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Introduction
De

�
veloping high-performance applications for Intel® architecture 

(IA)-based 
�

processors can be more efficient with better understanding of the 
newest IA. Even though the applications developed for the 8086/8088, 
80286, Intel386™ (DX or SX), and Intel486™ processors will  execute on 
th

�
e Pentium®, Pentium Pro, Pentium II and Pentium III processors without 

an y modification or recomputing, the code optimization techniques 
co! mbined with the advantages of the newest processors can help you tune 
y" our application to its greatest potential. This manual provides information 
on#  Intel architecture as well as describes code optimization techniques to 
en$ able you to tune your application for best results, specifically when run on 
P

%
entium II and Pentium III processors.

Tuning Your Application
T

&
uning an application to high performance across Intel architecture-based 

pr' ocessors requires background information about the following:

• t
�
he Intel architecture. 

• cri! tical stall situations that may impact the performance of your 
ap plication and other performance setbacks within your application

• yo" ur compiler optimization capabilities
• monitoring the application’s performance 

T
&
o help you understand your application and where to begin tuning, you can 

use(  Intel’s VTune™ Performance Analyzer. This tool helps you see the 
pe' rformance event counters data of your code provided by the Pentium II 
an d Pentium III processors. This manual informs you about appropriate 
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pe' rformance counter for measurement. For VTune Performance Analyzer 
ord# er information, see its web home page at 
http://developer.intel.com/vtune.

A
)

bout This Manual
T

&
his manual assumes that you are familiar with IA basics, as well as with C 

or C+# + and assembly language programming. The manual consists of the 
fo

*
llowing parts:

In tr oduction. Defines the purpose and outlines the contents of this manual.

Cha
+

pter 1—Processor Architecture Overview. Ov
,

erviews the 
arch itectures of the Pentium II and Pentium III processors.

Cha
+

pter 2—General Optimization Guidelines. Describes the code 
de

-
velopment techniques to util ize the architecture of Pentium II and 

Pe
%

ntium III processors as well as general strategies of efficient memory 
u( til ization.

Cha
+

pter 3—Coding for SIMD Architectures. Describes the following 
co! ding methodologies: assembly, inlined-assembly, intrinsics, vector 
classes, a! uto-vectorization, and libraries. Also discusses strategies for 
al tering data layout and restructuring algorithms for SIMD-style coding.

Cha
+

pter 4—Using SIMD Integer Instructions. Describes o# ptimization 
rul. es and techniques for high-performance integer an d MMX™ technology 
ap plications.

C
+

hapter  5—Optimizing Floating-Point Applications. Desc
�

ribes rules 
an d optimization techniques, and provides code examples specific to 
floating-point code, including SIMD-floating point code for Streaming 
SI

/
MD Extensions.

Cha
+

pter 6—Optimizing Cache Utilization for Pentium III Processors. 
Describes the memory hierarchy of Pentium II and Pentium III processor 
arch itectures, and how to best use it. The pr0 efe tc h instruction and cache 
co! ntrol management instructions for Streaming SIMD Extensions are also 
de

-
scribed.
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xix

Cha
+

pter 7— A
1

pplication Performance Tools. Describes application 
pe' rformance tools: VTune analyzer, Intel® Compiler plug-ins, and Intel® 
Performance Libraries Suite. For each tool, techniques and code optimization 
strategies that help you to take advantage of the Intel architecture are described.

Appendix A—Optimization of Some Key Algorit hms for t he Pentium II 
an2 d Pentium III Processors. Descr

�
ibes how to optimize the following common 

al gorithms using the Streaming SIMD Extensions: 3D lighting and transform, 
image compression, audio decomposition, and others.

A
1

ppendix B—Performance Monitori ng Events and Counters. Describes 
�

pe' rformance-monitoring events and counters and their functions.

 Appendix C—Instruction to Decoder Specification. S
/

ummarizes the IA 
macro instructions with Pentium II and Pentium III processor decoding 
in

3
formation to enable scheduling.

Appendix D—Streaming SIMD Extensions Throughput and Latency. 
S

/
ummarizes in a table the instructions’ throughput and latency characteristics.

Appendix E—Stack Al ignment for Streaming SIMD Extensions. Details on 
t

�
he alignment of the stacks of data for Streaming SIMD Extensions.

Appendix F—The Mathematics of Prefetch Scheduling Distance. Discusses 
ho

4
w far away prefetch instructions should be inserted.

Related Documentation
For more information on the Intel architecture, specific techniques and 
pro' cessor architecture terminology referenced in this manual, see the following 
do

-
cumentation:

I
5
ntel Architecture MMX™ Technology Programmer's Reference Manual, order 

nu6 mber 243007

P
7
entium Processor Family Developer’s Manual, Volumes 1, 2, and 3, order 

nu6 mbers 241428, 241429, and 241430

P
7
entium Pro Processor Family Developer’s Manual, Volumes 1, 2, and 3, order 

nu6 mbers 242690, 242691, and 242692

P
7
entium II Processor Developer’ s Manual, order number 243502

Intel C/C++ Compiler for Win32* Systems User’s Guide, order number 
71

8
8195
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Notation al Conventio ns
T

&
his manual uses the following conventions:

Th
9

is  t ype  s t y l e Ind
:

icates an element of syntax, a reserved word, a 
ke

;
yword, a filename, instruction, computer 

ou# tput, or part of a program example. The text 
ap pears in lowercase unless uppercase is 
significant.

TH
9

IS  T YPE S TYLE Ind
:

icates a value, for example, T9 RUE, CO
�

NST1, or 
a v ariable, for example, A< , B= , or register names  
MMO through MM7.

l  indicates lowercase letter L in examples. 1 is the 
number 1 in examples. O>  is the uppercase O in 
ex$ amples. 0 is the number 0 in examples.

This  t ype  s t y l e Indicates a placeholder for an identifier, an 
ex$ pression, a string, a symbol, or a value. 
Su

/
bstitute one of these items for the placeholder.

.. . (el
�

lipses) Indicate that a few lines of the code are omitted.

This type style Indicates a hypertext link.
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Processor Architecture
Overview 1

T
&

his chapter provides an overview of the architectural features of the 
Pe

%
ntium® II and Pentium III processors and explains the new capabilities of 

th
�

e Pentium III processor. The Streaming SIMD Extensions of the Pentium 
III processor introduce new general purpose integer and floating-point 
S

/
IMD instructions, which accelerate applications performance over the 

Pentium II processors.

Th
?

e Processors’ Execution Ar chitecture
The Pentium II and Pentium III p' rocessors are aggressive microarchitectural 
implementations of the 32-bit Intel® architecture (IA). They are designed 
wi@ th a dynamic execution architecture that provides the following features:

• ou# t-of-order speculative execution to expose paralleli sm
• superscalar issue to exploit parallelism
• ha

4
rdware register renaming to avoid register name space limitations

• pi' pelined execution to enable high clock speeds
• br

A
anch prediction to avoid pipeline delays

T
&

he microarchitecture is designed to execute legacy 32-bit Intel architecture 
co! de as quickly as possible, without additional effort from the programmer. 
Th

&
is optimization manual assists the developer in leveraging the features of 

t
�
he microarchitecture to attain greater performance by understanding and 
w@ orking with these features to maximally enhance performance.
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The P
�

entium ®
B

 II
C

 and Pentium III  Processor s Pipeline

T
&

he Pentium II and Pentium III pr' ocessors’  pipelines contain three parts:

• t
�
he in-order issue front end

• t
�
he out-of-order core

• t
�
he in-order retirement unit.

Figure 1-1 gives an overview of the Pentium II and Pentium III processors 
arch itecture.

The In-order  Issue Fr ont  End

T
&

he front end supplies instructions in program order to the out-of-order 
co! re. It fetches and decodes Intel architecture-based processor 
macroinstructions, and breaks them down into simple operations called 
miD cro-ops (µops). It can issue multiple µops per cycle, in original program 
ord# er, to the out-of-order core. Since the core aggressively reorders and 
e$ xecutes instructions out of program order, the most important 
co! nsideration in performance tuning is to ensure that enough µops are ready 

Figur e 1-1 The Comple te Pentium II
E

 and Pentium III Processor s Architec ture

Fetch  & Deco de Unit
(In order unit)
•Fetches instructions
•Decodes instructions to µOPs
•Performs branch prediction

Reti remen t Unit
(In order unit)
•Retires instructions in order
•Writes results to registers/memory

Dispatch / Execu te Unit
(out of order unit)
•Schedules and executes µOPs
•Contains 5 execution ports

L2 cach e

Bus Interface Un it

L1 data cach e
L1 instructi on

cach e

Instructi on Pool/reorder buffer
•Buffer of µOPs waiting for execution

Sy
F

stem bus

Fetch Load Store
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for e
*

xecution. Accurate branch prediction, instruction prefetch, and fast 
de

-
coding are essential to getting the most performance out of the in-order 

front end.

The Out- of-order  Core

The core’s abil ity to execute instructions out of order is a key factor in 
e$ xploiting parallelism. This feature enables the processor to reorder 
i

3
nstructions so that if one µop is delayed while waiting for data or a 
co! ntended resource, other µops that are later in program order may proceed 
ar ound it. The processor employs several buffers to smooth the flow of 
µoG ps. This implies that when one portion of the pipeline experiences a 
de

-
lay, that delay may be covered by other operations executed in parallel or 

b
A
y executing µops which were previously queued up in a buffer. The delays 

d
-
escribed in this chapter are treated in this manner.

T
&

he out-of-order core buffers µops in a Reservation Station (RS) until their 
op# erands are ready and resources are available. Each cycle, the core may 
d

-
ispatch up to five µops, as explained in more detail  later in the chapter.

T
&

he core is designed to facili tate parallel execution. Load and store 
instructions may be issued simultaneously. Most simple operations, such as 
i

3
nteger operations, floating-point add, and floating-point multiply, can be 
pi' pelined with a throughput of one or two operations per clock cycle. Long 
latency operations can proceed in parallel with short latency operations.

In-Order  Retirement Unit

For semantically-correct execution, the results of instructions must be 
pr' ocessed in original program order. Likewise, any exceptions that occur 
mustD  be processed in program order. When a µop completes and writes its 
result, it is retired. Up to three µops may be retired per cycle. The unit in the 
pro' cessor which buffers completed µops is the reorder buffer (ROB). ROB 
up( dates the architectural state in order, that is, updates the state of 
instructions and registers in the program semantics order. ROB also 
manD ages the ordering of exceptions.
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Front-End Pipeline Detail

F
H
or better understanding operation of the Pentium II and Pentium III 

pr' ocessors, this section explains the main processing units of their front-end 
pi' pelines: instruction prefetcher, decoders, and branch prediction.

Instr ucti on Pref etcher

T
&

he instruction prefetcher performs aggressive prefetch of straight line 
co! de. The Pentium II and Pentium III processors read in instructions from 
16-byte-aligned boundaries. For example, if the modulo 16 branch target 
ad dress (the address of a label) is equal to 14, only two useful instruction 
b

A
ytes are fetched in the first cycle. The rest of the instruction bytes are 

fetched in subsequent cycles.

Decoder s

Pentium II and Pentium III processors have three decoders. In each clock 
c! ycle, the first decoder is capable of decoding one macroinstruction made 
up(  of four or fewer µops. It can handle any number of bytes up to the 
maxD imum of 15, but nine- or more-byte instructions require additional 
c! ycles. In each clock cycle, the other two decoders can each decode an 
i

3
nstruction of one µop, and up to eight bytes. Instructions composed of more 
t

�
han four µops take multiple cycles to decode.

Simpl
/

e instructions have one to four µops; complex instructions (for 
e$ xample, cmpxc g)

I
 generally have more than four µops. Complex 

instructions require multiple cycles to decode.

Duri
�

ng every clock cycle, up to three macroinstructions are decoded. 
However, if the instructions are complex or are over seven bytes long, the 
de

-
coder is limited to decoding fewer instructions. The decoders can decode:

• up(  to three macroinstructions per clock cycle
• up(  to six µops per clock cycle

NOTE.  I
5
nstruction fetch is always intended for an aligned 16-byte 

bl
J

ock.
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W
K

hen programming in assembly language, try to schedule your instructions 
i

3
n a 4-1-1 µop sequence, which means instruction with four µops followed 
b

A
y two instructions each with one µop. Scheduling the instructions in a 

4-1
L

-1 µop sequence increases the number of instructions that can be 
de

-
coded during one clock cycle.

Mo
M

st commonly used instructions have the following µop numbers:

• S
/

imple instructions of the register-register form have onl6 y one µop.
• L

N
oad # instructions are only one µop.

• S
/

tor
�

e instructions have two µops.
• S

/
imple read-modify instructions are two µops.

• Simpl
/

e instructions of the register-memory form have two to three 
µoG ps.

• S
/

imple read-modify-write instructions have four#  µops.

S
/

ee Appendix C, “Inst
:

ruction to Decoder Specification” for a table 
specify ing the number of µops required by each instruction in the Intel 
arch itecture instruction set.

Branch Predict ion  Overvie w

Pentium II and Pentium III processors use a branch target buffer (BTB) to 
pred' ict the direction and target of branches based on an instruction’s 
ad dress. The address of the branch instruction is available before the branch 
has been decoded, so a BTB-based prediction can be made as early as 
po' ssible to avoid delays caused by going the wrong direction on a branch.  
T

&
he 512-entry BTB stores the history of previously-seen branches and their 

t
�
argets. When a branch is prefetched, the BTB feeds the target address 
d

-
irectly into the instruction fetch unit (IFU). Once the branch is executed, 

t
�
he BTB is updated with the target address. Using the branch target buffer 
al lows dynamic prediction of previously seen branches.

Once
,

 the branch instruction is decoded, the direction of the branch (forward 
o# r backward) is known. If there was not a valid entry in the BTB for the 
br

A
anch, the static predictor makes a prediction based on the direction of the 

bran
A

ch.
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Dynamic  Predict ion

The branch target buffer prediction algorithm includes pattern matching and 
can!  track up to the last four branch directions per branch address. For 
e$ xample, a loop with four or fewer iterations should have about 100% 
co! rrect prediction.

Ad
O

ditionally, Pentium II and Pentium III processors have a return stack 
b

A
uffer (RSB) that can predict return addresses for procedures that are called 

from di
*

fferent locations in succession. This increases the benefit of 
un( roll ing loops containing function calls. It also mitigates the need to put 
cert! ain procedures in-line since the return penalty portion of the procedure 
cal! l overhead is reduced.

Pentium II and Pentium III processors have three levels of branch support 
th

�
at can be quantif ied in the number of cycles lost:

1. Branches that are not taken suffer no penalty. This applies to those 
bran

A
ches that are correctly predicted as not taken by the BTB, and to 

forward branches that are not in the BTB and are predicted as not taken 
by

A
 default.

2. Branches that are correctly predicted as taken by the BTB suffer a 
minor penalty of losing one cycle of instruction fetch.  As with any 
t

�
aken branch, the decode of the rest of the µops after the branch is 
wa@ sted.  

3.
P

Mispredicted branches suffer a signif icant penalty. The penalty for 
mispredicted branches is at least nine cycles (the length of the in-order 
issu

3
e pipeline) of lost instruction fetch, plus additional time spent 

w@ aiting for the mispredicted branch instruction to retire. This penalty is 
de

-
pendent upon execution circumstances. Typically, the average 

number of cycles lost because of a mispredicted branch is between 10 
an d 15 cycles and possibly as many as 26 cycles.

Static Predic tion

Branches that are not in the BTB, but are correctly predicted by the static 
pred' iction mechanism, suffer a small penalty of about five or six cycles (the 
l

Q
ength of the pipeline to this point). This penalty applies to unconditional 
di

-
rect branches that have never been seen before.
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T
&

he static prediction mechanism predicts backward conditional branches 
(t

�
hose with negative displacement), such as loop-closing branches, as taken. 

They suffer only a small penalty of approximately six cycles the first time 
t

�
he branch is encountered and a minor penalty of approximately one cycle 
on#  subsequent iterations when the negative branch is correctly predicted by 
t

�
he BTB. Forward branches are predicted as not taken.

T
&

he small penalty for branches that are not in the BTB but are correctly 
pred' icted by the decoder is approximately five cycles of lost instruction 
fet

*
ch. This compares to 10-15 cycles for a branch that is incorrectly 

pr' edicted or that has no prediction.

In o
:

rder to take advantage of the forward-not-taken and backward-taken 
static predictions, the code should be arranged so that the likely target of the 
bran

A
ch immediately follows forward branches. See examples on branch 

pr' ediction in “Branch Prediction” in Chapter 2.

Execut ion Core Det ail

To successfully implement parallelism, information on execution units’ 
l

Q
atency is required. Also important is the information on the execution units 
l

Q
ayout in the pipelines and on the µR op# s that execute in pipelines. This 
section details on the execution core operation including the discussion on 
i

3
nstruction latency and throughput, execution units and ports, caches, and 
store buffers.

Instr ucti on Latenc y and Thr oughp ut

The core’s ability to exploit parallelism can be enhanced by ordering 
i

3
nstructions so that their operands are ready and their corresponding 
e$ xecution units are free when they reach the reservation stations. Knowing 
instructions’ latencies helps in scheduling instructions appropriately. Some 
e$ xecution units are not pipelined, such that µops cannot be dispatched in 
co! nsecutive cycles and the throughput is less than one per cycle. Table 1-1 
lists Pentium II and Pentium III processors execution units, their latency, and 
t

�
heir issue throughput.
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Table 1 -1 Pentium II  and Pent ium III P rocessors  Execut ion Unit s

Port Execution Un its Latency/Through put

0 Integer ALU Unit:

LEA instructions
Shift instructions
Integer Multiplication 
instruction
Floating-Point Unit:
FADD instruction

FMUL instruction

FDIV instruction

MMX™ technology ALU Unit
MMX technology Multiplier 
Unit

Streaming SIMD Extensions 
Floating Point Unit: Multiply, 
Divide, Square Root, Move 
instructions

Latency 1, Throughput 1/cycle

Latency 1, Throughput 1/cycle
Latency 1, Throughput 1/cycle
Latency 4, Throughput 1/cycle

Latency 3, Throughput 1/cycle (horizontal align with 
FADD)
Latency 5, Throughput 1/2cycle1 (align with FMULL)

Latency: single-precision 18 cycles, double-precision 
32 cycles, extended-precision 38 cycles. Throughput 
non-pipelined (align with FDIV)
Latency 1, Throughput 1/cycle

Latency 3, Throughput 1/cycle

See Appendix D, “Streaming SIMD Extensions 
Throughput and Latency”

1 Integer ALU Unit
MMX technology ALU Unit
MMX technology Shift Unit

Streaming SIMD Extensions:  
Adder, Reciprocal and 
Reciprocal Square Root, 
Shuffle/Move instructions

Latency 1, Throughput 1/cycle
Latency 1, Throughput 1/cycle
Latency 1, Throughput 1/cycle

See Appendix D, “Streaming SIMD Extensions 
Throughput and Latency”

                                                               

 continued
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1. The FMUL unit cannot accept a second FMUL in the cycle after it has accepted the 
f

T
irst. This is NOT the same as only being able to do FMULs on even clock cycles. 
FMUL is pipelined once every two clock cycles.

2. A load that gets its data from a store to the same address can dispatch in the same 
cycle as the store, so in that sense the latency of the store is 0. The store itself takes 
t

U
hree cycles to complete, but that latency affects only how soon a store buffer entry is 
f

T
reed for use by another µop.

Execut ion Uni ts and Ports

E
V

ach cycle, the core may dispatch zeW ro or one µop on a#  port to any of the 
five pipelines (shown in Figure 1-2) for a maximum issue bandwidth of five 
µoG ps per cycle. Each pipeline contains several execution units. The µops are 
di

-
spatched to the pipeline that corresponds to its type of operation. For 

e$ xample, an integer arithmetic logic unit (AL U) and the floating-point 
e$ xecution units (adder, multiplier, and divider) share a pipeline. Knowledge 
of wh# ich µops are executed in the same pipeline can be useful in ordering 
instructions to avoid resource conflicts.

Port Executi on Uni ts Latency/Throug hput

2 Load Unit

Streaming SIMD Extensions 
Load instructions

Latency 3 on a cache hit, Throughput 1/cycle

See Appendix D, “Streaming SIMD Extensions 
Throughput and Latency”

3 Store Address Unit

Streaming SIMD Extensions 
Store instruction

Latency 0 or 3 (not on critical path), Throughput 
1/cycle2 

See Appendix D, “Streaming SIMD Extensions 
Throughput and Latency”

4 Store Data Unit

Streaming SIMD Extensions 
Store instruction

Latency 1, Throughput 1/cycle

See Appendix D, “Streaming SIMD Extensions 
Throughput and Latency”

Table 1-1 Pent ium II  and Pentium III Processors Execut ion U nits (continued)
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Caches  of  the Pent ium II  and Penti um III Processor s

The on-chip cache subsystem of Pentium II and Pentium III processors 
co! nsists of two 16-Kbyte four-way set associative caches with a cache line 
length of 32 bytes. The caches employ a write-back mechanism and a 
pse' udo-LRU (least recently used) replacement algorithm. The data cache 
co! nsists of eight banks interleaved on four-byte boundaries. 

Figur e 1-2 Execution Units a nd Ports in the Out -Of-Order Core

Port  1

Port 3Port 2 Port 4

Port  0

Reservation
Sta

X
tion

Load 
Unit

(
Y
16-ent ry buf fer)

Stor
Z

e Address 
Calculati on 

Unit
(12-entry b uffer)

Sto
Z

re 
Data Unit

(1
[

2-entry bu ffer)

MMX™ technology

Integer
Unit 

 Pent ium( R) III process or  
FP Unit

MMX™ technology

Intege r
Unit  

Addres s 
G
\

eneration
Unit

FP Unit

Pentium(R) III proces sor 
FP Unit
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L
]

evel two (L2) caches have been off chip but in the same package. They are 
128K or more in size. L2 latencies are in the range of 4 to 10 cycles. An L2 
miss initiates a transaction across the bus to memory chips. Such an access 
requ^ ires on the order of at least 11 additional bus cycles, assuming a DRAM 
pa_ ge hit. A DRAM page miss incurs another three bus cycles. Each bus 
c` ycle equals several processor cycles, for example, one bus cycle for a 
100 MHz bus is equal to four processor cycles on a 400 MHz processor. The 
speed of the bus and sizes of L2 caches are implementation dependent, 
however. Check the specifications of a given system to understand the 
prec_ ise characteristics of the L2 cache.

Store B uffers

P
a

entium II and Pentium III processors have twelve store buffers. These 
pro_ cessors temporarily store each write (store) to memory in a store buffer. 
The store buffer improves processor performance by allowing the processor 
t

b
o continue executing instructions without having to wait until a write to 
memoryc  and/or cache is complete. It also allows writes to be delayed for 
more efficient use of memory-access bus cycles. 

W
d

rites stored in the store buffer are always written to memory in program 
oe rder. Pentium II and Pentium III processors use processor ordering to 
maic ntain consistency in the order in which data is read (loaded) and written 
(st

f
ored) in a program and the order in which the processor actually carries 

oue t the reads and writes. With this type of ordering, reads can be carried out 
speculatively; and in any order, reads can pass buffered writes, while writes 
t

b
o memory are always carried out in program order.

W
d

rite hits cannot pass write misses, so performance of critical loops can be 
i

g
mproved by scheduling the writes to memory. When you expect to see 
wrh ite misses, schedule the write instructions in groups no larger than 
t

b
welve, and schedule other instructions before scheduling further write 
in

g
structions.
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Streaming SIMD Extens ions  of  the Pent ium III 
Processor

T
i

he Streaming SIMD Extensions of the Pentium III processor accelerate 
pe_ rformance of applications over the Pentium II processors, for example, 
3D 

j
graphics. The programming model is similar to the MMX™ technology 

modc el except that instructions now operate on new packed floating-point 
da

k
ta types, which contain four single-precision floating-point numbers.

T
i

he Streaming SIMD Extensions of the Pentium III processor introduce new 
gel neral purpose floating-point instructions, which operate on a new set of 
eim ght 128-bit Streaming SIMD Extensions registers. This gives the 
pro_ grammer the ability to develop algorithms that can mix packed 
single-precision floating-point and integer using both Streaming SIMD 
Extensions and MMX instructions respectively. In addition to these 
i

g
nstructions, Streaming SIMD Extensions technology also provide new 
in

g
structions to control cacheabilit y of all data types. These include abili ty to 

stream data into the processor while minimizing pollution of the caches and 
t

b
he abil ity to prefetch data before it is actually used.  Both 64-bit integer and 
pa_ cked floating point data can be streamed to memory.

T
i

he main focus of packed floating-point instruction is the acceleration of 
3D g

j
eometry. The new definition also contains additional SIMD integer 

instructions to accelerate 3D rendering and video encoding and decoding. 
T

i
ogether with the cacheabilit y control instructions, this combination 

enm ables the development of new algorithms that can signif icantly accelerate 
3D g

j
raphics and other applications that involve intensive computation.

T
i

he new Streaming SIMD Extensions state requires operating system 
support for saving and restoring the new state during a context switch. A 
nen w set of extended fs ave/ fr st or  (called fx sa ve/ fx rs to r ) p

o
ermits 

saving/restoring new and existing state for applications and operating 
systems. To make use of these new instructions, an application must verify 
t

b
hat the processor and operating system support Streaming SIMD 
E

p
xtensions. If both do, then the software application can use the new 

features.
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Th
i

e Streaming SIMD Extensions are fully compatible with all software 
writh ten for Intel architecture microprocessors. All existing software 
co` ntinues to run correctly, without modification, on microprocessors that 
i

g
ncorporate the Streaming SIMD Extensions, as well  as in the presence of 
em xisting and new applications that incorporate this technology.

Single-Ins truc tion, Multiple-Data  (SIMD)

T
i

he Streaming SIMD Extensions support operations on packed 
single-precision floating-point data types, and the additional SIMD integer 
instructions support operations on packed quadword data types (byte, word, 
or de ouble-word). This approach was chosen because most 3D graphics and 
di

k
gital signal processing (DSP) applications have the following 

ch` aracteristics:

• i
g
nherently parallel

• wih de dynamic range, hence floating-point based
• regular and re-occurring memory access patterns
• localized re-occurring operations performed on the data
• da

k
ta-independent control flow.

S
q

treaming SIMD Extensions fully support the IEEE Standard 754 for 
Bi

r
nary Floating-Point Architecture. The Streaming SIMD Extensions are 

acs cessible from all IA execution modes: protected mode, real-address 
mode, and Virtual 8086 mode.

New Data Types

The principal data type of the Streaming SIMD Extensions are a packed 
single-precision floating-point operand, specifically four 32-bit 
single-precision (SP) floating-point numbers shown in Figure 1-3. The 
S

q
IMD integer instructions operate on the packed byte, word, or 

do
k

uble-word data types. The prefetch instructions work on a cache line 
grl anularity regardless of type.
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Streami ng SIMD Extensions Register s

The Streaming SIMD Extensions provide eight 128-bit general-purpose 
registers, each of which can be directly addressed. These registers are a new 
state, requiring support from the operating system to use them. They can 
ho

t
ld packed, 128-bit data, and are accessed directly by the Streaming SIMD 

Extensions using the register names XMM0 to XMM7, see Figure 1-4.

Figur e 1-3 Streaming SIMD  Extensions Da ta Type

Figur e 1-4 Streaming SIMD  Extensions Re gister  Set
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MMX™ Technolog y
In

w
tel’s MMX™ te

b
chnology is an extension to the Intel architecture (IA) 

instruction set. The technology uses a single instruction, multiple data 
(SIM

f
D) technique to speed up multimedia and communications software by 

pr_ ocessing data elements in parallel. The MMX i nstruction set adds 57 
ope codes and a 64-bit quadword data type. The 64-bit data type, illustrated in 
F

x
igure 1-5, holds packed integer values upon which MMX instructions 

ope erate.

In add
w

ition, there are eight 64-bit MMX technology registers, each of which 
ca` n be directly addressed using the register names MM0 to MM7. 
Figure 1-6 shows the layout of the eight MMX technology registers.

Figur e 1-5 MMX Technolog y 64-bit  Data Type
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The MMX technology is operating-system-transparent and 100% 
co` mpatible with all existing Intel architecture software. Therefore all 
aps plications will continue to run on processors with MMX technology. 
Additional information and details about the MMX instructions, data types, 
ans d registers can be found in the Intel Architecture MMX™ Technology 
P

~
rogrammer’s Reference Manual, order number 243007.

Figur e 1-6 MMX Technolog y Register  Set
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General Optimization 
Guidelines 2

Th
i

is chapter discusses general optimization techniques that can improve the 
pe_ rformance of applications for the Pentium® II and Pentium III processor 
archs itectures. It discusses general guidelines as well as specifics of each 
gul ideline and provides examples of how to improve your code.

Integer Codi ng Guide line s
The following guidelines will help you optimize your code:

• Use a 
�

current generation of compiler, such as the Intel® C/C++ 
Compi

�
ler that wil l produce an optimized application.

• Wr
d

ite code so that Intel compiler can optimize it for you: 
— Minimize use of global variables, pointers, and complex control 

flo
�

w
— Use the con st  modifier, avoid re gi st er  modifier
— Avoid indirect calls and use the type system
— Use minimum sizes for integer and floating-point data types to 

em nable SIMD parallelism
• Improve branch predictabili ty by using the branch prediction 

als gorithm. This is one of the most important optimizations for Pentium 
I

w
I processors. Improving branch predictabili ty allows the code to spend 

fe
�

wer cycles fetching instructions due to fewer mispredicted branches.
• T

i
ake advantage of the SIMD capabiliti es of MMX™ technology and 

S
q

treaming SIMD Extensions.
• A

�
void partial register stalls.

• Ensure proper data alignment.
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• Arrange
�

 code to minimize instruction cache misses and optimize 
prefet_ ch.

• A
�

void prefixed opcodes other than 0F. 
• Avoid small loads after large stores to the same area of memory. Avoid 

l
�
arge loads after small stores to the same area of memory. Load and 
store data to the same area of memory using the same data sizes and 
ads dress alignments.

• Use sof
�

tware pipelining.
• A

�
void self -modifying code.

• Avoid placing data in the code segment.
• Cal

�
culate store addresses as early as possible.

• Avoid instructions that contain four or more µops or instructions that 
ars e more than seven bytes long. If possible, use instructions that require 
one e µop.

• C
�

leanse partial registers before calling callee-save procedures.

Branch Prediction
B

r
ranch optimizations are one of the most important optimizations for 

P
a

entium II processors. Understanding the flow of branches and improving 
t

b
he predictabili ty of branches can increase the speed of your code 
significantly.

Dynamic Bra nch Predic tion

Dynamic prediction is always attempted first by checking the branch target 
b

�
uffer (BTB) for a valid entry. If one is not there, static prediction is used. 

T
i

hree elements of dynamic branch prediction are important:

• If the instruction address is not in the BTB, execution is predicted to 
co` ntinue without branching. This is known as “fall-through” meaning 
th

b
at the branch is not taken and the subsequent instruction is executed.

• P
a

redicted taken branches have a one clock delay.
• The Pentium II and Pentium III processors’ BTB pattern matches on the 

di
k

rection of the last four branches to dynamically predict whether a 
br

�
anch will  be taken.
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Dur
�

ing the process of instruction prefetch the address of a conditional 
i

g
nstruction is checked with the entries in the BTB. When the address is not 
in the BTB, execution is predicted to fall through to the next instruction. 
Th

i
is suggests that branches should be followed by code that will be 

em xecuted. The code following the branch will be fetched, and in the case of 
Pentium Pro, Pentium II processors, and Pentium III processor the fetched 
in

g
structions wil l be speculatively executed. Therefore, never follow a 

bran
�

ch instruction with data.

Add
�

itionally, when an instruction address for a branch instruction is in the 
B

r
TB and it is predicted taken, it suffers a one-clock delay on Pentium II 

pr_ ocessors. To avoid the delay of one clock for taken branches, simply insert 
ads ditional work between branches that are expected to be taken. This delay 
r^ estricts the minimum duration of loops to two clock cycles. If you have a 
v� ery small loop that takes less than two clock cycles, unroll it to remove the 
one e-clock overhead of the branch instruction.

The branch predictor on Pentium II processors correctly predicts regular 
pa_ tterns of branches—up to a length of four. For example, it correctly 
pr_ edicts a branch within a loop that is taken on odd iterations, and not taken 
oe n even iterations.

Static  Prediction

On
�

 Pentium II and Pentium III processors, branches that do not have a 
history in the BTB are predicted using a static prediction algorithm as 
fo

�
llows:

• P
a

redict unconditional branches to be taken.
• P

a
redict backward conditional branches to be taken. This rule is suitable 

fo
�

r loops.
• Pr

a
edict forward conditional branches to be NOT taken.

A branch that is statically predicted can lose, at most, six cycles of 
i

g
nstruction prefetch. An incorrect prediction suffers a penalty of greater than 
t

b
welve clocks. Example 2-1 provides the static branch prediction algorithm.
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Example 2-1 and Example 2-2 illustrate the basic rules for the static 
pred_ iction algorithm.

In th
w

e above example, the backward branch (J C Be gi n) 
o

is not in the BTB 
t

b
he first time through, therefore, the BTB does not issue a prediction. The 
static predictor, however, will predict the branch to be taken, so a 
mic sprediction will  not occur.

Figur e 2-1 Pentium ® II  Processor Static Branch Prediction Algor ithm

Example 2-1 Prediction Al gorithm

Begi n:  mo v  e ax,     me m32
       an d  e ax,  ebx

       im ul  e ax,  edx

       sh ld  e ax,  7

       JC    B egi n

c� o� nd
�

i t
�
io� na� l bra� nc� he� s� no� t

�
t

�
a� ke� n (f

�
a� l l t

�
hro� ug� h)

�

I f
�

<c� o� nd
�

i t
�
io� n> {

�

...

}
� Unc� o� nd

�
i t

�
io� na� l Bra� nc� he� s� t

�
a� ke� n

fo� r <c� o� nd
�

i t
�
io� n> {

�

...

}
�

Ba� c� kw� a� rd
�

C
�

o� nd
�

i t
�
io� na� l Bra� nc� he� s� a� re� t

�
a� ke� n

lo� o� p {
�

}
�

<c� o� nd
�

i t
�
io� n>

Forward

JMP
�
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Th
i

e first branch instruction (J� C Be gi n) in
o

 Example 2-3 segment is a 
co` nditional forward branch. It is not in the BTB the first time through, but 
t

b
he static predictor will  predict the branch to fall  through.

The C al l  Conve rt  instruction will  not be predicted in the BTB the first 
tim

b
e it is seen by the BTB, but the call wil l be predicted as taken by the 

static prediction algorithm. This is correct for an unconditional branch.

In these examples, the conditional branch has only two alternatives: taken 
ans d not taken. Indirect branches, such as switch statements, computed 
GO

�
TOs or calls through pointers, can jump to an arbitrary number of 

locations. Assuming the branch has a skewed target destination, and most of 
t

b
he time it branches to the same address, then the BTB wil l predict 
acs curately most of the time. If, however, the target destination is not 
pred_ ictable, performance can degrade quickly. Performance can be 
i

g
mproved by changing the indirect branches to conditional branches that can 
be

�
 predicted.

Eliminat ing and Reducing the Number of Branc hes

E
p

liminating branches improves performance due to:

• Reducing the possibility of mispredictions.
• Redu

�
cing the number of required BTB entries.

Using the 
�

se tc c  instruction, or using the Pentium II and Pentium III 
pro_ cessors’ conditional move (cmov  or fc mov) i

o
nstructions can eliminate 

bran
�

ches.

Example 2-2 Mispredic tion Exa mple

mo� v ea x, me m32

and ea x, eb x

    im ul eax,  e dx

    sh ld eax,  7

    JC   Begi n

    mov  eax,  0

Be
�

gi n  Ca ll  C onver t
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F
x
ollowing is a C code line with a condition that is dependent upon one of 

t
b
he constants:

X = (A  < B)  ?  C 1 : C2;

This code conditionally  compares two values, A and B. If the condition is 
tru

b
e, X�  is set to C1

� ; otherwise it is set to C2
� . The assembly equivalent is 

shown in the Example 2-3:

If you replace the jg e instruction in the previous example with a setc c  
i

g
nstruction, this code can be optimized to eliminate the branches as shown 
in

g
 the Example 2-4:

T
i

he optimized code sets ebx  to zero, then compares A ans d B. If A is greater 
t

b
han or equal to B, ebx  is set to one. Then ebx  is decreased and “and-ed”  
wih th the difference of the constant values. This sets ebx  to either zero or the 

Example 2-3 Assembly Equiv alent of Condition al C Statement

cmp   A, B ; co ndit ion

jg e   L30  ; co ndit ion al  b r anch

mov   ebx , CONST1     ; ebx holds  X

jm p   L31 ; unco nditi onal  b r anch

L30:

mo� v   ebx , CONST2

L31:

Example 2-4 Code Optimization t o Elimi nate Branches

xo r   ebx , ebx  ;c le ar  e bx (X  i n th e C  c ode)

cmp   A, B 

se tg e ebx     ; When eb x = 0 or  1

;O R th e com pl ement con di ti on

de
�

c   ebx ;e bx =00. ..0 0 or  1 1. ..1 1

and   ebx , (C ONST1- CONST2) ;e bx =0 or (C ONST1-C ONST2)

add   ebx , CONST2 ;e bx =CONST1 o r  CONST2
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di
k

fference of the values. By adding CO
�

NST2 back to ebx , the correct value is 
writh ten to ebx . When CO

�
NST1 is equal to zero, the last instruction can be 

de
k

leted.

Ano
�

ther way to remove branches on Pentium II and Pentium III processors 
is to use the cmov  and fc mov  instructions. Example 2-5 shows changing a 
t

b
est and branch instruction sequence using cmov  and eliminating a branch. 
If t

w
he test sets the equal flag, the value in ebx  will be moved to eax . This 

bran
�

ch is data-dependent, and is representative of an unpredictable branch.

Th
i

e label 1h:  is no longer needed unless it is the target of another branch 
instruction. 

Th
i

e cmov  ands  fc mov  instructions are available on the Pentium Pro, 
Pentium II and Pentium III processors, but not on Pentium processors and 
eam rlier 32-bit Intel architecture-based processors. Be sure to check whether 
a ps rocessor supports these instructions with the cp ui d instruction if an 
aps plication needs to run on older processors as well.

Example 2-5 Eliminating Br anch with CMO V Instr uction

te st  e cx,  e cx

jn e  1 h

mov  e ax,  e bx

1h:

; To c han ge t he c ode , th e jn e a nd t he mov in st ru ct io ns
; ar e combi ned in to one cmov cc  in st ru ct io n t hat  ch ec ks
; th e equ al  f l ag.  Th e opti mi zed  c ode is :

te st       e cx,  ec x    ; te st  t he fl ags 

cmov eq    ea x,  eb x    ;  if  the  eq ual fl ag is  set ,  move

      ;  eb x to  e ax

1h:
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Performance T uning Ti p for Branc h Pred iction

In
w

tel C/C++ Compiler has a -Qxi  switch which turns on Pentium II or 
Pentium III processor-specif ic code generation so that the compiler will 
gel nerate cmov -/ fc mov  instruction sequences when possible, saving you 
t

b
he effort of doing it by hand.

F
x

or information on branch elimination, see the Pentium II Processor 
Compu

�
ter Based Training (CBT), which is available with the VTune™ 

Performance Enhancement Environment CD at 
h

t
ttp://developer.intel.com/vtune.

In addition to eliminating branches, the following guidelines improve 
b

�
ranch predictabilit y:

• E
p

nsure that each call has a matching return.
• D

�
on’t intermingle data and instructions.

• Unr
�

oll very short loops.
• Follow static prediction algorithm.

W
d

hen a misprediction occurs the entire pipeline is flushed up to the branch 
instruction and the processor waits for the mispredicted branch to retire.

Br
�

anch  Mi sp re di ct io n R at i o =  BR
�

_Mis s_Pr ed_Ret  /

                                                  BR
�

_I ns t_ Ret

If the branch misprediction ratio is less than about 5% then branch 
pred_ iction is within normal range. Otherwise, identify the branches that 
cau` se significant mispredictions and try to remedy the situation using the 
t

b
echniques described in the “Eliminating and Reducing the Number of 
B

r
ranches”  earlier in this chapter.

Partial Register Stalls
On

�
 Pentium II and Pentium III processors, when a 32-bit register (for 

em xample, eax) is read immed
o

iately after a 16- or 8-bit register (for example, 
al , ah, ax ) is wr

o
itten, the read is stalled until the write retires, after a 

minimum of seven clock cycles. Consider Example 2-6. The first instruction 
mc oves the value 8 into the ax  register. The following instruction accesses 
t

b
he register eax . This code sequence results in a partial register stall as 
shown in Example 2-6.
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This applies to all of the 8- and 16-bit/32-bit register pairs, listed below:

S
q

mall Registers Large Registers:

al ah ax eax
bl

 
bh bx ebx

cl ch cx ec x
dl

�
dh dx edx

sp es p
bp

 
ebp

di
�

edi
si es i

Pentium processors do not exhibit this penalty.

Becau
r

se Pentium II and Pentium III processors can execute code out of 
orde er, the instructions need not be immediately adjacent for the stall to 
oce cur. Example 2-7 also contains a partial stall.

In addition, any µops that follow the stalled µop also wait until the clock 
c` ycle after the stalled µop continues through the pipe. In general, to avoid 
stalls, do not read a large (32-bit) register (eax)

o
 after writing a small (8- or 

16-bit) register (al  or  ax )
o
 which is contained in the large register.

S
q

pecial cases of reading and writing small and large register pairs are 
implemented in Pentium II and Pentium III processors in order to simplify 
t

b
he blending of code across processor generations. The special cases are 
i

g
mplemented for xo r  and su b when using eax , ebx , ecx , edx , ebp, esp, 

Example 2-6 Partial Regis ter Stall

MOV ax , 8

AD
¡

D  e cx,  e ax ;  Part ial  s t al l  o ccurs  o n ac ce ss

 ; of  t he EAX re gi st er

Example 2-7 Partial  Regis ter Stall with P entium II  and Pent ium III Processors

MO
¢

V al , 8

MOV ed x, 0x 40

MO
¢

V ed i, ne w_va lu e

ADD edx, eax             ;  P art ia l st al l acc es si ng E AX
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edi , and es i  as shown in the A. through E. series in. Generally, when 
i

g
mplementing this sequence, always zero the large register and then write to 
th

b
e lower half  of the register.

