
CS 395-0, Section 22 Unix Systems Programming In A Nutshell Dinda, Fall 2000

Page 1 of 8

Unix Systems Programming In a Nutshell

Unix presents a huge set of interfaces to the systems programmer. However, much of
this complexity can be tamed by understanding several fundamental abstractions and
models, as well as by knowing where to look for more detail. It is important to note,
however, that Unix does not always conform to these abstractions and models.
Furthermore, although the Unix interfaces have the appearance of orthogonality,
orthogonality is not always maintained. This document attempts to describe the
fundamental concepts and to point out commonly used interfaces. Examples are geared
to Linux.

The Different Varieties Of Unix
The evolution of Unix has resulted in a number of different contemporary
implementations: BSD, System V, Linux, Mach, … Different implementations have
slightly different semantics for their basic interfaces, and often provide additional
interfaces. For example, Mach-based Unices have always offered kernel threads, while
BSD-based Unices generally have not. If you look at code that is intended to be portable
across different Unices, you’ ll see many #ifdefs that specialize what is done to the
specific Unix.

Documentation
Man pages are the basic on-line reference documentation. No matter how primitive your
terminal is, you can always get man pages. To get a man page for, for example, the open
call, type “man open”. If there is both a command and an interface by a given name, man
will tell you the command. To have it print the interface you need to specify the
appropriate “section” of the manual. For example, “man chmod” will tell you about the
chmod command, while “man 2 chmod” will tell you about the chmod interface, on
which, not surprisingly, the chmod command is based.

The problem with man is that if you don’t know the name of what you’re looking for,
you’re in trouble. If you don’t know that the interface to delete files is called “unlink” ,
you could try running “man –k delete” or “apropos delete” and then sifting through the
many man pages, but that can be somewhat painful.

Code can sometimes provide examples from which you can generalize. For example, if
you look at the source of rm, you will soon discover that it uses unlink. Often, code
examples, as well as other documentation can be found on the web. Of course, it helps if
you use a powerful search engine such as www.google.com.

Rick Stevens’s “Advanced Programming In the Unix Environment” is an excellent.

Everything Tries To Be A File
Unix tries very hard to make all sorts of objects look like files. This means two things:
that these objects are named as files in the file system, and that they can be accessed

CS 395-0, Section 22 Unix Systems Programming In A Nutshell Dinda, Fall 2000

Page 2 of 8

using the same interface that is used to access files. For example, /dev/dsp is the name of
the sound card. /dev/dsp can be opened and read (recording sound samples from line-in)
and written (playing sound samples to line-out) in the same way as any ordinary file.

Sometimes the file abstraction breaks down, however. For example, it is meaningless to
lseek on /dev/dsp since the sound card can’ t go forward or backward in time. Naming
can also break down. For example, pipes are anonymous, being implicitly named by the
processes at their endpoints. Another example is sockets, the abstraction for using the
network. We cannot very well name a remote socket within the local file system.

Files Try To Be Streams of Bytes
Unix treats all files as streams of bytes. It has no clue about what they mean. For
example, it is a convention that ASCII text files use the linefeed to denote the end of a
line, but Unix does not treat the linefeed character in any special way. There are only a
few exceptions to this rule, mostly involving terminals, a topic that won’t be discussed
here. (“Terminals” , despite the archaic name, are important, however, because all
keyboard sessions go through the terminal system. The xterms that you have probably
used enumerable times are based on “pseudoterminals.”)

Errors in Unix
Generally, Unix interfaces have integer return values. A negative return value indicates
an exceptional condition. The global integer variable errno provides more information on
the error and the perror function can be used to print a meaningful description of the
error. For example,
 i nt f d =open(“ f oo” , O_RDWR) ;
 i f (f d<0) {
 per r or (“ Can’ t open f oo”) ; exi t (- 1) ;
 }

attempts to open the file “foo” for both reading and writing. If the open fails, open will
return a negative number and set errno to the appropriate error code. The perror will then
print “Can’t open foo: [description of error code in errno]” .

