoretical 
sense.  In the mid 1990s, Peter Schor published an algorithm that factored large numbers 
into primes very quickly on a computational model known as a Quantum Turing 
Machine.  That this task is believed to be difficult on classical computers under-girds 
almost all of cryptography, and thus Schor’s result generated much interest.  At this 
point, however, we don’t know whether it is feasible to build a large scale quantum 
computer.  

Semiconductors 
The materials from which processors, memory, and other devices are constructed are 
known as semiconductors.  While semiconductors are created using very mundane 
materials (silicon is the main ingredient of sand!), sophisticated chemistry is used to 
“grow” giant perfect silicon crystals and to subtly “dope” them with “impurities” in order 
to carefully control their properties.   In addition to semiconductors, ultra-pure 
conductors, often created using copper, and insulators, typically created using silicon 
oxide (sand rust!) are the core materials of computers. 
 



213 Introduction to Computer Systems   
 

 Page 2 of 5 

Transistors 
Semiconductors, insulators, and conductors are used to construct passive electronic 
components such as wires, resistors, capacitors, and inductors (rarely).   However, the 
most important component built from semiconductors is an active one, the transistor.  
Transistors are three terminal devices, and there are many kinds.  In the MOSFET, which 
is the typical kind of transistor in modern computer chips, the voltage on one terminal 
(the gate) controls how difficult it is send electrical current between two other terminals 
(the source and drain).   
 
In the nonlinear circuitry of computer chips (as opposed to the linear circuitry of, say, an 
audio amplifier), we usually use the gate to “turn on” and “turn off” the flow of current, 
like a simple valve.   Below, you can see the symbol of a MOSFET and a cross-section of 
its typical construction.   On a current processor chip, a MOSFET transistor has a size 
measured in the 10s of nanometers, about 1,000 to 10,000 times smaller than the width of 
a human hair. 

 
 
 

Logic and Memory 
Using transistors and capacitors, we can create the combinational logic and memory that 
are the basis of computers.   For example, the following shows the symbol for a NAND 
(“Not And”) at the left and its implementation using four MOSFETs at right. 
    

 
 
The solid circles (often shown as open circles as well) represent inversion.  Basically, a 
circle at the gate of a MOSFET indicates that as gate voltage decreases, it gets easier to 
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send current from source to drain.  Without a circle, decreasing voltage makes it gets 
harder.   
 
The two inputs to the NAND represent truth values (true or false).  The output of the 
NAND is true unless both inputs are true, in which the output is false.   While this might 
seem like a strange logical operation, NAND is powerful because it is a universal logical 
operation – any other combinational logic operation (and, or, not, xor, etc) or logic circuit 
built out of them can be implemented by wiring NANDs together. 
 
We can also use transistors (and other components) to build memory cells.  Below, at left 
we see a DRAM cell (1 bit of memory), which is what main memory on most computers 
consists of.  At right, we see an SRAM cell (again, 1 bit of memory), which is the typical 
cell in cache memories, processor register files, and other components.  There is a third 
kind of memory cell, a latch, which is widely used in implementing processor pipelines. 
 

   
 
An important thing to notice is that an SRAM cell uses no capacitors but uses six 
transistors instead of just one.  SRAM cells are much faster than DRAM cells, but also 
much more expensive.  That’s why they tend to be put in caches.  An SRAM cell will 
also hold its bit as long as there is power.  In a DRAM cell, because the bit is held in a 
capacitor and capacitors always leak charge, the bit must be frequently refreshed by 
external circuitry.  In your typical computer, all of the main memory is read and rewritten 
10-20 times per second to keep the contents from being lost.  
 

Photolithography and Chips 
Transistors were first developed in the late 1940s.  By the late 1950s, engineers had 
learned how to mass-produce individual transistors inexpensively.  Around this time, 
Jack Kilby, an engineer at Texas Instruments, had a vision of putting building multiple 
transistors and passive devices on a single semiconductor substrate.  He developed the 
first monolithic integrated circuit (IC or “chip”), inventing a technology that is still going 
strong today.  
 
A chip is produced using a process called photolithography, which you can think of as a 
strange kind of photographic printing.  If you’ve ever done black-and-white printing in a 
darkroom, you understand the gist of it already.  Essentially, a negative called a mask is 
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produced that is the inverse of the layer of material to be put on the semiconductor 
substrate.  The substrate is coated with the material that will be deposited and then 
covered in a material called photoresist.  The mask is then placed over the photoresist and 
a bright light (ultraviolet light these days) is shown on it.  Next, the photoresist is 
developed, and then the unexposed photoresist is etched away (like fixing a photographic 
print).  Then the next layer can be created over the current one.   Chips are built up out of 
multiple layers like this.   
 
Below you’ll see a bird’s eye view of the Intel Core i7-3930K processor, which costs 
about $500.  This whole chip has an area of only 430 square millimeters (about double 
the size of the nail on your big toe) yet contains about 2.2 billion transistors. 
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Moore’s Law, Its Limits, And So Many Transistors 
In the late 1960s, Gordon Moore made a plot of the number of transistors on a chip as a 
function of the year the chip came out and found that it was exponential.  Every 18 
months, the number of transistors would double, and chips would become much faster 
because the transistors were smaller.  He predicted that this would continue, and he was 
right.  Moore’s Law still holds true, except now the doubling period is just one year.  
Experts expect that it will continue for at least another 10 years.  The current ways that 
we build processors will not be able to make use of this many transistors, and thus there 
is much current research on how to actually exploit having billions of transistors on a 
chip. 
 

Multicore Processors, GPUs, and Parallelism 
An important recent shift in processors has been the advent of the multicore era.  In a 
multicore processor, the chip contains multiple copies of the processor.   Even 
commonplace desktop microprocessors today have four cores (four copies of the 
processor).  Our class’s server machine has 24 cores, while a $10,000 server can easily 
have 64 cores today.    It is expected that since the number of transistors on chip will 
continue to scale exponentially for some time, the consequence is that the number of 
cores (copies of the processor) per chip will also grow exponentially for some time, 
probably doubling every year or two. 
 
In addition to such completely general purpose processor cores, manufacturers of 
graphics hardware have also been making their hardware more general purpose, creating 
“GPUs” (Graphics Processing Units) that have a much larger number of cores, each of 
which is much “smaller” than a general purpose core.  For example, the $3,000 NVIDIA 
Tesla K20, which fits into a typical desktop or server computer, sports almost 2,500 
cores.  
     
Having k cores, no matter what kind, does not mean that existing programs will get k 
times faster.   A multicore chip is a parallel computer, meaning that it can do several 
things simultaneously at the hardware level.  Parallel computers have been around for 
over 30 years, but the focus of research in parallel systems to this point has largely been 
to support scientific computations.   With parallel computers on everyone’s desktop and 
in everyone’s cell phone, existing and new ideas from parallel systems will need to be 
employed.    The challenge is how to feed the parallelism.  Currently it is the programmer 
who needs to think about k things the chip should be doing simultaneously.  This is 
unlikely the change anytime soon. 