Performance T uning Ti p for Partial Stalls

Partial stalls can be measured by selecting the Partial Stall Events or Partial 
S

q
tall Cycles events in the VTune Performance Analyzer and running a 

sampling on your application. Partial Stall Events show the number of 
em vents and Partial Stall Cycles show the number of cycles for partial stalls, 
respe^ ctively. To select the events, in the VTune analyzer, click on Configure 
menc u\Options command\Processor Events for EBS for the list of all 
pro_ cessor events, select one of the above events and double click on it. The 

Example 2-8 Simplifying the Ble nding of Code in Pentium II  and Pent ium III  
Processor s

A. xo r  e ax,  e ax

movb   al,  mem8

add  e ax,  mem32 ;  no p ar tia l st al l

B. xo r  e ax,  e ax

movw  ax,  mem16

add  e ax,  mem32 ;  no p ar tia l st al l

C.
�

su b  a x,  a x

movb  a l,  mem8

add  a x, mem16 ;  no p ar tia l st al l

D. su b  e ax,  e ax

movb   al,  mem8

or    a x, mem16 ;  no p ar tia l st al l

E. xo r   ah,  a h

movb   al,  mem8

su b   ax,  mem16 ;  no p ar tia l st al l
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E
p

vents Customization window opens where you can set the Counter Mask 
for ei

�
ther of those events. For more details, see  “Using Sampling Analysis 

for Optimization” in Chapter 7. If a particular stall occurs more than about 
3%

j
 of the execution time, then the code associated with this stall should be 

modc ified to eliminate the stall. Intel C/C++ Compiler at the default 
ope timization level (switch -O2) ensures t

o
hat partial stalls do not occur in the 

gel nerated code.

Alignment Rules
¤

 and Guide line s
This section discusses guidelines for alignment of both code and data. On 
P

a
entium II and Pentium III processors, a misaligned access that crosses a 

ca` che line boundary does incur a penalty. A Data Cache Unit (DCU) split is 
a mes mory access that crosses a 32-byte line boundary. Unaligned accesses 
mayc  cause a DCU split and stall Pentium II and Pentium III processors. For 
be

�
st performance, make sure that in data structures and arrays greater than 

32
j

bytes, the structure or array elements are 32-byte-aligned and that access 
pa_ tterns to data structure and array elements do not break the alignment 
ru^ les.

Code

P
a

entium II and Pentium III processors have a cache line size of 32 bytes. 
S

q
ince the instruction prefetch buffers fetch on 16-byte boundaries, code 

als ignment has a direct impact on prefetch buffer efficiency.

F
x

or optimal performance across the Intel architecture family, the following 
is recommended:

• L
]

oop entry labels should be 16-byte-aligned when less than eight bytes 
as way from a 16-byte boundary.

• L
]

abels that follow a conditional branch need not be aligned.
• Labels that follow an unconditional branch or function call  should be 

16-byte-aligned when less than eight bytes away from a 16-byte 
bo

�
undary.

• Use a 
�

compiler that will assure these rules are met for the generated 
co` de.
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On
�

 Pentium II and Pentium III processors, avoid loops that execute in less 
t

b
han two cycles. The target of the tight loops should be aligned on a 16-byte 
bo

�
undary to maximize the use of instructions that wil l be fetched. On 

P
a

entium II and Pentium III processors, it can limit the number of 
in

g
structions available for execution, limiting the number of instructions 

retired every cycle. It is recommended that critical loop entries be located 
one  a cache line boundary. Additionally, loops that execute in less than two 
c` ycles should be unrolled. See section “MM X™ Technology” in Chapter 1 
for more information about decoding on the Pentium II and Pentium III 
pro_ cessors.

Data

A misaligned data access that causes an access request for data already in 
t

b
he L1 cache can cost six to nine cycles. A misaligned access that causes an 
accs ess request from L2 cache or from memory, however, incurs a penalty 
t

b
hat is processor-dependent. Ali gn the data as follows:

• Al
�

ign 8-bit data at any address.
• Al ign 16-bit data to be contained within an aligned four byte word.
• Align 32-bit data so that its base address is a multiple of four.
• Al ign 64-bit data so that its base address is a multiple of eight.
• Al

�
ign 80-bit data so that its base address is a multiple of sixteen.

A 32-byte or greater data structure or array should be aligned so that the 
be

�
ginning of each structure or array element is aligned in a way that its base 

ads dress is a multiple of thirty-two.

Data Cache Uni t (DCU) Spli t

F
x

igure 2-1 shows the type of code that can cause a cache split. The code 
l

�
oads the addresses of two dw

�
or d arrays. In this example, every four 

iterations of the first two dword loads cause a cache split. The data declared 
ats  address 029e70feh is not 32-byte-aligned, therefore each load to this 
ads dress and every load that occurs 32 bytes (every four iterations) from this 
ads dress will cross the cache line boundary. When the misaligned data 
crosse` s a cache line boundary it causes a six- to twelve-cycle stall.

.
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Performance Tuni ng Ti p for Misal ign ed Access es

Mi
¥

saligned data can be detected by using the Misaligned Accesses event 
co` unter on Pentium II and Pentium III processors. Use the VTune analyzer’s 
dy

k
namic execution functionality to determine the exact location of a 

mic saligned access. Code and data rearrangements for optimal memory 
usa¦ ge are discussed in Chapter 6, “Op

�
timizing Cache Utilization for 

Pen
a

tium® III Processors.”

Figure 2 -2 DCU Split in the Da ta Cache
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Instru ct ion Scheduling
S

q
cheduling or pipelining should be done in a way that optimizes 

pe_ rformance across all processor generations. The following section 
pr_ esents scheduling rules that can improve the performance of your code on 
P

a
entium II and Pentium III processors.

Scheduli ng Rules for Pentium II and Pentium III Processors

P
a

entium II and Pentium III processors have three decoders that translate 
Int

w
el architecture (IA) macroinstructions into µops as discussed in 

Ch
�

apter 1, “Processor Architecture Overview.” The decoder limitations are 
as fos llows:

• I
w
n each clock cycle, the first decoder is capable of decoding one 

macroc instruction made up of four or fewer µops. It can handle any 
number of bytes up to the maximum of 15, but nine-or-more-byte 
instructions require additional cycles.

• In each clock cycle, the other two decoders can each decode an 
instruction of one µop, and up to eight bytes. Instructions composed of 
more c than four µops take multiple cycles to decode.

App
�

endix C, “In
w

struction to Decoder Specification,” contains a table of all 
Intel macroinstructions with the number of µops into which they are 
de

k
coded. Use this information to determine the decoder on which they can 

be
�

 decoded.

T
i

he macroinstructions entering the decoder travel through the pipe in order, 
t

b
herefore if a macroinstruction wil l not fit in the next available decoder, the 
instruction must wait until the next cycle to be decoded. It is possible to 
schedule instructions for the decoder so that the instructions in the in-order 
pi_ peline are less likely to be stalled.

C
�

onsider the following code series in Example 2-9.
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The sections of Example 2-9 are explained as follows:

A.  If the next available decoder for a multi-µop instruction is not decoder 0, 
th

b
e multi-op instruction wil l wait for decoder 0 to be available; this usu-

als ly happens in the next clock, leaving the other decoders empty during 
th

b
e current clock. Hence, the following two instructions wil l take two 

c` ycles to decode.
B.  During the beginning of the decoding cycle, if two consecutive instruc-

t
b
ions are more than one µop, decoder 0 wil l decode one instruction and 
t

b
he next instruction will  not be decoded until  the next cycle.

C.  In
�

structions of the op re g, me m type require two µops: the load from 
memoryc  and the operation µop. Scheduling for the decoder template 
(

f
4-1-1) can improve the decoding throughput of your application.
In

w
 general, ope  reg, mem forms of instructions are used to reduce 

re^ gister pressure in code that is not memory bound, and when the data 
is in the cache. Use simple instructions for improved speed on Pentium 
II and Pentium III processors.

Example 2-9 Scheduling Inst ructions for the Decoder

A.

add  eax, ecx ; 1 µop instructio n  (decoder 0)

add  edx, [ebx] ; 2 µop instructio n (stall 1 cycle  
                 ; wai t till decoder 0  is available)

B.

add  eax, [ebx] ; 2 µop instructio n (decoder 0)

mov  § [eax], ecx ; 2 µop instructio n  (stall 1 cycle  

; to wait until de coder 0 is available)

C.

add  eax, [ebx] ; 2 µop instructio n (decoder 0)

mov  § ecx, [eax] ; 2 µop instructio n  (stall 1 cycle  

; to  wait until decoder 0 is  available)

add  ebx, 8 ;  1 µop instructio n  (decoder 1)

D.

pmaddwd  mm6, [ebx]; 2  µops instructio n (decoder 0)

paddd     mm7, mm6 ; 1 µop instructio n  (decoder 1)

add      ebx, 8 ;  1 µop instructio n  (decoder 2)
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D.
�

The following rules should be observed while using the op re g, me m 
i

g
nstruction with MMX technology: when scheduling, keep in mind the 
de

k
coder template (4-1-1) on Pentium II and Pentium III processors, as 

shown in Example 2-10, D.

Prefixed Opcod es

On
�

 the Pentium II and Pentium III processors, avoid the following prefixes: 

• lo
�

ck
• segment override
• ads dress size
• ope erand size

On
�

 Pentium II and Pentium III processors, instructions longer than seven 
b

�
ytes limit the number of instructions decoded in each cycle. Prefixes add 

one e to two bytes to the length of instruction, possibly limiting the decoder.

W
d

henever possible, avoid prefixing instructions. Schedule them behind 
instructions that themselves stall the pipe for some other reason.

P
a

entium II and Pentium III processors can only decode one instruction at a 
tim

b
e when an instruction is longer than seven bytes. So for best 

pe_ rformance, use simple instructions that are less than eight bytes in length.

Performance T uning Ti p for Instruct ion Scheduling

Intel C/C++ Compiler generates highly optimized code specifically for the 
I

w
ntel architecture-based processors. For assembly code applications, you 

can`  use the assembly coach of the VTune analyzer to get a scheduling 
ads vice, see Chapter 7, “Application Performance Tools.”

Instruct ion Se lection
T

i
he following sections explain which instruction sequences to avoid or use 

whenh  generating optimal assembly code.
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The Use 
¨

of  lea Instruc tion

In ma
w

ny cases a le a instruction or a sequence of le a, add, sub,  and 
sh if t  instructions can be used to replace constant multiply instructions.   
Use

�
 the integer multiply instruction to optimize code designed for 

P
a

entium II and Pentium III processors. The le a instruction can be used 
sometimes as a three/four operand addition instruction, for example, 

le a ec x, [e ax +ebx +4+a]

Using the 
�

le a instruction in this way can avoid some unnecessary register 
usa¦ ge by not tying up registers for the operands of some arithmetic 
instructions.

On
�

 the Pentium II and Pentium III processors, both le a and shi ft  
instructions are single µop instructions that execute in one cycle. However, 
th

b
at short latency may not persist in future implementations. The Intel 

C/
�

C++ Compiler checks to ensure that these instructions are used correctly 
whenh ever possible.

F
x

or the best blended code, replace the sh if t  instruction with two or more 
add instructions, since the short latency of this instruction may not be 
maic ntained across all implementations.

Comple x Instruc tions

Avoid using complex instructions (for example, ent er , le av e, or lo op) 
o

t
b
hat generally have more than four µops and require multiple cycles to 
de

k
code. Use sequences of simple instructions instead.

Shor t Opcodes

Use o
�

ne-byte instructions as much as possible. This reduces code size and 
i

g
ncreases instruction density in the instruction cache. For example, use the 

pu© sh  and po© p instructions instead of mov  instructions to save registers to 
t

b
he stack.
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8/16-bit  Operands

W
d

ith eight-bit operands, try to use the byte opcodes, rather than using 32-bit 
ope erations on sign and zero-extended bytes. Prefixes for operand size 
oe verride apply to 16-bit operands, not to eight-bit operands.

S
q

ign extension is usually quite expensive. Often, the semantics can be 
maic ntained by zero-extending 16-bit operands. For example, the C code in 
t

b
he following statements does not need sign extension, nor does it need 
pref_ ixes for operand size overrides:

st at ic  sh or t in t a,  b;

if  ( a==b)  {

   . . .

}

Code 
�

for comparing these 16-bit operands might be:

xoª r  e ax,  e ax

xo r  e bx,  e bx  

mo� vw  ax,  [ a]

movw  bx,  [ b]

cmp  e ax,  e bx

Of cou
�

rse, this can only be done under certain circumstances, but the 
ci` rcumstances tend to be quite common. This would not work if the 
co` mpare was for greater than, less than, greater than or equal, and so on, or 
if th

g
e values in eax  or ebx  were to be used in another operation where sign 

em xtension was required.

movs w eax , a     ; 1  pr ef ix  +  3

movs w ebx , b     ; 5

cmp   ebx , eax    ;  9

P
a

entium II and Pentium III processors provide special support to XO
�

R a 
r^ egister with itself, recognizing that clearing a register does not depend on 
t

b
he old value of the register. Additionally, special support is provided for the 
abs ove specific code sequence to avoid the partial stall. See  “Partial Register 
St

q
alls”  section for more information.

T
i

he performance of the mo� vz x  instructions has been improved in order to 
redu^ ce the prevalence of partial stalls on Pentium II and Pentium III 
pro_ cessors. Use the movzx  instructions when coding for these processors.
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Comparing Register Values

Use 
�

te st  when comparing a value in a register with zero. Te
«

st  essentiall y 
ands the operands together without writing to a destination register. Tes t  is 
p_ referred over and because and writes the result register, which may 
subsequently cause an artificial output dependence on the processor. Te

«
st  

is better than cmp . . ,  0  because the instruction size is smaller.

Use 
�

te st  when comparing the result of a logical and with an immediate 
c` onstant for equality or inequali ty if the register is eax for cases such as:

 i f  (a var  &  8 )  { }

Address C alcul ations

P
a

ull  address calculations into load and store instructions. Internally, 
memoryc  reference instructions can have four operands: 

• relocatable load-time constant 
• immediate constant 
• ba

�
se register 

• scaled index register. 

In the segmented model, a segment register may constitute an additional 
ope erand in the linear address calculation. In many cases, several integer 
i

g
nstructions can be eliminated by fully using the operands of memory 
references.

Clearing a Register

The preferred sequence to move zero to a register is:

xo r re g, r eg

T
i

his saves code space but sets the condition codes. In contexts where the 
co` ndition codes must be preserved, move 0 into the register:

mov re g, 0
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Integ er Div ide

T
i
ypically, an integer divide is preceded by a cdq instruction. Divide 

instructions use EDX: EAX as the dividend and cd q sets up EDX. It is better to 
c` opy EAX into EDX, then right-shift EDX 31 places to sign-extend. If  you 
kn

¬
ow that the value is positive, use sequence 

xor  edx , edx

On
�

 Pentium II and Pentium III processors, the cdq instruction is faster since 
cd q is a single µop instruction as opposed to two instructions for the 
co py /s hif t  sequence.

Compar ing with Im mediat e Zero

Oft
�

en when a value is compared with zero, the operation produces the value 
sets condition codes, which can be tested directly by a jc c  instruction. The 
most notable exceptions are mov  and le a. In these cases, use tes t .

Prolog Sequ ences

I
w
n routines that do not call other routines (leaf routines), use ESP as the base 

register to free up EBP. If you are not using the 32-bit flat model, remember 
th

b
at EBP cannot be used as a general purpose base register because it 

referenc^ es the stack segment.

Epilog Sequences

If onl
w

y four bytes were allocated in the stack frame for the current function, 
use¦  po© p instructions instead of incrementing the stack pointer by four.

Impr oving th e Performance of  Float ing-point  
App

¤
lications

When p
d

rogramming floating-point applications, it is best to start at the C, 
C

�
++, or FORTRAN language level. Many compilers perform floating-point 

scheduling and optimization when it is possible. However in order to 
pro_ duce optimal code, the compiler may need some assistance.
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Guidelines f or Optimizing Float ing-point Code

F
x
ollow these rules to improve the speed of your floating-point applications:

• Und
�

erstand how the compiler handles floating-point code. 
• Look at the assembly dump and see what transforms are already 

pe_ rformed on the program. 
• S

q
tudy the loop nests in the application that dominate the execution 

tim
b

e.
• Determine why the compiler is not creating the fastest code.
• S

q
ee if there is a dependence that can be resolved.

• Consi
�

der large memory bandwidth requirements.
• T

i
hink of poor cache locali ty improvement.

• Se
q

e if there is a lot of long-latency floating-point arithmetic operations.
• Do not use high precision unless necessary. Single precision (32-bits) is 

faster on some operations and consumes only half the memory space as 
do

k
uble precision (64-bits) or double extended (80-bits).

• Make sure you have fast float-to-int routines. Many libraries do more 
wh ork than is necessary; make sure your float-to-int is a fast routine.

• Make sure your application stays in range. Out of range numbers cause 
v� ery high overhead.

• FXCH can be helpful by increasing the effective name space. This in 
tu

b
rn allows instructions to be reordered to make instructions available 

t
b
o be executed in parallel. Out of order execution precludes the need for 
usi¦ ng FXCH to

b
 move instructions for very short distances. 

• Unr
�

oll loops and pipeline your code.
• P

a
erform transformations to improve memory access patterns. Use loop 

fusi
�

on or compression to keep as much of the computation in the cache 
as ps ossible.

• Break d
r

ependency chains.

Improving Parallel ism

The Pentium II and Pentium III processors have a pipelined floating-point 
un¦ it. To achieve maximum throughput from the Pentium II and Pentium III 
pr_ ocessors floating-point unit, schedule properly the floating-point 
instructions to improve pipelining. Consider the example in Figure 2-2.
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T
i
o exploit the parallel capability of the Pentium II and Pentium III 

pr_ ocessors, determine which instructions can be executed in parallel. The 
t

b
wo high-level code statements in the example are independent, therefore 
t

b
heir assembly instructions can be scheduled to execute in parallel, thereby 
i

g
mproving the execution speed, see source code in Example 2-10.

Mo
¥

st floating-point operations require that one operand and the result use 
t

b
he top of stack. This makes each instruction dependent on the previous 
instruction and inhibits overlapping the instructions.

One 
�

obvious way to get around this is to imagine that we have a flat 
floating-point register file available, rather than a stack. The code is shown 
in Example 2-11.

Example 2-10 Scheduling Floating-P oint Instr uctions

A = B + C  +  D ;

E = F + G  +  H ;

fl d   B f l d   F

f add  C f add  G

f add  D f add  H

f st p  A f st p  E

Example 2-11 Coding f or a Floating- Point  Register  File

fl d   B ?F1

fa dd  F1,  C ?F1

fl d   F ?F2

fa dd  F2, G ?F2

fa dd  F1, D ?F1

fa dd  F2, H ?F2

fs tp   F1 ?A

fs tp   F2 ?E
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In o
w

rder to implement these imaginary registers we need to use the FXCH 
in

g
struction to change the value on the top of stack. This provides a way to 

as void the top of stack dependency. The FXCH instruction uses no extra 
em xecution cycles on Pentium II and Pentium III processors. Example 2-12 
shows its use.

Th
i

e FXCH instructions move an operand into position for the next 
floating-point instruction.

Rules and Regulat ions of th e fxc h Instruct ion

Th
i

e fx ch  instruction costs no extra cycles on Pentium II and Pentium III 
pro_ cessors. The instruction is almost “free” and can be used to access 
elm ements in the deeper levels of the floating-point stack instead of storing 
t

b
hem and then loading them again.

Example 2-12 Using t he FXCH Ins truct ion

STO ST1

fl d   B ⇒­ F1 fl d B B

fa dd  C ⇒­ F1 fa dd C  B +C

fl d   F ⇒­ F2 fl d F B+ C

fa dd  G ⇒­ F2 fa dd G  F +G B+C

fx ch  S T(1 ) B+C F+G

fa dd  D ⇒­ F1 fa dd D  B +C+D F+G

fx ch  S T(1 ) F+G B+C+D

fa dd  H ⇒­ F2 fa dd H  F +G+H B+C+D

fx ch  S T(1 ) B+C+D F+G+H

fs tp   D ⇒­ A f st p A F+ G+H

fs tp   E ⇒­ E f st p E



2-24

2 Intel Architecture Optimization Reference Manual

Memory Ope rands

F
x

loating-point operands that are 64-bit operands need to be 
eim ght-byte-aligned. Performing a floating-point operation on a memory 
ope erand instead of on a stack register on Pentium II or Pentium III 
pr_ ocessor, produces two µops, which can limit decoding. Additionally, 
memory operands may cause a data cache miss, causing a penalty.

Memory Acc ess Stall Information 

F
x

loating-point registers allow loading of 64-bit values as doubles. Instead of 
loading single array values that are 8-, 16-, or 32-bits long, consider loading 
t

b
he values in a single quadword, then incrementing the structure or array 
po_ inter accordingly.

F
x

irst, the loading and storing of quadword data is more efficient using the 
l

�
arger quadword data block sizes. Second, this helps to avoid the mixing of 
8-, 16-, or 32-bit load and store operations with a 64-bit load and store 
ope eration to the memory address. This avoids the possibili ty of a memory 
accs ess stall on Pentium II and Pentium III processors. Memory access stalls 
oce cur when 

• small loads follow large stores to the same area of memory
• large loads follow small stores to the same area of memory. 

Consi
�

der the following cases in Example 2-13. In the first case (A), there is 
a ls arge load after a series of small stores to the same area of memory 
(be

f
ginning at memory address me� m), 

o
and the large load will stall. 

The fl d must wait for the stores to write to memory before it can access all 
t

b
he data it requires. This stall can also occur with other data types (for 
em xample, when bytes or words are stored and then words or doublewords are 
read from the same area of memory).
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In the second case (B), there is a series of small loads after a large store to 
t

b
he same area of memory (beginning at memory address mem� ), an

o
d the small 

lo
�

ads will stall.

T
i

he word loads must wait for the quadword store to write to memory before 
t

b
hey can access the data they require. This stall can also occur with other 
da

k
ta types (for example, when doublewords or words are stored and then 

wh ords or bytes are read from the same area of memory). This can be 
as voided by moving the store as far from the loads as possible. In general, the 
loads and stores should be separated by at least 10 instructions to avoid the 
stall condition.

Float ing-point to Integ er Conversion

Many libraries provide the float to integer library routines that convert 
flo

�
ating-point values to integer. Many of these libraries conform to ANSI C 

co` ding standards which state that the rounding mode should be truncation. 
The default of the fi st  instruction is round to nearest, therefore many 
co` mpiler writers implement a change in the rounding mode in the processor 
in

g
 order to conform to the C and FORTRAN standards. This 

implementation requires changing the control word on the processor using 

Example 2-13 Large and Smal l Load S talls

;A . Large  l oad st all

mo� v mem,  e ax ;  st or e dw or d t o ad dr ess “ mem"

mov mem + 4,  eb x;  st or e dw or d t o ad dr ess “ mem + 4"

     :

     :

f l d mem ; lo ad q wor d at  a ddr ess “mem",  st al ls

;B . Small  L oad st all

f s t p  mem   ;s to re  qw or d to  addr ess “m em"

 :

 :

mo� v  b x,m em+2 ; l oad word  a t  add re ss  “ mem + 2 " ,  s t al l s

mov  c x,m em+4 ; l oad word  a t  add re ss  “ mem + 4 " ,  s t al l s
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th
b

e fl dcw instruction. This instruction is a synchronizing instruction and 
wih ll  cause a signif icant slowdown in the performance of your application on 
als l IA-based processors.

When i
d

mplementing an application, consider if the rounding mode is 
important to the results. If not, use the algorithm in Example  to avoid the 
synchronization and overhead of the fl dcw i

g
nstruction and changing the 

rounding mode.

Example 2-14 Algor ithm to A void Changing the Rounding Mode

_f to 132pr oc

   le a ecx ,[ esp- 8]

   s ub esp, 16 ;  al lo ca te  f rame

   a nd ecx, - 8 ;  al ig n poin ter  o n boundar y of  8

   fl d st( 0)   ; d upl i cat e FPU st ack to p

   fi st p qword  p t r [ ecx]

   f i l d qwor d pt r[e cx ]

   mov edx, [ ecx+4] ; hi gh d wor d of  i nt ege r

   mov eax, [ ecx] ; lo w dword  o f  in te ger

   t est eax, eax

   j e in te ger_ QnaN_or _z er o

continued
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ar g is  no t in te ger Q naN:

fs ubp st(1 ), st    ;  TO S=d- ro und(d ),

      ;  { st (1 )= st (1 ) - st  & pop ST)

te st edx, edx    ;  wh at ’s  s i gn o f  in te ger

jn s posi ti ve    ;  nu mber  i s neg at iv e

      ; d ead cy cl e

      ; d ead cy cl e

fs tp dwor d pt r[ ec x] ;  r esul t  of su bt ra ct io n

m� ov ecx, [ ecx]      ; dwor d of  di ff (s in gl e-
         ; pr ec is io n)

add esp, 16

xo r ecx, 80000000h

add ecx, 7f ff ff ff h ;  i f  di ff <0 th en d ecr ement
         ; in te ger

adc eax, 0          ; in c e ax ( add CA RRY fl ag)

re t

po© si ti ve:

fs tp dwor d pt r [ ecx] ;  17- 18 re su lt  of  
su bt ra cti on

m� ov ecx ,[ ec x]      ; dword  o f  di ff (si ngle -

         ; pr ec is io n)

add esp ,1 6

add ecx ,7 ff fff ff h ;  if  di ff <0 th en de cr ement  
         ; in te ger

sbb eax ,0     ;  dec eax (s ubtra ct  CARRY fl ag)

re t

in te ger_Q naN_or _z ero :

te st   edx, 7ff ff ff fh

jn z   ar g_is_ not_ in te ger _QnaN

    a dd esp, 16

    re t

Example 2-14 Algor ithm to A void Changing the Rounding Mode  (continued)
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Loop Unr olli ng

Th
i

e benefits of unroll ing loops are:

• Unr
�

olling amortizes the branch overhead. The BTB is good at 
pr_ edicting loops on Pentium II and Pentium III processors and the 
i

g
nstructions to increment the loop index and jump are inexpensive.

• Un
�

rolli ng allows you to aggressively schedule (or pipeline) the loop to 
hi

t
de latencies. This is useful if you have enough free registers to keep 

v� ariables live as you stretch out the dependency chain to expose the 
cri` tical path.

• Y
®

ou can aggressively schedule the loop to better set up I-fetch and 
de

k
code constraints.

• T
i

he backwards branch (predicted as taken) has only a 1 clock penalty 
one  Pentium II and Pentium III processors, so you can unroll  very tiny 
l

�
oop bodies for free.

Y
®

ou can use a -Qunro l l  option of the Intel C/C++ Compiler, see In
¯

tel 
C/C++ Compiler User’s Guide for Win32* Systems, order number 718195.

Unr
�

olling can expose other optimizations, as shown in Example 2-15. This 
em xample illustrates a loop executes 100 times assigning xª  to every 
em ven-numbered element and y°  to every odd-numbered element.

B
r

y unrolling the loop you can make both assignments each iteration, 
removing one branch in the loop body.

Example 2-15 Loo p Unroll ing  

Befo re  un ro ll in g:

do
�

 i =1,10 0

  i f  (i  mod 2 ==  0)  t hen a( i)  = x

  el se  a( i)  =  y

enddo

Af te r unr ol li ng

do
�

 i =1,10 0, 2     

  a( i)  = y

  a( i+ 1) = x

enddo
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Float ing-Point  Stalls

Ma
¥

ny of the floating-point instructions have a latency greater than one cycle 
b

�
ut, because of the out-of-order nature of Pentium II and Pentium III 

pr_ ocessors, stalls will not necessarily occur on an instruction or µop basis. 
Ho

±
wever, if an instruction has a very long latency such as an fd iv , then 

scheduling can improve the throughput of the overall application. The 
f

�
ollowing sections discuss scheduling issues and offer good tips for any 

IA-based
w

 processor.

Hiding the One-Clock Latenc y of  a Floating-Point Stor e

A f
�

loating-point store must wait an extra cycle for its floating-point 
ope erand. After an fl d, an fs t  must wait one clock. After the common 
ars ithmetic operations, fmul  and fad d, which normally have a latency of 
t

b
hree, fs t  waits an extra cycle for a total of four. This set also includes 
ote her instructions, for example, fa ddp and fsu br p, see Example 2-16.

Example 2-16 Hiding One-Cloc k Latency

; St or e i s  de pendent  on th e pr ev i ous lo ad.  

f l d meml ;  1 fl d ta kes 1  cl ock

;  2 fs t wait s,  sc hedule  s omet hi ng her e

fs t mem2 ;  3 , 4 f st  t akes 2 cl oc ks

f add meml ;  1 ad d ta kes 3  cl ocks

; 2  a dd,  sc hedul e so meth ing  h er e

; 3  a dd,  sc hedul e so meth ing  h er e

;  4 fs t wait s,  sc hedule  s omet hi ng her e

fs t mem2 ;  5 , 2 f st  t akes 2 cl oc ks

; St or e i s not depen dent  o n the  p r evi ous loa d:

fl d meml ;  1

fl d mem2 ;  2

f xch st (l ) ;  2

fs t mem3 ;  3 st ore s va lu es  l oad ed f r om meml

;  A  r egist er  may b e u sed im media te ly  a f t er it  h as
;  been loa ded (w it h F LD):

fl d mem1 ;  l

fa dd mem2 ; 2, 3, 4
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Use of 
�

a register by a floating-point operation immediately after it has been 
wrh itten by another fa dd , fs ub, or fmul  causes a two-cycle delay. If 
instructions are inserted between these two, then latency and a potential stall 
can`  be hidden.

Additionally, while the multi-cycle floating-point instructions, fd iv  and 
fs qr t , execute in the floating-point unit pipe, integer instructions can be 
em xecuted in parallel. Emitting a number of integer instructions after such an 
instruction as fd iv  or fs qr t  will keep the integer execution units busy. 
T

i
he exact number of instructions depends on the floating-point instruction’s 

c` ycle count.

Integer and Float ing- point  Multiply

Th
i

e integer multiply operations, mu� l  and im ul , are executed in the 
f

�
loating-point unit so these instructions cannot be executed in parallel with a 

floating-point instruction.

A f
�

loating-point multiply instruction (fmul )
o
 delays for one cycle if the 

immediately preceding cycle executed an fmul  or an fmul  / fx ch  pair. The 
mulc tiplier can only accept a new pair of operands every other cycle.

For the best blended code, replace the integer multiply instruction with two 
oe r more add instructions, since the short latency of this instruction may not 
be

�
 maintained across all implementations

Floati ng-point  Operations with Integer Oper ands

F
x

loating-point operations that take integer operands (fi add or fi su b ..) 
should be avoided. These instructions should be spli t into two instructions: 
fi ld  and a floating-point operation. The number of cycles before another 
i

g
nstruction can be issued (throughput) for fi add is four, while for f ild  and 
simple floating-point operations it is one, as shown in the comparison 
be

�
low.

Co
�

mplex Instructions Use
�

 These for Potential Overlap

fi add  [e bp] ; 4               fi ld    [ ebp]  ;  1

                               fa ddp  s t ( l)  ;  2

Using the 
�

f i l d - fa ddp instructions yields two free cycles for executing 
ote her instructions.
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FSTSW Inst ruct ions

The fs ts w instruction that usually appears after a floating-point 
co` mparison instruction (fc om, fc omp, fc ompp)

o
 delays for three cycles. 

Oth
�

er instructions may be inserted after the comparison instruction in order 
to

b
 hide the latency. On Pentium II and Pentium III processors the fc mov  

i
g
nstruction can be used instead.

Transcend ental  Functi ons

If an application needs to emulate these math functions in software, it may 
be

�
 worthwhile to inline some of these math library calls because the cal l  

ans d the prologue/epilogue involved with the calls can significantly affect the 
latency of the operations. Emulating these operations in software will not be 
f

�
aster than the hardware unless accuracy is sacrificed.
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Th
i

e capabili ties of the Pentium® II and Pentium III processors enable the 
de

k
velopment of advanced multimedia applications. The Streaming SIMD 

Extensions and MMX™ technology p_ rovide coding extensions to make use 
of te he processors’ multimedia features, specifically, the single-instruction, 
mulc tiple-data (SIMD) characteristics of the instruction set architecture 
(

f
ISA). To take advantage of the performance opportunities presented by 

th
b

ese new capabil iti es, take into consideration the following:

• Ensure that your processor supports MMX technology and Streaming 
SI

q
MD Extensions.

• Employ all of the optimization and scheduling strategies described in 
t

b
his book.

• Use st
�

ack and data alignment techniques to keep data properly aligned 
for efficient memory use.

• Ut
�

il ize the cacheabil ity instructions offered by Streaming SIMD 
Extensions.

Th
i

is chapter gives an overview of the capabilit ies that allow you to better 
un¦ derstand SIMD features and develop applications util izing SIMD features 
ofe  MMX technology and Streaming SIMD Extensions. 
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Checking for Processor Supp or t of  Streaming  SIMD 
Extens ions and MMX™ Technology

T
i

his section shows how to check whether a system supports MMX™ 
t

b
echnology and Streaming SIMD Extensions.

Checking f or MMX Technolog y Suppor t

B
r

efore you start coding with MMX technology check if MMX technology 
i

g
s available on your system. Use the cp ui d instruction to check the feature 
flags in the edx  register. If cp ui d returns bit 23 set to 1 in the feature flags, 
t

b
he processor supports MMX technology. Use the code segment in 
E

p
xample 3-1 to load the feature flags in edx  and test the result for the 

em xistence of MMX technology.

For more information on cp ui d see, Intel Processor Identification with 
CPUID Instruction, order number 241618. Once this check has been made, 
MM

¥
X technology can be included in your application in two ways: 

1. Check for MMX technology during installation. If MMX technology is 
as vailable, the appropriate DLLs can be installed. 

2. Check for MMX technology during program execution and install the 
pro_ per DLLs at runtime. This is effective for programs that may be 
em xecuted on different machines.

Example 3-1  Identifica tion of MMX Technolog y wit h cpuid²

…i³ dent ify  e xi st ence of  c pui d i nst ru ct io n

… ;³  

…³ ;  id enti fy In te l pr oce ss or

… ;³

mov eax, 1 ;  re ques t f or  f eat ure fl ags

cp ui d ;  0Fh,  0 A2h c pui d i nst ru ct io n

te st  e dx,  0 0800000h;  i s MMX te chn ol ogy bi t ( bi t
; 23)i n fea tu re  f l ags equal to  1

j nz Found
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Checking for Streaming SI MD Extensions S upp or t

Check
�

ing for support of Streaming SIMD Extensions on your processor is 
similar to doing the same for MMX technology, but you must also check 
wheth her your operating system (OS) supports Streaming SIMD Extensions. 
T

i
his is because the OS needs to manage saving and restoring the new state 

introduced by Streaming SIMD Extensions for your application to properly 
fu

�
nction.

To check whether your system supports Streaming SIMD Extensions, 
fol

�
low these steps:

1. Check that your processor has the cp ui d instruction and is in the Intel 
P

a
entium II and Pentium III processors.

2.
µ

Check the feature bits of cp ui d for Streaming SIMD Extensions 
em xistence.

3.
j

Check for OS support for Streaming SIMD Extensions.

Example 3-2 shows how to find the Streaming SIMD Extensions feature bit 
(b

f
it 25) in the cpui d feature flags.

To find out whether the operating system supports Streaming SIMD 
E

p
xtensions, simply execute a Streaming SIMD Extension and trap for the 

em xception if one occurs. An invalid opcode will  be raised by the operating 
system and processor if either is not enabled for Streaming SIMD 
Ex

p
tensions. Catching the exception in a simple try/except clause (using 

structured exception handling in C++) and checking whether the exception 
co` de is an invalid opcode wil l give you the answer. See Example 3-3.

Example 3-2 Identification of St reaming SIMD Extensions with cpuid²

…i³ dent ify  e xi st ence of  c pui d in st ru ct io n

…³   ;  i denti fy  I nt el  Pr oc es so r

mo� v eax, 1  ;  r eques t fo r fe atu re  f l ags

cpui d  ; 0Fh,  0A2h   c pui d in st ru ct io n

te st  E DX,  0 02000000h ; bi t 25 in  f eat ur e f lag s equal to 1

jn z     Found
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Considerations for Code Conversion t o SIMD 
Programming

T
i

he VTune™ Performance Enhancement Environment CD provides tools 
t

b
o aid in the evaluation and tuning. But before you start implementing them, 
yo¶ u need to know the answers to the following questions:

1. Will  the current code benefit by using MMX technology or Streaming 
SI

q
MD Extensions?

2.
µ

Is this code integer or floating-point?
3.

j
What coding techniques should I use?

4. What guidelines do I need to follow?
5.

·
How should I arrange and align the datatypes?

F
x

igure 3-1 provides a flowchart for the process of converting code to MMX 
te

b
chnology or the Streaming SIMD Extensions. 

Example 3-3 Identification of St reaming SIMD Extensions b y the OS

bo
 

ol  O SSuppor tC heck( ) {

   _t ry  {

   _ _asm xo rp s xmm0,  x mm0 ;S tr eamin g SI MD Ex te ns io n

} 

_exc ept(E XCEPTI ON_EXECUTE_HANDLER) {

     i f  ( _except i on_ co de() ==STATUS_IL LEGAL_I NSTRUCTI ON)

   r et urn  ( f al se) ;  St r eami ng S IMD E xt ensi ons n ot  s uppor te d

}

; St re ami ng S I MD Ext ensi ons ar e s uppor t ed by  O S

re tu rn  (t ru e) ;

}
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T
i
o use MMX technology or Streaming SIMD Extensions optimally, you 

must evaluate the following segments of your code:

• segments that are computationally intensive
• segments that require integer implementations that support efficient use 

of te he cache architecture
• segments that require floating-point computations.

Figur e 3-1 Converting to S treaming SIMD Extens ions Char t

1a.  Identify hotspots in the code.

1b. Determine if code benefits by
using SIMD technology.

2a.
FP or Integer?

2b.
Wh

¸
y FP data?

3.
¹

 Convert the code to use SIMD-
FP or SIMD-Integer

4. Follow the SIMD-Integer or
SIMD-FP coding techniques.

5.
º

 Use data alignment rules.

6. Use memory optimizations

7. Use aggressive instruction
s» cheduling

2c. 
Conversion to

 Integer without data
 loss? 

2d.
  Convert to 
SIMD-FP?

FP data

Range or Precision

No

Performance

Yes

No

Yes

Integer data

Stop
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Ident ifying Hotspots

T
i
o optimize performance, you can use the VTune Performance Analyzer to 

isolate the computation-intensive sections of code. For detail s on the VTune 
ans alyzer, see  “VTune™ Performance Analyzer” in Chapter 7. VTune 
ans alyzer provides a hotspots view of a specific module to help you identify 
sections in your code that take the most CPU time and that have potential 
pe_ rformance problems. For more explanation, see section  “Using Sampling 
An

�
alysis for Optimization”  in Chapter 7, which includes an example of a 

hotspots report. The hotspots view helps you identify sections in your code 
t

b
hat take the most CPU time and that have potential performance problems.

The VTune analyzer enables you to change the view to show hotspots by 
memoryc  location, functions, classes, or source files. You can double-click 
one  a hotspot and open the source or assembly view for the hotspot and see 
more detailed information about the performance of each instruction in the 
ho

t
tspot.

The VTune analyzer offers focused analysis and performance data at all 
l

�
evels of your source code and can also provide advice at the assembly 
l

�
anguage level. The code coach analyzes and identifies opportunities for 
be

�
tter performance of C/C++, FORTRAN and Java* programs, and 

suggests specific optimizations. Where appropriate, the coach displays 
pse_ udo-code to suggest the use of Intel’s highly optimized intrinsics and 
functions of the MMX technology and Streaming SIMD Extensions from 
In

w
tel® Performance Library Suite. Because VTune analyzer is designed 

specif ically for all of the Intel architecture (IA)-based processors, 
Pentium II and Pentium III processors in particular, it can offer these 
de

k
tailed approaches to working with IA. See “Code Coach Optimizations” 

in
g

 Chapter 7, for more details and example of a code coach advice.
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Determine If Code Benefit s by Conversion to Streaming SIMD 
Extensi ons

I
w
dentifying code that benefits by using MMX technology and/or Streaming 

S
q

IMD Extensions can be time-consuming and difficult. Likely candidates 
for conversion are applications that are highly computation- intensive such 
as s the following:

• speech compression algorithms and filters
• vi� deo display routines
• r^ endering routines
• 3D g

j
raphics (geometry)

• image and video processing algorithms
• spatial (3D) audio

Gene
¼

rally, these characteristics can be identified by the use of small-sized 
r^ epetitive loops that operate on integers of 8 or 16 bits for MMX 
t

b
echnology, or single-precision, 32-bit floating-point data for Streaming 
S

q
IMD Extensions technology (integer and floating-point data items should 

be
�

 sequential in memory). The repetitiveness of these loops incurs costly 
aps plication processing time. However, these routines have potential for 
i

g
ncreased performance when you convert them to use MMX technology or 
S

q
treaming SIMD Extensions.

Once
�

 you identify your opportunities for using MMX technology or 
S

q
treaming SIMD Extensions, you must evaluate what should be done to 

de
k

termine whether the current algorithm or a modified one will ensure the 
be

�
st performance.

Coding Techniq ues
The SIMD features of Streaming SIMD Extensions and MMX technology 
requ^ ire new methods of coding algorithms. One of them is vectorization. 
V

½
ectorization is the process of transforming sequentially executing, or 

scalar, code into code that can execute in parallel, taking advantage of the 
SI

q
MD architecture parallelism. Using this feature is criti cal for Streaming 

S
q

IMD Extensions and MMX technology. This section discusses the coding 
t

b
echniques available for an application to make use of the SIMD 
archs itecture.
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T
i
o vectorize your code and thus take advantage of the SIMD architecture, 

d
k
o the following:

• Determine if the memory accesses have dependencies that would 
pre_ vent parallel execution

• “Strip-mine”  the loop to reduce the iteration count by the length of the 
S

q
IMD operations (four for Streaming SIMD Extensions and MMX 

te
b

chnology)
• Recode the loop with the SIMD instructions

E
p

ach of these actions is discussed in detail in the subsequent sections of this 
ch` apter.