File I/O in Unix versus Standard I/O in C versus …
This document will next discuss how to do I/O with plain files with the raw Unix
interfaces. It important to note that the run-time libraries of most programming
languages add a layer above this to simplify application-level programming or to increase
performance by sophisticated buffering. As you will see, the raw Unix interface is quite
primitive.

Probably the most familiar run-time library is C’s Standard I/O library, which provides
buffered I/O, simple parsing tools, and other tools. For example, consider how much
work you might have to go through to write the following with the raw Unix interface
we’ ll describe below.
 doubl e x, y;
 FI LE * i n=f open(“ i nput . t xt ” , ” r ”) , * out =f open(“ out put . t xt ” , “ w+”) ;
 f scanf (i n, ” %l f %l f ” , &x, &y) ;
 f pr i nt f (out , ” %l f ” , x+y) ;

CS 395-0, Section 22 Unix Systems Programming In A Nutshell Dinda, Fall 2000

Page 3 of 8

 f c l ose(i n) ; f c l ose(out) ;

C++ I/O streams provide even a higher level of abstraction, as well as static type
checking to reduce the chance of errors.

File I/O
In Unix, the basic calls for file I/O are open(), read(), write(), lseek(), and close(). Before
a file can be accessed, it must be opened. For example,
 i nt f d=open(“ f oo” , O_RDWR | O_CREAT) ;

opens the file foo for reading and writing. If foo doesn’t exist, it is first created and then
opened. Note that “foo” could name a plain file, a fifo, a device, or many other kinds of
objects. The same open() call (and the subsequent calls we discuss in this section) can be
used. Open() returns a file descriptor, which identifies the open file to the kernel.
Objects that do not have names in the file system cannot be opened using open.
However, whatever call is made to open them, the result is a file descriptor which can be
used with the remainder of the calls described in this section.

An open file has associated with it a file pointer, which denotes the next byte of the file
that will be read or written. Generally, after an open, this pointer points to the first byte
of the file (offset zero). The read call is used to read bytes starting at the current file
pointer. For example, the following attempts to read 10 bytes from the file into a buffer:
 char buf [10] ;
 i nt num_r ead=r ead(f d, buf , 10) ;

There are no guarantees that the read() will succeed, or whether it will actually read 10
bytes. If read() returns a negative value, an error has occurred and more detailed error
information is available in errno. If read() returns zero, the end of the file has been
reached. If read() returns a positive number less than the requested size of the read (10,
here), then it is up to the program to call read() again to read the remaining bytes. The
file pointer moves forward by the number of bytes that were actually read.

The write() call operates analogously to the read() call.

By default, both read() and write() are blocking—they will not return until either an error
condition occurs, the end of the file is reached, or some number of bytes are read. It is
also possible to set a file descriptor to be non-blocking, in which case if a call is about to
block, it immediately returns a negative number and sets errno to EWOULDBLOCK.

A call may be interrupted by a signal (see below) in which case a negative number is
returned and errno is set to EINTR. Strictly speaking, this is not really an error, but it is
the programmer’s responsibility to repeat the call.

While the file pointer moves implicitly during read() and write() calls, it is also possible
to move it explicitly using the lseek() call. For example, suppose we want to back up to
the beginning of the file. We would do this by executing:
 l seek(f d, 0, SEEK_SET) ;

When we are finished with the file descriptor, we must close() it:
 c l ose(f d) ;

CS 395-0, Section 22 Unix Systems Programming In A Nutshell Dinda, Fall 2000

Page 4 of 8

More On File Descriptors
File descriptors are a central concept in Unix. Although some objects may not map into
the file system namespace and therefore need to be opened or created using other
interfaces, once they have been opened, they are accessed through a file descriptor. Such
file descriptors can generally be passed to the same interfaces as file descriptors for actual
files. Note that these statements are hedged because there are exceptions—Unix is not
entirely orthogonal. There are special calls for certain kinds of file descriptors. For
example, UDP sockets are usually used with the sendto() and recvfrom() calls instead of
write() and read(). Also, it meaningless to execute lseek() on a socket or a sequential file
(a tape, for example).

