
CS 395-0, Section 22 Sockets In A Nutshell Dinda, Fall 2000

Page 1 of 3

Sockets In A Nutshell
The Berkeley socket interface provides a common interface to mechanisms by which
processes running on the same or on different machines can communicate. Because of its
generality (the Linux implementation supports 25 combinations of protocol families and
socket types), it can often be daunting to the uninitiated. This document attempts a gentle
introduction to socket programming for one protocol family (the Internet protocols) and
one type of socket (stream sockets). This combination, of course, is TCP/IP, and
provides reliable, connection-oriented, stream-based communication.

Documentation
The socket interface is well documented by man pages on Unix systems. However, it is a
good idea to have a book such as Rick Stevens’s “Unix Network Programming, Volumes
I and II“ handy.

Sockets
A socket is an endpoint for communication—a “doorway” to a process. Communication
requires two such endpoints, a socket for the local process and a socket for the remote
process, and a connection between them. Sockets have a type that consists of the
protocol family they support, and the specific protocol within that family. Sockets are
created using the socket() call. Consider the following.
 i nt sock=socket (AF_I NET, SOCK_STREAM, 0) ;

This creates a TCP/IP socket. “AF_INET” indicates the Internet protocol family, while
SOCK_STREAM denotes a stream-oriented protocol within that family. The only one of
these is TCP. The final argument is used to select between different protocols if there is
more than one that matches the first two arguments.

In Unix, a socket is a file descriptor, and so one can use all the interfaces that take file
descriptors. These are described in a separate document.

Giving A Socket An Address
A doorway is useless if others cannot find it. Before you use a socket, you generally
need to give it an address. In some cases, as we shall see later, the address is given
implicitly. The form of the address depends on the protocol family. For Internet
protocols, the socket address consists of an IP address and a port. The following is an
example of how to bind a socket to port 1500 on the local host.
 st r uct sockaddr _i n sa;
 memset (&sa, 0, si zeof sa) ;
 sa. si n_por t =ht ons(1500) ;
 sa. si n_addr . s_addr =ht onl (I NADDR_ANY) ;
 sa. si n_f ami l y=AF_I NET;
 bi nd(sock, (st r uct sockaddr *) &sa, si zeof sa) ;

There are several things to note here. First, the functions htons() and htonl() are used to
changed their arguments from the host byte order to the network byte order. Forgetting
to do this is the source of many strange socket errors. Next, note that the IP address we
bind to, INADDR_ANY, is a shortcut to say “any IP address that this host supports.” If
we wanted to, we could bind to a specific IP address as well. Finally, note that in terms
of naming and addressing, sockets operate in a quite different manner than files. To open

CS 395-0, Section 22 Sockets In A Nutshell Dinda, Fall 2000

Page 2 of 3

a file, one supplies a name and gets a file descriptor. To open a socket, one creates a
socket, getting a file descriptor, and then binds it to an address.

Connections
Communication requires a connection between two endpoints. We can think of a
connection as being uniquely specified by the addresses if its endpoints (sockets), and by
the protocol being used. For Internet protocols, then, a connection is a five-tuple: the IP
address and port of the machine that actively opens the connection, the IP address and
port of the machine that passively opens the connection, and the protocol (TCP, here).

Server
In opening a connection, we generally think of a machine that passively accepts the
connection (the “server”) and a machine that actively requests the connection (the
“client”). Our code examples so far are for a server.

After binding its socket to a local IP address and port, the server must declare that the
socket is ready to accept connections. It does so using the listen call:
 l i st en(sock, 5) ;

This call does two things. First, it tells TCP to begin accepting connections. Second, it
asserts that TCP should try to accept and queue up to five connections that have not yet
been accepted by the application.

The application can now accept a connection using the accept call:
 st r uct sockaddr _i n sa2;
 i nt sock2 = accept (sock, (st r uct sockaddr *) &sa2, si zeof sa2) ;

Accept() will block until a client attempts to connect. When a connection request comes
in accept, accept() will return a new socket (sock2) that can be used to communicate with
the client. Sa2 contains the address of the remote (client) socket.

At this point, the server has a number of options. For example, it could accept another
connection, fork and let its child handle the connection, pass the connection to another
process or thread, or simply communicate with the client. For simplicity, we’ ll assume it
does the latter.

A connected socket can simply be used like any other Unix file descriptor. For stream
sockets, such as we are using in this example, the read() and write() calls can be used to
communicate over the connection. Socket communication is bi-directional. A write
sends data to the remote end of the connection, while a read receives data from the
remote end. For simplicity, let’s assume that our server will receive one (up to) 80
character line from the client, and then send it right back. We could implement this in the
following way:
 char buf [80]
 i nt n=r ead(sock2, buf , 80) ;
 wr i t e(sock2, buf , n) ;

There are several things to point out here. First, the reads and writes are blocking. The
server will stall in read() until data has been received from the client and in write() until
the data has been handed off to TCP. Second, read() and write() may actually read and

CS 395-0, Section 22 Sockets In A Nutshell Dinda, Fall 2000

Page 3 of 3

write fewer bytes than requested. It is important to always look at the return value when
using read() and write(). This will be the number of bytes actually read or written. Third,
read() and write() may fail, returning a negative number and setting the global error code
errno.

After all communication has been completed, the server must close the socket:
 c l ose(sock2) ;

The socket on which it is listening may also be closed if the server no longer wants to
accept new connections:
 c l ose(sock) ;

Client
The client must also begin by creating an appropriate socket:
 i nt sock=socket (AF_I NET, SOCK_STREAM, 0) ;

Next it creates the address to which it wants to connect:
 st r uct sockaddr _i n sa;
 memset (&sa, 0, si zeof sa) ;
 sa. si n_por t =ht ons(1500) ;
 sa. si n_addr . s_addr =ht onl (i paddr ess_of _ser ver) ;
 sa. si n_f ami l y=AF_I NET;

Notice that this address is identical to the address to which the server bound except that
the IP address of the server is used. It makes no sense to connect to the wildcard address
(INADDR_ANY). Also, notice that the socket is not bound to the address. We do not
care what local IP address or port will be used, so we allow Unix to choose an address.

The client connects by issuing a connection request to the address:
 connect (sock, (st r uct sockaddr *) &sa, si zeof sa) ;

Connect will block until the server’s TCP has accepted the connection. If the server has
not yet run listen() or it has more than five outstanding connections, the connection will
be refused. Otherwise, the connection will be established.

Once the connection is established, the client is free to send data to the server using
read() and write():
 char * buf out =” Hel l o” ;
 char buf i n[80] ;
 wr i t e(sock, buf out , st r l en(buf out) +1) ;
 i nt n=r ead(sock, buf i n, 80) ;

As before, the reads and writes may fail or transfer fewer bytes than requested.

After the client is finished with the socket, it should close it:
 c l ose(sock) ;

Using DNS
The running example above used IP addresses. Generally, humans prefer to use DNS
names. The socket interface includes functions for mapping these human-readable names
to IP addresses and back. Here are some of the relevant functions:
 gethostname() gets the name of the local host
 gethostbyname() gets the IP addresses of the given hostname
 inet_addr() converts an IP address given as a string into a 32 bit integer