Coding Methodologies

S
q

oftware developers need to compare the performance improvement that 
can`  be obtained from assembly code versus the cost of those improvements. 
P

a
rogramming directly in assembly language for a target platform may 

pro_ duce the required performance gain, however, assembly code is not 
po_ rtable between processor architectures and is expensive to write and 
maic ntain.

Performance objectives can be met by taking advantage of the Streaming 
S

q
IMD Extensions or MMX technology ISA using high-level languages as 

weh ll as assembly. The new C/C++ language extensions designed 
specif ically for the Streaming SIMD Extensions and MMX technology help 
makc e this possible.

Figure 3-2 illustrates the tradeoffs involved in the performance of hand- 
co` ded assembly versus the ease of programming and portability.



C
´

oding for SIMD Architectures3

3-9

The examples that follow il lustrate the use of assembly coding adjustments 
for t

�
his new ISA to benefit from the Streaming SIMD Extensions and 

C
�

/C++ language extensions. Floating-point data may be used with the 
S

q
treaming SIMD Extensions as well as the intrinsics and vector classes with 

MM
¥

X technology.

As a basis for the usage model discussed in this section, consider a simple 
l

�
oop shown in Example 3-4.

Example 3-4 Simple Four -Iteration Loop

vo¾ id  a dd( fl oat *a , f l oat  * b,  fl oat *c )

{

  in t i;

  fo r (i = 0;  i  <  4;  i ++)  {

    c[ i] = a[ i]  +  b[ i] ;

  }

}

_____________________________________________________________

Figur e 3-2 Hand-Coded Ass embly and High-Le vel Comp iler Performance  
Tradeoffs

Pe
rf

or
m

an
ce

Portabili¿ ty,
easÀ e of useÀ

Assembly

Intrinsics

C+
Á

+ classes

Automatic
vectorizÂ ation
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No
Ã

te that the loop runs for only four iterations. This allows a simple 
repl^ acement of the code with Streaming SIMD Extensions.

F
x
or the optimal use of the Streaming SIMD Extensions that need data 

als ignment on the 16-byte boundary, this example assumes that the arrays 
pa_ ssed to the routine, aÄ , b

Å
, c , are aligned to 16-byte boundaries by a calling 

ro^ utine. See Intel application note AP-833, Dat
Æ

a Alignment and 
Pr

~
ogramming Considerations for Streaming SIMD Extensions with the Intel 

C/C++ Compiler, order number 243872, for the methods to ensure this 
als ignment.

The sections that follow detail  on the following coding methodologies: 
i

g
nlined assembly, intrinsics, C++ vector classes, and automatic 
v� ectorization.

Assemb ly

K
Ç

ey loops can be coded directly in assembly language using an assembler 
oe r by using inlined assembly (C-asm) in C/C++ code. The Intel compiler or 
assembs ler recognizes the new instructions and registers, then directly 
gel nerates the corresponding code. This model offers the greatest 
pe_ rformance, but this performance is not portable across the different 
pro_ cessor architectures. 

E
p

xample 3-5 shows the Streaming SIMD Extensions inlined-asm encoding.

Example 3-5 Streaming SIMD  Extensions Us ing Inlined As semb ly Encoding

vo¾ id  a dd( fl oat *a , flo at  * b,  f loa t *c )

{

  __as m {

    mov     eax,  a

    mov     edx,  b

    mov     ecx,  c

    movap s  x mm0,  X MMWORD PTR [ea x]

    addps    x mm0,  X MMWORD PTR [ed x]

    movap s  X MMWORD PT R [e cx ],  xm m0

  }

}

_____________________________________________________________
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Intr insi cs

Intrinsics provide the access to the ISA functionality using C/C++ style 
co` ding instead of assembly language. Intel has defined two sets of intrinsic 
f

�
unctions that are implemented in the Intel C/C++ Compiler to support the 

MMX technology and the Streaming SIMD Extensions. Two new C data 
t

b
ypes, representing 64-bit and 128-bit objects (__m64 and __m128, 
re^ spectively) are used as the operands of these intrinsic functions. This 
enm ables to choose the implementation of an algorithm directly, while also 
pe_ rforming optimal register allocation and instruction scheduling where 
po_ ssible. These intrinsics are portable among all Intel architecture-based 
pro_ cessors supported by a compiler. The use of intrinsics allows you to 
obe tain performance close to the levels achievable with assembly. The cost of 
wrih ting and maintaining programs with intrinsics is considerably less. For a 
d

k
etailed description of the intrinsics and their use, refer to the Intel C/C++ 

Compiler User’s Guide.

Example 3-6 shows the loop from Example 3-4 using intrinsics.

Example 3-6 Simple Four -Iteration Loop Coded with Int rinsic s

#i nc lu de <x mmin tr in. h>

vo¾ id  a dd( fl oat *a , f l oat  * b,  f loa t *c )

{

 __m128 t0 , t1 ;

  t0  =  _ mm_lo ad_ps( a);

  t1  =  _ mm_lo ad_ps( b);

  t0  =  _ mm_add_ps (t 0, t1 );

  _mm_st ore _ps( c,  t 0);

}

_____________________________________________________________

The intrinsics map one-to-one with actual Streaming SIMD Extensions 
assembs ly code. The xª mmint ri n. h header file in which the prototypes for 
t

b
he intrinsics are defined is part of the Intel C/C++ Compiler for Win32* 
S

q
ystems included with the VTune Performance Enhancement Environment 

CD.
�
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Int
w

rinsics are also defined for the MMX technology ISA. These are based on 
th

b
e __m64 data type to represent the contents of an mm�  register. You can 

specify values in bytes, short integers, 32-bit values, or as a 64-bit object. 

Th
i

e __m64 and __m128  data types, however, are not a basic ANSI C data 
t

b
ype, and therefore you must observe the following usage restrictions:

• Use
�

 __ m64 and __m128  data only on the left-hand side of an 
assis gnment as a return value or as a parameter. You cannot use it with 
ote her arithmetic expressions (“+”, “ >>”, and so on).

• Use
�

 __ m64 and __m128  objects in aggregates, such as unions to 
accs ess the byte elements and structures; the address of an __m64 object 
mayc  be also used.

• Use 
�

__m64 ans d __m128  data only with the MMX intrinsics described 
in

g
 this guide.

F
x
or complete details of the hardware instructions, see the In

¯
tel Architecture 

MMX
É

™ Technology Programmer’s Reference Manual. For descriptions of 
da

k
ta types, sÊ ee tm he Intel Architecture Software Developer's Manual, Volume 

2:
Ë

 Instruction Set Reference Manual.

Classes

Intel has also defined a set of C++ classes to provide both a higher-level 
abs straction and more flexibil ity for programming with MMX technology 
ans d the Streaming SIMD Extensions. These classes provide an easy-to-use 
ans d flexible interface to the intrinsic functions, allowing developers to write 
morc e natural C++ code without worrying about which intrinsic or assembly 
l

�
anguage instruction to use for a given operation. Since the intrinsic 
functions underlie the implementation of these C++ classes, the 
pe_ rformance of applications using this methodology can approach that of 
one e using the intrinsics. Further details on the use of these classes can be 
found in the Intel C++ Class Libraries for SIMD Operations User’s Guide, 
ore der number 693500.

Example 3-7 shows the C++ code using a vector class library. The example 
assus mes the arrays passed to the routine are already aligned to 16-byte 
bo

�
undaries.
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Example 3-7 C++ Code Using t he Vector Class es

#i nc lu de <f ve c. h>
vo¾ id  a dd( fl oat *a , f l oat  * b,  f loa t *c )
{

F32v ec 4 * av=( F32vec4  * )  a;

F32v ec 4 * bv=( F32vec4  * )  b;

F32v ec 4 * cv=( F32vec4  * )  c;

*c v=*a v +  * bv

}

_____________________________________________________________

Here, fve c. h is the class definition file and F32v ec 4 is the class 
repre^ senting an array of four floats. The “+” and “=” operators are 
oe verloaded so that the actual Streaming SIMD Extensions implementation 
in the previous example is abstracted out, or hidden, from the developer. 
Not

Ã
e how much more this resembles the original code, allowing for simpler 

ans d faster programming.

Ag
�

ain, the example is assuming the arrays passed to the routine are already 
als igned to 16-byte boundary.

Automat ic Vector izat ion

T
i

he Intel C/C++ Compiler provides an optimization mechanism by which 
simple loops, such as in Example 3-4 can be automatically vectorized, or 
co` nverted into Streaming SIMD Extensions code. The compiler uses similar 
t

b
echniques to those used by a programmer to identify whether a loop is 
suitable for conversion to SIMD. This involves determining whether the 
following might prevent vectorization:

• t
b
he layout of the loop and the data structures used 

• de
k

pendencies amongst the data accesses in each iteration and across 
ite

g
rations

Once
�

 the compiler has made such a determination, it can generate 
v� ectorized code for the loop, allowing the application to use the SIMD 
in

g
structions.
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T
i

he caveat to this is that only certain types of loops can be automatically 
v� ectorized, and in most cases user interaction with the compiler is needed to 
fully  enable this. 

E
p

xample 3-8 shows the code for automatic vectorization for the simple 
four-iteration loop (from Example 3-4).

Example 3-8 Automatic  Vector ization f or a Simple  Loop

vo¾ id  a dd (f lo at  * r estr ic t a,  
fl oat *r est ri ct  b ,  
fl oat *r est ri ct  c )

{

in t i;

fo r (i  = 0;  i  <  1 00;  i ++)  {

c[ i]  =  a[ i]  +  b [ i ] ;

}

}

_____________________________________________________________

Co
�

mpile this code using the -Qvec  and -Qre st ri ct  switches of the Intel 
C

�
/C++ Compiler, version 4.0 or later.

Th
i

e re st ri ct  qualif ier in the argument list is necessary to let the compiler 
know that there are no other aliases to the memory to which the pointers 
po_ int. In other words, the pointer for which it is used, provides the only 
meanc s of accessing the memory in question in the scope in which the 
po_ inters live. Without this qualifier, the compiler will  not vectorize the loop 
be

�
cause it cannot ascertain whether the array references in the loop overlap, 

ans d without this information, generating vectorized code is unsafe.

Refer to
�

 the In
¯

tel C/C++ Compiler User’s Guide for Win32 Systems, order 
nun mber 718195, for more details on the use of automatic vectorization.
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Stack and Data Alignment
T

i
o get the most performance out of code written for MMX technology and 

S
q

treaming SIMD Extensions, data should be formatted in memory 
acs cording to the guidelines described in this section. A misaligned access in 
assembs ly code is a lot more costly than an aligned access.

Alignment of  Data Acc ess Patterns

T
i

he new 64-bit packed data types defined by MMX technology, and the 
128-bit packed data types for Streaming SIMD Extensions create more 
po_ tential for misaligned data accesses. The data access patterns of many 
als gorithms are inherently misaligned when using MMX technology and 
S

q
treaming SIMD Extensions.

Ho
±

wever, when accessing SIMD data using SIMD operations, access to data 
ca` n be improved simply by a change in the declaration. For example, 
co` nsider a declaration of a structure, which represents a point in space. The 
structure consists of three 16-bit values plus one 16-bit value for padding. 
T

i
he sample declaration follows:

ty pedef s t r uct  { sho rt  x , y , z ;  sho rt  j unk;  } Poin t;

Poin t pt[ N] ;

In
w

 the following code,

fo r (i =0;  i <N;  i+ +) pt [i ]. y *=  sc al e;

t
b
he second dimension y°  needs to be multiplied by a scaling value. Here the 

fo r  loop accesses each y°  dimension in the array pt©  thus avoiding the access 
t

b
o contiguous data, which can cause a serious number of cache misses and 
de

k
grade the performance of the application.

T
i

he following declaration allows you to vectorize the scaling operation and 
further improve the alignment of the data access patterns:

sh or t ptx [N ],  p t y [N] , pt z[ N] ;

fo r (i =0;  i <N;  i+ +) pt y *=  s cale;
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W
d

ith the SIMD technology, choice of data organization becomes more 
i

g
mportant and should be made carefully based on the operations that wil l be 
pe_ rformed on the data. In some applications, traditional data arrangements 
mayc  not lead to the maximum performance.

A simple example of this is an FIR filter. An FIR filter is effectively a vector 
do

k
t product in the length of the number of coefficient taps. 

Co
�

nsider the following code:

(d at a [ j  ]  * coef f  [0]  +  d at a [j+ 1] *c oeff  [1 ]+ .. .+ data 
[j +num of  t aps- 1] * coef f [n um o f  t aps- 1] ) ,Ì

If i
w

n the code above the filter operation of data element i  is the vector dot 
pro_ duct that begins at data element j , then the filter operation of data 
elm ement i+ 1 begins at data element j+ 1.

Assuming y
�

ou have a 64-bit aligned data vector and a 64-bit aligned 
co` efficients vector, the filter operation on the first data element will be fully 
als igned. For the second data element, however, access to the data vector will  
be

�
 misaligned. The Intel application note AP-559, MMX Inst

É
ructions to 

Compute a 16-Bit Real FIR Filter, order number 243044, shows an example 
oe f how to avoid the misalignment problem in the FIR filter.

Duplication and padding of data structures can be used to avoid the problem 
of de ata accesses in algorithms which are inherently misaligned.  

Stack Alignmen t For Streaming SI MD Extensions

For best performance, the Streaming SIMD Extensions require their 
memory operands to be aligned to 16-byte (16B) boundaries. Unaligned 
da

k
ta can cause significant performance penalties compared to aligned data. 

Ho
±

wever, the existing software conventions for IA-32 (st dcal l , cdec l , 
fa st ca ll )

o
 as implemented in most compilers, do not provide any 

CA
Í

UTION.  The duplication and padding technique overcomes the 
miÎ salignment problem, thus avoiding the expensive penalty for 
miÎ saligned data access, at the price of increasing the data size. When 
de

Ï
veloping your code, you should consider this tradeoff and use the 

opÐ tion which gives the best performance.
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mechanism for ensuring that certain local data and certain parameters are 
16-byte aligned. Therefore, Intel has defined a new set of IA-32 software 
co` nventions for alignment to support the new __m128  datatype that meets 
t

b
he following conditions:

• F
x

unctions that use Streaming SIMD Extensions data need to provide a 
16-byte aligned stack frame.

• Th
i

e __m128  parameters need to be aligned to 16-byte boundaries, 
po_ ssibly creating “holes” (due to padding) in the argument block

These new conventions presented in this section as implemented by the 
Int

w
el C/C++ Compiler can be used as a guideline for an assembly language 

co` de as well. In many cases, this section assumes the use of the __m128 
da

k
ta type, as defined by the Intel C/C++ compiler, which represents an array 

ofe  four 32-bit floats.

For more details on the stack alignment for Streaming SIMD Extensions, 
see Appendix E, “S

q
tack Alignment for Streaming SIMD Extensions.”

Data Alignmen t for MMX  Techn olog y

Many compilers enable alignment of variables using controls. This aligns 
t

b
he variables’ bit lengths to the appropriate boundaries. If some of the 
va� riables are not appropriately aligned as specified, you can align them 
usi¦ ng the C algorithm shown in Example 3-9.

Example 3-9 C Algor ithm for 64-bit Data  Alignment

#i nc lu de <s td io .h >

#i nc lu de<st dl ib .h >

#i nc lu de<mall oc .h >

vo¾ id  main (v oi d)

{

 double  a[ 5]  ;

 do uble  *p , *n ewp;

 double  i,  r es;

                                                   cÑ ontinued

_____________________________________________________________
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Example 3-9  C Algor ithm for  64-bit Data Ali gnment (continued)

p Ó = (d oub le *) mall oc  (( (s iz eof a[0 ]) *5 )+ 4) ;

             newp =  (( unsi gned in t) (& p) +4) &  ( ~0x7) ;

/*

re s =0 ;

fo r( i =0;  i <4;  i+ +)

{

 re s +=  a[ i] ;

}

prÓ in tf ("r es  =  %l d\ n",r es );

*/

}

_____________________________________________________________

T
Ô

he algorithm in Example 3-9 aligns a 64-bit variable on a 64-bit boundary. 
Once

Õ
 aligned, every access to this variable saves six to nine cycles on the 

Pentium II and Pentium III processors when the misaligned data previously 
crÖ ossed a cache line boundary.

Another way to improve data alignment is to copy the data into locations 
t

×
hat are aligned on 64-bit boundaries. When the data is accessed frequently, 
t

×
his can provide a significant performance improvement.

Data Alignmen t for S treaming SIMD E xtensi ons

Data must be 16-byte-aligned when using the Streaming SIMD Extensions 
t

×
o avoid severe performance penalties at best, and at worst, execution faults. 
Al though there are move instructions (and intrinsics) to allow unaligned 
da

Ø
ta to be copied into and out of Streaming SIMD Extension registers when 

noÙ t using aligned data, such operations are much slower than aligned 
accÚ esses. If, however, the data is not 16-byte-aligned and the programmer or 
t

×
he compiler does not detect this and uses the aligned instructions, a fault 
wiÛ ll  occur. So, the rule is: keep the data 16-byte-aligned. Such alignment 
wiÛ ll  also work for MMX technology code, even though MMX technology 
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onÝ ly requires 8-byte alignment. The following discussion and examples 
de

Ø
scribe alignment techniques for Pentium III processor as implemented 

wÛ ith the Intel C/C++ Compiler.

Compil er-Support ed Ali gnm ent

T
Ô

he Intel C/C++ Compiler provides the following methods to ensure that 
th

×
e data is aligned.

Al
Þ

ignment by F32ve c4  orß  __m128 D
à

ata Types. When co
á

mpiler detects 
F32v ec 4 or __m128 data declarations or parameters, it will force alignment 
ofÝ  the object to a 16-byte boundary for both global and local data, as well as 
pâ arameters. If  the declaration is within a function, the compiler will also 
alÚ ign the function’s stack frame to ensure that local data and parameters are 
16-byte-aligned. Please refer to the Intel application note AP-589, S

ã
oftware 

Conventions for Streaming SIMD Extensions, order number 243873, for 
de

Ø
tails on the stack frame layout that the compiler generates for both debug 

anÚ d optimized (“release”-mode) compilations.

Th
Ô

e __decls pec( al ig n(1 6) )  specifications can be placed before data 
de

Ø
clarations to force 16-byte alignment. This is particularly useful for local 

or glÝ obal data declarations that are assigned to Streaming SIMD Extensions 
da

Ø
ta types. The syntax for it is 

__de
ä

cl spe c( al ig n( int eger -c onst ant ))

where thÛ e i nt ege r- co ns ta nt  is an integral power of two but no greater 
t

×
han 32. For example, the following increases the alignment to 16-bytes:

__de
ä

cl spe c( al ig n( 16) ) fl oat bu ffe r[ 400] ;

The variable bu
å

ff er  could then be used as if it contained 100 objects of 
t

×
ype __m128 or F32v ec4 . In the code below, the construction of the 

F32v ec 4 object, x , will occur with aligned data. 

voæ id  f oo( ) {

F32vec4 x = *( __m128 *)  buf f er ;

.. .

}

W
á

ithout the declaration of __de cl sp ec (a lig n( 16)) , a fault may occur.
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Al ignment by Using a unè io n Stru
é

cture. Preferably, when feasible, a 
unè io n cÖ an be used with Streaming SIMD Extensions data types to allow 
th

×
e compiler to align the data structure by default. Doing so is preferred to 

fo
ê

rcing alignment with __dec ls pec( al ign (1 6) )  because it exposes the 
tru

×
e program intent to the compiler in that __m128  data is being used. For 

exë ample:

unè io n {

   fl oat f[4 00];

   __m1ì 28 m[ 100] ;

} bu ff er;

T
Ô

he 16-byte alignment is used by default due to the __m128 type in the 
unè io n; it is not necessary to use __de cl sp ec (a lig n( 16))  to force it.

In C++
í

 (but not in C) it is also possible to force the alignment of a 
cl as s /

î
st ru ct /

î
unè io n type, as in the code that follows:

st ru ct  __ de
ä

cl sp ec (a lig n( 16))  my_m1ì 28
{

  fl oat f [ 4] ;
};

Bu
ï

t, if the data in such a cl ass  is going to be used with the Streaming 
S

ð
IMD Extensions, it is preferable to use a unè io n to make this explicit. In 

C
ñ

++, an anonymous unè io n can be used to make this more convenient:

cl as s my _m128 {

  unio n {

   __m128 m;

    fl oat f[ 4];

  };

};

In this example, because the uniè on  is anonymous, the names, m and f , can 
be

ò
 used as immediate member names of my__m128. Note that 

__decl spe c( al ig n)  has no effect when applied to a cl ass , st ru ct , or 
unè io n member in either C or C++.
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Al ignment by Using __m64 orß  do
ä

uble  Data. In some cases, for better 
peâ rformance, the compiler wil l align routines with __m64 or do

ä
ubl e data 

t
×
o 16-bytes by default. The command-line switch, -Qsf al ig n16, can be 
useô d to limit the compiler to only align in routines that contain Streaming 
SI

ð
MD Extensions data. The default behavior is to use - Qsf al ig n8 , which 

i
õ
nstructs to align routines with 8- or 16-byte data types to 16-bytes.

F
ö

or more details, see the Intel application note AP-833, D
÷

ata Alignment and 
Pr

ø
ogramming Issues with the Intel C/C++ Compiler, order number 243872, 

anÚ d Intel C/C++ Compiler for Windows32 Systems User’s Guide, order 
nuÙ mber 718195.

Impr ov ing Memory Utiliza tion
Memory performance can be improved by rearranging data and algorithms 
f

ê
or Streaming SIMD Extensions and MMX technology intrinsics. The 

metù hods for improving memory performance involve working with the 
following:

• Dat
ú

a structure layout
• S

ð
trip-mining for vectorization and memory utilization

• Loop-blocking

Usi
û

ng the cacheabili ty instructions, prefetch and streaming store, also 
greaü tly enhance memory utilization. For these instructions, see Chapter 6, 
“Op

Õ
timizing Cache Util ization for Pentium®

ý
 III  Processors.”

Data Structure Layou t

For certain algorithms, like 3D transformations and lighting, there are two 
ba

ò
sic ways of arranging the vertices data. The traditional method is the 

arrayÚ  of structures (AoS) arrangement, with a structure for each vertex. 
However this method does not take full  advantage of the Streaming SIMD 
Extensions SIMD capabil ities. The best processing method for code using 
S

ð
treaming SIMD Extensions is to arrange the data in an array for each 

coÖ ordinate. This data arrangement is called structure of arrays (SoA). This 
arranÚ gement allows more efficient use of the parallelism of Streaming 
S

ð
IMD Extensions because the data is ready for transformation. Another 

adÚ vantage of this arrangement is reduced memory traffic, because only the 
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relevant data is loaded into the cache. Data that is not relevant for the 
t

×
ransformation (such as: texture coordinates, color, and specular) is not 
l

þ
oaded into the cache.

T
Ô

here are two options for transforming data in AoS format. One is to 
peâ rform SIMD operations on the original AoS format. However, this option 
rÿ equires more calculations. In addition, some of the operations do not take 
adÚ vantage of the four SIMD elements in the Streaming SIMD Extensions. 
Therefore, this option is less efficient. The recommended way for 
t

×
ransforming data in AoS format is to temporarily transpose each set of four 
ve� rtices to SoA format before processing it with Streaming SIMD 
Extensions.

The following is a simpli fied transposition example:

Ori
�

ginal format:
x1,y1,z1    x2,y2,z2    x3,y3,z3   x4,y4,z4

Transposed format:
x1,x2,x3,x4   y1,y2,y3,y4   z1,z2,z3,z4

The data structures for the methods are presented, respectively, in 
E

�
xample 3-10 and Example 3-11.

Example 3-10  AoS d ata str uctur e

ty pedef s t r uct {

fl oat x,y ,z ;
in t co lor ;
. . .

} Ve rt ex;
Ve

�
rt ex  Ve rt ic es [N umOfVer ti ce s] ;

_____________________________________________________________

Example 3-11  SoA d ata str uctur e

  ty pedef s t r uct {

fl oat x[N umOf Vert ic es] ;
fl oat y[N umOf Vert ic es] ;
fl oat z[N umOf Vert ic es] ;
in t co lor [N umOf Vert ice s] ;
. . . 

 } Vert ice sL is t;

  Vert ic esL is t Vert ic es;
_____________________________________________________________
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The transposition methods also apply to MMX technology. Consider a 
simple example of adding a 16-bit bias to all the 16-bit elements of a vector. 
In reg

í
ular scalar code, you would load the bias into a register at the 

be
ò

ginning of the loop, access the vector elements in another register, and do 
t

×
he addition of one element at a time.

C
ñ

onverting this routine to MMX technology code, you would expect a four 
t

×
imes speedup since MMX i nstructions can process four elements of the 
ve� ctor at a time using the movq  instruction, and can perform four additions 
atÚ  a time using the paÓ ddw instruction. However, to achieve the expected 
speedup, you would need four contiguous copies of the bias in an MMX 
t

×
echnology register when adding.

In t
í

he original scalar code, only one copy of the bias is in memory. To use 
MM

�
X instructions, you could use various manipulations to get four copies 

ofÝ  the bias in an MMX technology register. Or you could format your 
memoryù  in advance to hold four contiguous copies of the bias. Then, you 
neÙ ed only load these copies using one MOVQ instruction before the loop, and 
t

×
he four times speedup is achieved.

Add
�

itionally, when accessing SIMD data with SIMD operations, access to 
da

Ø
ta can be improved simply by a change in the declaration. For example, 

coÖ nsider a declaration of a structure that represents a point in space. The 
structure consists of three 16-bit values plus one 16-bit value for padding:

ty pedef s t r uct  { sho rt  x , y , z ;  sho rt  j unk;  } Poin t;

Poin t pt[ N] ;

In the following code the second dimension y � needs to be multiplied by a 
scaling value. Here the fo r  loop accesses each y�  dimension in the ptÓ  array:

fo r (i =0;  i <N;  i+ +) pt [i ]. y *=  sc al e;

The access is not to contiguous data, which can cause a significant number 
of cÝ ache misses and degrade the application performance.

However, if the data is declared as

sh or t ptx [N ],  p t y [N] , pt z[ N] ;

fo r (i =0;  i <N;  i+ +) pt y[ i]  * = sca le ;

t
×
he scaling operation can be vectorized.
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W
á

ith the MMX technology intrinsics and Streaming SIMD Extensions, data 
orÝ ganization becomes more important and should be based on the 
opÝ erations to be performed on the data. In some applications, traditional 
da

Ø
ta arrangements may not lead to the maximum performance.

Strip Mining
S

ð
trip mining, also known as loop sectioning, is a loop transformation 

t
×
echnique for enabling SIMD-encodings of loops, as well as providing a 
meanù s of improving memory performance. This technique, first introduced 
for vect

ê
orizors, is the generation of code when each vector operation is done 

for a size less than or equal to the maximum vector length on a given vector 
machù ine. By fragmenting a large loop into smaller segments or strips, this 
t

×
echnique transforms the loop structure twofold:

• It increases the temporal and spatial locality in the data cache if the 
da

Ø
ta are reusable in different passes of an algorithm.

• It reduces the number of loop iterations by the length of each “vector,” 
orÝ  number of operations being performed per SIMD operation. In the 
caseÖ  of Streaming SIMD Extensions, this vector or strip-length is 
reduÿ ced by 4 times: four floating-point data items per single Streaming 
S

ð
IMD Extensions operation are processed. Consider Example 3-12.

Example 3-12  Pseudo-code Be fore Strip Mini ng

ty pedef s t r uct  _VERTEX {

fl oat x, y,  z ,  nx , ny,  n z,  u ,  v;

 }  V er tex _r ec ; 

 ma in ()

 {

Ve
�

rt ex _re c v[ Num];

.. ..

fo r (i =0;  i <Num;  i+ +) {

  Tr ansfo rm(v [i ]) ;

}

fo r (i =0;  i <Num;  i+ +) {

  Li ghtin g( v[ i] );

}

.. ..

 }

_____________________________________________________________
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The main loop consists of two functions: transformation and lighting. For 
eaë ch object, the main loop calls a transformation routine to update some 
d

Ø
ata, then calls the lighting routine to further work on the data. If the 

t
×
ransformation loop uses only part of the data, say x, y, z, u, v, and the 
lighting routine accesses only the other pieces of the structure (nx, ny, nz, 
for ex

ê
ample), the same cache line is accessed twice in the main loop. This 

situation is called false sharing.

Howev
�

er, by applying strip-mining or loop-sectioning techniques, the 
nuÙ mber of cache misses due to false sharing can be minimized. As shown in 
Example 3-3, the original object loop is strip-mined into a two-level nested 
l

þ
oop with respect to a selected strip length (st ri p_si ze ) . The strip-length 
should be chosen so that the total size of the strip is smaller than the cache 
size. As a result of this transformation, the data brought in by the 
t

×
ransformation loop wil l not be evicted from the cache before it can be 
reused in the lighting routine. See Example 3-13.

Example 3-13 A Strip Mining Code

main ()

{

Ve
�

rt ex _re c v[ Num];

.. ..

epil ogue_ num = Num % s t r i p_s i ze;

f or  ( i =0;  i < Num; i+ =str ip _s iz e)  {

  fo r (j= i;  j  <  min( Num, i +st r ip_ si ze );  j ++)  {

 T r ansfor m(v[ j] );  

 L i ght ing (v [j ]) ; 

  }

}

}

______________________________________________________________
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Loop Blocking

L
�

oop blocking is another useful technique for memory performance 
opÝ timization. The main purpose of loop blocking is also to eliminate as 
many cache misses as possible. This technique transforms the memory 
do

Ø
main of a given problem into smaller chunks rather than sequentially 

t
×
raversing through the entire memory domain. Each chunk should be small 
enë ough to fit all the data for a given computation into the cache, thereby 
maxù imizing data reuse. In fact, one can treat loop blocking as strip mining 
i

õ
n two dimensions. Consider the code in Example 3-16 and access pattern in 
Figure 3-3. The two-dimensional array A is referenced in the j  (column) 
di

Ø
rection and then referenced in the i  (row) direction; whereas array B	  is 

referencÿ ed in the opposite manner. Assume the memory layout is in 
coÖ lumn-major order; therefore, the access strides of array A and B for the 
coÖ de in Example 3-14 would be 1 and N
 , respectively.

Example 3-14  Loop Block ing

A. Origi nal loop
fl oat A[M AX, MA X] , B[M AX, MA X]

fo r (i =0;  i < MAX;  i ++)  {

fo r (j =0;  j < MAX;  j ++)  {

A[
�

i, j]  = A[ i, j]  +  B [j,  i ] ;

}
}

B. Transforme d Loo p after Bloc king

fl oat A[M AX, MA X] , B[M AX, MA X] ; 

fo r (i =0;  i < MAX;  i +=blo ck _s iz e) {

fo r (j =0;  j < N;  j +=blo ck _s iz e)  {

fo r (i i=i ; ii <i +blo ck_ si ze ; ii ++)  {

fo r (j j= j; jj <j +blo ck_ si ze ; jj ++)  {

A[ ii ,j j]  = A[ ii ,j j]  + B[ jj , ii ];

}
}

}
}

_____________________________________________________________
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For the first iteration of the inner loop, each access to array B will  generate a 
caÖ che miss. If the size of one row of array A� , that is, A� [ 2,  0: MAX-1 ] , is 
l

þ
arge enough, by the time the second iteration starts, each access to array B 
wiÛ ll  always generate a cache miss. For instance, on the first iteration, the 
caÖ che line containing B[

	
0,  0: 7]  wil l be brought in when B[

	
0, 0]  is 

referenÿ ced because the fl oat  type variable is four bytes and each cache 
line is 32bytes. Due to the limitation of cache capacity, this line wil l be 
evë icted due to conflict misses before the inner loop reaches the end. For the 
neÙ xt iteration of the outer loop, another cache miss will  be generated while 
referencing B[ 0, 1] . In this manner, a cache miss occurs when each 
elë ement of array B	  is referenced, that is, there is no data reuse in the cache at 
all foÚ r array B.

T
Ô

his situation can be avoided if the loop is blocked with respect to the cache 
size. In Figure3-3, a bl

å
oc k_s iz e is selected as the loop blocking factor. 

S
ð

uppose that bl
å

ock_si ze i
õ
s 8, then the blocked chunk of each array will 

be
ò

 eight cache lines (32bytes each). In the first iteration of the inner loop, 
A[0, 0:7] and B[0, 0:7] will be brought into the cache. B[0, 0:7] wil l be 
coÖ mpletely consumed by the first iteration of the outer loop. Consequently, 
B[0, 0:

ï
7] will only experience one cache miss after applying loop blocking 

opÝ timization in lieu of eight misses for the original algorithm. As illustrated 
i

õ
n Figure3-3, arrays A and B are blocked into smaller rectangular chunks so 
t

×
hat the total size of two blocked A and B chunks is smaller than the cache 
size. This allows maximum data reuse.
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As on
�

e can see, all the redundant cache misses can be eliminated by 
apÚ plying this loop blocking technique. If MAX i s huge, loop blocking can 
alÚ so help reduce the penalty from DTLB (data translation look-ahead 
bu

ò
ffer) misses. In addition to improving the cache/memory performance, 

t
×
his optimization technique also saves external bus bandwidth.

T
�

uning the Final  Application

T
Ô

he best way to tune your application once it is functioning correctly is to 
useô  a profiler that measures the application while it is running on a system. 
Intel’s VTune analyzer can help you determine where to make changes in 
yo
 ur application to improve performance. Using the VTune analyzer can 
help you with various phases required for optimized performance. See  

Figur e 3-3 Loo p Blocki ng Access Patter n



Coding for SIMD Architectures3

3-
ó

29

“VT
�

une™ Performance Analyzer”  in Chapter 7 for more details on using 
t

×
he VTune analyzer. After every effort to optimize, you should check the 
peâ rformance gains to see where you are making your major optimization 
gaü ins.
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SIMD Integer Instructions 4

T
Ô

he SIMD integer instructions provide performance improvements in 
apÚ plications that are integer-intensive and can take advantage of the SIMD 
archÚ itecture of Pentium® II and Pentium III processors.

Th
Ô

e guidelines for using these instructions in addition to the guidelines 
d

Ø
escribed in Chapter 2, “Ge

�
neral Optimization Guidelines” wi ll help 

de
Ø

velop fast and efficient code that scales well across all processors with 
MM

�
X™ technology, as well as the Pentium II and Pentium III processors 

t
×
hat use Streaming SIMD Extensions (SSE) with the new SIMD integer 
in

õ
structions.

General  Rules on SIMD Integer Code
The overall rules and suggestions are as follows:

• D
ú

o not intermix MMX instructions, new SIMD integer instructions, 
anÚ d floating-point instructions. See “Using SIMD Integer, 
Floating-Point, and MMX™ Technology Instructions” section.

• Al
�

l optimization rules and guidelines described in Chapters 2 and 3 that 
apÚ ply to both Pentium II and Pentium III processors using the new 
S

ð
IMD integer instructions.
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Planning  Cons ideration s 
T

Ô
he planning considerations discussed in  “Considerations for Code 

Con
ñ

version to SIMD Programming”  in Chapter 3, apply when considering 
usiô ng the new SIMD integer instructions available with the Streaming 
SI

ð
MD Extensions. 

Ap
�

plications that benefit from these new instructions include video 
enë coding and decoding, as well as speech processing. Many existing 
apÚ plications may also benefit from some of these new instructions, 
paâ rticularly if they use MMX technology.

Review the planning considerations in the cited above section in Chapter 3 
t

×
o determine if an application is computationally integer-intensive and can 
t

×
ake advantage of the SIMD architecture. If any of the considerations 
di

Ø
scussed in Chapter 3 apply, the application is a candidate for performance 

i
õ
mprovements using the new Pentium III processor SIMD integer 
i

õ
nstructions, or MMX technology.

CPUID Usage for Detect ion of  Pent ium®
�

 III Processor 
SIMD Integer Instru ct ions

Applications must be able to determine if Streaming SIMD Extensions are 
aÚ vailable. Follow the guidelines outlined in section  “Checking for 
P

�
rocessor Support of Streaming SIMD Extensions and MMX™ 

Technology”  in Chapter 3 to identify whether a system (processor and 
opÝ erating system) supports the Streaming SIMD Extensions.

Using SIMD Integer, Floating-Point, and MMX™ 
T

�
echnol ogy Instruct ions

T
Ô

he same rules and considerations for mixing MMX technology and 
floating-point instructions apply for Pentium III processor SIMD integer 
i

õ
nstructions. The Pentium III processor SIMD integer instructions use the 
MM

�
X technology registers, which are mapped onto the floating-point 

registers. Thus, mixing Pentium III processor SIMD integer or MMX 
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i
õ
nstructions with floating-point instructions is not recommended. 
Pe

�
ntium III processor SIMD integer and MMX instructions, however, can 

be
ò

 intermixed with no transition required.

Using the  EMMS Inst ruct ion

W
á

hen generating MMX technology code, keep in mind that the eight MMX 
t

×
echnology registers are aliased on the floating-point registers. Switching 
f

ê
rom MMX instructions to floating-point instructions can take up to fifty 

clÖ ock cycles, so it is the best to minimize switching between these 
instruction types. But when you need to switch, you need to use a special 
i

õ
nstruction known as the emms instruction.

Using 
û

emms is like emptying a container to accommodate new content. For 
exë ample, MMX instructions automatically enable a tag word in the register 
to

×
 validate the use of the __m64 dat

Ø
atype. This validation resets the FP 

register to enable its alias as an MMX technology register. To enable an FP 
i

õ
nstruction again, reset the register state with the emms instruction 

_m_empty( )  as il lustrated in Figure 4-1.
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Figure 4 -1 Using E MMS to Reset  the Tag af ter an MMX Instruct ion

CA
�
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an�  MMX instruction can result in faulty execution or poor performance.
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Guideline s for Using EMMS I nstruction

W
á

hen writing an application that uses both floating-point and MMX 
instructions, use the following guidelines to help you determine when to use 
emms:

• If n
�

ext instruction is FP—Use _mm_empt y( )  after an MMX 
instruction if the next instruction is an FP instruction; for example, 
be

ò
fore doing calculations on floats, doubles or long doubles.

• Don’t empty when already empty—If the next instruction uses an MMX 
register, _mm_empt y( )  incurs an operation with no benefit (no-op).

• Group Instructions—Use d
û

ifferent functions for regions that use FP 
instructions and those that use MMX i nstructions. This eliminates 
needing an EMMS instruction within the body of a critical loop.

• Runtime initiali zation—Us
û

e _mm_empt y( )  during runtime 
initialization of __m64 aÚ nd FP data types. This ensures resetting the 
reÿ gister between data type transitions. See Example 4-1 for coding 
usaô ge.

Example 4-1 Resetting t he Regist er between __m64 and FP Data Types

Incorrect  Usage   Correct Usage

__m64 x = _m_paddd(y , z) ;    _ _m64 x  =  _ m_paddd( y,  z ) ;
f l oat  f  =  i ni t ( ) ;  fl oat f = (_ mm_empty () , in it () );

_____________________________________________________________

F
ö

urther, you must be aware of the following situations when your code 
geü nerates an MMX i nstruction which uses the MMX technology registers 
witÛ h the Intel C/C++ Compiler:

• whenÛ  using an MMX technology intrinsic
• whenÛ  using a Streaming SIMD Extension (for those intrinsics that use 

MMX technology data)
• whenÛ  using an MMX i nstruction through inline assembly
• whÛ en referencing an __m64 data type variable
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W
á

hen developing code with both floating-point and MMX instructions, 
fol

ê
low these steps:

1. Always call the emms instruction at the end of MMX technology code 
whenÛ  the code transitions to x87 floating-point code.

2. Insert this instruction at the end of all MMX technology code segments 
t

×
o avoid an overflow exception in the floating-point stack when a 
f

ê
loating-point instruction is executed.

3.
�

Use the emms  instruction to clear the MMX technology registers and 
set the value of the floating-point tag word to empty (that is, all ones). 
S

ð
ince the Pentium III processor SIMD integer instructions use the 

MM
�

X technology registers, which are aliased on the floating-point 
rÿ egisters, it is critical to clear the MMX technology registers before 
issuing a floating-point instruction.

Th
Ô

e emms instruction does not need to be executed when transitioning 
be

ò
tween SIMD floating-point and MMX technology or Streaming SIMD 

Extensions SIMD integer instructions or x8 7 floating-point instructions.

Add
�

itional information on the floating-point programming model can be 
found in the Pentium Processor Family Developer’s Manual, Volume 3, 
Ar

�
chitecture and Programming, order number 241430. For more 

do
Ø

cumentation on emms, visit the h
�

t t p: //d ev el oper .i nt el .c om 
web siÛ te.

Data Alignment
Make sure your data is 16-byte aligned. Refer to section “Stack and Data 
Alignment”  in Chapter 3 for information on both Pentium II and Pentium III 
pâ rocessors. Review this information to evaluate your data. If the data is 
kn

�
own to be unaligned, use movups  (move unaligned packed single 

prâ ecision) to avoid a general protection exception if mova ps  is used. 

SIMD Integer and SIMD Floating-point Inst ruct ion s
S

ð
IMD integer instructions and SIMD gloating-point instructions can be 

intermixed with some restrictions. These restrictions result from their 
respeÿ ctive port assignments. Port assignments are shown in Appendix C. 
T

Ô
he port assignments for the relevant instructions are shown in Table 4-1.



Using SIMD Integer Instructions4

4-7

SIMD Inst ruct ion Port Assignm ents

Al
�

l the above instructions incur one µop with the exception of psÓ adw, which 
i

õ
ncurs three µops, and piÓ ns rw, which incurs two µops. Note that some 
instructions, such as pmÓ in  and pmÓ ax , can execute on both ports.

Th
Ô

ese instructions can be intermixed with the SIMD floating-point 
instructions. Since the SIMD floating-point instructions are two µops, 
i

õ
ntermix those with different port assignments from the current instruction 
(

�
see Appendix C, “I

í
nstruction to Decoder Specification”) .

Coding Techniques for MMX Techno log y SIMD Integer 
Instruct ions

This section contains several simple examples that will  help you to get 
started with coding your application. The goal is to provide simple, 
l

þ
ow-level operations that are frequently used. The examples use a minimum 
number of instructions necessary to achieve best performance on the 
P

�
entium, Pentium Pro, Pentium II, and Pentium III processors.