Every program starts with three open file descriptors, stdin (0) , stdout (1), and stderr (2).
File descriptors are inherited by child processes. This forms the basis for IPC using
anonymous pipes, as we shall see later. The dup() and dup2() calls are useful for cloning
and duplicating file descriptors within a process. The following example makes writes
to stdout appear the in file “stdout.log” .
 i nt f d = open(“ st dout . l og” , O_WRONLY) ;
 dup2(f d, f i l eno(st dout))

Unix shells use this kind of idiom to implement redirection.

The fcntl() is used to set attributes of file descriptors. Fcntl() is a good example of how
Unix sweeps complexity under the rug. It is really a number of interfaces masquerading
as one. The second argument is basically the name of the interface you desired. By
making the interface an argument, fnctl is extensible. The Linux version has been
extended to 12 calls. Sadly, however, this extensibility also leads to non-standard calls.
Here is an example of how to set a file descriptor for non-blocking I/O:
 f nct l (f d, F_SET_FL, f cnt l (f d, F_GETFL) | O_NONBLOCK) ;

File descriptors may refer to objects that have special properties or functions that are
specific to the kind of device that they are or on which they reside. For example, a sound
card probably allows its sample rate and resolution to be adjusted. The ioctl() call
provides a mechanism to make such device-specific calls. In effect, ioctl() allows the
device driver and other optional components of the kernel to expose functionality to the
application. The acceptable arguments to ioctl() depend on the version of Unix and what
device drivers, etc, you have loaded.

Processes
Unix processes are fairly heavyweight entities. Except for the very first process, which is
created by the kernel, each new process is be created by cloning an existing process using
the fork() call. The forker and forkee have a parent/child relationship. These
relationships imply the existence of a tree of processes rooted at the first process, which
is normally called init. Each process has a unique id, which can be recovered with the
getpid() call, and a unique parent, whose id can be found using the getppid() call.

CS 395-0, Section 22 Unix Systems Programming In A Nutshell Dinda, Fall 2000

Page 5 of 8

The fork() call often paired with a version of the exec() call, which replaces the current
process image with a new one loaded from disk, and with a version of the wait() call,
which waits for a child process to terminate. This common idiom looks like this:
 i nt r c=f or k() ;
 i f (r c<0) {
 per r or (“ f or k f ai l ed”) ;
 } el sei f (r c==0) {
 / / chi l d pr ocess
 execl p(“ l s” , ” l s” , 0) ;
 / / onl y get her e i f execl p f ai l ed
 per r or (“ can’ t exec l s”) ;
 } el se {
 / / par ent pr ocess
 wai t pi d(r c, 0, 0) ;
 / / chi l d f i ni shed, cont i nue
 }

Threads
Some Unices do not support threads, some support only user-level threads, and some
support kernel threads that are comparable to those in Win32. Generally, the pthread
interface is used to access thread functionality on Unix. For more information try “man
pthread_intro” or “man pthread_create” .

Interprocess Communication
Unix has a number of mechanisms for IPC. All Unices support (anonymous) pipes.
Most support named pipes. Most that support Berkeley sockets (described in another
handout) support Unix domain sockets. Most support shared memory segments.