Each example includes a short description, sample code, and notes if 
neÙ cessary. These examples do not address scheduling as it is assumed the 
eë xamples will  be incorporated in longer code sequences.

Table 4-1 Por t Ass ignments

Port 0 Por t 1

pmÓ ul huw

pmÓ in

pmÓ ax

psÓ adw

paÓ vg w

psÓ hufw

peÓ xt rw

piÓ ns rw

pmÓ in

pmÓ ax

pmÓ ov mskb

psÓ adw

paÓ vg w
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Unsi gned Unpac k

T
Ô

he MMX technology provides several instructions that are used to pack 
anÚ d unpack data in the MMX technology registers. The unpack instructions 
canÖ  be used to zero-extend an unsigned number. Example 4-2 assumes the 
source is a packed-word (16-bit) data type.

Example 4-2  Unsigne d Unpac k Instr uctions

; In put:  MM0 sour ce v alu e
;         MM7 0  a lo ca l var ia bl e ca n b e us ed
; i nst ead of th e re gi ste r MM7 if
; des ir ed.

; Outp ut:  MM0 tw o ze ro -ex te nded 3 2-b it
; doubl ewor ds fr om t wo lo w- end
; wor ds

; MM1 tw o ze ro -ex te nded 3 2-b it
; doubl ewor ds fr om t wo hi gh-e nd 
; wor ds  

movq MM7,  MM0 ; co py  s ource

puÓ npck lwd MM0,  MM7 ; unpack  t he 2 lo w- end w or ds 
     ; in t o tw o 32-b i t  double wor d

puÓ npck hwd MM1,  MM7 ; unpack  t he 2 hi gh-e nd word s
     ; in t o tw o 32-b i t  double wor ds

_____________________________________________________________

Signed Unpac k

S
ð

igned numbers should be sign-extended when unpacking the values. This 
i

õ
s done differently than the zero-extend shown above. Example 4-3 assumes 
t

×
he source is a packed-word (16-bit) data type.
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Example 4-3  Signed Unpac k Inst ruct ion s

; In put: MM0 so ur ce  va lu e

; Outp ut: MM0 tw o si gn- ex te nded 3 2-b it
; doubl ewor ds fr om t he tw o lo w- end
; wor ds
;

;  MM1 tw o si gn- ex te nded 3 2-b it  
; doubl ewor ds fr om t he tw o hi gh-e nd
; wor ds  

movq   MM1,  MM0 ; co py  so ur ce

pÓ unpckhwdMM1,  MM0  ; unpack  t he 2 hi gh-e nd word s of  t he
; so ur ce in to  t he s eco nd a nd f our th  
; word s o f  th e dest ina ti on

puÓ npck lwd MM0,  MM0  ;  u npack the  2  l ow e nd wo rd s of  t he 
; so ur ce in to  t he s eco nd a nd f our th  
; word s o f  th e dest ina ti on

psÓ ra d   MM0,  16    ;  s i gn-e xt end th e 2 l ow- end w ord s of
; th e sou rc e in to  t wo 32-b it  s ign ed
; do ublew or ds

psÓ ra d   MM1,  16    ;  s i gn-e xt end th e 2 h i gh- end wor ds
; of  t he so ur ce  i nt o t wo 3 2- bi t  
; si gned do uble word s 

_____________________________________________________________

Interleaved Pack with Sa tura tion

T
Ô

he pack instructions pack two values into the destination register in a 
predâ etermined order. Specifically, the pacÓ ks sd w instruction packs two 
signed doublewords from the source operand and two signed doublewords 
f

ê
rom the destination operand into four signed words in the destination 

register as shown in Figure 4-2.
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Figure 4-3 illustrates two values interleaved in the destination register. The 
t

×
wo signed doublewords are used as source operands and the result is 
i

õ
nterleaved signed words. The pack instructions can be performed with or 
wiÛ thout saturation as needed.

E
�

xample 4-4 uses signed doublewords as source operands and the result is 
interleaved signed words. The pack instructions can be performed with or 
wiÛ thout saturation as needed.

Figur e 4-2 PACKSSDW mm, mm/mm 64 Ins truction E xample

Figur e 4-3 Inter leaved Pack with S aturation

mm/m64 mm�

mm

A
�

BC
�

D

A 1B 1C
�

1D 1

MM/M64 mm

mm

A
�

BCD

A 1B1 C1D1
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Example 4-4 Interleaved Pack with Saturation

; In put:  MM0 si gned so ur ce 1 va lu e
;       MM1 si gned so ur ce 2 va lu e

; Outp ut: MM0 th e fi rst  a nd t hi r d wo rd s co nt ain  t he 
; si gned-sa tu ra te d doubl ewor ds  f rom MM0,  
; t he se con d an d fo ur th wo rd s co nta in
; si gned-sa tu ra te d doubl ewor ds  f rom MM1 

paÓ ck ss dw MM0,  MM0 ; pack  a nd si gn s at ur ate

paÓ ck ss dw MM1,  MM1 ; pack  a nd si gn s at ur ate

puÓ npck lwd MM0,  MM1 ; in te rl eav e th e lo w- end  1 6- bi t  
 ;  v al ues  o f  th e opera nds

_____________________________________________________________

T
Ô

he pack instructions always assume that the source operands are signed 
numbers. The result in the destination register is always defined by the pack 
i

õ
nstruction that performs the operation. For example, the paÓ ck ss dw 

i
õ
nstruction packs each of the two signed 32-bit values of the two sources 
into four saturated 16-bit signed values in the destination register. The 
paÓ ck us wb instruction, on the other hand, packs each of the four signed 
16-bit values of the two sources into four saturated eight-bit unsigned values 
in the destination. A complete specif ication of the MMX instruction set can 
be

ò
 found in the In

�
tel Architecture MMX Technology Programmer’s 

R
!

eference Manual, order number 243007.

Interlea ved Pack without Sat uration

E
�

xample 4-5 is similar to the last except that the resulting words are not 
saturated. In addition, in order to protect against overflow, only the low 
orÝ der 16 bits of each doubleword are used in this operation.
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Example 4-5 Interleaved Pack without Saturat ion

; In put:  MM0 si gned s our ce  v al ue
;  MM1 sig ned so ur ce va lu e

; Outp ut: MM0 t he fi rs t a nd t hi r d wo rd s co nt ain  t he
; l ow 16-b its  o f  th e dou bl ewor ds  in  MM0,
;     th e se co nd and fo ur th word s co nta in  t he 
; l ow 16-b its  o f  th e dou bl ewor ds  in  MM1

psÓ ll d   M M1,  16  ; shi ft  t he 1 6 L SB f r om eac h of  t he 
   ;  d ouble word  v al ues  t o th e 16 MSB 
   ;  p os iti on

paÓ nd     MM0,  { 0, f f ff, 0, ff ff } ; m ask to  z ero  t he 1 6 MSB
 ;  o f  each double word va lu e

poÓ r      MM0,  MM1  ;  mer ge th e tw o opera nds

_____________________________________________________________

Non- Interleaved Unpac k

T
Ô

he unpack instructions perform an interleave merge of th
×

e data elements of 
t

×
he destination and source operands into the destination register. The 
fol

ê
lowing example merges the two operands into the destination registers 

wiÛ thout interleaving. For example, take two adjacent elements of a 
paâ cked-word data type in sour ce1 and place this value in the low 32 bits of 
t

×
he results. Then take two adjacent elements of a packed-word data type in 

so ur ce 2 and place this value in the high 32 bits of the results. One of the 
d

Ø
estination registers will have the combination ill ustrated in Figure 4-4.

Figur e 4-4 Result of Non-Inter leaved Unpac k in MM0

mm/m64 mm
13 1012 112

"
3 2

"
02

"
2 2

"
1

21 1020 11

mm
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T
Ô

he other destination register wil l contain the opposite combination 
ill

õ
ustrated in Figure 4-5. 

C
ñ

ode in the Example 4-6 unpacks two packed-word sources in a 
noÙ n-interleaved way. The goal is to use the instruction which unpacks 
do

Ø
ublewords to a quadword, instead of using the instruction which unpacks 

wÛ ords to doublewords.

Example 4-6 Unpac king Two Packed-word Sour ces in a Non-int erleaved Way

; In put: MM0 pack ed-wo rd  s our ce val ue
; MM1 pack ed-wo rd  s our ce val ue

; Outp ut: MM0 cont ai ns th e tw o lo w-e nd w or ds of  t he
; or i gi nal so ur ce s,  n on- in te rl eave d 
; MM2 co nt ai ns th e tw o hi gh end word s o f  th e
; or i gi nal so ur ce s,  n on- in te rl eaved .

movq    MM2,  MM0  ; copy  sour ce1

puÓ npck ldq  MM0,  MM1  ; re pl ac e t he t wo h i gh-e nd w or ds 
 ;  o f  MMO w i t h tw o low -e nd w or ds of  
 ;  MM1;  l eave t he t wo lo w- end wor ds
 ;  o f  MM0 i n pl ac e

pÓ unpckhdq MM2,  MM1  ; move  tw o hi gh-e nd word s of  MM2
 ;  t o the  t wo l ow- end word s of  MM2;
 ;  p l ace th e tw o hi gh- end word s o f
 ; MM 1 i n tw o hi gh-e nd wo rd s of  MM2

_____________________________________________________________

Figur e 4-5 Result of Non-Inter leaved Unpac k in MM1

mm/m64 mm
13 1012 1123 2022 21

23 1222 13

mm
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Complex Mult ip ly by a Constant

Compl
ñ

ex multiplication is an operation which requires four multiplications 
aÚ nd two additions. This is exactly how the pmÓ addwd instruction operates. In 
oÝ rder to use this instruction, you need to format the data into four 16-bit 
v� alues. The real and imaginary components should be 16-bits each. 
Consi

ñ
der Example 4-7:

• Le
�

t the input data be Dr
#  and Di

#  where Dr
#  is real component of the data 

anÚ d Di
#

 is i
õ

maginary component of the data.
• F

ö
ormat the constant complex coefficients in memory as four 16-bit 

va� lues [Cr
$

 - Ci  Cr ]. R
%

emember to load the values into the MMX 
t

×
echnology register using a moì vq  instruction.

• T
Ô

he real component of the complex product is 
Pr = D r * Cr - D i * Ci  
anÚ d the imaginary component of the complex product is 
Pi = D r * Ci + D i * Cr .

Example 4-7 Comple x Multipl y by a Constant

; In put: MM0 co mple x val ue, Dr , Di
; MM1 co ns ta nt  co mple x co eff ic ie nt  i n t he f or m 
; [ Cr  -C i Cr]

; Outp ut: MM0 t wo 32-b it dwor ds  c ont ai ni ng [ Pr Pi ] 

puÓ npck ldq MM0,  MM0 ; make s [D r D i  Dr  D i ]

pmÓ addwd MM0,  MM1 ; done, th e r esul t  is

     ;  [ (Dr *Cr- Di *Ci)( Dr *Ci+ Di *Cr )]

_____________________________________________________________

Not
&

e that the output is a packed doubleword. If needed, a pack instruction 
canÖ  be used to convert the result to 16-bit (thereby matching the format of 
th

×
e input).

Abs olute Differe nce of Uns igned Numbe rs

Example 4-8 computes the absolute difference of two unsigned numbers. It 
assuÚ mes an unsigned packed-byte data type. Here, we make use of the 
subtract instruction with unsigned saturation. This instruction receives 
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UN
'

SI GNED operands and subtracts them with UN
'

SI GNED saturation. This 
support exists only for packed bytes and packed words, not for packed 
dw

Ø
ords.

Example 4-8 Absolute Di fference of Two Unsigned N umbers

; In put: MM0 so ur ce  op er and
; MM1 so ur ce  op er and

; Outp ut: MM0 absol ute di ff er ence  of  t he u nsign ed
;  op er ands 

movq   MM2,  MM0  ;  make a  c opy of  MM0

psÓ ubus b  MM0,  MM1  ;  c omput e di ff er ence  o ne way

psÓ ubus b M M1,  MM2   ;  c omput e di ff er ence  t he ot her way

poÓ r  MM0,  MM1   ;  O R the m to geth er

_____________________________________________________________

This example wil l not work if the operands are signed. 

Absol ute Difference of S igned Number s

E
�

xample 4-9 computes the absolute difference of two signed numbers. 

T
Ô

he technique used here is to first sort the corresponding elements of the 
input operands into packed-words of the maximum values, and 
paâ cked-words of the minimum values. Then the minimum values are 
subtracted from the maximum values to generate the required absolute 
di

Ø
fference. The key is a fast sorting technique that uses the fact that 

B
	

= xor(A , x or ( A,B) )  and A = xor (A ,0 ) . Thus in a packed data 
t

×
ype, having some elements being xor (A, B)  and some being 0, you could 

xo r  such an operand with A and receive in some places values of A and in 
some values of B	 . The following examples assume a packed-word data type, 
eaë ch element being a signed value.

NOTE.  There is no MMX technology subtract instruction that receives 
SI GNED operands and subtracts them with UN

'
SIGNED saturation.



4-16

4 Intel Architecture Optimization Reference Manual

Example 4-9 Absolute Di fference of Signed Number s

; In put: MM0 si gned s our ce  o per and
; MM1 si gned s our ce  o per and

;O ut put: MM0 absol ut e di ff er ence  of  t he u nsign ed
;  op er ands  

movq       MM2,  MM0   ;  make a cop y of  s ource 1 (A )

pcÓ mpgt w  MM0,  MM1   ; cr eate  mask  o f   s ource 1>so ur ce 2
    (A >B)

moì vq       MM4,  MM2    ; make  a not her co py  of  A

pxÓ or       MM2,  MM1  ; cr eate  t he in te rmediat e va lu e of
 ;  t he s wap o per at i on - xo r( A, B)

paÓ nd      MM2,  MM0  ; cr eate  a  ma sk  o f  0s  an d xo r( A, B) 
                 ; ele ment s.  Wher e A>B th ere  w i l l  

 ; be  a val ue xo r( A, B)  an d wh er e 
 ; A< =B t her e wi ll  be 0.

pxÓ or       MM4,  MM2    ; mi ni ma-xo r( A, swap ma sk )

pxÓ or       MM1,  MM3    ; maxi ma-xo r( B,  s wap mask)

psÓ ubw    MM1,  MM4   ; abso lu te  di ff er ence  = 
 ;  maxi ma-min im a

_____________________________________________________________



Using SIMD Integer Instructions4

4-
 

17

Absol ute Value

Use E
û

xample 4-10 to compute | x( | , where x(  is signed. This example 
assuÚ mes signed words to be the operands.

Example 4-10  Computing  Absolute Value

; In put: MM0 si gned so ur ce  o per and

; Ou tp ut: MM1 ABS( MMO) 

movq MM1,  MM0   ; make  a co py  o f  x

psÓ ra w MM0, 15    ;  r epl ic at e si gn bi t (u se  3 1 i f  doin g 
   ;  D WORDS)

pÓ xor MM0,  MM1  ; ta ke  1’ s  co mple ment  of  j ust  th e 
   ;   neg at iv e fi el ds

psÓ ubs MM1,  MM0  ;  a dd 1  to  j ust  th e neg at iv e fi eld s

_____________________________________________________________

Clippi ng to an Arbitrary S igned Rang e [high, lo w]

T
Ô

his section explains how to clip a signed value to the signed range [hi
)

gh, 

lo w]. S
%

pecifically, if the value is less than lo w or greatÝ er than hi gh then 
cÖ lip to lo w orÝ  hi gh,  respectively. This technique uses the packed-add and 
paâ cked-subtract instructions with unsigned saturation, which means that 
t

×
his technique can only be used on packed-byte and packed-word data types.

CA
�

UTION.  The absolute value of the most negative number (that is, 
80

*
00 hex for 16-bit) does not fit, but this code suggests what is possible 

to+  do for this case: it gives 0x 7f ff  wh, ich is off by one.
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E
�

xample 4-11 and Example 4-12 in this section use the constants 
paÓ ck ed_max  and paÓ ck ed_min  and show operations on word values. For 
simplicity we use the following constants (corresponding constants are used 
i

õ
n case the operation is done on byte values):

• paÓ ck ed_max eë quals 0x7f f f7f ff 7f ff 7f ff

• paÓ ck ed_mi n eqë uals 0x 800080008000800 0

• paÓ ck edD_l ow conÖ tains the value lo w inõ
 all four words of the 

paâ cked-words data type
• paÓ ck ed_hi gh conÖ tains the value hi gh inõ

 all four words of the 
paâ cked-words data type

• paÓ ck ed_us max aÚ ll values equal 1 
• hi gh_us  adds the hi gh v� alue to all data elements (4 words) of 

paÓ ck ed_mi n

• lo w_us  adds the l ow v� alue to all data elements (4 words) of 
paÓ ck ed_mi n

Example 4-11  Clipping to an A rbitr ary Signed Rang e [high, l ow]

; In put: MM0 si gned s our ce  o per ands

; Outp ut: MM1 si gned o per ands  c l i ppe d to  t he un si gned 
; r ange [h igh , lo w]  

paÓ dd     MM0,  p acked_min  ;  a dd wi th  n o sa tur at io n 
                        ;  0 x8000 t o conver t  t o u nsi gned

paÓ ddus w   MM0,  (p ac ked _usmax  -  hi gh_us)

                           ;  i n e f f ect  t hi s c l i ps t o h i gh

pÓ subusw   MM0,  ( packed_usmax - h i gh_us + l ow_us) 

; in  e f f ect  t hi s cl ips  t o lo w

paÓ ddw     M M0,  p acked _l ow ; u ndo t he pr evi ous t wo of fs ets

_____________________________________________________________

The code above converts values to unsigned numbers first and then clips 
th

×
em to an unsigned range. The last instruction converts the data back to 

signed data and places the data within the signed range. Conversion to 
uô nsigned data is required for correct results when (hi gh - low ) 

-
< 0x8000.
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If (
í

h
)

igh  - lo w) 
-

>= 0x8 000, the algorithm can be simplified as shown in 
Ex

�
ample 4-12:

Example 4-12  Simplified Cli pping to an Arbitr ary Signed Ra nge

; In put: MM0 si gned so ur ce  o per ands

; Outp ut: MM1 si gned op er ands  c l i ppe d to  t he un si gned 
; r ange [hi gh, lo w]

paÓ ddss w     MM0,  (pa ck ed_max  - pack ed_hig h)

                        ; in  ef fe ct  t hi s cli ps  t o hi gh

psÓ ubss w     MM0,  (pa ck ed_usmax  - pa ck ed_high  +  
paÓ ck ed_ow);

   ;  c lip s to  l ow

paÓ ddw       MM0,  low     ; undo th e pr ev io us tw o of fs ets

_____________________________________________________________

This algorithm saves a cycle when it is known that (hi gh  - lo w) 
-

>= 
0x 8000 . The three-instruction algorithm does not work when (hig

)
h - lo w) 

-

< 0x 8000 , because 0x ff ff  minus any number < 0x 8000  will  yield a 
number greater in magnitude than 0x8000, which is a negative number. 
When t

á
he second instruction,  

psÓ ubss w MM0,  (0 xf fff  -  h i gh + low ) , 
in the three-step algorithm (Example 4-12) is executed, a negative number is 
subtracted. The result of this subtraction causes the values in MM

.
0 to be 

i
õ
ncreased instead of decreased,/  as should be the case, and an incorrect 
anÚ swer is generated.  

Clippi ng to an Arbitrary Unsi gned Rang e [h igh, low]

The code in Example 4-13 clips an unsigned value to the unsigned range 
[hi gh, lo w]

%
. If the value is less than low  or greatÝ er than hi gh, then clip 

to
×

 lo w or hi
)

gh , respectively. This technique uses the packed-add and 
paâ cked-subtract instructions with unsigned saturation, thus this technique 
caÖ n only be used on packed-bytes and packed-words data types.

T
Ô

he example illustrates the operation on word values.
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Example 4-13  Clipping to an A rbitr ary Unsi gned Range [high, lo w]

; In put: MM0 unsi gned so ur ce  o peran ds

;O ut put: MM1 unsi gned op er ands cl ip ped  t o t he un si gned 
; r ange [H IGH, LOW] / /

pÓ addusw MM0, 0x ff f f  - hi gh

; in  e f f ect  t hi s cl ips  t o hi gh

psÓ ubus w MM0,  ( 0xfff f - hi gh + lo w)  

; in  e f f ect  t hi s cl ips  t o lo w

pÓ addw MM0, lo w 

; undo t he pr ev io us  tw o of fs et s

_____________________________________________________________

Generat ing Con stants

Th
Ô

e MMX instruction set does not have an instruction that will load 
i

õ
mmediate constants to MMX technology registers. The following code 
segments generate frequently used constants in an MMX technology 
rÿ egister. Of course, you can also put constants as local variables in memory, 
b

ò
ut when doing so be sure to duplicate the values in memory and load the 

v� alues with a movq  instruction, see Example 4-14.

Example 4-14 Generating Constants

pxÓ or MM0,  MM0   ; gener at e a ze ro re gi st er  i n MM0

pcÓ mpeq MM1,  MM1   ;  Ge nera te  a l l  1’ s in  r egist er  MM1,
   ; which  i s -1  i n e ach of  t he pa ck ed
   ; data ty pe f i elds

pxÓ or MM0,  MM0

pcÓ mpeq MM1,  MM1

psÓ ubb MM0,  MM1 [p su bb  M M0,  MM1]  (p su bd  MM0,  MM1)

continued
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Codin g Techniques for Integer Streaming SIMD 
Extens ions

This section contains examples of the new SIMD integer instructions. Each 
eë xample includes a short description, sample code, and notes where 
neÙ cessary.

These short examples, which usually are incorporated in longer code 
sequences, do not address scheduling.

; t hr ee i nst r uct io ns  a bove genera te  
;  th e cons ta nt  1 in  e ver y 
; p acked- byt e [o r pack ed-wo rd ] 
; ( or  p acked- dword ) fi el d

pcÓ mpeq MM1,  MM1

psÓ rl w MM1,  1 6-n (ps rl d  MM1,  32- n)

;  tw o in st ru ct i ons ab ove g ener at e 
;  th e si gned const ant  2n–1 in  ev er y 
; p acked- wor d (o r pack ed-dw or d)  f i el d

pcÓ mpeq MM1,  MM1

psÓ ll w MM1,  n         ( ps l l dMM1,  n )

;  tw o in st ru ct i ons ab ove g ener at e 
; t he s i gned con st ant -2 n in ev er y 
; p acked- wor d (o r pack ed-dw or d)  f i el d

NOTE.  Bec
0

ause the MMX instruction set does not support shift 
instructions for by

1
tes, 2n–1  and -2 n are relevant only for packed words 

an� d packed dwords.

Example 4-14 Generating  Constants  (continued)
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Extract Word

Th
Ô

e peÓ xt rw  instruction takes the word in the designated MMX technology 
register selected by the two least signif icant bits of the immediate value and 
mù oves it to the lower half of a 32-bit integer register, see Figure 4-6 and 
Ex

�
ample 4-15.

Example 4-15  pext rw Ins truct ion Code

; In put:   e ax sour ce v alu e im medi ate  v al ue: “0 ”

; Outp ut:  e dx 32- bi t  i nte ger re gi ste r co nt ai nin g th e 
ex tr ac te d w ord  i n t he lo w-o rd er  bi ts  & t he 
hi

)
gh-o rd er bi ts  z er o-e xt ended

movq       mm0,  [e ax ] 

peÓ xt rw     e dx,  mm0,  0

_____________________________________________________________

Insert Word

Th
Ô

e piÓ ns rw  instruction loads a word from the lower half  of a 32-bit integer 
reÿ gister or from memory and inserts it in the MMX technology destination 
register at a position defined by the two least significant bits of the 
i

õ
mmediate constant. Insertion is done in such a way that the three other 
wÛ ords from the destination register are left untouched, see Figure 4-7 and 
Example 4-16.

Figur e 4-6 pextrw Ins truction

0
2

0
2

31

63

0..0

X1

X1

X2X3X4

MM

R32



Using SIMD Integer Instructions4

4-
 

23

Example 4-16  pinsr w Instr uction Code

; In put: 32-b it  in te ger re gi ste r:  s our ce v al ue 
im medi ate  v al ue:  “1 ”.

; Outp ut: MMX te chn ol ogy re gi ste r wi th  n ew 16-b it  
vaæ lu e ins er te d

movq       mm0,  [e dx]  

piÓ ns rw     mm0,  eax, 1

_____________________________________________________________

Packed Signed I nteger Word Maxim um

The pmÓ ax sw instruction returns the maximum between the four signed 
wÛ ords in either two MMX technology registers, or one MMX technology 
register and a 64-bit memory location.

Packed Unsigned Integ er Byt e Maximum

Th
Ô

e pmÓ ax ub  instruction returns the maximum between the eight unsigned 
b

ò
ytes in either two MMX technology registers, or one MMX technology 

register and a 64-bit memory location.

Packed Signed I nteger Word Minim um

The pmÓ in sw instruction returns the minimum between the four signed 
wÛ ords in either two MMX technology registers, or one MMX technology 
reÿ gister and a 64-bit memory location.

Figure 4 -7 pinsrw  Instruct ion
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Packed Unsigned Integ er Byte Minim um

Th
Ô

e pmÓ in ub  instruction returns the minimum between the eight unsigned 
b

ò
ytes in either two MMX technology registers, or one MMX technology 

reÿ gister and a 64-bit memory location.

Move Byte Mask to  Integer

The pmÓ ov mskb instruction returns an 8-bit mask formed from the most 
significant bits of each byte of its source operand, see Figure 4-8 and 
Ex

�
ample 4-17.

Example 4- 17 pmo vms kb Inst ruc tion Cod e

; In put: so ur ce  v alu e

; Outp ut: 32-b it  r egi st er  c ontai ni ng t he by te  mask 
in  t he l ower ei ght bit s

movq      mm0,  [ edi ]  

pmÓ ov mskb eax,  mm0

_____________________________________________________________

Figur e 4-8 pmo vms kb Instr uction Example
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Packed Multipl y High  Unsigned

Th
Ô

e pmÓ ul huw instruction multiplies the four unsigned words in the 
de

Ø
stination operand with the four unsigned words in the source operand. 

T
Ô

he high-order 16 bits of the 32-bit immediate results are written to the 
de

Ø
stination operand.

Packed Shuf fle Word

Th
Ô

e psÓ huf  instruction (see Figure 4-9, Example 4-18) uses the immediate 
(

�
im m8)

-
 operand to select between the four words in either two MMX 

t
×
echnology registers or one MMX technology register and a 64-bit memory 
l

þ
ocation. Bits 1 and 0 of the immediate value encode the source for 
de

Ø
stination word 0 (M. MX[15 -0 ] )

-
, and so on as shown in the table:

Bits 7 and 6 encode for word 3 (MMX[63 -4 8] ). Si
-

milarly, the 2-bit 
enë coding represents which source word is used, for example, binary 
enë coding of 10 indicates that source word 2 (M. M2/ mem[ 47-3 2] ) is use

-
d, 

see Example 4-18 and Example 4-18.

Bits Word

1 - 0 0

3 - 2 1

5 - 4 2

7 - 6 3

Figur e 4-9 pshuf Instr uction Example
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Example 4-18  pshuf Instr uction C ode

; In put:  e di sour ce v alu e

;  O ut put :  MM1 MM re gi st er  cont ai ni ng th e by te  mask  i n 
th e lo wer e i ght  b i t s

movq  mm0,  [ edi ]  

psÓ hufw  mm1,  mm0,  0x 1b

_____________________________________________________________

Packed Sum of  Absolut e Differences

Th
Ô

e PSADBW instruction (see Figure 4-10) computes the absolute value of 
t

×
he difference of unsigned bytes for either two MMX technology registers, 
or oÝ ne MMX technology register and a 64-bit memory location. These 
di

Ø
fferences are then summed to produce a word result in the lower 16-bit 

f
ê
ield, and the upper three words are set to zero.

Figure 4 -10 PSADBW Instr uction  Example
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T
Ô

he subtraction operation presented above is an absolute difference, that is, 
t = abs(x -y ) . The byte values are stored in temporary space, all values 
are Ú summed together, and the result is written into the lower word of the 
de

Ø
stination register.

Packed Average (Byte/Word)

The paÓ vg b and pavg w instructions add the unsigned data elements of the 
source operand to the unsigned data elements of the destination register, 
alÚ ong with a carry-in. The results of the addition are then each 
independently shif ted to the right by one bit position. The high order bits of 
eaë ch element are filled with the carry bits of the corresponding sum.

The destination operand is an MMX technology register. The source 
opÝ erand can either be an MMX technology register or a 64-bit memory 
opÝ erand.

Th
Ô

e PAVGB instruction operates on packed unsigned bytes and the PAVGW 
i

õ
nstruction operates on packed unsigned words.

Memory Optimizatio ns
Y

D
ou can improve memory accesses using the following techniques:

• P
�

artial Memory Accesses
• In

í
struction Selection

• I
í
ncreasing Bandwidth of Memory Fills and Video Fills

• Pre-fetching data with Streaming SIMD Extensions (see Chapter 6, 
“Op

Õ
timizing Cache Utilization for Pentium® III Processors”).

The M
Ô

MX technology registers allow you to move large quantities of data 
wiÛ thout stalling the processor. Instead of loading single array values that are 
8, 16, or 32 bits long, consider loading the values in a single quadword, then 
i

õ
ncrementing the structure or array pointer accordingly.

An
�

y data that will  be manipulated by MMX instructions should be loaded 
usiô ng either:

• t
×
he MMX instruction that loads a 64-bit operand (for example, movq  

MM
.

0, m6ì 4) 
-
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• t
×
he register-memory form of any MMX i nstruction that operates on a 
quE adword memory operand (for example, pmÓ addw MM0,  m6ì 4)

-

• alÚ l SIMD data should be stored using the MMX instruction that stores a 
64

F
-bit operand (for example, movq  m64,  MM

.
0)

-

The goal of these recommendations is twofold. First, the loading and storing 
of SÝ IMD data is more efficient using the larger quadword block sizes. 
S

ð
econd, this helps to avoid the mixing of 8-, 16-, or 32-bit load and store 

opÝ erations with 64-bit MMX technology load and store operations to the 
same SIMD data. This, in turn, prevents situations in which small loads 
fol

ê
low large stores to the same area of memory, or large loads follow small 

stores to the same area of memory. Pentium II and Pentium III processors 
stall in these situations.

Partial  Memor y Accesses

Let’s consider a case with large load after a series of small stores to the 
same area of memory (beginning at memory address meì m). Th

-
e large load 

wilÛ l stall in this case as shown in Example 4-19.

Example 4-19  A Lar ge Load after  a Series of Small Stalls

mov mem, e ax     ; st or e d wor d t o add re ss  “ mem"

moì v mem + 4, ebx ; st or e d wor d t o add re ss  “ mem +  4 "

       :

       :

movq   mm0,  mem     ; l oad qw or d a t  ad dr ess “ mem" ,  st al l s

_____________________________________________________________

Th
Ô

e mo vq  must wait for the stores to write memory before it can access all 
t

×
he data it requires. This stall can also occur with other data types (for 
eë xample, when bytes or words are stored and then words or doublewords are 
readÿ  from the same area of memory). When you change the code sequence 
as shÚ own in Example 4-20, the processor can access the data without delay.
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Example 4-20  Acc ess ing Data without  Delay

moì vd mm1,  e bx ;  buil d d at a in to  a  qw or d fi rs t 

; befo re st or in g it  to  memor y

moì vd mm2,  e ax

pÓ sl l q mm1, 32

pÓ or mm1, mm 2

movq mem, mm1     ; st ore  S I MD va ri abl e to  “ mem" as  
 ; a qw or d

        :

        :

movq mm0,  mem  ;  l oad q wor d S I MD “mem", no s tal l

_____________________________________________________________

L
�

et us now consider a case with a series of small loads after a large store to 
t

×
he same area of memory (beginning at memory address mem). Th

-
e small 

lo
þ

ads will stall in this case as shown in Example 4-21.

Example 4-21  A Series of  Small Loads af ter a Large  Store

movq mem, mm0   ; st or e q wor d t o addre ss  “ mem"

        :

        :

mì ov bx,  mem + 2 ; lo ad word  a t  “mem + 2"  s t al l s

mov cx,  mem + 4 ;  lo ad wo rd  a t  “mem + 4"  s t al l s

_____________________________________________________________

T
Ô

he word loads must wait for the quadword store to write to memory before 
t

×
hey can access the data they require. This stall can also occur with other 
da

Ø
ta types (for example, when doublewords or words are stored and then 

wÛ ords or bytes are read from the same area of memory). When you change 
t

×
he code sequence as shown in Example 4-22, the processor can access the 
da

Ø
ta without delay.
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Example 4-22  Eliminating De lay for a Series of Small Loads after a Large Store

moì vq mem, mm0      ;  s t ore qwor d to  ad dr es s “mem"

        :

        :

movq mm1,  mem      ;  l oad q wor d a t  add re ss  “ mem"

moì vd eax,  mm1   ; tr ansfe r “mem +  2"  t o eax fro m 

  ; MMX tec hnol ogy reg is te r,  n ot
  ; memory 

pÓ sr l q mm1, 32

shr eax , 16

movd ebx,  mm1   ; tr ansfe r “mem +  4"  t o bx  f rom 

  ; MMX tec hnol ogy reg is te r,  n ot
  ; memory 

and ebx,  0 fff fh

____________________________________________________________

T
Ô

hese transformations, in general, increase the number of instructions 
required to perform the desired operation. For Pentium II and Pentium III 
proâ cessors, the performance penalty due to the increased number of 
i

õ
nstructions is more than offset by the benefit.

Inst ruction Selection to  Reduce Memor y Access Hits

An M
�

MX instruction may have two register operands (OP
G

 r eg,  reg ) o
-

r 
onÝ e register and one memory operand (OP 

G
r eg,  mem), wh

-
ere OP

G  represents 
th

×
e instruction opcode, re g represents the register, and mem represents 

memoryù . OG P re g,  mem instructions are useful in some cases to reduce 
rÿ egister pressure, increase the number of operations per cycle, and reduce 
coÖ de size.

T
Ô

he following discussion assumes that the memory operand is present in the 
da

Ø
ta cache. If  it is not, then the resulting penalty is usually large enough to 

obÝ viate the scheduling effects discussed in this section.

In Pentium processors, OG P reg , me m MMX instructions do not have 
l

þ
onger latency than OP

G
 r eg,  re g inst

õ
ructions (assuming a cache hit). 

T
Ô

hey do have more limited pairing opportunities, however. In Pentium II 
anÚ d Pentium III processors, OP

G  re g,  mem MMX instructions translate into 
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t
×
wo µops, as opposed to one µop for the OG P reg , re g instructions. Thus, 
t

×
hey tend to limit decoding bandwidth and occupy more resources than 

O
G

P re g,  re g instructions.

Recommen
H

ded usage of OP
G

 re g,  mem instructions depends on whether the 
MMX technology code is memory bound (that is, execution speed is limited 
b

ò
y memory accesses). Generally, an MMX technology code section is 

coÖ nsidered to be memory-bound if the following inequality is true:

Instructions/2 < Memory Accesses + non-MMX Instructions/2

For memory-bound MMX technology code, the recommendation is to 
merù ge loads whenever the same memory address is used more than once. 
T

Ô
his reduces the number of memory accesses.

F
ö
or example,

OP
G

MM0,  [ add re ss  A ]
OP

G
MM1,  [ add re ss  A ]

be
ò

comes

mì ovq MM2,  [a ddre ss  A]

OP
G

 MM0,  MM2

OP
G

   MM1,  MM2 

F
ö
or MMX technology code that is not memory-bound, load merging is 

recoÿ mmended only if the same memory address is used more than twice. 
Where l

á
oad merging is not possible, usage of OP

G
 re g,  mem instructions is 

recoÿ mmended to minimize instruction count and code size.

For example,

movq   MM0, [a ddre ss A]
O

G
P    MM1,  MM0

be
ò

comes

OP
G

  MM1,  [a ddre ss  A ]

In ma
í

ny cases, a movì q re g,  reg  and OG P re g,  meì m can be replaced by a 
movq  r eg,  mem and OG P re g,  re g. This should be done where possible, 
since it saves one µop on Pentium II and Pentium III processors.
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T
Ô

he code below, where OP is a commutative operation,

movq   MM1, MM0 ( 1 µo p)  
OP

G
MM1,  [ add re ss  A ] (2  µ ops)

be
ò

comes:

movq  MM1,  [ addr ess A] (1  µ op)  
OP

G
  MM1,  MM0 ( 1 µ op)

Increasing Band width of Mem ory Fil ls and Video Fill s

It is beneficial to understand how memory is accessed and filled. A 
memoryù -to-memory fill (for example a memory-to-video fill ) is defined as a 
32

�
-byte (cache line) load from memory which is immediately stored back to 

memory (such as a video frame buffer). The following are guidelines for 
obÝ taining higher bandwidth and shorter latencies for sequential memory 
f

ê
ills (video fills). These recommendations are relevant for all Intel® 

archÚ itecture processors with MMX technology and refer to cases in which 
t

×
he loads and stores do not hit in the second level cache.

Increas ing M emory Band widt h Using the M OVQ Instr ucti on

Loading any value will cause an entire cache line to be loaded into the 
onÝ -chip cache. But using movì q to store the data back to memory instead of 
uô sing 32-bit stores (for example, moì vd ) wi

-
ll  reduce by half the number of 

stores per memory fill cycle. As a result, the bandwidth of the memory fill 
cÖ ycle increases signif icantly. On some Pentium processor-based systems, 
30

�
% higher bandwidth was measured when 64-bit stores were used instead 

ofÝ  32-bit stores. Additionally, on Pentium II and Pentium III processors, this 
aÚ voids a partial memory access when both the loads and stores are done 
wÛ ith the MOVQ

I
 instruction.

Also, intermi
�

xing reads and writes is slower than doing a series of reads 
t

×
hen writing out the data. For example when moving memory, it is faster to 
read several lines into the cache from memory then write them out again to 
t

×
he new memory location, instead of issuing one read and one write.

Increas ing Memory Band widt h by Loadi ng an d Stori ng t o 
and J from the Same DRAM Page

DRA
K

M is divided into pages, which are not the same as operating system 
(

L
OS) pages. The size of a DRAM page is a function of the total size of the 

DRAM and the organization of the DRAM. Page sizes of several Kbytes are 
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coN mmon. Like OS pages, DRAM pages are constructed of sequential 
adO dresses. Sequential memory accesses to the same DRAM page have 
shorter latencies than sequential accesses to different DRAM pages. In 
manP y systems the latency for a page miss (that is, an access to a different 
paQ ge instead of the page previously accessed) can be twice as large as the 
latency of a memory page hit (access to the same page as the previous 
acO cess). Therefore, if the loads and stores of the memory fill cycle are to the 
same DRAM page, a signif icant increase in the bandwidth of the memory 
fill cycles can be achieved.

Increas ing the Mem ory Fil l Band width b y Using Aligned  
STORES

Unal
R

igned stores will double the number of stores to memory. Intel strongly 
recoS mmends that quadword stores be 8-byte aligned. Four aligned 
quT adword stores are required to write a cache line to memory. If the 
quT adword store is not 8-byte aligned, then two 32-bit writes result from 
eaU ch MO

V
VQ store instruction. On some systems, a 20% lower bandwidth was 

measuP red when 64-bit misaligned stores were used instead of aligned 
stores.

Use 64-Bit Sto res to Incr ease the Band width to  Video

Al
W

though the PCI bus between the processor and the frame buffer is 32bits 
wiX de, using movq  to store to video is faster on most Pentium 
prQ ocessor-based systems than using twice as many 32-bit stores to video. 
T

Y
his occurs because the bandwidth to PCI write buffers (which are located 

be
Z

tween the processor and the PCI bus) is higher when quadword stores are 
use[ d.

Increas e the Band widt h to Video Using Ali gned Stor es

When a
\

 nonaligned store is encountered, there is a dramatic decrease in the 
b

Z
andwidth to video. Misalignment causes twice as many stores and the 

l
]
atency of stores on the PCI bus (to the frame buffer) is much longer. On the 
PCI bus, it is not possible to burst sequential misaligned stores. On Pentium 
prQ ocessor-based systems, a decrease of 80% in the video fill bandwidth is 
t

^
ypical when misaligned stores are used instead of aligned stores.
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Schedulin g for the SIMD Integer Inst ructi ons
S

_
cheduling instructions affects performance because the latency of 

instructions affects other instructions acting on them.

Scheduli ng Rules

All
W

 MMX instructions can be pipelined, including the multiply instructions 
on`  Pentium II and Pentium III processors. All instructions take a single 
cN lock to execute except MMX technology multiply instructions which take 
t

^
hree clocks.

Si
_

nce multiply instructions take three clocks to execute, the result of a 
mulP tiply instruction can be used only by other instructions issued three 
clN ocks later. For this reason, avoid scheduling a dependent instruction in the 
tw

^
o-instruction sequences following the multiply.

The store of a register after writing the register must wait for two clock 
cN ycles after the update of the register. Scheduling the store of at least two 
clN ock cycles after the update avoids a pipeline stall.
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Optimizing 
Floating-point Applications 5

Th
Y

is chapter discusses general rules for optimizing single-instruction, 
mulP tiple-data (SIMD) floating-point code and provides examples that 
illustrate the optimization techniques for SIMD floating-point applications.

Rules and Suggestions
The rules and suggestions listed in this section help optimize floating-point 
coN de containing SIMD floating-point instructions. Generally, it is important 
t

^
o understand and balance port utilization to create efficient SIMD 
f

a
loating-point code. The basic rules and suggestions include the following:

• Balance the limitations of the architecture.
• S

_
chedule instructions to resolve dependencies.

• S
_

chedule usage of the triple/quadruple rule (port 0, port 1, port 2, 3, 
anO d 4).

• Group
b

 instructions that use the same registers as closely as possible. 
Take into consideration the resolution of true dependencies.

• Intermix SIMD floating-point operations that use port 0 and port 1.
• Do n

K
ot issue consecutive instructions that use the same port.

• E
c

xceptions: mask exceptions to achieve higher performance. 
Unmask

R
ed exceptions may cause a reduction in the retirement rate.

• Ut
R

il ize the flush-to-zero mode for higher performance to avoid the 
peQ nalty of dealing with denormals and underflows.

• Inco
d

rporate the prefetch instruction whenever possible (for details, 
refer toS  Chapter 6, “Op

e
timizing Cache Utilization for Pentium® III 

Processors” ).
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• T
Y

ry to emulate conditional moves by using masked compares and 
l

]
ogicals instead of using conditional jumps.

• Use MM
R

X™ technology instructions if  the computations can be done 
i

f
n SIMD integer, for shuffling data, or for copying data that is not used 
l

]
ater in SIMD floating-point computations.

• If t
d

he algorithm requires extended precision, then conversion to SIMD 
f

a
loating-point code is not advised because the Streaming SIMD 

E
c

xtensions for floating-point instructions are single-precision.
• Use t

R
he reciprocal instructions followed by iteration for increased 

accO uracy. These instructions yield reduced accuracy but execute much 
faster. Note the following:
— If reduced accuracy is acceptable, use them with no iteration. 
— If near full  accuracy is needed, use a Newton-Raphson iteration. 
— If ful l accuracy is needed, then use divide and square root which 

proQ vide more accuracy, but slow down performance.

Planning  Cons ideration s
W

\
hether adapting an existing application or creating a new one, using 

S
_

IMD floating-point instructions to optimal advantage requires 
coN nsideration of several issues. In general, when choosing candidates for 
op` timization, look for code segments that are computationally intensive and 
f

a
loating-point intensive. Also consider efficient use of the cache 

arO chitecture. Intel provides tools for evaluation and tuning.

T
Y

he sections that follow answer the questions that should be raised before 
i

f
mplementation:

• W
\

hich part of the code benefits from SIMD floating-point instructions?
• Is the current algorithm the most appropriate for SIMD floating-point 

instructions?
• Is the code floating-point intensive?
• Is the data arranged for efficient utilization of the SIMD floating-point 

registers?
• Is this application targeted for processors without SIMD floating-point 

instructions?
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Which 
g

Part of the C ode Benef its fr om SIMD Floating- point 
Instructions?

Det
K

ermine which code will benefit from SIMD floating-point instructions. 
F

h
loating-point intensive applications that repeatedly execute similar 

op` erations where operations are repeated for multiple data sets, such as 
l

]
oops, might benefit from using SIMD floating-point instructions. Other 
f

a
actors that need to be considered include data organization if the kernel 

op` eration can use parallelism.

If t
d

he algorithm employed requires performance, range, and precision, then 
floating-point computation is the best choice. If performance is the primary 
reasoS n for floating-point implementation, then the algorithm could increase 
i

f
ts performance if converted to SIMD floating-point code.

MMX Technolog y and Streaming SIMD  Extensions Floating-point  
Code

W
\

hen generating SIMD floating-point code, the rules for mixing MMX 
t

^
echnology code and floating-point code do not apply. Since the SIMD 
f

a
loating-point registers are separate registers and are not mapped onto 

eU xisting registers, SIMD floating-point code can be mixed with 
f

a
loating-point and MMX technology code. The SIMD floating-point 

i
f
nstructions map to the same ports as the MMX technology and 
floating-point code. To avoid instruction stalls, consult Appendix C, 
“ In

d
struction to Decoder Specification,” when writing an application that 

miP xes these various codes.

Scalar Code Opt imization

In t
d

erms of performance, the Streaming SIMD Extensions scalar code can 
do

i
 as well as x87 but has the following advantages:

• Usi
R

ng a flat register model rather than a stack model. 
• Mixing with MMX technology code without penalty. 
• Usi

R
ng scalar instructions on packed SIMD floating-point data when 

nej eded, since they bypass the upper fields of the packed data. This 
b

Z
ypassing mechanism allows scalar code to have extra register storage 

b
Z
y using the upper fields for temporary storage. 



5-4

5 Intel Architecture Optimization Reference Manual

Th
Y

e following are some additional points to take into consideration when 
wriX ting scalar code:

• The scalar code can run on two execution ports in addition to the load 
anO d store ports, an advantage over x87 code where it had only one 
f

a
loating-point execution port.

• The scalar code is decoded as 1 per cycle.
• To increase performance while avoiding this decoder limitation, use 

implicit loads with arithmetic instructions that increase the number of 
µok ps decoded.

EMMS Instruction Us age Guidel ines

The EMMS instruction sets the values of all the tags in the floating-point 
u[ nit (FPU) tag word to empty (all ones).

T
Y

here are no requirements for using the emms  instruction when mixing 
S

_
IMD floating-point code with either MMX technology code or 

f
a
loating-point code. The emms instruction need only be used in the context 

of`  the existing rules for MMX technology intrinsics and floating-point code. 
It is only required when transitioning from MMX technology code to 
f

a
loating-point code. See Table 5-1 for details.

T
l
able 5-1 EMMS Inst ruc tion U sage Guide lines

Flow  1 Flow  2
EMMS 
Required

x87 MMX technology No; ensure that 
stack is empty

x87 Streaming SIMD Extensions No; ensure that 
stack is empty

x8m 7 Streaming SIMD Extensions- 
SIMD floating-point

No

MMX technology x87 Yes

MMX technology Streaming SIMD Extensions-

SIMD integer

No

MMX technology Streaming SIMD Extensions- 

SIMD floating-point

No

continued
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CPUID Usage for Detect ion of  SIMD Floating-point  Suppor t

Applications must be able to determine if Streaming SIMD Extensions are 
aO vailable. Please refer the section  “Checking for Processor Support of 
S

_
treaming SIMD Extensions and MMX™ Technology” in Chapter 3 for the 

t
^
echniques to determine whether the processor and operating system 
support Streaming SIMD Extensions.

Data Alignmen t

The data must be 16-byte-aligned for packed floating-point operations (that 
i

f
s, no alignment constraint for scalar floating-point). If the data is not 
16-byte-aligned, a general protection exception will be generated. If you 
know that the data is not aligned, use the movu ps  (mov  unaligned) 
i

f
nstruction to avoid the protection error exception. The mon vups  instruction 
i

f
s the only one that can access unaligned data.

Streaming SIMD 
Extensions-

SIMD integer

x87 Yes

Streaming SIMD 
Extensions-

SIMD integer

MMX technology No

Streaming SIMD 
Extensions-

SIMD integer

Streaming SIMD Extensions- 

SIMD floating-point

No

Streaming SIMD 
Extensions- 

SIMD floating-point

x87 No

Streaming SIMD 
Extensions- 

SIMD floating-point

MMX technology No

Streaming SIMD 
Extensions- 

SIMD floating-point

Streaming SIMD Extensions-

SIMD integer

No

Table 5-1 EMMS Inst ruc tion Us age Guide lines  (continued)

Flow  1 Flow  2
EMMS 
Required
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Accessi
W

ng data that is properly aligned can save six to nine cycles on the 
Pe

o
ntium® III processor. If the data is properly aligned on a 16-byte 

bo
Z

undary, frequent access can provide a significant performance 
i

f
mprovement.

Data Arra ngement

S
_

ince the Streaming SIMD Extensions incorporate a SIMD architecture, 
arO ranging the data to fully use the SIMD registers produces optimum 
peQ rformance. This implies contiguous data for processing, which leads to 
fewer cache misses and potentially quadruples the speed. These 
peQ rformance gains occur because the four-element SIMD registers can be 
l

]
oaded with 128-bit load instructions (mon va ps  – move aligned packed 
single precision).

Refer to
p

 the “Stack and Data Alignment”  in Chapter 3 for data arrangement 
recommendations. Duplicating and padding techniques overcome the 
miP salignment problem that can occur in some data structures and 
arrangO ements. This increases the data space but avoids the expensive 
peQ nalty for misaligned data access.

T
Y

he traditional data arrangement does not lend itself to SIMD parallel 
t

^
echniques in some applications. Traditional 3D data structures, for 
eU xample, do not lead to full  utili zation of the SIMD registers. This data 
l

]
ayout has traditionally been an array of structures (AoS). To fully util ize 
t

^
he SIMD registers, a new data layout has been proposed—a structure of 
aO rrays (SoA). The SoA structure allows the application to fully  util ize the 
S

_
IMD registers. With full  utilization comes more optimized performance.

Vertical versus Hor izontal  Comput ation

T
Y

raditional 3D data structures do not lend themselves to vertical 
coN mputation. The data can stil l be operated on and computation can 
proQ ceed, but without optimally utilizing the SIMD registers. To optimally 
ut[ ilize the SIMD registers the data can be organized in the SoA format as 
menP tioned above.
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C
q

onsider 3D geometry data organization. One way to apply SIMD 
t

^
echnology to a typical 3D geometry is to use horizontal execution. This 
means to parallelize the computation on the x , yr , z , and ws  components of a 
single vertex (that is, of a single vector simultaneously referred to as an xyt z  
da

i
ta representation, see the diagram below).

V
u

ertical computation, SoA, is recommended over horizontal, for several 
reasons:

• When c
\

omputing on a single vector (xyt z)
v
, it is common to use only a 

subset of the vector components; for example, in 3D graphics the Ww  
coN mponent is sometimes ignored. This means that for single-vector 
op` erations, 1 of 4 computation slots is not being util ized. This results in 
a 2O 5% reduction of peak efficiency, and only 75% peak performance 
caN n be attained.

• It may become difficult to hide long latency operations. For instance, 
anO other common function in 3D graphics is normalization, which 
rS equires the computation of a reciprocal square root (that is, 1/sqrt); 
bo

Z
th the division and square root are long latency operations. With 

vx ertical computation (SoA), each of the 4 computation slots in a SIMD 
op` eration is producing a unique result, so the net latency per slot is L/4 
wherX e L is the overall  latency of the operation. However, for horizontal 
coN mputation, the 4 computation slots each produce the same result, 
he

y
nce to produce 4 separate results requires a net latency per slot of L.

How can the data be organized to util ize all 4 computation slots? The vertex 
da

i
ta can be reorganized to allow computation on each component of 4 

separate vertices, that is, processing multiple vectors simultaneously. This 
wilX l also be referred to as an SoA form of representing vertices data shown 
in Table 5-2.

T
l
able 5-2 SoA Form of  Represent ing Vertices  Data

Vx array X1 X2 X3 X4 ..... Xn

Vy array Y1 Y2 Y3 Y4 ..... Yn

Vz array Z1 Z2 Z3 Y4 ..... Zn

Vw array W1 W2 W3 W4 ..... Wn

X Y Z W
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Or
e

ganizing data in this manner yields a unique result for each 
coN mputational slot for each arithmetic operation. Vertical computation takes 
adO vantage of the inherent parallelism in 3D geometry processing of vertices. 
It

d
 assigns the computation of four vertices to the four compute slots of the 

Pe
o

ntium III processor, thereby eliminating the disadvantages of the 
horizontal approach described earlier. The dot product operation 
i

f
mplements the SoA representation of vertices data. A schematic 
rS epresentation of dot product operation is shown in Figure 5-1.

E
c

xample 5-1 shows how 1 result would be computed for 7 instructions if  the 
da

i
ta were organized as AoS. Hence 4 results would require 28 instructions.

Figur e 5-1 Dot Product Oper ation

X1
z

X2 X3 X4

x Fx Fx Fx Fx

+{ Y1 Y2 Y3 Y4

x| Fy Fy Fy Fy

+{ Z1 Z2 Z3 Z4

x Fz Fz Fz Fz

+ W1 W2 W3 W4

x Fw Fw Fw Fw

= R1 R2 R3 R4
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Example 5-1 Pseudocode f or Hor izont al (xyz, A oS) Comput ation

mn ul ps ;  x * x’ ,  y* y’ , z* z’

mova ps ; re g- >re g move , sin ce  n ext  st eps  o ver wr i t e

sh uf ps ; get b,a ,d ,c  f r om a , b, c , d

addps ;  ge t a+b ,a +b,c +d,c+ d

mon va ps ; re g- >re g mo ve

sh uf ps ; get c+d ,c +d,a +b,a+ b fr om p r i or addps

addps ;  ge t a+b +c+d,a +b+c+ d, a+b+c+d, a+b+c+d
_____________________________________________________________

No
}

w consider the case when the data is organized as SoA. Example 5-2 
de

i
monstrates how 4 results are computed for 5 instructions.

Example 5-2 Pseudocode f or Vertical (xx xx, yyy y, zzzz, SoA) Comput ation

mun lp s ;  x* x’  fo r al l 4 x-c omponent s of 4 ve rt ic es

mulp s ;  y* y’  fo r al l 4 y-c omponent s of 4 ve rt ic es

mun lp s ;  z* z’  fo r al l 4 z-c omponent s of 4 ve rt ic es

addps ;  x* x’  + y* y’

addps ;  x* x’ +y* y’ +z*z ’
_____________________________________________________________

F
h

or the most efficient use of the four component-wide registers, 
rS eorganizing the data into the SoA format yields increased throughput and 
hence much better performance for the instructions used.

As can
W

 be seen from this simple example, vertical computation yielded 
100% use of the available SIMD registers and produced 4 results. If the data 
structures are restricted to a format that is not “fri endly to vertical 
coN mputation,” it can be rearranged “on the fly” to achieve full utilization of 
t

^
he SIMD registers. This operation referred to as “swizzling”  and the 
“deswizzling” operation are discussed in the following sections.
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Data Swizzling

In many algorithms, swizzling data from one format to another is required. 
An e

W
xample of this is AoS format, where the vertices come as xyt z  adjacent 

coN ordinates. Rearranging them into SoA format, xxt xx , yyr yy , zzz z , allows 
more efficient SIMD computations. The following instructions can be used 
f

a
or efficient data shuffling and swizzling:

• mon vl ps , mon vhps  load/store and move data on half sections of the 
reS gisters

• sh uf fp s , un~ pack hps , and un~ pack lps  unpack data

To gather data from 4 different memory locations on the fly, follow steps:

1. identify the first half of the 128-bit memory location. 
2.

�
group the different halves together using the mon vl ps  and mon vhps  to 
fo

a
rm an xyt xy  layout in two registers 

3.
�

from the 4 attached halves, get the xxt xx  by using one shuffle, the yyr yy  
b

Z
y using another shuffle. 

The zz zz  is derived the same way but only requires one shuffle.

Ex
c

ample 5-3 illustrates the swizzle function.

Example 5-3 Swizzling Data

ty pedef s t r uct  _VERTEX_AOS {

    fl oat  x ,  y,  z ,  col or ;

} Vert ex_ aos;    / /  AoS s t r uct ure decl ar at ion

ty pedef s t r uct  _VERTEX_SOA {

    fl oat  x [ 4] ,  f l oat y[ 4] , fl oat  z [ 4] ;

    f l oat  co lo r[ 4] ;

} Vert ex_ so a;    / /  SoA s t r uct ure decl ar at ion

vo� id  s wiz zl e_as m (V ert ex _aos  * in,  V er t ex_soa  * out )

{

//  i n mem: x1 y1 z1 w1-x2 y2 z2 w2-x 3y3 z3 w3-x 4y 4z4 w4-

//  S WI ZZLE XYZW - - > XX XX

  as m {

mov  e cx,  i n      / /  g et  s t r uctur e addr es ses

mon v  e dx,  o ut
_____________________________________________________________

continued
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Example 5-3 Swizzling Data (continued)

movl ps  xm m7, [e cx ]     / /  xmm7 = --  - -  y1  x1

mon vh ps  xm m7, [e cx +16]  / /  xmm7 = y2  x 2 y1  x1

movl ps  xm m0, [e cx +32]  / /  xmm0 = --  - -  y3  x3

mon vh ps  xm m0, [e cx +48]  / /  xmm0 = y4  x 4 y3  x3

mova ps  xm m6, xmm7      / /  xmm6 = y1  x 1 y1  x1

sh uf ps  xm m7, xmm0, 0 x88/ /  xmm7 = x1  x 2 x3  x4  = > X

sh uf ps  xm m6, xmm0, 0 xDD/ /  xmm6 = y1  y 2 y3  y4  = > Y

mon vl ps  xm m2, [e cx +8]    / /  xmm2 = --  - -  w1 z1

movh ps  xm m2, [e cx +24]  / /  xmm2 = w2 z 2 u1 z1

mon vl ps  xm m1, [e cx +40]  / /  xmm1 = --  - -  s3  z3

movh ps  xm m1, [e cx +56]  / /  xmm1 = w4 z 4 w3 z3

mon va ps  xm m0, xmm2      / /  xmm0 = w1 z 1 w1 z1

sh uf ps  xm m2, xmm1, 0 x88/ /  xmm2 = z1  z 2 z3  z4  = > Z

sh uf ps  xm m0, xmm1, 0 xDD/ /  xmm6 = w1 w 2 w3 w4  = > W

mova ps  [e dx ],  x mm7        //  s tor e X

mon va ps  [e dx +16] , xmm6     //  s tor e Y

mova ps  [e dx +32] , xmm2     //  s tor e Z

mon va ps  [e dx +48] , xmm0     //  s tor e W

//  S WI ZZLE XYZ ->  XX X

   }

}

_____________________________________________________________

Example 5-4 shows the same data swizzling algorithm encoded using the 
In

d
tel® C/C++ Compiler’s intrinsics for Streaming SIMD Extensions.
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Example 5-4 Swizzling Data Using Intr ins ics

// In tr ins ic s ve rs io n o f  data  s wiz zl e

vo� id  s wiz zl e_in tr in  (V er te x_ aos * i n,  Vert ex_ so a *o ut , 
in t st rid e)

{

  __m128 x,  y ,  z,  w ;

  __m128 tmp;

  

  x = _mm_l oadl _pi( x,( __m64 *) (in )) ;

  x = _mm_l oadh_pi( x,( __m64 *) (st ri de +  ( cha r *) (i n) ));

  y = _mm_l oadl _pi( y,( __m64 *) (2* st ri de+char  * ) ( i n) ) ) ;

  y = _mm_l oadh_pi( y,( __m64 *) (3* st ri de+( cha r *) (i n) ));

  tm p =  _mm_shuf f l e_ps ( x ,  y ,  _ MM_SHUFFLE(  2,  0 ,  2 ,  0 ));

  y = _mm_s huff le _ps( x,  y ,  _MM_SHUFFLE( 3, 1,  3 ,  1) );

  x = tmp ;

  z = _mm_l oadl _pi( z,( __m64 *) (8 + (c har *)( in )) );

  z = _mm_l oadh_pi( z,( __m64 *) (st ri de+8+( cha r *) (i n) ));

  w = _mm_lo adl_ pi (w ,(_ _m64 * ) ( 2*s tr id e+8+(ch ar *) (i n) ));

  w = _mm_l oadh_pi(  w, (_ _m64 
*) (3 *s tri de+8+( ch ar *)( in )) );

  w = _mm_s huff le _ps( z,  w ,  _MM_SHUFFLE( 3, 1,  3 ,  1) );

  z = tmp ;

  tm p =  _mm_shuf f l e_ps ( z ,  w ,  _ MM_SHUFFLE(  2,  0 ,  2 ,  0 ));

  _mm_sto re _ps( &out ->x [0 ],  x ) ;

  _mm_sto re _ps( &out ->y [0 ],  y ) ;

  _mm_sto re _ps( &out ->z [0 ],  z ) ;

  _mm_sto re _ps( &out ->w [0 ],  w ) ;

}

_____________________________________________________________
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Al though the generated result of all zeros does not depend on the specific 
da

i
ta contained in the source operand (that is, XO

�
R of a register with itself 

alO ways produces all zeros), the instruction cannot execute until the 
instruction that generates xmm0 has completed. In the worst case, this 
creaN tes a dependency chain that links successive iterations of the loop, even 
i

f
f those iterations are otherwise independent; the resulting performance 
impact can be signif icant depending on how much other independent 
i

f
ntra-loop computation is being performed.

The same situation can occur for the above movh ps /
�
movl ps /

�
shuf ps  

sequence. Since each mon vhp s /
�
mon vlp s  instruction bypasses part of the 

de
i

stination register, the instruction cannot execute until the prior instruction 
to

^
 generate this register has completed. As with the xo rp s  example, in the 

wX orst case this dependency can prevent successive loop iterations from 
eU xecuting in parallel.

A 
W

solution is to include a 128-bit load (that is, from a dummy local variable, 
such as tmp in Example 5-4) to each register to be used with a 
movh ps /

�
movl ps  instruction; this action effectively breaks the dependency 

b
Z
y performing an independent load from a memory or cached location.

Data Deswizzling

In the deswizzle operation, we want to arrange the SoA format back into 
AoS

W
 format so the xxt xx , yyr yy , zz zz  are rearranged and stored in memory 

as O xyz . To do this we can use the un~ pc kl ps /
�
un~ pc kh ps  instructions to 

regenerate the xy xy  layout and then store each half (xy ) in
v

to its 
coN rresponding memory location using mon vl ps /

�
mon vh ps  followed by 

anO other movl ps /
�
movh ps  to store the z  component.

CA
�

UTION.  Avoid creating a dependency chain from previous 
co� mputations because the mon vhps /

�
movn lp s  i

�
nstructions bypass one part 

of�  the register. The same issue can occur with the use of an exclusive-OR 
f

�
unction within an inner loop in order to clear a register:

  XORPS %xmm0,  %xmm0;   Al l 0’ s w r i t t en t o x mm0
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E
c

xample 5-5 il lustrates the deswizzle function:

Example 5-5 Deswizzling Dat a

vo� id  d eswiz zl e_as m(Ver te x_ so a *in , Vert ex _ao s *o ut )

{

  __as m {

mov      ec x,  i n        //  l oad s t r uct ur e ad dr es se s

mov      edx,  o ut

mova ps    xmm7, [e cx ]    //  l oad x 1 x2  x 3 x4 => x mm7

mova ps    xmm6, [e cx +16] //  l oad y 1 y2  y 3 y4 => x mm6

mova ps    xmm5, [e cx +32] //  l oad z 1 z2  z 3 z4 => x mm5

mova ps    xmm4, [e cx +48] //  l oad w 1 w2 w 3 w4 => x mm4

//  S TART THE DESWIZ ZLI NG H ERE

mova ps    xmm0, xmm7     //  x mm0= x1  x 2 x3  x4

un~ pc kl ps xmm7, xmm6     //  x mm7= x1  y 1 x2  y2

movl ps    [e dx ],  x mm7    //  v 1 = x 1 y1  - -  --

movh ps    [e dx +16] , xmm7 //  v 2 = x 2 y2  - -  --

un~ pc kh ps xmm0, xmm6     //  x mm0= x3  y 3 x4  y4 movl ps    
[e dx +32],  x mm0 //  v 3 =  x 3 y3  - -  - -

mon vh ps    [e dx +48] , xmm0 //  v 4 = x 4 y4  - -  --

mova ps    xmm0, xmm5     //  x mm0= z1  z 2 z3  z4

un~ pc kl ps xmm5, xmm4     //  x mm5= z1  w 1 z2  w2

un~ pc kh ps xmm0, xmm4     //  x mm0= z3  w 3 z4  w4

mon vl ps    [e dx +8],  x mm5  //  v 1 = x 1 y1  z 1 w1

movh ps    [e dx +24] , xmm5 //  v 2 = x 2 y2  z 2 w2

mon vl ps    [e dx +40] , xmm0 //  v 3 = x 3 y3  z 3 w3

movh ps    [e dx +56] , xmm0 //  v 4 = x 4 y4  z 4 w4

//  D ESWIZZLIN G ENDS HE RE

    }

}

_____________________________________________________________
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Y
�

ou may have to swizzle data in the registers, but not in memory. This 
oc` curs when two different functions want to process the data in different 
layout. In lighting, for example, data comes as rr rr  gg� gg bb

�
bb aaaa, and 

yo� u must deswizzle them into rg ba  before converting into integers. In this 
caN se you use the mon vlh ps / mon vh lp s  instructions to do the first part of the 
de

i
swizzle, followed by shuf fl e instructions, Example 5-6 and Example 

5-
�

7.

Example 5-6 Deswizzling Data U sing the mo vlhps and s huffle I nstr uctions

vo� id  d eswiz zl e_rg b(V er te x_ so a * i n,  Vert ex _ao s *o ut )

{

// -- -- --- -- -- deswizz le  r gb- - --- -- -- -- -- --

/ /  xm m1 = rr rr , xm m2 = gg gg, x mm3 = bb bb, x mm4 = aa aa 
(a ss umed)

  __as m {

      m ov    ecx , in            //  lo ad s t r uctur e addr es ses

      mov    edx,  ou t

      movaps  xm m1,  [e cx ]      //  lo ad r 1 r 2 r 3 r4  =>  xm m1

      mova ps  x mm2, [e cx +16]    / /  loa d g1 g 2 g3 g 4 => x mm2

      mova ps  x mm3, [e cx +32]    / /  loa d b1 b 2 b3 b 4 => x mm3

      mova ps  x mm4, [e cx +48]    / /  loa d a1 a 2 a3 a 4 => x mm4

//  S t art deswiz zl ing  h er e

   mova ps xmm7, xmm4       //  x mm7= a1 a 2 a3 a4

      movhl ps  x mm7, xmm3      / /  xmm7= b3 b4  a 3 a4

  mova ps xmm6, xmm2      / /  xmm6= g 1 g2 g 3 g 4

      movlh ps  x mm3, xmm4      / /  xmm3= b1 b2  a 1 a2

      movhl ps  x mm2, xmm1      / /  xmm2= r3  r4  g 3 g4

      movlh ps  x mm1, xmm6      / /  xmm1= r1  r2  g 1 g2

      movaps xmm6, x mm2       / /  xmm6= r3  r4  g 3 g4 

      movaps xmm5, x mm1       / /  xmm5= r1  r2  g 1 g2

      shu fp s xmm2, x mm7,  0 xDD / /  xmm2= r4  g4  b 4 a4

      shu fp s xmm1, x mm3,  0 x88 / /  xmm4= r1  g1  b 1 a1

      shu fp s xmm5, x mm3,  0 x88 / /  xmm5= r2  g2  b 2 a2

      shu fp s xmm6, x mm7,  0 xDD / /  xmm6= r3  g3  b 3 a3

_____________________________________________________________
continued
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Example 5-6 Deswizzling Data U sing the mo vlhps and s huffle Instr uctions 
(continued)

 movaps [ edx] ,  xmm4      / /  v1  = r1  g 1 b1 a1

 movaps  [e dx+16] , xmm5   //  v 2 = r 2 g2 b 2 a2

      movaps [e dx +32],  x mm6   // v3  =  r 3 g3 b3 a 3

      movaps [e dx +48],  x mm2   // v4  =  r 4 g4 b4 a 4

//  D ESWIZZLIN G ENDS HE RE

     }

}

_____________________________________________________________

Example 5-7 Deswizzling Data U sing Intr ins ics with the mo vlhps a nd shuf fle  
Instruc
�

tions

vo� id  mmx_deswiz zl e( IVe rt ex _s oa *i n,  I Ver t ex_ aos *o ut )

{

  __as m {

    mov   e bx,  in

    mov   e dx,  out

    movq  mm0,  [e bx ]    //  mm0= u 1 u2 

    movq  mm1,  [e bx +16] //  mm1= v 1 v2

    movq  mm2,  mm0      //  mm2= u 1 u2

    punpc kh dq  mm0,  mm1 / /  mm0= u1 v1

    punpc kl dq  mm2,  mm1 / /  mm0= u2 v2

    movq [e dx ],  mm2     //  s t ore u1 v 1

mon vq  [ edx +8],  mm0 / /  s t or e u2  v 2

    movq mm4,  [ ebx+8] / /  mm0= u3 u4  

    movq mm5,  [ ebx+24]   //  mm1= v 3 v4   

    movq mm6,  mm4 / /  mm2= u3 u4

    punpc kh dq mm4,  mm5 //  mm0= u3 v3

    punpc kl dq mm6,  mm5 //  mm0= u4 v4

    movq [e dx +16] , mm6 //  s t or e u3 v3

    movq [e dx +24] , mm4  //  s t ore u4v4

      }

}

_____________________________________________________________
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Using MMX Technol ogy Code for Copy or  Shuf fl ing 
Funct ions

If t
d

here are some parts in the code that are mainly copying, shuffl ing, or 
do

i
ing logical manipulations that do not require use of Streaming SIMD 

Extensions code, consider performing these actions with MMX technology 
coN de. For example, if texture data is stored in memory as SoA (u~ uuu , vv� vv ) 

v

anO d they need only to be deswizzled into AoS layout (uv~ ) fo
v

r the graphic 
caN rds to process, you can use either the Streaming SIMD Extensions or 
MM

�
X technology code, but MMX technology code has these two 

adO vantages:

• The MMX instructions can decode on 3 decoders while Streaming 
S

_
IMD Extensions code uses only one decoder.

• The MMX instructions allow you to avoid consuming Streaming SIMD 
Extension registers for just rearranging data from memory back to 
memoryP .

E
c

xample 5-8 illustrates how to use MMX technology code for copying or 
shuffling.
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Example 5-8 Using M MX Technolog y Code f or Copying or  Shuf fling

as m("movq  T RI COUNT* 12( %ebx , %esi,  4 ) , %mm0");  //  mm0= u1 
u2~  

as m("movq  T RI COUNT* 16( %ebx , %esi,  4 ) , %mm1");  //  mm1= v1  
v2�

as m("movq  %mm0, %mm2"); //  mm2= u1 u2

as m("p unp ck hdq %mm1, %mm0") ;/ / mm0= u1  v 1

as m("p unp ck ld q %mm1, %mm2") ;/ / mm0= u2  v 2

as m("movq %mm0, 24+0* 32(%edx) "); //  s t or e u1 v1

as m("movq %mm2, 24+1* 32(%edx) "); //  s t or e u2 v2

as m("movq TRIC OUNT*12 (%ebx,  %esi , 4) , %mm4");  / /  
mmn 0= u 3 u 4  

shoul d be  ad dr ess+8

as m("movq TRIC OUNT*16 (%ebx,  %esi , 4) , %mm5");  / /  
mm1= v 3 v 4  

shoul d be  ad dr ess+8

as m("movq %mm4,%mm6") ;/ / mm2= u3  u 4

as m("p unp ck hdq %mm5, %mm4") ;/ / mm0= u3  v 3

as m("p unp ck ld q %mm5, %mm6") ;/ / mm0= u4  v 4

as m("movq %mm4, 24+0* 32(%edx) "); //  s t or e u3 v3

as m("movq %mm6, 24+1* 32(%edx) "); //  s t or e u4 v4

_____________________________________________________________

Hor izont al ADD

Al though vertical computations use the SIMD performance better than 
ho

y
rizontal computations do, in some cases, the code must use a horizontal 

op` eration. The mon vl hps / mon vhl ps  and shuffle can be used to sum data 
horizontally. For example, starting with four 128-bit registers, to sum up 
eacU h register horizontally while having the final results in one register, use 
th

^
e mon vlh ps / mon vh lp s  instructions to align the upper and lower parts of 

eU ach register. This allows you to use a vertical add. With the resulting partial 
ho

y
rizontal summation, full summation follows easily. Figure 5-2 

schematically presents horizontal add using movhlps/movlhps, while 
Example 5-9 and Example 5-10 provide the code for this operation.
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Figur e 5-2 Hor izontal Ad d Using mo vhlps/movlhps
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�
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Example 5-9 Hor izontal Ad d Using mo vhlps/movlhps

vo� id  h ori z_ add( Vert ex_ so a *i n,  fl oat *o ut ) {

  __as m {

mon v      ec x,  i n         / /  lo ad st ru ct ur e a ddr esses

mov      edx,  o ut

mon va ps    xmm0, [e cx ]     / /  lo ad A1 A 2 A3 A4  = > xmm0

mova ps    xmm1, [e cx +16]  / /  lo ad B1 B 2 B3 B4  = > xmm1

mon va ps    xmm2, [e cx +32]  / /  lo ad C1 C 2 C3 C4  = > xmm2

mova ps    xmm3, [e cx +48]  / /  lo ad D1 D 2 D3 D4  = > xmm3

 //  S TART HORI ZONTAL ADD        

mova ps   x mm5,  x mm0 // xmm5= A1,A2 ,A 3, A4

mon vl hps x mm5,  x mm1 // xmm5= A1,A2 ,B 1, B2

movh lp s x mm1,  x mm0 // xmm1= A3,A4 ,B 3, B4

addps   x mm5,  x mm1 // xmm5= A1+A3,A 2+A4,B 1+B3, B2+B4

movaps  xm m4, xm m2

mon vl hps x mm2,  x mm3 // xmm2= C1,C2 ,D 1, D2

movh lp s x mm3,  x mm4 // xmm3= C3,C4 ,D 3, D4

addps   x mm3,  x mm2 // xmm3= C1+C3,C 2+C4,D 1+D3, D2+D4

mova ps   x mm6,  x mm5 // xmm6= A1+A3,A 2+A4,B 1+B3, B2+B4

shuf ps  xm m6, xm m3, 0 x31

   / / xmm6=A1+A3,B 1+B3, C1+C3, D1+D3

sh uf ps  xm m5, xmm3, 0xAA

   / /  xmm5= A 2+A4, B2+B4, C2+C4, D2+D4

addps  xm m6, xmm5  // xmm6= D, C,B ,A

 //  E ND HORI ZONTAL A DD        

    movap s [e dx ],  x mm6

  }

}

_____________________________________________________________
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Example 5-10  Hori zont al Add  Using Int rins ics wi th movhlps/mo vlhps

vo� id  h ori z_ add_in tri n( Vert ex _so a *i n,  f l oat *o ut )

{

  __m128 v1 , v2 , v3,  v 4;

  __m128 tmm0,t mm1,t mm2, tmm3,tm m4,t mm5, tmm6;  
//  T emporar y va ri ables

  tmm0 = _mm_lo ad_ps (i n- >x ); //t mm0 = A1 A 2 A 3 A4

  tmm1 = _mm_lo ad_ps (i n- >y ); //t mm1 = B1 B 2 B 3 B4

  tmm2 = _mm_lo ad_ps (i n- >z ); //t mm2 = C1 C 2 C 3 C4

  tmm3 = _mm_lo ad_ps (i n- >w); //t mm3 = D1 D 2 D 3 D4

  

  tmm5 = tmm0; / / t mm0 = A1 A 2 A3 A 4

  tmm5 = _mm_move lh_ ps (t mm5,  tm m1); // tmm5 = A1 A 2 B1 B2

  tmm1 = _mm_move hl_ ps (t mm1,  tm m0); // tmm1 = A3 A 4 B3 B4

  tmm5 = _mm_add_ps( tmm5, tmm1);
      // tmm5 =  A1+A3 A2+A4 B1+ B3 B2 +B4

  tmm4 = tmm2;

  tmm2 = _mm_move lh_ ps (t mm2,  tm m3); // tmm2 = C1 C 2 D1 D2

  tmm3 = _mm_move hl_ ps (t mm3,  tm m4); // tmm3 = C3 C 4 D3 D4

  tmm3 = _mm_add_ps( tmm3, tmm2);
// tmm3 = C1+C3 C2+C4 D 1+D3 D 2+D4

  tmm6 = tmm5; / / t mm6 = A1+A3 A2+A4 B 1+B3 B 2+B4

  tmm6 = _mm_sh uf fle _ps( tmm6, t mm3,  0 x88) ;  
// tmm6 = A1+A3 B1+B3 C 1+C3 D 1+D3

  tmm5 = _mm_sh uf fle _ps( tmm5, t mm3,  0 xDD) ;
// tmm5 = A2+A4 B2+B4 C 2+C4 D 2+D4

  tmm6 = _mm_add_ps( tmm6, tmm5);
// tmm6 = A1+A2+A3+A4 B 1+B2+B3+B4
// C1+C2+C3+C4 D 1+D2+D3+D4

   _ mm_st or e_ps (o ut,  t mm6) ;

}

_____________________________________________________________
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 Scheduling

Inst
d

ructions using the same registers should be scheduled close to each 
ot` her. There are two read ports for registers. You can obtain the most 
efU ficient code if you schedule those instructions that read from the same 
rS egisters together without severely affecting the resolution of true 
de

i
pendencies. As an exercise, first examine the non-optimal code in the first 

bl
Z

ock of Example 5-11, then examine the second block of optimized code. 
T

Y
he reads from the registers can only read two physical registers per clock.

Example 5-11  Scheduling Ins tructions that Use  the Same Register

in t to y(u ns ig ned ch ar *s pt r1 ,

        u ns i gned ch ar *s pt r2 ) 

{

  __as m {

         push     ec x

         mov     ebx, [e bp+8]  //  s pt r 1

         mov     eax, [e bp+12]  //  s pt r 2

         movq     mm1, [e ax ]

         movq     mm3, [e bx ]

         px or     mm0, mm0      //  i ni t i al ize  mm0 t o 0

         px or     mm5, mm5      //  i ni t i al ize  mm5 t o 0

         px or     mm6, mm6      //  i ni t i al ize  mm6 t o 0

         p xor     mm7,  mm7      //  i nit ia li ze  mm7 to 0   

         mov     ec x, 256 //  i nit ia li ze  l oop  c ount er

to p_of _lo op: 

         movq     mm2, [e bx +ecx +8]

         movq     mm4, [e ax +ecx +8]

         paddw   mm6, mm5

 pmul lw   mm1,  mm3

         movq     mm3, [e bx +ecx +16]

         movq     mm5, [e ax +ecx +16]

         paddw   mm7, mm6

_____________________________________________________________
continued
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Example 5-11 Scheduling Inst ructions that Use the Same Register (continued)

 pmul lw   mm2,  mm4

         movq     mm4, [e bx +ecx+ 24]

         movq     mm6, [e ax +ecx+ 24]

         paddw   mm0, mm7

 pmul lw   mm3,  mm5

         movq     mm5, [e bx +ecx+ 32]

         movq     mm7, [e ax +ecx+ 32]

         paddw   mm1, mm0  

 pmul lw   mm4,  mm6

         movq     mm6, [e bx +ecx+ 40]

         movq     mm0, [e ax +ecx+ 40]

         paddw   mm2, mm1

 pmul lw   mm5,  mm7

         movq     mm7, [e bx +ecx+ 48]

         movq     mm1, [e ax +ecx+ 48]

         paddw   mm3, mm2

 pmul lw   mm6,  mm0

         movq     mm0, [e bx +ecx+ 56]

         movq     mm2, [e ax +ecx+ 56]

         paddw   mm4, mm3

 pmul lw   mm7,  mm1

         movq     mm1, [e bx +ecx+ 64]

         movq     mm3, [e ax +ecx+ 64]

         paddw   mm5, mm4

 pmul lw   mm0,  mm2

         movq     mm2, [e bx +ecx+ 72]

         movq     mm4, [e ax +ecx+ 72]

         paddw   mm6, mm5

_____________________________________________________________
continued
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Example 5-11 Scheduling Inst ruction s that Use the Same Register  (continued)

 pmul lw   mm1,  mm3

         su b     ec x, 64

         jg       to p_o f_ lo op

         //  n o hori zon ta l re ducti on n eeded a t  th e end

         movd     [e ax] , mm6

         pop     ec x

   }

}

_____________________________________________________________

Try to group instructions using the same registers as closely as possible. 
Also

W
 try to schedule instructions so that data is still in the reservation station 

whenX  new instructions that use the same registers are issued to them. The 
source remains in the reservation station until the instruction is dispatched. 
No

}
w you can bypass directly to the functional unit because dependent 

i
f
nstructions have spaced far enough away to resolve dependencies.

Scheduli ng with the T riple-Quadrupl e Rule

S
_

chedule instructions using the triple/quadruple rule, add/
�
mn ult /

�
lo ad, and 

coN mbine triplets from independent chains of instructions. Split 
register-memory instructions into a load followed by the actual 
coN mputation. As an example, split addps xmm0, [ edi ]  into mon vap s  
xmt m1, [ edi ]  and addps  xm m0, x mm1. Increase the distance between the 
load and the actual computation and try to insert independent instructions 
be

Z
tween them. This technique works well unless you have register pressure 

or`  you are limited by decoder throughput, see Example 5-12.
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Example 5-12 Scheduling with th e Triple/Quadr uple  Rule

in t to y(s pt r1 , sp tr2 ) 
__m64 *sp tr 1,  * sptr2 ; 

{

__m64 sr c1; /*  s ource  1  * /
__m64 sr c2; /*  s ource  2  * /
__m64 m; / * mu l * /
__m64 r esul t ; /*  r esult  * /
in t i ;  
re su lt =0;  

fo r( i= 0; i< n;  i+ +,  s ptr 1 += st ri de,s ptr 2 += st ri de) {
sr c1  =  *s pt r1 ; 
sr c2  =  *s pt r2 ; 
m n = _m_pmul w( sr c1 , s r c2) ;  
re su lt  = _m_paddw(re su lt , m); 
sr c1  =  *( sp tr 1+1) ; 
sr c2  =  *( sp tr 2+1) ; 
m n = _m_pmul w( sr c1 , s r c2) ;  
re su lt  = _m_paddw(re su lt , m);

}
re tu rn ( _ m_t o_i nt (re su lt ) );  

}

_____________________________________________________________

Modulo Scheduli ng (or Soft ware Pipelining)

T
Y

his particular approach to scheduling known as modulo scheduling 
acO hieves high throughput by overlapping the execution of several iterations 
anO d thus helps to reduce register pressure. The technique uses the same 
schedule for each iteration of a loop and initiates successive iterations at a 
coN nstant rate, that is, one in

�
iti ation interval (II) clocks apart. To effectively 

coN de your algorithm using this technique, you need to know the following:

• in
f

struction latencies
• t

^
he number of available resources

• aO vailabilit y of adequate registers
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C
q

onsider a simple loop that fetches sr c1  and sr c2  (like in Example 5-12), 
mulP tiplies them, and accumulates the multiplication result. The assumptions 
are:O  

In
d

struction La
�

tency T
Y

hroughput

L
�

oad 3 clocks 1 clock

Multiply 4 clocks 2 clocks

A
W

dd 1 clock 1 clock

No
}

w examine this simple kernel’s dependency graph in Figure 5-3, and the 
schedule, in Table 5-3.

Figur e 5-3 Modulo Sc heduling De pendenc y Graph

ld-s1 ld-t1

mu� l

add�
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No
}

w starting from the schedule for one iteration (above), overlap the 
schedule for several iterations in a spreadsheet or in a table as shown in 
T

Y
able 5-4

.