Anonymous pipes are the most primitive IPC mechanism. A pipe supports a
unidirectional flow of data between two file descriptors. Generally, pipes are used for
communication between parent and child processes. A process creates a pipe and then
forks. This clones the file descriptors that point to the pipe’s endpoints—both the parent
and the child have a handle to both ends of the pipe. The parent process then closes one
end of the pipe while the child closes the other end. Writes on one end can then be read
at the other end. Here is an example in which the parent uses a pipe to receive a message
from its child (note lack of error checking).
 i nt t hepi pe[2] ;
 pi pe(t hepi pe) ; / / t hi s cr eat es t he pi pe
 i f (f or k()) {
 / / par ent pr ocess sends dat a
 c l ose(t hepi pe[1]) ; / / c l ose wr i t i ng end of pi pe
 r ead(t hepi pe[0] , buf , l en) ; / / r ead message f r om chi l d
 } el se {
 / / chi l d pr ocess
 c l ose(t hepi pe[0]) ; / / c l ose r eadi ng end of pi pe
 wr i t e(t hepi pe[1] , buf , l en) ; / / wr i t e message t o par ent
 }

CS 395-0, Section 22 Unix Systems Programming In A Nutshell Dinda, Fall 2000

Page 6 of 8

Named pipes extend the pipe abstraction to allow processes that do not share a
parent/child relationship to communicate. Named pipes are created on the file system
using mkfifo:
 $ mkf i f o t hef i f o

This command creates a special file “thefifo” which processes can open() for either
reading or writing. In either case, the open() call blocks until the corresponding call is
made on the other end. This allows two process to rendezvous. For example suppose
process one executes:
 i nt f d = open(“ t hef i f o” , O_RDONLY) ;

This open will block until someone opens thefifo for writing. Some time later, process
two might come along and execute:
 i nt f d = open(“ t hef i f o” , O_WRONLY) ;

At this point, both process one’s and process two’s opens will finish. Process two can
then send messages to process one by writing to its file descriptor, while process one can
receive these messages by reading from its file descriptor. Notice how strongly the file
abstraction holds here.

Both named and anonymous pipes are half-duplex. Data can flow only one way through
them. For two way communication it is necessary to use a pair of pipes or Unix domain
sockets. Unix domain sockets are similar to named pipes in that the channel is named in
the file system. However, open is not used. Instead, the Berkeley sockets interface,
which is described in a separate handout, is used to acquire a file descriptor. Once the
file descriptor has been acquired, it can be handled according to the file abstraction.

Two processes, even if they are parent and child, implicitly share no memory. Shared
memory segments can, however, be explicitly created and used using the shmem
interface. More information on how to use shared memory segments can be found via
“man shmget” and friends.

Synchronization and Signals
The pthread interface supports many forms of thread synchronization primitives, such as
semaphores and condition variables. More details on these tools can be found in any
operating system textbook and in the pthread man pages.

Synchronization between processes uses different tools. We have already seen how a
parent process can wait for a child to terminate. Processes can also synchronize by
sending signals. In addition, the kernel synchronizes and communicates with processes
by sending signals. To send a signal, the kill() system call is used. For example,
 k i l l (get ppi d() , SI GUSR1)

sends the parent process a “SIGUSR1” signal, which is the first “user defined” signal.
There are other, pre-defined, signals which are most often sent by the kernel. For
example, the kernel sends a SIGSEGV when a process incurs a segfault. In response to a
signal, the parent process immediately executes a signal handler. There are default signal
handlers for all signals. Generally, these cause the process to terminate. That is precisely
what would happen in our example. However, the process can install its own signal
handlers, however, using the signal() and sigaction() calls. For example, suppose our
process had executed the following before receiving the SIGUSR1.

CS 395-0, Section 22 Unix Systems Programming In A Nutshell Dinda, Fall 2000

Page 7 of 8

 voi d Si gnal Handl er (i nt s i gnum) {
 f pr i nf (st der r , ” Hi ! Caught si gnal %d\ n” , s i gnum) ;
 }
 s i gnal (SI GUSR1, &Si gnal Handl er) ;

In that case, SignalHandler() would have been called instead of the default handler and,
instead of terminating, the program would have printed “Hi! Caught signal 10” .