Table 5-3 EMMS Modulo Sc heduling

clk load mul add

0 lds1

1 ldt1

2 ldt2

3 lds2

4 mul1

5

6 mul2

7

8 add1

9

10 add2

Table 5-4 EMMS Schedule –  Over lapping Iter ations

clk load mul add

0 lds1 prolog

1 ldt1

2 lds2

3 ldt2

4 lds3 mul1

5 ldt3

6 lds4 mul2

7 ldt4

continued
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Ca
q

reful examination of this schedule shows that steady state execution for 
t

^
his kernel occurs after two iterations. As with any pipelined loop, there is a 
prQ olog and epilog. This is also referred to as loop setup and loop shutdown, 
or`  fill ing the pipes and flushing the pipes.

No
}

w assume the initiation interval MR
V

T (II = 4
L

) and examine the schedule in 
Table 5-5.

Ho
�

w do we schedule this particular scenario and allocate registers? The 
Pentium II and Pentium III processors can execute instructions out of order. 
Ex

c
ample 5-13 shows an improved version of the code, with proper 

scheduling resulting in 20% performance increase.

8 lds5 mul3 add1 steady state

9 ldt5

10 lds6 mul4 add2

11 ldt6

12 mul5 add3 epilog

13

14 mul6 add4

15

16 add5

17

18 add6

Table 5-5 Modulo Sc heduling with Inter val MRT (II=4)

clk

MRT(II=4)

load mul add

0 ld mul add

1 ld

2 ld mul add

3 ld

Table 5-4 EMMS Schedule –  Over lapping Iter ations  (continued)

clk load mul add
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Example 5-13  Proper  Scheduling f or Performance  Incr ease

in t to y(s pt r1 , sp tr2 ) 

un~ si gned ch ar  * sptr1 , *s pt r2 ; 

{

as m("p ush l     %ecx" );

as m("movl       12(%ebp),  %ebx") ; //  s pt r 1

as m("movl       8( %ebp) ,  %eax") ; //  s pt r 2

as m("movq       (%eax ,%ec x) , %mm1" );

as m("movq       (%ebx ,%ec x) , %mm3" );

as m("p xor       %mm0,      %mm0") ; //  i ni t i ali ze  mm0 t o 0

as m("p xor       %mm5,      %mm5") ; //  i ni t i ali ze  mm5 t o 0

as m("p xor       %mm6,      %mm6") ; //  i ni t i ali ze  mm6 t o 0

as m("p xor       %mm7,     % mm7") ; / /  ini ti al iz e m m7 to  0   

as m("movl       16*st ri de, %ecx" );  / /  in it ial iz e lo op 
co unte r

as m("t op_ of _l oop: ");  

as m("movq      8 ( %ebx ,%ec x) , %mm2" );

as m("movq      8 ( %eax ,%ec x) , %mm4" );

as m("p add w    %mm5,     %mm6");

as m("p mul w    %mm3,     %mm1")

as m("movq      s t r ide (%ebx, %ecx) , %mm3") ;

as m("movq      s t r ide (%eax, %ecx) , %mm5") ;

as m("p add w    %mm6,     %mm7");

as m("p mul w    %mm4,     %mm2");

as m("movq      s t r ide +8(%ebx, %ecx) , %mm4") ;

as m("movq      s t r ide +8(%eax, %ecx) , %mm6") ;

as m("p add w    %mm7,     %mm0");

as m("p mul w    %mm5,     %mm3");

as m("movq      2 * stri de(%ebx, %ecx) , %mm5") ;

as m("movq      2 * stri de(%eax, %ecx) , %mm7") ;

as m("p add w    %mm0,     %mm1");

as m("p mul w    %mm6,     %mm4");

as m("movq      2 * stri de+8(%ebx,% ec x) , %mm6");

as m("movq      2 * stri de+8(%eax,% ec x) , %mm0");

_____________________________________________________________
continued
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Example 5-13  Proper  Scheduling f or Performance  Incr ease (continued)

as m("p add w    %mm1,      %mm2") ;

as m("p mul w    %mm7,      %mm5") ;

as m("movq      3 * st r ide (%ebx, %ecx) , %mm7") ;

as m("movq      3 * st r ide (%eax, %ecx) , %mm1") ;

as m("p add w    %mm2,      %mm3") ;

as m("p mul w    %mm0,      %mm6") ;

as m("movq      3 * st r ide +8(%ebx, %ecx) , %mm0");

as m("movq      3 * st r ide +8(%eax, %ecx) , %mm2");

as m("p add w    %mm3,      %mm4") ;

as m("p mul w    %mm1,      %mm7") ;

as m("movq      4 * st r ide (%ebx, %ecx) , %mm1") ;

as m("movq      4 * st r ide (%eax, %ecx) , %mm3") ;

as m("p add w    %mm4,      %mm5") ;

as m("p mul w    %mm2,      %mm0") ;

as m("movq      4 * st r ide +8(%ebx, %ecx) , %mm2");

as m("movq      4 * st r ide +8(%eax, %ecx) , %mm4");

as m("p add w    %mm5,      %mm6") ;

as m("p mul w    %mm3,      %mm1") ;

as m("s ubl       4* st rid e,  %ecx" ) ;

as m("j g        to p_of_ lo op") ;

//  n o hor iz onta l re duc ti on n eeded  a t  th e end

as m("movd       %mm6,     %eax" ) ;

as m("p opl       %ecx ");

}

_____________________________________________________________

Example 5-13 also shows that to achieve better performance, it is necessary 
t

^
o expose the instruction level parallelism to the processor. In exposing the 
paQ rallelism keep in mind these considerations:

• Use the a
R

vailable issue ports.
• Expose independent instructions such that the processor can schedule 

t
^
hem efficiently.
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Scheduli ng t o Avoid R egister All ocation Stalls

Aft
W

er the µops are decoded, they are allocated into a buffer with the 
coN rresponding data sources to be dispatched to the execution units. If the 
sources are already in the dispatch buffer from previous producers of those 
sources, then no stalls will happen. However, if producers and consumers 
arO e separated further than needed to resolve dependency, then the producer 
resulS ts wil l no longer be in the dispatch buffer when they are needed for the 
coN nsuming µops. The general rule of thumb is to try to balance the distance 
be

Z
tween the producers and consumers so that dependency wil l have some 

t
^
ime to resolve, but not so much time that results are not lost from the buffer.

Forwar ding fr om Stores to Loads

Be careful when performing loads from a memory location that was 
preQ viously and recently stored, since certain types of store forwarding may 
i

f
ncur a longer latency than others. In particular, storing a result that has a 
smaller data size than that of the following load, may result in a longer 
la

]
tency than if a 64-bit load is used. An example of this is two 64-bit MMX 

t
^
echnology stores (mon vq ) fol

v
lowed by a 128-bit Streaming SIMD 

Extensions load (movaps ).
v

Conditi onal  Moves and Port Balanc ing
C

q
onditional moves emulation and port balancing can greatly contribute to 

yo� ur application’s performance gains using the techniques explained in the 
f

a
ollowing sections.

Conditional  Moves

If possible, emulate conditional moves by using masked compares and 
l

]
ogical instructions instead of conditional branches. Mispredicted branches 
i

f
mpede the Pentium III processor’s performance. In the Pentium II and 
Pentium III processors prior to processors with Streaming SIMD 
E

c
xtensions, execution Port 1 is solely dedicated to 1-cycle latency µops (for 

eU xample, cj mp).
v

 In the Pentium III processor, additional execution units 
werX e added to Port 1, to execute new 3-cycle latency µops (addps , su bps , 
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man xp s ...), in addition to the 1-cycle latency µops. Thus, single-cycle µops, 
i

f
ncluding cj mp µop, can be delayed more than in previous Pentium 
proQ cessors.

Th
Y

rottling cjm p µops delays resolution of mispredicted cj mp µops. 
Potentially, this can increase the length of the speculation and possibly   
eU xecute on an incorrect path. Use cmov  instead of cj mp instruction. In the 
S

_
treaming SIMD Extensions, the cj mp instruction can be emulated using a 

coN mbination of CM
�

PPS instruction and logical instructions.

E
c

xample 5-14 shows two loops: the first implements conditional branch 
instruction, the second omits this instruction.

Example 5-14  Scheduling with Em ulated Conditional Branch

// Conditi onal  b r anch i nc l uded

lo opMax:

cmpnle ps xm m1, xmm0

movmsk ps eax,  x mm1

cmp ea x, 0

j e no Max

man xFound:

maxp s xm m0, [e si+ ec x]  

andps  xm m1, xmm3

maxp s  xm m2, xmm1

no� Max:

add   ec x,   16

addps  xm m3, xmm4

mova ps  xm m1, [e si+ ec x]  

jn z    lo opMax

//  U se th is  s t r uct ure fo r bett er sc heduli ng

lo opMax:

cmpnle ps xm m5, xmm0

maxp s   xmm0, xmm1

andps   xmm5, xmm3

maxp s   xmm2, xmm5

____________________________________________________________
continued
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Example 5-14 Scheduling with E mulated Conditional B ranch (continued)

add    ec x,   16

addps   xmm3, xmm4

mova ps   xmm1, [es i+ ec x]  

mon va ps   xmm5, xmm1

jn z   lo opMax

_____________________________________________________________

T
Y

he original code’s performance depends on the number of mispredicted 
bran

Z
ches which in turn depends on the data being sorted, which contributes 

t
^
o a large value for clocks per instruction (CPI = 1.78). The second loop 
o` mits the conditional branch instruction, but does not balance the port 
l

]
oading. A further advantage of the new code is that the latency is 
independent of the data values being sorted. 

Port Balanc ing

To further reduce the CPI in the above example, balance the number of µops 
issued on ports 0, 1, and 2. You can do so by replacing sections of the 
S

_
treaming SIMD Extensions code with MMX technology code. In 

paQ rticular, calculation of the indices can be done with MMX instructions as 
follows:

• Creat
q

e a mask with Streaming SIMD Extensions and store into 
memoryP .

• Co
q

nvert this mask into MMX technology format using mon vq  and 
pa� ck ss dw instructions.

• E
c

xtract max indices using the MMX technology pm� axs w, pa� nd, and 
pa� ddw instructions.

The code in Example 5-15 demonstrates these steps.
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Example 5-15  Replacing the Str eaming S IMD Extensions Code with t he MMX 
Technolog y Code

lo opMax: 

cmpnle ps  xm m1, xm m0 ;c re at e mask  i n St re ami ng SI MD 

;E xt ensi ons  f or mat

maxp s  xm m0, [e si +ecx] ;g et  max va lu es

mova ps  [e si +ecx ],  x mm1;s to re  mask  i nt o memory

movq   mm1,  [e si +ecx ];p ut  l ower  par t  of  mask  in to  mm1

add ecx,  1 6 ;i nc re ment poin te r

mova ps  xm m1, [e si +ecx] ;l oad next fo ur  a l i gne d fl oats

pa� ck ss dw mm1,  [ es i +ecx -8 ] ; pack  lo wer and upper  par ts 

;o f th e mas k

mask : 

pa� nd    m m1,  mm3 ;g et in di ce s mask of  max va lu es

pa� ddw   m m3,  mm4 ;i ncr ement in dic es

pm� ax sw  m m2,  mm1 ;g et in di ce s cor re sp ondi ng to  max 

 ;v al ues

j nz l oopMax

_____________________________________________________________

E
c

xample 5-15 is the most optimal version of code for the Pentium III 
proQ cessor and has a CPI of 0.94. This example il lustrates the importance of 
instruction usage to maximize port utilization. See Appendix C, 
“ In

d
struction to Decoder Specification,” for a table that details port 

assiO gnments of the instructions in the Pentium III processor architecture.

Ano
W

ther example where replacing the Streaming SIMD Extensions code 
wiX th the MMX technology code can give good results is the dot product 
op` eration. This operation is the primary operation in matrix multiplication 
t

^
hat is used frequently in 3D applications and other floating-point 
apO plications. 

T
Y

he dot product kernel and optimization issues and considerations are 
prQ esented in the following discussion. The code in Example 5-16 represents 
a tO ypical dot product implementation.
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Example 5-16  Typic al Dot Pr oduct Imple mentation

in ner_ loo p:  

mova ps      (%eax, %ecx, 4) ,   %xmm0 / /  1s t

mon va ps      (%ebx, %ecx, 4) ,   %xmm1

mulp s      %xmm1,            %xmm0

addps      %xmm0,            %xmm7

mova ps      16(%eax,% ec x, 4) , %xmm2 / /  2nd

mon va ps      16(%ebx,% ec x, 4) , %xmm3

mulp s      %xmm3,            %xmm2

addps      %xmm2,            %xmm7

mova ps      32(%eax,% ec x, 4) , %xmm4 / /  3r d

mon va ps      32(%ebx,% ec x, 4) , %xmm5

mulp s      %xmm5,            %xmm4

addps      %xmm4,            %xmm7

mova ps      48(%eax,% ec x, 4) , %xmm6 / /  4t h

mon va ps      48(%ebx,% ec x, 4) , %xmm0

mulp s      %xmm6,            %xmm0

addps      %xmm0,            %xmm7

su bl        $16,              %ecx  / /  lo op co unt

jn z        in ner_ loo p

_____________________________________________________________

The inner loop in the above example consists of eight loads, four multiplies 
anO d four additions. This translates into 16 l oad  µops, 8 mun l  µops and 8 add 
µok ps for Streaming SIMD Extensions and 8 lo ad  µops, 4 mun l  µops and 4 
add µops for MMX technology.

What
\

 are the characteristics of the dot product operation?

• Ratio of lo ad /
�
mult /

�
add µops is 2:1:1.

• Hardware lo ad /
�
mult /

�
add ports is 1:1:1.

• Opt
e

imum balance of ports for lo ad/
�
mun lt /

�
add is 1:1:1.

• Inn
d

er loop performance is limited by a single lo ad port.

This kernel’s performance can be improved by using optimization 
t

^
echniques to avoid performance loss due to hardware resource constraints. 
S

_
ince the optimum latency for the inner loop is 16 clocks, experimenting 
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wiX th a large number of iterations can reduce branch penalties. Properly 
scheduled code achieves 16 clocks/iteration with a large number of 
iterations. But, only four iterations are present in the original code. The 
in

f
crease is caused by a BTB (branch target buffer) warm-up penalty that 

oc` curs in the beginning of the loop. A mispredicted branch occurs on the 
last iteration. The warm-up penalty and mispredicted branch combine to 
cauN se about 5 additional clocks/iteration. The cause of the performance loss 
i

f
s a short loop and a large number of loads.

Streaming SIMD Extens ion Nu mer ic Except ions
T

Y
his section discusses various aspects of the Streaming SIMD Extension 

nuj meric exceptions: conditions, priority, automatic masked exception 
handling, software exception handling with unmasked exceptions, 
i

f
nteraction with x87 numeric exceptions, and the flush-to-zero mode.

Except ion Con ditions

T
Y

he numeric exception conditions that can occur when executing Streaming 
S

_
IMD Extension instructions can be referred to as the following six classes:

• in
f

valid operation (#I) 
• di

i
vide-by-zero (#Z) 

• de
i

normalized operand (#D) 
• numeric overflow (#O) 
• nuj meric underflow (#U) 
• in

f
exact result (precision) (#P) 

Invalid, divide-by-zero and denormal exceptions are precomputation 
eU xceptions; they are detected before any arithmetic operation occurs. 
Und

R
erflow, overflow and precision exceptions are post-computation 

eU xceptions.

W
\

hen numeric exceptions occur, a processor supporting Streaming SIMD 
Extensions take one of two possible courses of action:

• T
Y

he processor can handle the exception by itself, producing the most 
reasoS nable result and allowing numeric program execution to continue 
un[ disturbed (that is, masked exception response).

• A sof
W

tware exception handler can be invoked to handle the exception 
(

L
that is, unmasked exception response).
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E
c

ach of the six exception conditions described above has corresponding flag 
anO d mask bits in the MXC

V
SR. Depending on the flag and mask bit values the 

following operations take place: 

• If an 
d

exception is masked (mask bit in MX
V

CSR = 1), the processor takes 
anO  appropriate default action and continues with the computation.

• If t
d

he exception is unmasked (mask bit in MX
V

CSR = 0) and the operating 
system (OS) supports Streaming SIMD Extension exceptions (that is, 
CR

�
4. OSXMMEXCEPT =  1 )

v
, a software exception handler is invoked 

i
f
mmediately through Streaming SIMD Extensions exception interrupt 
vx ector 19.

• If the exception is unmasked (mask bit in MXCSR = 0) and the OS does 
not support Streaming SIMD Extension exceptions (that is, 
CR

�
4. OSXMMEXCEPT =  0 )

v
, an invalid opcode exception is signalled 

i
f
nstead of a Streaming SIMD Extensions exception.

Except ion Prior ity

The processor handles exceptions according to a predetermined precedence. 
T

Y
he precedence for Streaming SIMD Extension numeric exceptions is as 

fo
a

llows:

• Invalid-operation exception
• QN

�
aN operand. Though this is not an exception, the handling of a QN

�
aN 

op` erand has precedence over lower-priority exceptions. For example, a 
QN

�
aN divided by zero results in a Q� NaN, not a zero-divide exception.

• Any other invalid-operation exception not mentioned above or a 
d

i
ivide-by-zero exception

• Denormal-operand exception. If masked, then instruction execution 
coN ntinues, and a lower-priority exception can occur as well

NOTE.  No
�

te that Streaming SIMD Extension exceptions exclude a 
si� tuation when, for example, an x87 floating-point instruction, fw ai t , o  r 
a St¡ reaming SIMD Extensions instruction catch a pending unmasked 
St

¢
reaming SIMD Extensions exception.
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• Numeri
}

c overflow and underflow exceptions in conjunction with the 
i

f
nexact-result exception

• In
d

exact-result exception

W
\

hen a suboperand of a packed instruction generates two or more 
eU xception conditions, the exception precedence sometimes results in the 
hi

y
gher-priority exception being handled and the lower-priority exceptions 

be
Z

ing ignored. For example, dividing an SNaN by zero can potentially  signal 
anO  invalid-arithmetic-operand exception (due to the SNaN operand) and a 
di

i
vide-by-zero exception. Here, if both exceptions are masked, the 

prQ ocessor handles the higher-priority exception only (the invalid-arithmetic- 
o` perand exception), returning a real indefinite to the destination.

Al
W

ternately, a denormal-operand or inexact-result exception can accompany 
a nO umeric underflow or overflow exception, with both exceptions being 
h

y
andled. Prioritizing of exceptions is performed only on a individual 

sub-operand basis, and not between suboperands. For example, an invalid 
eU xception generated by one sub-operand wil l not prevent the reporting of a 
di

i
vide-by-zero exception generated by another sub-operand.

Automatic M asked E xception Handling

If the processor detects an exception condition for a masked exception, it 
de

i
livers a predefined default response and continues executing instructions. 

T
Y

he masked (default) responses to exceptions deliver a reasonable result for 
eacU h exception condition and are generally satisfactory for most application 
coN de. By masking or unmasking specific floating-point exceptions in the 
MXCSR, pro

�
grammers can delegate responsibility for most exceptions to 

t
^
he processor and reserve the most severe exception conditions for software 
eU xception handlers.

Because the exception flags are “sticky,” they provide a cumulative record 
of t` he exceptions that have occurred since they were last cleared. A 
proQ grammer can thus mask all exceptions, run a calculation, and then 
inspect the exception flags to see if any exceptions were detected during the 
calN culation.
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Not
}

e that when exceptions are masked, the processor may detect multiple 
eU xceptions in a single instruction, because:

• Execution continues after performing its masked response; for 
eU xample, the processor could detect a denormalized operand, perform 
i

f
ts masked response to this exception, and then detect an underflow.

• S
_

ome exceptions occur naturally in pairs, such as numeric underflow 
anO d inexact result (precision).

• Packed instructions can produce independent exceptions on each pair 
of o` perands.

Software E xception Handling - Unmasked E xceptions

Most of the masked exceptions in Streaming SIMD Extensions are handled 
b

Z
y hardware without penalty except denormals and underflow. But these can 

alO so be handled without penalty if flush-to-zero mode is used.

Your application must ensure that the operating system supports unmasked 
eU xceptions before unmasking any of the exceptions in the MX

V
CSR (see  

“Checking for Processor Support of Streaming SIMD Extensions and 
MMX™ Technology” in Chapter 3). 

v

If t
d

he processor detects a condition for an unmasked Streaming SIMD 
Extensions application exception, a software handler is invoked 
i

f
mmediately at the end of the excepting instruction. The handler is invoked 
t

^
hrough the Streaming SIMD Extensions exception interrupt (vector 19), 
irrespective of the state of the CR

�
0. NE flag. If an exception is unmasked, but 

S
_

treaming SIMD Extension unmasked exceptions are not enabled 
(

L
CR

�
4. OSXMMEXCPT = 0 )

v
, an invalid opcode fault is generated. However, 

t
^
he corresponding exception bit will  stil l be set in the MXCSR, as it would 
be

Z
 if  CR4

�
.O SXMMEXCPT =  1 , since the invalid opcode handler/user needs 

t
^
o determine the cause of the exception.

A t
W

ypical action of the exception handler is to store x87 floating-point and 
S

_
treaming SIMD Extensions state information in memory (with the 

fx sa ve /fx rs to r  instructions) so that it can evaluate the exception and 
formul

a
ate an appropriate response. Other typical exception handler actions 

caN n include:

• Examining stored x87 floating-point and Streaming SIMD Extensions 
state information (control/status) to determine the nature of the error.
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• T
Y
aking action to correct the condition that caused the error.

• C
q

learing the exception bits in the x87 floating-point status word (FSW) 
v

or t` he Streaming SIMD Extensions control register (MV XCSR).
v

• Returning to the interrupted program and resuming normal execution.

I
d
n lieu of writing recovery procedures, the exception handler can do the 

following:

• In
d

crement in software an exception counter for later display or printing.
• Print or display diagnostic information (such as the Streaming SIMD 

E
c

xtensions register state).
• Halt further program execution.

When a
\

n unmasked exception occurs, the processor will not alter the 
coN ntents of the source register operands prior to invoking the unmasked 
ha

y
ndler. Similarly, the integer EFLAGS will  also not be modified if an 

un[ masked exception occurs while executing the co mi ss  or uc~ omis s  
instructions. Exception flags will  be updated according to the following 
ruS les:

• E
c

xception flag updates are generated by a logical-OR of exception 
coN nditions for all sub-operand computations, where the OR is done 
independently for each type of exception. For packed computations, 
t

^
his means four suboperands; for scalar computations this means 1 
sub-operand (the lowest one).

• In the case of only masked exception conditions, all fl ags will be 
up[ dated.

• In the case of an unmasked precomputation type of exception condition 
(th

L
at is, denormal input), all flags relating to all precomputation 

coN nditions (masked or unmasked) wil l be updated, and no subsequent 
coN mputation is performed (that is, no post-computation condition can 
oc` cur if there is an unmasked pre-computation condition).

• I
d
n the case of an unmasked post-computation exception condition, all 

f
a
lags relating to all post-computation conditions (masked or unmasked) 

wiX ll  be updated; all precomputation conditions, which must be masked, 
wiX ll  also be reported.
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Interaction with x87 Numeric Exceptions

T
Y

he Streaming SIMD Extensions control/status register was separated from 
i

f
ts x87 floating-point counterparts to allow for maximum flexibil ity. 
Conseq

q
uently, the Streaming SIMD Extensions architecture is independent 

of`  the x87 floating-point architecture, but has the following implications for 
x8£ 7 floating-point applications that call  Streaming SIMD 
Extensions-enabled libraries:

• T
Y

he x87 floating-point rounding mode specif ied in FCW wil l not apply 
t

^
o calls in a Streaming SIMD Extensions library, unless the rounding 
coN ntrol in MXCSR is explicitly set to the same mode.

• x8£ 7 floating-point exception observabil ity may not apply to a 
S

_
treaming SIMD Extensions library.

• An a
W

pplication that expects to catch x87 floating-point exceptions that 
oc` cur in an x87 floating-point library will not be notified if an 
eU xception occurs in a corresponding Streaming SIMD Extensions 
library, unless the exception masks, enabled in FCW, have also been 
enU abled in MX

V
CSR.

• An application will not be able to unmask exceptions after returning 
from a 

a
Streaming SIMD Extensions library call  to detect if an error 

oc` curred. A Streaming SIMD Extensions exception flag that was set 
whenX  the corresponding exception was unmasked will  not generate a 
f

a
ault; only the next occurrence of that exception will generate an 

un[ masked fault.

NOTE.  In certain cases, if any numerical exception is unmasked, the 
r¤ etirement rate might be affected and reduced. This might happen when 
St

¢
reaming SIMD Extensions code is scheduled without large impact of 

t¥ he dependency and with the intention to have maximum execution rate.  
Usually such code consists of balanced operations such as packed 
f

�
loating-point multiply, add and load or store (or a mix that includes 
ba

¦
lanced 2 arithmetic operation/load or store with MMX technology or 

in
�

teger instructions).
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• An ap
W

plication which checks FSW to determine if any masked exception 
f

a
lags were set during an x87 floating-point library call will  also need to 

chN eck MX
V

CSR in order to observe a similar occurrence of a masked 
eU xception within a Streaming SIMD Extensions library.

Use of  CV
�

TTPS2PI /
§
CV

�
TTSS2SI  Instr ucti ons

Th
Y

e cv tt ps2 pi  anO d cv tt ss 2s i  i
f
nstructions encode the truncate/chop 

rS ounding mode implicitly in the instruction, thereby taking precedence over 
t

^
he rounding mode specified in the MXCSR register. This behavior can 
elU iminate the need to change the rounding mode from round-nearest, to 
t

^
runcate/chop, and then back to round-nearest to resume computation. 
Frequent changes to the MXCSR register should be avoided since there is a 
pQ enalty associated with writing this register; typically, through the use of the 
cv tt ps 2pi  anO d cv tt ss 2s i  instructions, the rounding control in MX

V
CSR 

canN  be always be set to round-nearest.

Flush -to-Zer o Mode

Act
W

ivating the flush-to-zero mode has the following effects during 
un[ derflow situations:

• Ze
¨

ro result is returned when the result is true.
• Precision and underflow exception flags are set to 1.

T
Y

he IEEE mandated response to underflow is to deliver the denormalized 
result (that is, gradual underflow); consequently, the flush-to-zero mode is 
noj t compatible with IEEE Standard 754. It is provided for applications 
wherX e underflow is common. Underflow for flush-to-zero mode occurs 
whenX  the exponent for a computed result falls in the denormal range, 
reS gardless of whether a loss of accuracy has occurred.

Unmask
R

ing the underflow exception takes precedence over flush-to-zero 
modP e. For a Streaming SIMD Extensions instruction that generates an 
un[ derflow condition an exception handler is invoked. Unmasking the 
un[ derflow exception occurs, regardless of whether flush-to-zero mode is 
enU abled.
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Ov
e

er the past decade, processor speed has increased more than ten times, 
whiX le memory access speed has increased only slightly. Many applications 
caN n considerably improve their performance if data resides in caches so the 
proQ cessor does not have to wait for the data from memory.

Unt
R

il now, techniques to bring data into the processor before it was needed 
i

f
nvolved additional programming. These techniques were not easy to 
i

f
mplement, or required special steps to prevent from degrading 
peQ rformance. The Streaming SIMD Extensions address these issues by 
proQ viding the prefetch instruction and its variations. Prefetching is a much 
be

Z
tter mechanism to ensure that data are in the cache when requested.

T
Y

he prefetch instruction, controlled by the programs or compilers, retrieves 
a minO imum of 32 bytes of data prior to the data actually being needed. This 
hides the latency for data access in the time required to process data already 
resiS dent in the cache. Many algorithms can provide information in advance 
abO out the data that is to be required soon. The new instruction set also 
features non-temporal store instructions to minimize the performance issues 
caN used by cache pollution.

This chapter focuses on two major subjects:

• P
o

refetch and Cacheability Instructions—describes instructions that 
alO low you to implement a data caching strategy.

• Me
�

mory Optimization Using Prefetch—describes and provides 
eU xamples of various techniques for implementing prefetch instructions.

Not
}

e that in a number of cases presented in this chapter, the prefetching and 
cN ache utili zation are platform-specific and may change for future 
proQ cessors.



6-2

6 Intel Architecture Optimization Reference Manual

Prefetch and Cacheabilit y Ins tructions
T

Y
he new cacheabili ty control instructions allow you to control data caching 

strategy in order to increase cache efficiency and minimize cache pollution.

Dat
K

a can be viewed by time and address space characteristics as follows:

T
Y
emporal data will be used again soon

S
_

patial data will be used in adjacent locations, for example, the 
same cache line

Non
}

-temporal data which are referenced once and not reused in the 
i

f
mmediate future; for example, some multimedia data 
t

^
ypes, such as the vertex buffer in a 3D graphics 
apO plication

T
Y

hese data characteristics are used in the discussion that follows.

The Prefet
©

ching Concept

Th
Y

e pr� ef etc h instruction can hide the latency of data accesses in 
peQ rformance-critical sections of application code by allowing data to be 
fetched in advance of its actual usage. The pr� ef et ch  instructions do not 
chN ange the user-visible semantics of a program, although they may affect 
t

^
he program’s performance. The pr� ef et ch  instructions merely provide 
hints to the hardware and generally do not generate exceptions or faults.

Th
Y

e p� ref et ch  (load 32 or greater number of bytes) instructions load either 
non-temporal data or temporal data in the specified cache level. This data 
accO ess type and the cache level are specif ied as hints. Depending on the 
i

f
mplementation, the instruction fetches 32 or more aligned bytes, including 
t

^
he specified address byte, into the instruction-specified cache levels.

NOTE.  Using the pr� ef et ch  instructions is recommended only if data 
do

ª
es not fit in cache.
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Gene
b

rally the pr� ef et ch  instructions only provide hints to the hardware 
anO d do not generate exceptions or faults except for a special case described 
in the  “Prefetch and Load Instructions” section. However, excessive use of 
prefeQ tch instructions may waste memory bandwidth and result in a 
peQ rformance penalty due to resource constraints.

Ne
}

vertheless, the prefetch instructions can lessen the overhead of memory 
t

^
ransactions by preventing cache pollution, and by using the cache and 
memory efficiently. This is particularly important for the applications that 
share critical system resources, such as memory bus. See an example in
 “Video Encoder”  section.

The P
©

refetch Inst ructi ons

T
Y

he Streaming SIMD Extensions include four types of p� ref et ch  
i

f
nstructions corresponding to four prefetching hints to the processor: one 
non-temporal, and three temporal. They correspond to two types of 
op` erations, temporal and non-temporal. 

T
Y

he non-temporal instruction is

pr� ef et chn ta fetch data into location closest to the processor, 
miP nimizing cache pollution. On the Pentium® III 
proQ cessor, this is the L1 cache.

T
Y

he temporal instructions are

pr� ef et cht 0 fetch data into all cache levels, that is to L1 and L2 for 
Pe

o
ntium III processors

pr� ef et cht 1 fetch data into all cache levels except the 0th level, that is 
to

^
 L2 only on Pentium III processors

pr� ef et cht 2 fetch data into all cache levels except the 0th and 1st 
le

]
vels, that is, to L2 only on Pentium III processors

NOTE.  I
«
f the data are already found in a cache level that is closer to the 

pr¬ ocessor at the time of pr� ef et ch ,   no data movement occurs.



6-4

6 Intel Architecture Optimization Reference Manual

In t
d

he description above, cache level 0 is closest to the processor. For 
S

_
treaming SIMD Extensions implementation, there are only two cache 

levels, L1 and L2. L1 is the 0th cache level by the architectural definition, as 
a resulO t, pr� ef et cht 1 aO nd pre� fe tc ht 2 are O designed to behave the same in 
Pe

o
ntium® III processor. For future processors, this may change. 

Pr ef et chn ta  with Streaming SIMD Extensions implementation fetches 
da

i
ta into L1 only, therefore minimizing L2 cache pollution.

Pr ef et ch  instructions are mainly designed to improve application 
peQ rformance by hiding memory latency in the background. If segments of 
anO  application access data in a predictable manner, for example, using 
arO rays with known strides, then they are good candidates for using prefetch 
t

^
o improve performance. However, if a program is memory throughput 
bo

Z
und, that is, memory access time is much larger than execution time, then 

t
^
here may be not much benefit from utilizing prefetch.

Basi
­

cally, use pr� ef et ch  in:

• predQ ictable memory access patterns
• t

^
ime-consuming innermost loops

• l
]
ocations where execution pipeline stalls for data from memory due to 
f

a
low dependency

Prefetch and Load Instructions

T
Y

he Pentium II and Pentium III processors have a decoupled execution and 
memoryP  architecture that allows instructions to be executed independently 
wiX th memory accesses if there is no data and resource dependency. 
P

o
rograms or compilers can use dummy load instructions to imitate prefetch 

fun
a

ctionality, but preloading is not equivalent to prefetching. Prefetch 
instructions provide a greater performance than preloading.

Cu
q

rrently, the pr� ef et ch  instruction provides a greater performance gain 
t

^
han preloading because it:

• ha
y

s no register destination, it only updates cache lines;
• do

i
es not stall the normal instruction retirement;

• do
i

es not affect the functional behavior of the program;
• has no cache line split accesses;
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• do
i

es not cause exceptions except when the LO
®

CK prefix is used; for 
Pe

o
ntium III processors, an invalid opcode exception is generated when 

th
^

e LOC
®

K prefix is used with prefetch instructions;
• do

i
es not complete its own execution if that would cause a fault;

• i
f
s ignored if the p� ref et ch  targets an uncacheable memory region, for 
eU xample, USWC and UC;

• do
i

es not perform a page table walk if it results in a page miss.

T
Y

he current advantages of the prefetch over preloading instructions are 
proQ cessor-specific. The nature and extent of the advantages may change in 
th

^
e future.

The Non-temporal S tore Inst ructions

The non-temporal store instructions (movn tp s , movn t q, and mask movq ) 
v

miP nimize cache pollution while writing data. The main difference between a 
noj n-temporal store and a regular cacheable store is in the write-allocation 
be

Z
havior: the processor wil l fetch the corresponding cache line into the 

caN che hierarchy prior to performing the store and the memory type can take 
precQ edence over the non-temporal hint.

Current
q

ly, if you specify a non-temporal store to cacheable memory, they 
mustP  maintain coherency. Two cases may occur:

• If the data are present in the cache hierarchy, the data are updated in- 
plQ ace and the existing memory type attributes are retained. For 
eU xample, in Streaming SIMD Extensions implementation, if there is a 
da

i
ta hit in L1, then non-temporal stores behave like regular stores. 

Ot
e

herwise, write to memory without cache line allocation. If  the data 
arO e found in L2, data in L2 will  be invalidated.

• If the data are not present in the cache hierarchy, the memory type 
vix sible on the bus will  remain unchanged, and the transaction will be 
weakX ly-ordered; consequently, you are responsible for maintaining 
coN herency. Non-temporal stores will not write allocate. Different 
i

f
mplementations may choose to collapse and combine these stores 
i

f
nside the processor.

The behavior described above is platform-specific and may change in the 
fu

a
ture.
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The 
©

sfence Instruction

Th
Y

e sf ence  (sto re  fe nc e) 
v

instruction makes it possible for every st or e 
instruction that precedes the sf ence  instruction in program order to be 
gl¯ obally visible before any st or e instruction that follows the fe nce. The 
sf ence  instruction provides an efficient way of ensuring ordering between 
routines that produce weakly-ordered results.

T
Y

he use of weakly-ordered memory types can be important under certain 
da

i
ta sharing relationships, such as a producer-consumer relationship. Using 

weakX ly-ordered memory can make assembling the data more efficient, but 
careN  must be taken to ensure that the consumer obtains the data that the 
proQ ducer intended to see. Some common usage models may be affected in 
t

^
his way by weakly-ordered stores. Examples are: 

• l
]
ibrary functions, which use weakly-ordered memory to write results

• coN mpiler-generated code, which also benefits from writing 
weakX ly-ordered results

• ha
y

nd-crafted code

The degree to which a consumer of data knows that the data is 
weakX ly-ordered can vary for these cases. As a result, the sf ence  instruction 
should be used to ensure ordering between routines that produce 
weakX ly-ordered data and routines that consume this data. The sf ence  
i

f
nstruction provides a performance-efficient way by ensuring the ordering 
whenX  every st or e instruction that precedes the st or e fe nc e instruction 
in program order is globally visible before any st or e instruction which 
fo

a
llows the fe nc e.

Streami ng Non-temporal Stores

In Streaming SIMD Extensions, the movn t q, movn ts  and maskmov q 
i

f
nstructions  are streaming, non-temporal stores. With regard to memory 
chN aracteristics and ordering, they are similar mostly to the 
W

\
rite-Combining (WC

w ) memory
v

 type:

• Wr
\

ite combining – successive writes to the same cache line are 
coN mbined

• Wr
\

ite collapsing – successive writes to the same byte(s) result in only 
the last wri

^
te being visible
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• W
\

eakly ordered – no ordering is preserved between WC
w  stores, or 

be
Z

tween WC
w  stores and other loads or stores

• Un
R

cacheable and not write-allocating – stored data is written around 
t

^
he cache and will not generate a read-for-ownership bus request for the 
coN rresponding cache line.

Because streaming stores are weakly ordered, a fencing operation is 
requS ired to ensure that the stored data is flushed from the processor to 
memoryP . Failure to use an appropriate fence may result in data being 
“t rapped” within the processor and wil l prevent visibility of this data by 
othe` r processors or system agents. WC stores require software to ensure 
coN herence of data by performing the fencing operation.

S
_

treaming SIMD Extensions introduce the sf ence  instruction, which now 
is so

f
lely used to flush WC

w  data from the processor. The sf ence instruction 
replaces all other store fencing instructions such as xc hg .

S
_

treaming stores can improve performance in the following ways:

• Increase store bandwidth since they do not require read-for-ownership 
b

Z
us requests

• Reduce disturbance of frequently used cached (temporal) data, since 
t

^
hey write around the processor caches

S
_

treaming stores allow cross-aliasing of memory types for a given memory 
region; for instance, a region may be mapped as write-back (WB

w ) vi
v

a the 
paQ ge tables (PAT) or 

v
memory type range registers (MT

V
RRs) and yet is written 

usi[ ng a streaming store.

If a st
d

reaming store finds the corresponding line already present in the 
proQ cessor’s caches, several actions may be taken depending on the specif ic 
proQ cessor implementation:

App
W

roach A The streaming store may be combined with the existing 
cacN hed data, and is thus treated as a WB

w  store (that is, it is 
noj t written to system memory).

Approach B The corresponding line may be flushed from the 
proQ cessor’s caches, along with data from the streaming 
store.
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Pe
o

ntium III processor implements a combination of both approaches. If the 
streaming store hits a line that is present in the L1 cache, the store data wil l 
be

Z
 combined in place within the L1. If the streaming store hits a line present 

i
f
n the L2, the line and stored data will  be flushed from the L2 to system 
memoryP . Note that the approaches, separate or combined, can be different 
for future processors.

T
Y

he two primary usage domains for streaming store are coherent requests 
anO d non-coherent requests.

Coher ent Request s

Cohere
q

nt requests are normal loads and stores to system memory, which 
may also hit cache lines present in another processor in a multi-processor 
enU vironment. With coherent requests, a streaming store can be used in the 
same way as a regular store that has been mapped with a WC

w  memory type 
(

L
PAT or MTRR). An

v
 sf ence  instruction must be used within a 

prQ oducer-consumer usage model, in order to ensure coherency and visibili ty 
of dat` a between processors. Within a single-processor system, the CPU can 
alO so re-read the same memory location and be assured of coherence (that is, 
a siO ngle, consistent view of this memory location): the same is true for a 
mulP ti-processor (MP) system, assuming an accepted MP software 
prQ oducer-consumer synchronization policy is employed.

Non-coheren t Requests

Non
}

-coherent requests arise from an I/O device, such as an AGP graphics 
cardN , that reads or writes system memory using non-coherent requests, 
whiX ch are not reflected on the processor bus and thus will not query the 
proQ cessor’s caches. An sf ence  instruction must be used within a 
prQ oducer-consumer usage model, in order to ensure coherency and visibili ty 
o` f data between processors. In this case, if the processor is writing data to 
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t
^
he I/O device, a streaming store can be used with a processor with any 
be

Z
havior of approach A, aboO ve, only if the region has also been mapped 

witX h a WC
w  memory type (PAT,  MTRR).

v

I
d
n case the region is not mapped as WC

w , the streaming might update in-place 
i

f
n the cache and a subsequent sfen ce  would not result in the data being 
wriX tten to system memory. Explicitly mapping the region as WC

w  in this case 
eU nsures that any data read from this region will  not be placed in the 
proQ cessor’s caches. A read of this memory location by a non-coherent I/O 
de

i
vice would return incorrect/out-of-date results. For a processor which 

solely implements approach B, above, a streaming store can be used in this 
noj n-coherent domain without requiring the memory region to also be 
mapped as WB

w , since any cached data will  be flushed to memory by the 
streaming store.

Other Cacheabi lity Contr ol Ins tructions

The mask movq (non-temporal byte mask store of packed integer in an 
MM

�
X™ technology register) instruction stores data from an MMX 

t
^
echnology register to the location specified by the edi  register. The most 
significant bit in each byte of the second MMX technology mask register is 
u[ sed to selectively write the data of the first register on a per-byte basis. The 
i

f
nstruction is implicitly weakly-ordered (that is, successive stores may not 
wrX ite memory in original program-order), does not write-allocate, and thus 
miP nimizes cache pollution.

The movn tq  (non-temporal store of packed integer in an MMX technology 
rS egister) instruction stores data from an MMX technology register to 
memoryP . The instruction is implicitly weakly-ordered, does no 
wriX te-allocate, and so minimizes cache pollution.

CA
�

UTION.  F
°

ailure to map the region as WC
w  may allow the line to be 

spe� culatively read into the processor caches, that is, via the wrong path 
of�  a mispredicted branch.
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Th
Y

e mn ovn tp s  (non-temporal store of packed single precision floating point) 
in

f
struction is similar to mon vn tq . It stores data from a Streaming SIMD 

Extensions register to memory in 16 byte granularity. Unlike movnt q, the 
memoryP  address must be aligned to a 16-byte boundary; or a general 
prQ otection exception wil l occur. The instruction is implicitly 
weakX ly-ordered, does not write-allocate, and thus minimizes cache 
poQ llution.

Memory Optimization Using Prefetch
Achieving the highest level of memory optimization using prefetch 
i

f
nstructions requires an understanding of the micro-architecture and system 
archO itecture of a given machine. This section translates the key architectural 
implications into several simple guidelines for programmers to use.

F
h

igure 6-1 and Figure 6-2 show two scenarios of a simpli fied 3D geometry 
piQ peline as an example. A 3D-geometry pipeline typically fetches one 
vx ertex record at a time and then performs transformation and lighting 
f

a
unctions on it. Both figures show two separate pipelines, an execution 

pipeQ line, and a memory pipeline (front-side bus). Since the Pentium II and 
Pe

o
ntium III processors completely decouple the functionality of execution 

anO d memory access, these two pipelines can function concurrently. Figure 
6-1

±
 shows “bubbles” in both the execution and memory pipelines. When 

lo
]

ads are issued for accessing vertex data, the execution units sit idle and 
wX ait until  data is returned. On the other hand, the memory bus sits idle while 
t

^
he execution units are processing vertices. This scenario severely decreases 
t

^
he advantage of having a decoupled architecture.
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Figure 6 -1 Memory Ac cess  Latency and E xecution Without Pr efetch

Figure 6 -2 Memory Ac cess  Latency and E xecut ion Wit h Prefetch

T
Y

he performance loss caused by poor utilization of the resource can be 
coN mpletely eliminated by applying prefetch instructions appropriately. As 
shown in Figure 6-2, prefetch instructions are issued two vertex iterations 
ahO ead. This assumes that only one vertex gets processed in one iteration and 
aO  new data cache line is needed for each iteration. As a result, when iteration 
n, vertex Vn, is being processed, the requested data is already brought into 
caN che. In the meantime, the front-side bus is transferring the data needed for 
n+j 1 iteration, vertex Vn+1. Because there is no dependency between Vn+1 
da

i
ta and the execution of Vn, the latency for data access of Vn+1 canN  be 

enU tirely hidden behind the execution of Vn. Under such circumstances, no 
“bubbles” are present in the pipelines and thus the best possible 
peQ rformance can be achieved.

Time
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T
Y

he software-controlled prefetch instructions provided in Streaming SIMD 
E

c
xtensions not only hide the latency of memory accesses if properly 

scheduled, but also allow you to specify where in the cache hierarchy the 
da

i
ta should be placed. Prefetching is useful for inner loops that have heavy 

coN mputations, or are close to the boundary between being compute-bound 
anO d memory-bandwidth-bound. The prefetch is probably not very useful for 
l

]
oops which are predominately memory bandwidth-bound. When data are 
alO ready located in the 0th level cache, prefetching can be useless and could 
eU ven slow down the performance because the extra µops either back up 
wX aiting for outstanding memory accesses or may be dropped altogether. 
T

Y
his behavior is platform-specific and may change in the future.

Prefetchin g Usage Checkl ist

T
Y
o use the prefetch instruction properly, check whether the following issues 

arO e addressed and/or resolved:

• prQ efetch scheduling distance
• prefetQ ch concatenation
• miP nimize the number of prefetches
• miP xing prefetch with computation instructions
• cacN he blocking techniques (for example, strip mining)
• single-pass versus multi-pass execution
• memory bank conflict issues
• cacN he management issues

T
Y

he subsequent sections discuss all the above items.

Prefetch Schedul ing Distance

Determining the ideal prefetch placement in the code depends on many 
archO itectural parameters, including the amount of memory to be prefetched, 
cacN he lookup latency, system memory latency, and estimate of computation 
cN ycle. The ideal distance for prefetching data is processor-  and platform- 
de

i
pendent. If the distance is too short, the prefetch will not effectively hide 

th
^

e latency of the fetch behind computation. If the prefetch is too far ahead, 
t

^
he start-up cost for data not prefetched for initial iterations diminishes the 
be

Z
nefits of prefetching the data. Also, the prefetched data may wrap around 

anO d dislodge previously prefetched data prior to its actual use.
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S
_

ince prefetch distance is not a well-defined metric, for this discussion, we 
de

i
fine a new term, “prefetch scheduling distance (PSD),” which is 

represented in the number of iterations. For large loops, prefetch scheduling 
di

i
stance can be set to 1, that is, schedule prefetch instructions one iteration 

ahO ead. For small loops, that is, loop iterations with little computation, the 
prefeQ tch scheduling distance must be more than one. 

A si
W

mplified equation to compute PSD is deduced from the mathematical 
model. For a simplified equation, complete mathematical model, and 
de

i
tailed methodology of prefetch distance determination, refer to 

App
W

endix F, “T
Y

he Mathematics of Prefetch Scheduling Distance.” 

In E
d

xample 6-1, the prefetch scheduling distance is set to 3.

Example 6-1 Prefetch Scheduling Distanc e

to p_lo op:

p� r ef et chnt a [e dx  + es i + 32 *3 ]

p� r ef et chnt a [e dx *4  + es i + 32 *3 ]

. . . . .

mova ps  xmm1, [ed x + es i]

mova ps  xmm2, [ed x* 4 + es i]

mova ps  xmm3, [ed x + es i + 16]

mova ps  xmm4, [ed x* 4 + es i + 1 6]

. . . . .

. . . . .

add es i,  3 2

cmp es i,  e cx

jl  to p_lo op

____________________________________________________________

Prefetch Conc atenation

De-pipelining memory generates bubbles in the execution pipeline. To 
eU xplain this performance issue, a 3D geometry pipeline processing 3D 
vx ertices in strip format is used. A strip contains a list of vertices whose 
prQ edefined vertex order forms contiguous triangles.
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It
d

 can be easily observed that the memory pipe is de-pipelined on the strip 
bo

Z
undary due to ineffective prefetch arrangement. The execution pipeline is 

stalled for the beginning 2 iterations for each strip. As a result, the average 
l

]
atency for completing an iteration will be 165 clocks. (See Appendix F, 
“T

Y
he Mathematics of Prefetch Scheduling Distance,” for detailed memory 

piQ peline description.)

T
Y

his memory de-pipelining creates inefficiency in both the memory pipeline 
anO d execution pipeline. This de-pipelining effect can be removed by 
apO plying a technique called prefetch concatenation. With this technique, the 
memoryP  access and execution can be fully pipelined and fully utilized.

F
h

or nested loops, memory de-pipelining could occur during the interval 
be

Z
tween the last iteration of an inner loop and the next iteration of its 

aO ssociated outer loop. Without paying special attention to prefetch insertion, 
t

^
he loads from the first iteration of an inner loop can miss the cache and stall 
t

^
he execution pipeline waiting for data returned, thus degrading the 
peQ rformance.

In t
d

he code of Example 6-2, the cache line containing a[i i] [0 ]  i
f
s not 

prefetQ ched at all and always misses the cache. This assumes that no array 
a[ ][ ]  footprint resides in the cache. The penalty of memory de-pipelining 
stalls can be amortized across the inner loop iterations. However, it may 
be

Z
come very harmful when the inner loop is short. In addition, the last 

prefetQ ch of the inner loop is wasted and consumes machine resources. 
P

o
refetch concatenation is introduced here in order to eliminate the 

peQ rformance issue of memory de-pipelining.

Example 6-2 Using Prefetch Conca tenation

fo r (i i =  0 ;  ii  <  1 00;  i i ++)  {

   fo r ( j j  =  0 ;  jj  <  32; jj +=8)  {

          p r ef et ch a[i i] [j j+ 8]

          c omput at i on a[ ii ][ jj ]

   }

}

_____________________________________________________________
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P
o

refetch concatenation can bridge the execution pipeline bubbles between 
t

^
he boundary of an inner loop and its associated outer loop. Simply by 
un[ rolling the last iteration out of the inner loop and specifying the effective 
prefeQ tch address for data used in the following iteration, the performance 
l

]
oss of memory de-pipelining can be completely removed. The re-written 
coN de is demonstrated in Example 6-3.

Example 6-3 Concatena tion a nd Unroll ing t he Last Iter ation of Inner  Loop

fo r (i i =  0 ;  ii  <  10 0;  i i ++)  {

   fo r ( j j  = 0;  jj  < 24 ; jj +=8)  {

          pr ef et ch  a[ ii ][ jj +8]

          c omput atio n a[ ii ][ jj]

   }

   p r efet ch  a [ i i +1][ 0]

   c omput at io n a[ ii] [j j]

}

_____________________________________________________________

T
Y

his code segment for data prefetching is improved, and only the first 
i

f
teration of the outer loop suffers any memory access latency penalty, 
assuO ming the computation time is larger than the memory latency. Inserting 
a pO refetch of the first data element needed prior to entering the nested loop 
coN mputation would eliminate or reduce the start-up penalty for the very first 
iteration of the outer loop. This uncomplicated high-level code optimization 
caN n improve memory performance signif icantly.

Minimize Number of Prefetche s

Prefetch instructions are not completely free in terms of bus cycles, machine 
cN ycles and resources, even though they require minimal clocks and memory 
ba

Z
ndwidth.

E
c

xcessive prefetching may lead to the following situations:

• If the fill  buffer is full, prefetches accumulate inside the load buffer 
wX aiting for the next fill buffer entry to be deallocated.

• If the load buffer is full , instruction allocation stalls.
• If t

d
he target loops are small, excessive prefetching may impose extra 

o` verhead.
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A f
W

ill buffer is a temporary space allocated for cache line read from or write 
t

^
o memory. A load buffer is a scratch pad buffer used by the memory 
subsystem to impose access ordering on memory loads.

One 
e

approach to solve the excessive prefetching issue is to unroll and/or 
software-pipeline the loops to reduce the number of prefetches required. 
E

c
xample 6-4 shows a code example that implements prefetch and unrolls 

t
^
he loop to remove the redundant prefetch instructions whose prefetch 
aO ddresses hit the previously issued prefetch instructions. In this particular 
eU xample, unrolling the original loop once saves two prefetch instructions 
anO d three instructions for each conditional jump in every other iteration.

Example 6-4 Prefetch  and Loo p Unrolli ng

_________________________________________________________________________

Mix Prefetch wi th Computation I nstructions

It may seem convenient to insert all the prefetch instructions at the 
be

Z
ginning of a loop, but this can lead to severe performance degradation. In 

ord` er to achieve best possible performance, prefetch instructions must be 
interspersed with other computational instructions in the instruction 

top_loop:
prefetchnta [edx+esi+32]µ

prefetchnta [edx*4+esi+32]µ

. . . . .
movaps xmm1, [edx+esi]
movaps xmm2, [edx*4+esi]
. . . . .
add esi, 16
cmp esi, ecx
jl top_loop

top_loop:
prefetchnta [edx+esi+32]µ

prefetchnta [edx*4+esi+32]µ

. . . . .
movaps xmm1, [edx+esi]
movaps xmm2, [edx*4+esi]
. . . . .
. . . . .
movaps xmm1, [edx+esi+16]
movaps xmm2, [edx*4+esi+16]¶

. . . . .
add esi, 32
cmp esi, ecx
jl top_loop

unr· oll
ed it

eration
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sequence rather than clustered together. This improves the instruction level 
pQ arallelism and reduces the potential instruction allocation stalls due to the 
load-buffer-full problem mentioned earlier. It also allows potential dirty 
wriX tebacks (additional bus traffic caused by evicting modified cache lines 
from t

a
he cache) to proceed concurrently with other instructions.

E
c

xample 6-5 illustrates mixing prefetch instructions. A simple and useful 
he

y
uristic of prefetch spreading for a 500 MHz Pentium III processor is to 

insert a prefetch instruction every 20 to 25 cycles. Rearranging prefetch 
i

f
nstructions could yield a noticeable speedup for the code which is limited 
i

f
n cache resource.

Example 6-5 Spread Prefetch Inst ructions

top _loop:

  prefetchnta [ebx+128]

prefetchnta [ebx+1128]¸
prefetchnta [ebx+2128]¸
prefetchnta [ebx+3128]¸

  . . . .

  . . . .

  prefetchnta [ebx+17128]

  prefetchnta [ebx+18128]

  prefetchnta [ebx+19128]

  prefetchnta [ebx+20128]

. . . .

. . . .

  mulps xmm3, [ebx+4000]

  addps xmm1, [ebx+1000]

  addps xmm2, [ebx+3016]

mulps xmm1, [ebx+2000]

  mulps xmm1, xmm2

  . . . . . . . .

  . . . .  . .

  . . . . .

  add ebx, 32

  cmp ebx, ecx

  jl top_loop

top _loop:

  prefetchnta [ebx+128]

movps xmm1, [¹ ebx]

  addps xmm2, [ebx+3000]

  mulps xmm3, [ebx+4000]

prefetchnta [ebx+1128]¸
  addps xmm1, [ebx+1000]

  addps xmm2, [ebx+3016]

prefetchnta [ebx+2128]¸
mulps xmm1, [ebx+2000]¹

  mulps xmm1, xmm2

  prefetchnta [ebx+3128]

  . . . . . . .

  . . .

  prefetchnta [ebx+18128]

  . . . . . .

  prefetchnta [ebx+19128]

  . . . . . .

  . . . .

  prefetchnta [ebx+20128]

  add ebx, 32

  cmp ebx, ecx

  jl top_loop

spread prefetches
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If al
d

l fill buffer entries are full, the next transaction waits inside the load 
b

Z
uffer or store buffer. A prefetch operation cannot complete until  a fill  

b
Z
uffer entry is allocated. The load buffers are shared by normal load µops 

anO d outstanding prefetches.

 

Prefetch and Cac he Bloc king T echniques

C
q

ache blocking techniques, such as strip-mining, are used to improve 
t

^
emporal locali ty, and thereby, cache hit rate. Strip-mining is a 
on` e-dimensional temporal locality optimization for memory. When 
t

^
wo-dimensional arrays are used in programs, loop blocking techniques 
(

L
similar to strip-mining but in two dimensions) can be applied for better 

memoryP  performance.

If an application uses a large data set that can be reused across multiple 
paQ sses of a loop, it will benefit from strip mining: data sets larger than the 
cacN he will  be processed in groups small enough to fit into cache. This 
alO lows temporal data to reside in the cache longer, reducing bus traffic.

Dat
K

a set size and temporal locality (data characteristics) fundamentally 
afO fect how prefetch instructions are applied to strip-mined code.  shows two 
simplified scenarios for temporally adjacent data and temporally 
noj n-adjacent data.

NOTE.  To avoid instruction allocation stalls due to a load buffer full 
co� ndition when mixing prefetch instructions, prefetch instructions must 
be

¦
 interspersed with computational instructions.
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In the temporally adjacent scenario, subsequent passes use the same data 
anO d find it ready in L1 cache. Prefetch issues aside, this is the preferred 
situation. In the temporally non-adjacent scenario, data used in pass mº  is 
di

i
splayed by pass (m+1

»
), requiring data re-fetch if a later pass reuses the 

d
i
ata. Both data sets could still f it into L2 cache, so load operations in passes 

3 
�

and 4 become less expensive.

F
h

igure 6-4 shows how prefetch instructions and strip-mining can be applied 
t

^
o increase performance in both of these scenarios.

Figur e 6-3 Cache Bloc king - T empor ally Adjacent and Non-adjacent Passes
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Figur e 6-4 Examples  of Pr efetch and Str ip-mining f or Temporally Adjac ent and 
Non-adjacent Passes Loops

For Pentium III processors, the left scenario shows a graphical 
i

¿
mplementation of using pÀ r efet ch nt a to prefetch data into the L1 cache 
onÁ ly (SM1 - strip mine L1), minimizing L2 cache pollution. Use 
prÀ ef et chn ta  if the data set fits into L1 cache or if the data is only touched 
onÂ ce during the entire execution pass in order to minimize cache pollution 
in the h

¿
igher level caches. This provides instant availability when the read 

accÃ ess is issued and minimizes L2 cache pollution.

In t
Ä

he right scenario, keeping the data in L1 cache does not improve cache 
locality. Therefore, use prÀ ef et ch t0  to prefetch the data. This hides the 
l

Å
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da
Ì

ta in L2 cache, which reduces memory traffic and latencies for passes 3 
anÃ d 4. To further reduce the latency, it might be worth considering extra 
prÀ ef et chn ta  instructions prior to the memory references in passes 3 
anÃ d 4.

In Example 6-6, consider the data access patterns of a 3D geometry engine 
f

Í
irst without strip-mining and then incorporating strip-mining. Note that 

4-
Î

wide SIMD instructions of Pentium III processors can process 4 vertices 
peÏ r every iteration.

Example 6-6 Data Access of a 3D Geometr y Engine  wit hout St rip-mining

whs il e (nv tx  <  MAX_NUM_VTX)  {

  pr ef etc hnta  v er tex i  d at a //  v =[ x, y, z, nx ,ny ,n z, tu ,t v]

  pr ef etc hnta  v er tex i+1  da ta

  pr ef etc hnta  v er tex i+2  da ta  

  pr ef etc hnta  v er tex i+3  da ta

  TRANSFORMATIO N cod e //  u se on ly  x , y , z , t u,t v of  a  
veÐ rt ex

  nv tx +=4

}  

whs il e (nv tx  <  MAX_NUM_VTX)  {   

  pr ef etc hnta  v er tex i  d at a //  v =[ x, y, z, nx ,ny ,n z, tu ,t v]

  pr ef etc hnta  v er tex i+1  da ta

  pr ef etc hnta  v er tex i+2  da ta  

  pr ef etc hnta  v er tex i+3  da ta  

  co mpute  t he l i ght ve ct or s // us e only  x ,y, z  

  P OI NT LI GHTI NG c ode / /  use onl y  nx ,n y, nz  

  nv tx +=4

_____________________________________________________________

W
Ñ

ithout strip-mining, all four vertices of the lighting loop must be 
re-fetÒ ched from memory in the second pass. This causes under-utilization of 
caÓ che lines fetched during the transformation loop as well as extra 
b

Ô
andwidth wasted in the lighting loop. Now consider the code in Example 

6-
Õ

7 where strip-mining has been incorporated into the loops.
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Example 6-7 Data Access of a 3D Geometry Engine  wit h Strip-mining

whs il e (ns tr ip  <  N UM_STRI P)  {

/*  S t r ip- mi ne t he l oop  t o fi t dat a in to  L 1 * /

  whil e ( nvt x  <  MAX_NUM_VTX_PER_STRIP ) {

    pr efe tc hnta  v er tex i  d at a //  v= [x ,y ,z ,n x,n y, nz ,t u, tv]

    pr efe tc hnta  v er tex i+1  da ta

    pr efe tc hnta  v er tex i+2  da ta  

    pr efe tc hnta  v er tex i+3  da ta  

    TRANSFORMATIO N cod e

         nv tx +=4

}  

whs il e (nv tx  <  MAX_NUM_VTX_PER_STRIP ) {  

    /*  x y z co or di nat es  a r e i n L 1,  n o pr efe tc h is  
re quir ed */

    co mpute  t he l i ght ve ct or s    

    POI NT LI GHTI NG code

    nv tx+ =4

  }  

}

_____________________________________________________________

W
Ñ

ith strip-mining, all the vertex data can be kept in the cache (for example, 
L1) during the strip-mined transformation loop and reused in the lighting 
l

Å
oop. Keeping data in the cache reduces both bus traffic and the number of 
prefetÏ ches used.

F
Ö

igure 6-5 summarizes the steps of the basic usage model incorporating 
prefetÏ ch with strip-mining which are:

• Do strip-mining: partition loops so that the data set fits into L1 cache 
(preferred) o

×
r L2 cache.

• Use 
Ø

pÀ ref et ch nt a if the data is only used once or the data set fits into 
L

Ù
1 cache. Use prÀ ef etc ht 0 if

¿
 the data set fits into L2 cache. 

T
Ú

he above steps are platform-specific and provide an implementation 
eÛ xample.
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Single-pass ver sus Multi- pass Ex ecution

An algorithm can use single- or multi-pass execution defined as follows:

• S
Ü

ingle-pass, or unlayered execution passes a single data element through 
anÃ  entire computation pipeline.

• Mu
Ý

lti-pass, or layered execution performs a single stage of the pipeline 
onÂ  a batch of data elements, before passing the batch on to the next 
stage. 

A c
Þ

haracteristic of both single-pass and multi-pass execution is that a specif ic 
t

ß
radeoff exists depending on an algorithm’s implementation and use of a 
single- or multiple-pass execution, see Figure 6-6. 

Mu
Ý

lti-pass execution is often easier to use when implementing a general 
puÏ rpose API, which has lots of different code paths that can be taken, 
de

Ì
pending on the specif ic combination of features selected by the application 

(
×
for example, for 3D graphics, this might include the type of vertex 

prÏ imitives used, the number and type of light sources). 

W
Ñ

ith such a broad range of permutations possible, a single-pass approach 
wà ould be complicated, in terms of code size and validation. In such cases, 
eaÛ ch possible permutation would require a separate code sequence. For 
eÛ xample, data object of type N, with features A, C, E enabled, would be one 
coÓ de path. It makes more sense to perform each pipeline stage as a separate 
paÏ ss, with conditional clauses to select different features that are 
i

¿
mplemented within each stage. By using strip-mining, the amount of 
vá ertices processed by each stage (for example, the batch size) can be selected 
t

ß
o ensure that the batch stays within the processor caches through all passes. 
An i

Þ
ntermediate cached buffer is used to pass the batch of vertices from one 

stage/pass to the next one.

Figur e 6-5 Benefits of Incorpor ating Pr efetch into Code
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S
Ü

ingle-pass execution can be better suited to some applications, which limit 
t

ß
he number of features that may be used at a given time. A single-pass 
apÃ proach can reduce the amount of data copying that can occur with a 
mulâ ti-pass engine, see Figure 6-6.

Figure 6 -6 Single -Pass  vs. Mult i-Pass  3D Geometry Engines
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T
Ú

he choice of single-pass or multi-pass can have a number of performance 
i

¿
mplications. For instance, in a multi-pass pipeline, stages that are limited 
b

Ô
y bandwidth (either input or output) will reflect more of this performance 

lim
Å

itation in overall execution time. In contrast, for a single-pass approach, 
ba

Ô
ndwidth-limitations can be distributed/amortized across other 

coÓ mputation-intensive stages. Also, the choice of which prefetch hints to 
useè  are also impacted by whether a single-pass or multi-pass approach is 
useè d (see  “Prefetch and Cacheabil ity Instructions”  section earlier in this 
chÓ apter).

Memory Bank Conf licts

Me
Ý

mory bank conflicts occur when independent memory references go to 
t

ß
he same DRAM bank but access different pages. Conflicting memory bank 
acÃ cesses will  introduce longer memory leadoff latency due to DRAM page 
opÂ ening, closing, and opening. To alleviate such problems, arrange the 
memory layout of data arrays such that simultaneous prefetch of different 
paÏ ges will  hit distinct memory banks. The operating system handles 
phÏ ysical address allocation at run-time, so compilers/programmers have 
lit tle control over this. Potential solutions are:

• App
Þ

ly array grouping to group contiguously used data together to 
reduÒ ce excessive memory page accesses

• Al
Þ

locate data within 4KB memory pages 

Non-t emporal  Stores and S oftware Write-Combini ng

Use n
Ø

on-temporal stores in the cases when the data are 

• wrià te-once (non-temporal)
•  too large and thus cause cache thrashing. 

Non
é

-temporal stores do not invoke a cache line allocation, which means 
t

ß
hey are not write-allocate. As a result, caches are not polluted and no dirty 
wrà iteback is generated to compete with useful data bandwidth. Without 
usiè ng non-temporal stores, bus bandwidth wil l suffer from lots of dirty 
wrià tebacks after the point when caches start to be thrashed.
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In t
Ä

he Streaming SIMD Extensions implementation, when non-temporal 
stores are written into writeback or write-combining memory regions, these 
stores are weakly-ordered, then combined internally inside the processor’s 
wrià te-combining buffer, and written out to memory as a line burst 
t

ß
ransaction. To achieve the best possible performance, it is recommended 
t

ß
hat data be aligned on a the cache line boundary and written consecutively 
i

¿
n a cache line size while using non-temporal stores. If  the consecutive 
wrià tes are prohibitive due to programming constraints, then software 
wrià te-combining (SWWC) buffers can be used to enable line burst 
t

ß
ransactions.

You can declare small SWWC buffers (a cache line for each buffer) in your 
apÃ plication to enable explicit write-combining operations. Instead of writing 
t

ß
o non-temporal memory space immediately, the program writes data into 
S

Ü
WWC buffers and combines them inside these buffers. The program only 

wrià tes a SWWC buffer out using non-temporal stores when the buffer is 
f

Í
illed up, that is, a cache line (32 bytes for Pentium III processor). Although 

th
ß

e SWWC method imposes extra explicit instructions for performing 
t

ß
emporary writes and reads, this ensures that the transaction on the 
fro

Í
nt-side bus causes line transactions rather than several partial 

t
ß
ransactions. Application performance gains considerably from 
i

¿
mplementing this technique. These SWWC buffers can be maintained in 
t

ß
he L1 and re-used throughout the program.

Cache Management

T
Ú

he streaming instructions (prÀ ef et ch  and st or es ) can be
ê

 used to manage 
da

Ì
ta and minimize disturbance of temporal data held within the processor’s 

cacÓ hes.

I
Ä
n addition, Pentium III processors take advantage of the Intel C/C++ 

Compi
ë

ler that supports C/C++ language-level features for the Streaming 
SI

Ü
MD Extensions. The Streaming SIMD Extensions and MMX technology 

in
¿

structions provide intrinsics that allow you to optimize cache util ization. 
The examples of such Intel compiler intrinsics are _mm_pref et ch , 
_mm_st rea m, _mm_lo ad , _mm_s fe nc e. For more details on these 
i

¿
ntrinsics, refer to the I

ì
ntel C/C++ Compiler User’s Guide for Win32 

Sy
í

stems, order number 718195.
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T
Ú

he following examples of using prefetching instructions in the operation of 
viá deo encoder and decoder as well as in simple 8-byte memory copy, 
illustrate performance gain from using the prefetching instructions for 
efÛ ficient cache management.

Video Enc oder

In a video encoder example, some of the data used during the encoding 
proÏ cess is kept in the processor’s L2 cache, to minimize the number of 
referenÒ ce streams that must be re-read from system memory. To ensure that 
otÂ her writes do not disturb the data in the L2 cache, streaming stores 
(

×
moî vn tq ) are

ê
 used to write around all processor caches.

The prefetching cache management implemented for video encoder reduces 
t

ß
he memory traffic. The L2 pollution reduction is ensured by preventing 
single-use video frame data from entering the L2. Implementing a 
non-temporal prefetch (prÀ efe tc hnta )

ê
 instruction brings data directly to 

t
ß
he L1 cache without polluting the L2 cache. If the data brought directly to 
L

Ù
1 is not re-used, then there is a performance gain from the non-temporal 

prefeÏ tch over a temporal prefetch. The encoder uses non-temporal 
prefeÏ tches to avoid pollution of  the L2 cache, increasing the number of L2 
hi

ï
ts and decreasing the number of polluting write-backs to memory. The 

peÏ rformance gain results from the more efficient use of the L2, not only 
from t

Í
he prefetch itself.

Video Dec oder

In a video decoder example, completed frame data is written to US
ð

WC,  the 
l

Å
ocal memory of the graphics card. A copy of reference data is stored to the 

WB
ñ  memory at a later time by the processor in order to generate future data. 
The assumption is that the size of the data is too large to fit in the 
proÏ cessor’s caches. A streaming store is used to write the data around the 
caÓ che, to avoid displacing other temporal data held in the caches. Later, the 
pÏ rocessor re-reads the data using prÀ ef et chnt a, which ensures maximum 
ba

Ô
ndwidth, yet minimizes disturbance of other cached temporal data by 

usiè ng the non-temporal (NTA) version of prefetch.
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Conc lusions  from Vi deo Encod er and Decode r 
Implementat ion

T
Ú

he example of video encoder and decoder suggests the conclusion that by 
usiè ng an appropriate combination of non-temporal prefetches and 
non-temporal stores, an application can be designed to lessen the overhead 
of meÂ mory transactions by preventing L2 cache pollution, keeping useful 
da

Ì
ta in the L2 cache and reducing costly write-back transactions. Even if an 

apÃ plication does not gain performance signif icantly from having data ready 
from 

Í
prefetches, it can improve from more efficient use of the L2 cache and 

memoryâ . Such design reduces the encoder’s demand for such critical 
resources as the memory bus. This makes the system more balanced, 
resuÒ lti ng in higher performance.

Using Pr efetch and St reaming- store for a Simple Memory 
Copy

A si
Þ

mple memory copy is the case when 8-byte data elements are to be 
t

ß
ransferred from one memory location to another. The copy can be sped up 
greaò tly using prefetch and streaming store. Example 6-8 presents the basic 
alÃ gorithm of the simple memory copy.

Example 6-8 Basic Algor ith m of  a Simple M emor y Copy

#def in e N  5 12000

do
ó

uble  a[ N] , b[ N] ;

fo r (i  = 0;  i  <  N ;  i++ ) {

b[
ô

i]  =  a[ i] ;

}

_____________________________________________________________

T
Ú

his algorithm can be optimized using the Streaming SIMD Extensions and 
t

ß
aking into consideration the following:

• proÏ per layout of pages in memory
• cacÓ he size
• i

¿
nteraction of the transaction lookaside buffer (TLB) with memory 
accÃ esses

• coÓ mbining prefetch and streaming-store instructions. 



Optimizing Cache Utilization for Pentium III Processors 6

6-
Ë

29

T
Ú

he guidelines discussed in this chapter come into play in this simple 
eÛ xample. TLB priming, however, is introduced here as it does affect an 
opÂ timal implementation with prefetching.

T
õ

LB Prim ing

T
Ú

he TLB is a fast memory buffer that is used to improve performance of the 
t

ß
ranslation of a virtual memory address to a physical memory address by 
proÏ viding fast access to page table entries. If memory pages are accessed 
aÃ nd the page table entry is not resident in the TLB, a TLB miss results and 
t

ß
he page table must be read from memory. The TLB miss results in a 
peÏ rformance degradation since a memory access is slower than a TLB 
acÃ cess. The TLB can be preloaded with the page table entry for the next 
de

Ì
sired page by accessing (or touching) an address in that page. This is 

similar to prefetch, but instead of a data cache line the page table entry is 
be

Ô
ing loaded in advance of its use. This helps to ensure that the page table 

enÛ try is resident in the TLB and that the prefetch happens as requested 
subsequently.

Opt imizi ng the 8-b yte Memory Copy

Example 6-9 presents the copy algorithm that performs the following steps:

1. transfers 8-byte data from memory into L1 cache using the 
_mm_pr efe tc h intrinsic to completely fill the L1 cache, 32 bytes at a 
tim

ß
e. 

2.
ö

transfers the 8-byte data to a different memory location via the 
_mm_st rea m intrinsics, bypassing the cache. For this operation, it is 
i

¿
mportant to ensure that the page table entry prefetched for the memory 
is preloaded in the TLB.

3
÷
. loads the data into an xmm register using the _mm_l oad_ps  intrinsic.

4.
Î

streaming-stores the data to the location corresponding to array b
ô
.



6-30

6 Intel Architecture Optimization Reference Manual

Example 6-9  An Optimize d 8-byte Memor y Copy

#def i ne CACHESIZ E 40 96;

fo r (k k=0 ; kk <N; kk +=CACHESI ZE) {

te mp =  a[ kk +CACHESI ZE] ;

fo r (j =kk +4; j< kk +CACHESIZ E;  j +=4) {

   _ mm_pr ef et ch (( ch ar* )& a[ j] , _MM_HIN T_NTA);

    }

fo r (j =kk ; j< kk +CACHESIZ E;  j +=4) {

       _m m_st re am_ps(( fl oat* )& b[j ],

 _ mm_l oad_p s( (f lo at *)& a[ j] )) ;

_mm_st rea m_ps (( fl oat*) &b[j +2],

  _mm_lo ad_ ps (( fl oat*) &a[j +2]) );

}

}

_mm_sf enc e( );

_____________________________________________________________

In Example 6-9, two _mm_lo ad_ps  and _mm_st re am_ps  intrinsics are 
useè d so that all of the data prefetched (a 32-byte cache line) is written back. 
T

Ú
he prefetch and streaming-stores are executed in separate loops to 

minimize the number of transitions between reading and writing data. This 
significantly improves the bandwidth of the memory accesses.

The instruction, te mp = a[ kk +CACHESIZ E] , is used to ensure the page 
t

ß
able entry for array a is entered in the TLB prior to prefetching. This is 
essenÛ tially a prefetch itself, as a cache line is filled from that memory 
location with this instruction. Hence, the prefetching starts from kk+4  in 
t

ß
his loop.
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Int
Ä

el offers an array of application performance tools that are optimized to 
t

ß
ake the best advantage of the Intel® architecture (IA)-based processors. 
This chapter introduces these tools and explains their capabilities which you 
caÓ n employ for developing the most efficient programs.

The following performance tools are available:

• VT
ø

une™ Performance Analyzer
T

Ú
his tool is the cornerstone of the application performance tools that 

makâ e up the VTune Performance Enhancement Environment CD. The 
VT

ø
une analyzer collects, analyzes, and provides Intel architecture- 

specific software performance data from the system-wide view down to 
a spÃ ecific module, function, and instruction in your code.

• Intel C/C++ Compiler and Intel Fortran Compiler plug-ins.
Bot

ù
h compilers are available as plug-ins to the Microsoft Developer 

S
Ü

tudio* IDE. The compilers generate highly optimized floating-point 
coÓ de, and provide unique features such as profile-guided optimizations 
anÃ d MMX™ technology intrinsics.

• Intel® Performance Library Suite
T

Ú
he library suite consists of a set of software libraries optimized for 

Intel architecture processors. The suite currently includes: 
— The Intel Signal Processing Library (SPL)
— The Intel Recognition Primitives Library (RPL)
— The Intel Image processing Library (IPL)
— The Intel Math Kernel Library (MKL)
— The Intel Image Processing Primitives (IPP)
— The Intel JPEG library (IJP)
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• T
Ú

he Register Viewing Tool (RVT) for Windows* 95 and Windows NT* 
enÛ ables you to view the contents of the Streaming single-instruction, 
mulâ tiple-data (SIMD) Extensions registers. The RVT replaces the 
rÒ egister window normally found in a debugger. 
T

Ú
he RVT also provides disassembly information during debug for 

S
Ü

treaming SIMD Extensions.

VTune™ Performance Analyzer
VT

ø
une Performance Analyzer is instrumental in helping you understand 

wherà e to begin tuning your application. VTune analyzer helps you identify 
anÃ d analyze performance trends at all levels: the system, micro-architecture, 
anÃ d application.

The sections that follow discuss the major features of the VTune analyzer 
t

ß
hat help you improve performance and briefly explain how to use them. For 
morâ e details on how to sample events, run VTune analyzer and see online 
help.

Using Sampling Anal ys is  for Optimiza tion

T
Ú

he sampling feature of the VTune analyzer provides analysis of the 
peÏ rformance of your applications using time- or event-based sampling and 
ho

ï
tspot analysis. The time- or event-based sampling analysis provides the 

cÓ apabili ty to non-intrusively monitor all active software on the system, 
including the application.

E
ú

ach sampling session contains summary information about the session, 
such as the number of samples collected at each privilege level and the type 
of iÂ nterrupt used. Each session is associated with a database. The session 
da

Ì
tabase allows you to reproduce the results of a session any number of 

t
ß
imes without having to sample or profile.

Ti
õ

me-based Sampli ng

T
Ú

ime-based sampling (TBS) allows you to monitor all active software on 
yoû ur system, including the operating system, device drivers, and application 
software. TBS collects information at a regular time interval. The VTune 
anÃ alyzer then processes this data to provide a detailed view of the system’s 
actÃ ivity.
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T
Ú

he time-based sampling (TBS) periodically interrupts the processor at the 
specif ied sampling interval and collects samples of the instruction 
adÃ dresses, matches these addresses with an application or an operating 
system routine, and creates a database with the resulting samples data. 
VT

ø
une analyzer can then graphically display the amount of CPU time spent 

in each active module, process, and processor (on a multiprocessor system). 
Th

Ú
e TBS—

• samples and display a system-wide view of the CPU time distribution 
oÂ f all the software activity during the sampling session 

• de
Ì

termines which sections in your code are taking the most CPU time
• anÃ alyzes hotspots, displays the source code, and determines 

peÏ rformance issues at the source and assembly code levels.

Figure 7-1 provides an example of a hotspots report by location.

Figur e 7-1 Sampling Anal ys is of Hotspots b y Location 

 

_____________________________________________________________
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Event -based Sampl ing

You can use event-based sampling (EBS) to monitor all active software on 
yoû ur system, including the operating system, device drivers, and application 
software based on the occurrence of processor events.

T
Ú

he VTune analyzer collects, analyzes, and displays the performance event 
coÓ unters data of your code provided by the Pentium® II and Pentium III 
proÏ cessors. These processors can generate numerous events per clock cycle. 
T

Ú
he VTune analyzer supports the events associated with counter 0 only.

For event-based sampling, you can select one or more events, in each event 
grò oup. However, the VTune analyzer runs a separate session to monitor 
eacÛ h event you have selected. It interrupts the processor after a specif ied 
number of events and collects a sample containing the current instruction 
adÃ dress. The frequency at which the samples are collected is determined by 
ho

ï
w often the event is caused by the software running in the system during 

the sa
ß

mpling session.

T
Ú

he data collected allows you to determine the number of events that 
ocÂ curred and the impact they had on performance. Sampling results are 
di

Ì
splayed in the Modules report and Hotspots report. Event data is also 

aÃ vailable as a performance counter in the Chronologies window. The event 
sampled per session is listed under the Chronologies entry in the Navigation 
t

ß
ree of the VTune analyzer.

Sampli ng Performance Count er Events

Event-based sampling can be used together with the hardware performance 
coÓ unters available in the Intel architecture to provide detailed information 
onÂ  the behavior of specif ic events in the microprocessor. Some of the 
microprocessor events that can be sampled include L2 cache misses, branch 
miâ spredictions, misaligned data access, processor stalls, and instructions 
exÛ ecuted.

VT
ø

une analyzer provides access to the performance counters listed in 
App

Þ
endix B, “P

ü
erformance-Monitoring Events and Counters.” The 

proÏ cessors' performance counters can be configured to monitor any of 
several different types of events. All the events are listed in the Configure 
menâ u/Options command/Processor Events for EBS page of the VTune 
anÃ alyzer, see Figure 7-2.
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At first glance, it is difficult to know which counters are relevant for 
unè derstanding the performance effects. For example, to better understand 
peÏ rformance effects on the cache and bus behavior with the Pentium III 

Figure 7 -2 Processor  Events List
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proÏ cessor, the VTune analyzer collected the performance data with and 
wià thout the prefetch and streaming store instructions. The main counters 
t

ß
hat relate to the activity of the system bus, as well as the cache hierarchy 
i

¿
nclude:

• L1 ca
ý

che misses—this event indicates the number of outstanding L1 
cacÓ he misses at any particular time.

• L2 ca
ý

che misses—this event indicates all data memory traffic that 
miâ sses the L2 cache. This includes loads, stores, locked reads, and 
ItoM requests.

• L2 cache requests—this event indicates all L2 cache data memory 
t

ß
raffic. This includes loads, stores, locked reads, and ItoM requests.

• Data memory references—this event indicates all data memory 
references to the L1 data and instruction caches and to the L2 cache, 
including all loads from and to any memory types.

• External bus memory transactions—this event indicates all memory 
t

ß
ransactions.

• External bus cycles processor busy receiving data—VTune analyzer 
coÓ unts the number of bus clock cycles during which the processor is 
b

Ô
usy receiving data.

• External bus cycles DRDY asserted—this event indicates the number 
ofÂ  clocks during which DRDY is asserted. This, essentially, indicates 
th

ß
e utili zation of the data bus.

Ot
þ

her counters of interest are:

• Instru
ÿ

ctions retir ed—this event indicates the number of instructions 
th

ß
at retired or executed completely. This does not include partiall y 

prÏ ocessed instructions executed due to branch mispredictions.
• Fl

�
oating point operations retir ed—this event indicates the number of 

f
Í
loating point computational operations that have retired.

• Clocktick
�

s—this event initiates time-based sampling by setting the 
coÓ unters to count the processor's clock ticks. 

• R
�

esource-related stalls—this event counts the number of clock cycles 
eÛ xecuted while a resource-related stall occurs. This includes stalls due 
t

ß
o register renaming buffer entries, memory buffer entries, branch 
misprediction recovery, and delay in retiring mispredicted branches.

• Prefetch NTA—this event counts the number of Streaming SIMD 
Extensions prÀ ef etc hnta  instructions.
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T
Ú

he raw data collected by the VTune analyzer can be used to compute 
vá arious indicators. For example, ratios of the clockticks, instructions retired, 
anÃ d floating-point instructions retired can give you a good indication as to 
whià ch parts of applications are best suited for a potential re-coding with the 
S

Ü
treaming SIMD Extensions.

Call Graph Pr ofil ing

T
Ú

he call  graph profiles your applications and displays a call graph of active 
f

Í
unctions. The call graph analyzes the data and displays a graphical view of 

t
ß
he threads created during the execution of the application, a complete list of 
th

ß
e functions called, and the relationship between the parent and child 

f
Í
unctions. Use VTune analyzer to profile your Win32* executable files or 

Ja
�

va* applications and generate a call  graph of active functions. 

C
ë

all graph profiling includes collecting and analyzing call -site information 
anÃ d displaying the results in the Call  List of the Call Graph and Source 
viá ews. The call graph profiling provides information on how many times a 
fun

Í
ction (caller) called some other function (callee) and the amount of time 

eaÛ ch call took. In many cases the caller may call the callee from several 
plÏ aces (sites), so call graph also provides call  information per site. (Call site 
i

¿
nformation is not collected for Java call  graphs.) 

T
Ú

he View by Call  Sites displays the information about callers and callees of 
th

ß
e function in question (also referred to as current function) by call sites. 

This view allows you to locate the most expensive calls.

Call Graph W indo w

T
Ú

he call  graph window comprises three views: Spreadsheet, Call Graph, and 
C

ë
all List, see Figure 7-3. The Call Graph view, displayed on the lower 

section of the window, corresponds to the function (method) selected in the 
S

Ü
preadsheet. It displays the function, the function’s parents, and function’s 

cÓ hild functions.
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Figur e 7-3 Call  Graph Windo w
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E
ú

ach node (box) in the call  graph represents a function. Each edge (line 
wià th an arrow) connecting two nodes represents the call from the parent 
(

×
caller) to the child function (callee). The number next to the edge (line) 

i
¿
ndicates the number of calls to that function.