A common misconception about signals is that they somehow “queue”, so that n calls to
kill(getppid(),SIGUSR1) will result in n innovations of SignalHandler, for example. In
fact, signals are either on or off. The kill call turns the signal on, while the invocation
turns the signal off. If the “first” invocation of SignalHandler is delayed until all n kills
have executed, then it will be executed only once. The implication is that the signal
handler must be prepared to handle all that may have transpired before it was invoked.
This is vitally important in asynchronous I/O, which we will not discuss further here.

Sometimes a process may want to temporarily ignore signals that arrive. For example, it
may want to execute some code as a critical section. The sigprocmask() call can be used
to “mask” signals. It is important to note that some signals cannot be masked. SIGKILL
is one example. It is never possible to prevent your process from being forcibly killed.

Select and Friends
A common problem in Unix systems programming is to wait for one of several events to
happen. Events in Unix include: a file descriptor becoming available for reading, writing,
or entering an exceptional condition, a certain amount of time passing, and a signal
having been handled. Consider file descriptors. Recall that, by default, calls such as read
and write are blocking. If you try to read a file descriptor and nothing is available, the
read will not return until data is available or an error occurs. Now suppose you want to
read from whichever of two file descriptors has data available. Obviously, reading first
from one and then from the other will not work—you may block on one file descriptor
while there is a data available on the other. One option is to set the file descriptors to
non-blocking and then repeatedly attempt the reads until one does not return
EWOULDBLOCK. However, this will burn up CPU like crazy—CPU that another
process could use. Another option is to use asynchronous I/O, in which you ask Unix to
send you a SIGIO signal whenever some file descriptor changes state. This can be
painful to code.

A simple alternative is to use the select() call. Select says “wait efficiently until at least
one of this set of file descriptors is available for reading, or at least one of this other set of
file descriptors is available for writing, or at least one of this still other set of file
descriptors has an exceptional condition, or a signal is handled, or a certain amount of
time has passed”. We could code our example in the following way:
 f d_set r ead_f ds;
 FD_ZERO(&r ead_f ds)
 FD_SET(f d1, &r ead_f ds) ;
 FD_SET(f d2, &r ead_f ds) ;
 i nt r c = sel ect (MAX(f d1, f d2) +1, &r ead_f ds, 0, 0, 0) ;
 i f (r c<0) {
 / / er r or happened

CS 395-0, Section 22 Unix Systems Programming In A Nutshell Dinda, Fall 2000

Page 8 of 8

 i f (er r no==EI NTR) {
 / / s i gnal was handl ed, sel ect i nt er r upt ed
 }
 } el sei f (r c==0) {
 / / t i me out happened
 } el se {
 / / r c i s t he number of f ds t hat ar e avai bl e
 i f (FD_I SSET(f d1, &r ead_f ds) {
 / / t her e i s at l east one byt e t o be r ead on f d1
 }
 i f (FD_I SSET(f d2, &r ead_f ds) {
 / / t her e i s at l east one byt e t o be r ead on f d2
 }
 }

Here read_fds is the set of file descriptors that we want to read from. In this example, the
next three arguments to select (the set of file descriptors we want to write to, the set of
file descriptors we want to check for exceptional conditions, and the amount of time
before a timeout) are set to zero because we are not interested in any of these events and
we are willing to wait indefinitely.

There are several other functions that are similar to select, but sometimes easier to use.
These include poll(), sleep(), and usleep().

Other Topics Of Interest
This document has avoided talking about the following topics because they are not
necessary in this course. They are presented here along with suggestions for man pages
to look at to learn more. Stevens’s book can also be quite helpful here.

• File system management (creat(), mkdir(), unlink(), stat(), lstat(), …)
• Security (chmod(), chown(), chgrp(), flock())
• Terminals, sessions, and process groups (tty, getty, termios)
• Xwindow system (X)
• Message queues (msgget)
• Semaphores (semget)
• Sockets (socket) (also see socket introduction)