The window has a Call List tab in the bottom of the Call Graph view. The 
C

ë
all List view lists all the callers and the callees of the function selected in 

t
ß
he spreadsheet and displayed in the Call Graph view. In addition, the Call 
List has a View by Call  Sites in which you can see call information 
reÒ presented by call sites.

Static  Code Analysis

This feature analyzes performance through

• peÏ rforming static code analysis of the functions or blocks of code in 
yoû ur application without executing your application

• geò tting a list of functions with their respective addresses for quick 
acÃ cess to your code

• geò tting summary information about the percentage of pairing and 
peÏ nalties incurred by the instructions in each function.

The static code analyzer provides analysis of the instructions in your 
apÃ plication and their relationship with each other, without executing or 
sampling them. It provides an estimation of the performance of your 
apÃ plication, not actual performance. The static code analyzer analyzes the 
modâ ule you specified in the Executable field and displays the results. By 
de

Ì
fault, the static code analyzer analyzes only those functions in the module 

t
ß
hat have source code available. 

Duri
�

ng the static code analysis, the static code analyzer does the following 
tasks:

ß

• searches your program for the debug symbols or prompts you to 
specify the symbol files

• searches the source directories for the source files
• anÃ alyzes each basic block and function in your program
• cÓ reates a database with the results



7-10

7 Intel Architecture Optimization Reference Manual

• di
Ì

splays summary information about the performance of each function, 
i

¿
ncluding its name, address, the number of instructions executed, the 
peÏ rcentage of pairing, the total clock cycles incurred, and the number 
of cÂ lock cycles incurred due to penalties.

Static Asse mbly Anal ysis

T
Ú

his feature of the VTune analyzer determines performance issues at the 
prÏ ocessor level, including the following:

• how many clocks each instruction takes to execute and how many of 
th

ß
em were incurred due to penalties 

• how your code is executing in the three decode units of the Pentium II 
anÃ d Pentium III processors

• regardless of the processor your system is using, the static assembly 
anÃ alyzer analyzes your application’s performance as it would run on 
I

Ä
ntel processors, from Intel486™ to Pentium III processors.

T
Ú

he VTune analyzer’s static assembly analyzer analyzes basic blocks of 
coÓ de. It assumes that the code and data are already in the cache and ignores 
l

Å
oops and jumps. It disassembles your code and displays assembly 
i

¿
nstructions, annotated with performance information.

T
Ú

he static assembly analyzer disassembles hotspots or static functions in 
yoû ur Windows 95, 98 and NT binary files and analyzes architectural issues 
t

ß
hat effect their performance. You can invoke Static Assembly Analysis 
viá ew either by performing a static code analysis or by time or event-based 
sampling of your binary file. Click on the View Static Assembly Analysis 
icon in the VTune analyzer’s toolbar to view a static analysis of your code 
anÃ d display the assembly view.

Dynamic  Assemb ly Anal ysis

Dynamic assembly analysis fine-tunes sections of your code and identifies 
t

ß
he exact instructions that cause critical performance problems. It simulates 
a bÃ lock of code and discovers such events as missed cache accesses, 
renaming stalls, branch target buffer (BTB) misses, and misaligned data that 
canÓ  degrade performance on Intel architecture-based processors.

Dynamic analysis gives you precise data about the behavior of the cache 
anÃ d BTB by simulating the inner-workings of Intel’s super-scalar, 
ouÂ t-of-order micro-architecture. The dynamic assembly analyzer executes 
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th
ß

e application, traces its execution, simulates, and monitors the 
peÏ rformance of the code you specify. You can perform dynamic analysis 
usiè ng three different simulation methods:

• S
Ü

elected code
• Uni

Ø
form sampling

• S
Ü

tart and stop API

T
Ú

hese methods provide alternate ways of filtering data and focusing on 
criÓ tical sections of code. They differ in the way they invoke dynamic 
anÃ alysis, simulate and analyze specific instructions, and in the amount of 
ouÂ tput they display. For example, in the selected code method, the dynamic 
assembÃ ly analyzer analyzes and displays output for every instruction within 
a seÃ lected range, while in the uniform sampling and start/stop API 
simulation methods, only the critical sections of code are simulated and 
anÃ alyzed.

Code Coac h Optimizations

T
Ú

he code coach performs the following:

• Analyzes C, FORTRAN, C++, and Java* source code and produces 
high-level source code optimization advice.

• Analyzes assembly code or disassembled assembly code and produces 
assembÃ ly instruction optimization advice.

Once
þ

 the VTune analyzer identifies, analyzes, and displays the source code 
f

Í
or hotspots or static functions in your application, you can invoke the coach 

for advice on how to rewrite the code to optimize its performance.

T
Ú
ypically, a compiler is restricted by language pointer semantics when 

opÂ timizing code. Coach suggests source-level modifications to overcome 
t

ß
hese and other restrictions. It recognizes commonly used code patterns in 
yoû ur application and suggests how they can be modified to improve 
peÏ rformance. The coach window is shown in Figure 7-4.

Y
�

ou can invoke the coach from the Source View window by double- 
clÓ icking on a line of code, or selecting a block of code and then clicking on 
t

ß
he code coach icon on the Source View toolbar.
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Figur e 7-4 Code Coa ch Opt imization  Advice
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T
Ú

he coach examines the entire block of code or function you selected and 
searches for optimization opportunities in the code. As it analyzes your 
coÓ de, it issues error and warning messages much like a compiler parser. 
Once

þ
 the coach completes analyzing your code, if it finds suitable 

opÂ timization advice, it displays the advice in a separate window. 

T
Ú

he coach may have more than one advice for a loop or function. If no 
adÃ vice is available, it displays an appropriate message. You can double- 
clÓ ick on any advice in the coach window to display context-sensitive help 
wià th examples of the original and optimized code. 

Where performan
Ñ

ce can be improved using MMX technology or Streaming 
SI

Ü
MD Extensions in

¿
trinsics, the coach provides advice in the form of 

C
ë

-style pseudocode, leaving the data definitions, loop control, and 
subscripts to the programmer.

F
Ö
or the code using the intrinsics, you can double-click the left mouse button 

onÂ  an argument used in the code to display the description of that argument. 
C

ë
lick your right mouse button on an intrinsic to invoke a brief description of 

th
ß

at intrinsic.

Assemb ly Coach Opt imization Techni ques

Assembl
Þ

y coach uses many optimization techniques to produce its 
recoÒ mmended optimized code, for example:

• Instruction Selection—assembly coach analyzes each instruction in 
yoû ur code and suggests alternate, equivalent replacements that are 
f

Í
aster or more efficient.

• Instruction Scheduling—assembly coach uses its in-depth knowledge 
of pÂ rocessor behavior to suggest an optimal instruction sequence that 
preseÏ rves your code's semantics.

• P
ü

eephole Optimization—assembly coach identifies particular 
i

¿
nstruction sequences in your code and replaces them with a single, 
eqÛ uivalent instruction. 

• P
ü

artial Register Stall Elimination—assembly coach identifies 
i

¿
nstruction sequences that can produce partial register stalls and 
replÒ aces them with alternative sequences that do not cause partial stalls. 
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I
Ä
n Automatic Optimization and Single Step Optimization modes, you can 

select or deselect these optimization types in the Assembly Coach Options 
ta

ß
b.

Inte l Compi ler Plug-i n
T

Ú
he Intel C/C++ compiler is compatible with Microsoft Visual C++* and is 

aÃ vailable as a plug-in to the Microsoft Developer Studio IDE.

Int
Ä

el C/C++ compiler allows you to optimize your code by using special 
opÂ timization command-line options described in this section.

T
Ú

he optimization command-line options generally are -0 1 and -0 2. Each of 
t

ß
hem enables a number of specific optimization options. In most cases, -O2 
i

¿
s recommended over -O1 b

Ô
ecause the -O2 option enables inline 

exÛ pansion, which helps programs that have many function calls. The O2
�  

opÂ tion is on by default.

Th
Ú

e -0 1 and -0 2 options enable the options as follows: 

-O1 En
ú

ables options -Og, -O i- , -O s , -O y, -O b1 , -G f , 
-Gs , and -G y. However, - O1 di

Ì
sables a few options 

t
ß
hat increase code size. 

-O2 En
ú

ables options -Og, -O i , -O t , -0 y, -O b1, -G f , 
-Gs , anÃ d -G y. Confines optimizations to the 
prÏ ocedural level. 

Al l the command-line options are described in the Intel C/C++ Compiler 
User’s Guide for Win32 Systems, order number 718195.

The -0 d option disables optimization. You can specify optimization option 
as “Ã any” i nstead of -0 1 or -0 2. This is the only optimization not disabled 
by

Ô
 -Od .

Code Opti mization Opti ons

T
Ú

his section describes the options used to optimize your code and improve 
t

ß
he performance of your application.
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T
�

argeting a Processor (-Gn	 )



Use 
Ø

-Gn to target an application to run on a specif ic processor for maximum 
peÏ rformance. Any of the -Gn suboptions you choose results in your binary 
rÒ unning on a corresponding Intel architecture 32-bit processors. -G6 is the 
d

Ì
efault, and targets optimization for the Pentium II and Pentium III 

proÏ cessors.

Automatic Processor Dispatch Support  (-Qx[extensions] a� nd 
-Qax[extensions])




Th
Ú

e -Qx[ ext ensi ons]  andÃ  -Qax [ ext ensi ons]  opÂ tions provide 
support to generate code that is specif ic to processor-instruction extensions. 

 -Qx[e xt ensi ons]  genò erates specialized code to run exclusively on the 
proÏ cessors indicated by the extension.

-Qax [e xte ns io ns ] gò enerates code specialized to the specified 
exÛ tensions, but also generates generic IA-32 code. 
T

Ú
he generic code is usually slower. A runtime check 

for the processor type is made to determine which 
coÓ de executes.

You can specify the same extensions for either option as follows:

i P
ü

entium II and Pentium III processors, which use the 
CM

�
OV and FCMOV instructions

M

 P

ü
entium II and Pentium III processors

K
� S

Ü
treaming SIMD Extensions, which include the i anÃ d M
  

eÛ xtensions.  

CA
�

UTION.  When you use -Qax[ ex te ns io ns ]  in conjunction with 
-Qx[ ex ten si ons] ,  the extensions specified by -Qx[ ex te ns i ons]  
ca� n be used unconditionally by the compiler, and the resulting program 
wi� ll  require the processor extensions to execute properly.
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V
�

ectorizer Switch Options

T
Ú

he Intel C/C++ Compiler can vectorize your code using the vectorizer 
switch options. The option that enables the vectorizer is -Qve c . The 
coÓ mpiler provides a number of other vectorizer switch options that allow 
yoû u to control vectorizations. All  vectorization switches require the - Qvec  
switch to be on. The default is off.

The vectorizer switch options can be activated from the command line. In 
adÃ dition to the -Qvec  switch, the compiler provides the following 
veá ctorization control switch options:

-Qve c_ al ig nment Cont
ë

rols the default alignment of vectorizable 
da

Ì
ta.

-Qve c_ ver bose Cont
ë

rols the vectorizer’s diagnostic levels.

-Qr
�

es tr ic t Enables pointer disambiguation with the 
re st ri ct  q� ualif ier.

-Qks ca lar Performs all 32-bit floating point arithmetic using 
th

ß
e Streaming SIMD Extensions instead of the 

de
Ì

fault x87 instructions.

-Qve c_ emms[ -] C
ë

ontrols the automation of EMMS instruction 
in

¿
sertions to empty the MMX instruction 

registers.

-Qve c_ no_ ar g_al ia s[ -]

Assumes on entry that procedure arguments are 
no� t aliased.

-Qve c_ no_ al ia s[ -] Assumes that no aliasing can occur between 
obÂ jects with different names.

Prefetching (-Qpf[options])



Use 
Ø

-Qpf  to automatically insert prefetching on a Pentium III processor. 
This option enables three suboptions (-Qpf _l oop, -Qpf _c all , and 
-Qpf _s sto re )

ê
 each of which improves cache behavior. The following 

exÛ ample invokes -Qpf  as oÃ ne option with all its functionalit y:
pr� ompt > ic l -Qpf  p r og. cpp
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Lo
ý

op Unroll ing (-Qunrolln	 )



Use 
Ø

-Qunro ll n�  to specify the maximum number of times you want to 
unè roll a loop. For example, to unroll a loop at most four times, use this 
coÓ mmand:
pr� ompt > ic l -Q unro ll 4 a. cp p

T
Ú

o disable loop unrolling, specify n � as Ã 0.

Inline Expansion of Li brary Functions (-Oi, � -Oi-)



T
Ú

he compiler inlines a number of standard C, C++, and math library 
functions by default. This usually results in faster execution of your 
prÏ ogram. Sometimes, however, inline expansion of library functions can 
caÓ use unexpected results. For explanation, see Intel C/C++ Compiler 
User’s Guide for Win32 Systems, order number 718195.

Fl
�

oating-point Ar ithmetic Precision (-Op, � -Op-, � -Qprec, � -Qprec_div, �

-Qpc, � -Qlong_double)



T
Ú

hese options provide optimizations with varying degrees of precision in 
f

Í
loating-point arithmetic.

Rou
�

nding Control Option (-Qrcd)



The compiler uses the -Q rc d optÂ ion to improve the performance of code 
t

ß
hat requires floating point calculations. The optimization is obtained by 
coÓ ntroll ing the change of the rounding mode.

Th
Ú

e -Qrc d optÂ ion disables the change to truncation of the rounding mode 
in floating point-to-integer conversions. 

Fo
Ö

r complete details on all of the code optimization options, refer to the 
Intel C/C++ Compiler User’s Guide for Win32 Systems, order number 
71

�
8195.

Interprocedur al and Pr ofi le-Guided Opt imizations

The following are two methods to improve the performance of your code 
ba

Ô
sed on its unique profile and procedural dependencies: 

In terprocedural  Optimization (IPO)—Use the -Qip  opÂ tion to analyze 
yoû ur code and apply optimizations between procedures within each source 
f

Í
ile. Use multif ile IPO with - Qip o t

ß
o enable the optimizations between 

prÏ ocedures in separate source files.
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Use the
Ø

 - Qopti on  suboption with the applicable keywords to select 
paÏ rticular in-line expansions and loop optimizations. If you specify -Qi p 
wà ithout the -Qopt io n qualifi cation, the compiler expands functions in line, 
prÏ opagates constant arguments, passes arguments in registers, and monitors 
modâ ule-level static variables.

P
�

rofile-Guided Optimization (PGO)—Creates an instrumented program 
from your source code and special code from the compiler. Each time this 
instrumented code is executed, the compiler generates a dynamic 
i

¿
nformation file. When you compile a second time, the dynamic information 
files are merged into a summary file. Using the profile information in this 
file, the compiler attempts to optimize the execution of the most heavily 
t

ß
ravelled paths in the program.

When y
Ñ

ou use PGO, consider the following guidelines:

• Mi
Ý

nimize the changes to your program after instrumented execution 
anÃ d before feedback compilation. During feedback compÓ ilation, the 
coÓ mpiler ignores dynamic information for functions modified after that 
i

¿
nformation was generated. 

• Repeat the instrumentation compilation if you make many changes to 
yoû ur source files after execution and before feedback compilation.

F
Ö

or complete details on the interprocedural and profile-guided 
opÂ timizations, refer to the In

ì
tel C/C++ Compiler User’s Guide for Win32 

Sy
í

stems, order number 718195.

Intel Performance Library Suite
The Intel Performance Library Suite (PLS) includes the following libraries:

• The Intel Signal Processing Library: set of signal processing functions 
similar to those available for most Digital Signal Processors (DSPs) 

• The Intel Recognition Primitives Library, a set of 32-bit recognition 
priÏ mitives for developers of speech- and character-recognition software 

NOTE.  The compiler issues a warning that the dynamic information 
co� rresponds to a modified function.
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• T
Ú

he Intel Image Processing Library, a set of low-level image 
manâ ipulation functions particularly effective at taking advantage of 
MM

Ý
X technology 

• T
Ú

he Intel Math Kernel Library, a set of linear algebra and fast Fourier 
t

ß
ransform functions for developers of scientif ic programs.

• T
Ú

he Intel Image Processing Primitives: a collection of low-overhead 
vá ersions of common functions on 2D arrays intended as a supplement 
or aÂ lternative to the Intel Image Processing Library.

Benefit s Summary

Th
Ú

e overall benefits the libraries provide to the application developers are as 
fo

Í
llows:

• Low-level functions for multimedia applications
• Highly-optimized routines with a C interface, “no assembly required”
• P

ü
rocessor-specific optimization

• P
ü

rocessor detection and DLL dispatching
• Pu

ü
re C version for any IA processor

• Cu
ë

stom DLL builder for reduced memory footprint
• Buil t-in error handling facili ty

T
Ú

he libraries are optimized for all Intel architecture-based processors. The 
cuÓ stom DLL builder allows your application to include only the functions 
required by the application.

 Librarie s Architecture

Each library in the Intel Performance Library Suite implements specific 
archÃ itecture that ensures high performance. The Signal Processing Library 
(S

×
PL), the Recognition Primitives Library (RPL), and the Math Kernel 

L
Ù

ibrary (MKL) use the data types such as signed and unsigned short 
integers, output scale or saturation mode, and single and double-precision 
f

Í
loats. The bulk of the functions support real and complex functions. All 

t
ß
hese features ensure fast internal computations at higher precision.

T
Ú

he Image Processing Library (IPL) implements specif ic image processing 
t

ß
echniques such as bit depths, multiple channels, data alignment, color 
cÓ onversion, region of interest and til ing. The region of interest (ROI) defines 
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a Ã particular area within entire image and enables you to perform operations 
onÂ  it. Tiling is a technique that handles large images by diving an image into 
sub-blocks.

T
Ú

he Image Processing Primitives (IPP) library is a collection of 
high-performance operations performed on 1D and 2D arrays of pixels. The 
I

Ä
PP provides lower-overhead versions of common functions on 2D arrays 

anÃ d is intended as a supplement or alternative to the Intel Image Processing 
Library.

Th
Ú

e Math Kernel Library (MKL) is most helpful for scientif ic and 
enÛ gineering applications. Its high-performance math functions include 
B

ù
asic Linear Algebra Subprograms (BLAS) and fast Fourier transforms 

(F
×

FTs) that run on multiprocessor systems. No change of the code is 
required for multiprocessor support. The library is threadsafe and shows the 
be

Ô
st results when compiled by the Intel compiler.

Al l l ibraries employ complicated memory management schemes and 
prÏ ocessor detection.

Optimi zations with P erformance Librar y Suite

The PLS implements a number of optimizations discussed throughout this 
manâ ual, including architecture-specific tuning such as loop unrolling, 
i

¿
nstructions pairing and instructions scheduling; memory managing such as 
prefetÏ ching and cache tuning.

Th
Ú

e library suite focuses on taking advantage of the paralleli sm of the 
S

Ü
IMD instructions that comprise the MMX technology and Streaming 

S
Ü

IMD Extensions. This technique improves the performance of 
coÓ mputationally intensive image processing functions. Thus the PLS 
includes a set of functions whose performance significantly improves when 
useè d with the Intel architecture processors. In addition, the libraries use 
t

ß
able look-up techniques and fast Fourier transforms (FFTs).

T
Ú

he PLS frees the application developers from assembly programming for 
t

ß
he variety of frequently used functions and prepares the programs for the 
new processor since the libraries are capable of detecting the processor type, 
i

¿
ncluding the future processors, and adjusting the code accordingly.
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Regist er Viewing Tool (RVT)
T

Ú
he Register Viewing Tool (RVT) for Windows 95, 98, and Windows NT 

alÃ lows you to directly view the contents of the Streaming SIMD Extensions 
rÒ egisters without using a debugger. In addition, the RVT provides 
di

Ì
sassembly information during debug for Streaming SIMD Extensions. 

This capabil ity of viewing the contents of registers without using debugger 
i

¿
s the contribution of the RVT to optimizing your application. For complete 
d

Ì
etails, refer to the R

�
egister Viewing Tool, version 4.0 online help.

Register Data

Th
Ú

e RVT displays the contents of the Streaming SIMD Extensions registers 
i

¿
n an RVT Display window. The contents of the eight Streaming SIMD 
Extensions registers, XMM0 through XMM7 fields are displayed in one of 
f

Í
our formats: byte (16 bytes), word (8 words), dword (4 doublewords) or 

single (4 single words in floating-point format). The RVT allows you to set 
t

ß
he format as you need. The new value appears in red.

T
Ú

he window displays the trapped code segment register and the trapped 
eÛ xtended instruction pointer. The window has a First Byte Field which 
alÃ lows you to enter the first byte value of the break-point command when a 
brea

Ô
k point is reached. From the RVT display window, you can call  the 

Disassembly window.

Disassembly Data

I
Ä
n a debug mode, the disassembly window displays the full disassembly of 

t
ß
he current EIP address plus 40 bytes of disassembly information before and 
aÃ fter the current EIP. This information is shown after every debug 
br

Ô
eakpoint or single-step depending on how you set your debug 

enÛ vironment, see Figure 7-5.
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Figur e 7-5 The RVT: Register s and Disa ssembly Windo w
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T
Ú
o ensure accurate disassembly information at a breakpoint, you need to 

enÛ ter the correct first byte value of the break-point command from the RVT 
di

Ì
splay window. The RVT uses information from memory which 

remembÒ ers the value that you enter within a loop from one iteration to the 
ne� xt, up to 20 LRU first bytes. Synchronization of the RVT and the 
instructions occurs at the current EIP.
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Optimization of Some Key 
Algorithms for the
Pentium® III Processors A

T
Ú

he MMX™ technology and Streaming SIMD Extensions for the Intel® 
archÃ itecture (IA) instruction set provides single-instruction, multiple-data 
(S

×
IMD) floating-point instructions and SIMD integer instructions. These 

i
¿
nstructions, in their turn, provide a means to accelerate operations typical 
ofÂ  3D graphics, real-time physics, spatial (3D) audio, and others.

T
Ú

his appendix describes several key algorithms and their optimization for 
th

ß
e Pentium® III processors. The algorithms discussed are:

• Usi
Ø

ng Newton-Raphson Method with the reciprocal (rc pps) an
ê

d 
rÒ eciprocal square root (rs qrt ps ) in

ê
structions.

• Using 
Ø

pÀ r efet ch  instruction for transformation and lighting operations 
t

ß
o reduce memory load latencies.

• Usi
Ø

ng the packed sum of absolute differences instruction (psÀ adbw) to
ê

 
i

¿
mplement a fast motion-estimation error function.

• Usi
Ø

ng MMX technology and Streaming SIMD Extensions intrinsics 
anÃ d vector classes for any sequential sample stream either to increase 
orÂ  reduce the number of samples.

• Usi
Ø

ng Streaming SIMD Extensions technology intrinsics and vector 
clÓ asses for both real and complex 16-tap finite duration impulse 
respÒ onse (FIR) filter.
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Newton-Raphs on Method  with  the Reciprocal 
Instruct ions

T
Ú

he Newton-Raphson formula for finding the root of an equation is

:

where à

x� i  i
¿
s the estimated root 

f( x i ) i
¿
s the function evaluated at the root estimate 

f* (x i ) is the first derivative of the function evaluated at the root 
estÛ imate.

The Newton-Raphson method is the preferred method for finding the root of 
f

Í
unctions for which the derivative can be easily evaluated and for which the 

de
Ì

rivative is continuous and non-zero in the neighborhood of the root. The 
Ne

é
wton-Raphson method approximately doubles the number of significant 

di
Ì

gits for each iteration if the initial guess is close to the root.

The Newton-Raphson method is used to increase the accuracy of the results 
for t

Í
he reciprocal (rc pps)

ê
 and the reciprocal square root (rs qr tp s)

�
 

in
¿

structions. The rc pps andÃ  rs qr t ps  i
¿
nstructions return a result, which is 

accÃ urate in the 12 most significant bits of the mantissa. These two 
i

¿
nstructions have a 3-cycle latency opposed to 26 cycles required to use the 
di

Ì
vide instruction.

In 
Ä

some algorithms, it may be desirable to have full accuracy while realizing 
t

ß
he performance benefit of using the approximation instructions. The 
method illustrated in the examples yields near full accuracy, and provides a 
sizable performance gain compared to using the divide or square root 
f

Í
unctions. One iteration of the Newton-Raphson method is sufficient to 

proÏ duce a result which is accurate to 23 of 24 bits for single precision 
nu� mbers (24 bits includes the implied “1” before the binary point). 

For complete details, see the Increasing the Accuracy of the Results from the 
R

�
eciprocal and Reciprocal Square Root Instructions using the 

N
�

ewton-Raphson Method, Intel application note, order number 243637.

x i 1+ x i
!

f x
"

i
!( )

f
" ∗ x i

!( )
--------------–=
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Performanc e Improvements

F
Ö
or the ASM versions, the approximation instruction (rc pps) an

ê
d the 

reciprocal square root instruction (rs qr tps ) b
ê

y themselves are 1.8 and 1.6 
t

ß
imes, respectively, faster than implementing the Newton-Raphson method. 
It

Ä
 is important to investigate whether the extra accuracy is required before 

usiè ng the Newton-Raphson method to insure that the maximum 
peÏ rformance is obtained. If full accuracy is required, then the 
Ne

é
wton-Raphson method provides a 12 times increase for the reciprocal 

apÃ proximation and 35 times for the reciprocal square root approximation 
oÂ ver C code, and over a 3.3 times and 9.6 times increase above the SIMD 
di

Ì
vide instruction, respectively for each operation.

Unrol
Ø

ling the loops further enhances performance. After unrolling, the code 
wà as scheduled to hide the latency of the multiplies by interleaving any 
non-dependent operations. The gain in performance for unrolling the 
rÒ eciprocal code was due to reduced instructions (55%) and scheduling 
(45

×
%). The gain in performance for unroll ing the reciprocal square root 

coÓ de was due to reduced instructions (30%) and scheduling (70%).

Newton-R aphson Method f or Recipr ocal S quare Root

E
ú

xample A-1 demonstrates a Newton-Raphson approximation for 
reciprocal square root operation implemented with inlined assembly for the 
S

Ü
treaming SIMD Extensions, the intrinsics, and the F32vec4 class. The 

coÓ mplete sample program, including the code for the accurate 
Ne

é
wton-Raphson Methods can be found in the 

VT
#

uneEnv\ Sample s\ NRRec ip ro ca l  directory of the VTune 
P

ü
erformance Enhancement Environment CD, version 4.0.
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Example A-1 Newton-Raphson Method f or Recipr ocal  Squar e Root  
Appr oximation

voÐ id  R eci pSqRootA ppr ox im at io nASM(fl oat * lpf In put,  f loa t * 
lp fR ec ipO ut put,  i nt iN umToDo)

{

__as m

{

mov es i, lp fI nput

mov ed i, lp fR ec ip Outpu t

mov ec x, iN umToDo
sh r ec x, 2                  ; div id e by  4 ,  d o 4 at  a  ti me
In ve rt :
moî va ps  xm m0, [e si ]
add ed i, 16
r sqr t ps xm m1, xm m0

add es i, 16
moî va ps  [- 16][ edi] , xmm1
de

ó
c  e cx

jn z In ver t
}

}

voÐ id  R eci pSqRootA ppr ox im at io nI ntr in si cs (f loa t * lp fI npu t,  f l oat  * 
lp fR ec ipO ut put,  i nt iN umToDo)

{

in t i;

__m128 *I n,  * Out ;

In  =  ( __m128 *)  l pfI nput ;

Ou
�

t = (__ m128 * )  lpf Reci pOut put;

iN umToDo /=  4 ;             ; di vid e # to  d o b y 4 si nc e w e ar e
    ; doin g 4 w i t h each  in tr in si c

fo r( i = 0 ;  i < iN umToDo;  i  + +)
{

*Out ++ = _mm_rs qr t_ ps( *I n++) ;
}

}

_________________________________________________________________________
continued
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Example A-1 Newton-Raphs on Method f or Recipr ocal Squar e Root  
Appr oximation (continued)

voÐ id  R eci pSqRootA ppr ox im at io nF32v ec 4( fl oat *  l pf I nput, fl oat * 
lp fR ec ipO ut put,  i nt iN umToDo)

{

in t i;

F32v ec 4 * I n,  *Out ;

In  =  ( F32ve c4  * )  lpf In put;

Ou
�

t = (F3 2v ec 4 *)  lp fR ec ip Outpu t;

fo r( i = 0 ;  i < iN umToDo;  i  + = 4 )

{

*Out ++ = rs qr t( *I n++);

}

}
_________________________________________________________________________

Newton-R aphson In verse Recipr ocal Appr oximation

Example A-2 demonstrates Newton-Raphson method for inverse reciprocal 
apÃ proximation using inlined assembly for the Streaming SIMD Extensions, 
t

ß
he intrinsics, and the F32vec4 class. The complete sample program, 
i

¿
ncluding the code for the accurate Newton-Raphson Methods can be found 
in the VTu

#
neEnv\ Sampl es \N RRec ipr oc al  directory of the VTune™ 

P
ü

erformance Enhancement Environment CD, version 4.0.

Example A-2 Newton-Raphs on Inverse Reciprocal Appr oximation

voÐ id  Re ci pApprox im at io nASM(fl oat *  l pf Inp ut , flo at  *  lp fR ec ipO ut put,  
in t iN umToDo)

{
__as m
{

moî v esi ,  l pfI nput

_________________________________________________________________________
continued
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Example A-2 Newton-Raphson Inverse Reciprocal Appr oximation (continued)

moî v edi ,  l pfR ec ip Outp ut

mov ecx,  i NumToDo

sh r ecx,  4 ;  di vi de by  1 6,  d o 16 at  a  t i me

In ve rt :

mova ps  mm0,  [ es i ]

add edi , 64

moî va ps  xm m2, [1 6] [e si]

mova ps  xm m4, [3 2] [e si]

moî va ps  xm m6, [4 8] [e si]

add es i, 64

rc pps xmm1,  x mm0

rc pps xmm3,  x mm2

rc pps xmm5,  x mm4

rc pps xmm7,  x mm6

moî va ps  [- 64][ edi] , xmm1

mova ps  [- 48][ edi] , xmm3

moî va ps  [- 32][ edi] , xmm5

de
ó

c ec x

mova ps  [- 16][ edi] , xmm7

jn z In ver t

}

}

voÐ id  R eci pAppro xi mat io nI nt ri ns ics (f lo at  *  lp fI nput , flo at  *  
lp fR ec ipO ut put,  i nt iN umToDo)

{

in t i;

__m128 *I n,  * Out ;

_________________________________________________________________________
continued
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Example A-2 Newton-Raphs on Inverse Reciprocal Appr oximation (continued)

In  =  ( __m128 *)  l pfI nput ;

Ou
�

t = (__ m128 * )  lpf Reci pOut put ;

iN umToDo = iN umToDo >> 2 ; ; di vi de # to  d o by  4 si nc e we
; are  doi ng 4 wi t h each  in tr in sic

fo r( i = 0 ;  i < iN umToDo;  i  + +)

{

*Out ++ = _mm_rc p_ps( *I n++) ;

}

}

voÐ id  R eci pAppro xi mat io nF32ve c4( fl oat * lp fIn put,  f l oat * 
 l pf Recip Outp ut , int  i NumToDo)

{

in t i;

F32v ec 4 * I n,  *Out ;

In  =  ( F32ve c4  * )  lpf In put;

Ou
�

t = (F3 2v ec 4 *)  lp fR ec ip Outpu t;

iN umToDo = iN umToDo >> 2 ; ;  d ivi de b y 4,  d o 4  a t  a ti me

fo r( i = 0 ;  i < iN umToDo;  i  + +)

{

*Out ++ = rc p( *I n++);

}

}
_________________________________________________________________________

3
$

D Transformatio n Algori thms
The examples of 3D transformation operations algorithms in this section 
de

Ì
monstrate how to write efficient code with Streaming SIMD Extensions. 

T
Ú

he purpose of these algorithms is to make the transformation and lighting 
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opÂ erations work together efficiently and to use new pÀ ref et ch  instructions 
t

ß
o reduce memory load latencies. The performance of code using the 
S

Ü
treaming SIMD Extensions is around three times better than the original C 

coÓ de.

For complete details, refer to the St
í

reaming SIMD Extensions -- 3D 
Transformation, Intel application note, order number 243831.

Aos  and SoA Dat a Struct ures

There are two kinds of data structures: the traditional Array of Structures 
(AoS), 

×
with data organized according to vertices - x0 y0 z0, and the 

S
Ü

tructure of Arrays (SoA), with data organized according to coordinates - 
x0 x1 x2 x3. The SoA data structure is a more natural structure for SIMD 
in

¿
structions.

The best performance is achieved by performing the transformation with 
da

Ì
ta in SoA format. However some applications require the data in AoS 

format
Í

. In these cases it is stil l possible to use Streaming SIMD Extensions, 
b

Ô
y transposing the data to SoA format before the transformation and 

l
Å
ighting operations. After these operations are complete, de-transpose the 
da

Ì
ta back to AoS format.

Performanc e Improvements

T
Ú

he performance improvements for the 3D transform algorithms can be 
aÃ chieved by

• usingè  SoA structures
• prefetÏ ching data
• aÃ voiding dependency chains

SoA

T
Ú

he Streaming SIMD Extensions enable increased performance over scalar 
f

Í
loating-point code, through utilizing the SIMD feature of these 

instructions. When the data is arranged in SoA format, one instruction 
ha

ï
ndles four data elements. This arrangement also eliminates loading data 

t
ß
hat is not relevant for the transformation, such as texture coordinates, color, 
anÃ d spectral information.
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Prefetching

Additional performance gain is achieved by prefetching the data from main 
memoryâ , and by replacing the long latency di

%
vps in

¿
struction with a low 

la
Å

tency rc pps  instruction, or its Newton-Raphson approximation for better 
precÏ ision. For more information, see the “Newton-Raphson Method with 
t

ß
he Reciprocal Instructions” section earlier in this appendix. For complete 
d

Ì
etails, refer to the I

ì
ncreasing the Accuracy of the Results from the 

Reciprocal and Reciprocal Square Root Instructions using the 
N

�
ewton-Raphson Method, Intel application note, order number 243637.

Avoidi ng Dep endenc y Chains

Y
�

et another performance increase can be obtained by avoiding writing code 
t

ß
hat contains chains of dependent calculations. The dependency problem 
caÓ n occur with the movhps /mov lp s/ shuf ps sequence, since each 
moî vh ps /mo vl ps  instruction bypasses part of the destination register. These 
i

¿
nstructions cannot execute until prior instructions that generate the 
coÓ rresponding register are completed. This dependency can prevent 
successive loop iterations from executing in parallel.

One 
þ

solution to this problem is to include a 128-bit load from a dummy 
l

Å
ocal variable to each register used with a moî vhps /

&
moî vl ps  instruction. This 

efÛ fectively breaks dependency by performing an independent load from a 
memory or cached location. In some cases, such as loading a section of a 
t

ß
ransform matrix, the code that uses the swizzled results already includes 
128-bit loads. In these cases, an additional explicit 128-bit dummy load is 
not required.

Implement ation

T
Ú

he code examples, including a sample program using the techniques 
de

Ì
scribed above can be found in the \V TuneEnv \S ampl es \3D Tr ans\ aos 

anÃ d \V TuneEnv\ Sampl es \3 DTra ns\ so a d
Ì
irectories of the VTune 

P
ü

erformance Enhancement Environment, version 4.0. Example A-3 shows 
t

ß
he code for the transformation algorithm for the SoA version implemented 
i

¿
n scalar C, and the intrinsics and vector class for the Streaming SIMD 
Ex

ú
tensions.
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Example A- 3 Transf orm SoA Functions, C Code

voÐ id  T ran sf or mPro jec tS oA(V er ti ces Li st  * i np, Vert ic es Lis t *o ut , int  
co unt,  ca mera  * cam)

{

in t i;

fl oat x,y ,z ;

fl oat orw ;

f or  ( i =0;  i< count;  i+ +) {

x = in p-> x[ i] , y = inp -> y[ i] , z =  i np- >z[ i];

or w = x * ma t- >_30 + y * ma t- >_31 + z * ma t - >_32 +  
maî t- >_33;

out- >x [i]  =  ( x* mat - >_00 + y* mat-> _01 + z* mat -> _02 + 
 ma t- >_03) *( ca m->sx/ orw ) + ca m->tx ;

out- >y [i]  =  ( x* mat - >_10 + y* mat-> _11 + z* mat -> _12 + 
 mat - >_13 )* (c am-> sy /or w)  +  c am->t y;

out- >z [i]  =  ( x* mat - >_20 + y* mat-> _21 + z* mat -> _22 + 
 mat - >_23 )* (c am-> sz /or w)  +  c am->t z;

out- >w[i]  =  o r w;

}

}

// -- -- --- -- -- -- -- --- -- -- -- -- -- --- -- -- -- -- --- -- -- -- -- --- -- -- -- -- --- -

/ /  Th is  ve rs io n us es th e in tr in si cs fo r th e St r eami ng SI MD 
Exte ns ion s.  
//  No te  th at  th e F 32vec4 ca n b e u sed i n p l ace of  __ m128 va ri abl es  as
/ /  oper ands to  t he in tr in si cs .

// -- -- --- -- -- -- -- --- -- -- -- -- -- --- -- -- -- -- --- -- -- -- -- --- -- -- -- -- --- -

voÐ id  Tr ansf or mProj ec tS oAXMMIn tr in (V ert ic es Li st V * i np,  Ve rt ic esL is tV  
*o ut , int  c ount ,  camer a *c am)

{

in t i;

F32v ec 4 x ,  y,  z ;

F32v ec 4 o r w;

F32v ec 4 S X=cam- >sx, SY=cam-> sy , S Z=cam- >sz;

F32v ec 4 T X=cam- >t x, TY=cam-> ty , T Z=cam- >t z;
_________________________________________________________________________

continued
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Example A-3  Transf orm SoA Functions,  C Code (continued)

fo r (i =0;  i <count /VE CTOR_SIZ E; i+ +) {

x � = in p-> x[ i] , y = i np- >y[ i ] ,  z =  i np- >z[ i];

//  o r w = x * mat3 0 +  y  *  mat 31 + z * mat3 2 +  mat 33;

or w = (_m m_add_ps (

           _mm_add_p s(

      _mm_mul _ps( x, mat3 0) ,

      _mm_mul _ps( y, mat3 1) ),

   _ mm_ad d_ps (

      _mm_mul _ps( z, mat3 2) ,

      mat 33)) );

//  o ut ->x [i ] = (x *mat- >_00 +  y* mat- >_01 +  z* mat- >_02 + 
 mat - >_03 )* (c am-> sx/ or w)  +  c am->t x;

out- >x [i]  =  ( _mm_add _ps(

               _mm_mul _ps(

          _mm_add_ps(

             _mm_add _ps(

                _ mm_mul_ ps (x , mat 00),

                _ mm_mul_ ps (y , mat 01)) ,

             _mm_add _ps(

                _ mm_mul_ ps (z , mat 02),

                mat0 3) ),

          _mm_di v_ps( SX,  or w) ),

               TX));

//  o ut ->y [i ] = (x *mat- >_10 +  y* mat- >_11 +  z* mat- >_12 + 
 mat - >_13 )* (c am-> sy/ or w)  +  c am->t y;

out- >y [i]  =  ( _mm_add _ps(

               _mm_mul _ps(

          _mm_add_ps(

             _mm_add _ps(

                _ mm_mul_ ps (x , mat 10),

_________________________________________________________________________
continued
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Example A- 3 Transf orm SoA Functions, C Code (c' ontinued)
(

                _ mm_mul_ ps (y , mat 11)) ,

             _mm_add_p s(

                _ mm_mul_ ps (z , mat 12),

                mat 13) ),

          _mm_di v_ps ( SY,  or w) ),

               TY)) ;

//  o ut ->z [i ] = (x *mat- >_20 +  y *mat- >_21 +  z* mat- >_22 + 
maî t- >_23) *( ca m->sz/o rw ) + ca m->tz ;

out- >z [i]  =  ( _mm_add_p s(

               _mm_mul _ps(

          _mm_add_ps (

             _mm_add_p s(

                _ mm_mul_ ps (x , mat 20),

                _ mm_mul_ ps (y , mat 21)) ,

             _mm_add_p s(

                _ mm_mul_ ps (z , mat 22),

                mat 23) ),

          _mm_di v_ps ( SZ,  or w) ),

               TZ)) ;

out- >w[i]  =  o r w;

}

}

// -- -- --- -- -- -- -- --- -- -- -- -- -- --- -- -- -- -- --- -- -- -- -- --- -- -- -- -- --- -

//  Thi s ve rs ion  use s th e F3 2v ec 4 cl as s ab str ac ti on f or  t he St r eamin g 
/ /  SI MD Exte ns io ns  in tr in si cs .

/- -- -- --- -- -- -- -- --- -- -- -- -- -- --- -- -- -- -- --- -- -- -- -- --- -- -- -- -- ---

voÐ id  T ran sf or mPro jec tS oAXMMFve c(V er ti ce sL ist V *i np, Ver ti ce sL is tV 
*o ut , int  c ount ,  camer a *c am)

{

_________________________________________________________________________
continued
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Example A-3 Transf orm SoA Functions, C Code (c' ontinued)
(

in t i;

F32v ec 4 x ,  y,  z ;

F32v ec 4 o r w;

F32v ec 4 S X=cam- >sx, SY=cam-> sy,  S Z=cam- >sz;

F32v ec 4 T X=cam- >t x, TY=cam-> ty,  T Z=cam- >t z;

fo r (i =0;  i <count /VE CTOR_SIZ E; i+ +) {

x = in p-> x[ i] , y = i np- >y[ i ] ,  z =  i np- >z[ i];

or w = x *  mat 30 +  y * mat3 1 + z *  mat 32 +  ma t3 3;

out- >x [i]  =

  (( (( x *  mat 00)  + ( y * mat0 1)  + (z  *  mat 02)  +  
maî t0 3)  * (S X/ or w) ) +  T X) ;

out- >y [i]  =

  (( (( x *  mat 10)  + ( y * mat1 1)  + (z  *  mat 12)  +
 mat1 3)  * (S Y/ or w) )  +  T Y) ;

out- >z [i]  =

  (( (( x *  mat 20)  + ( y * mat2 1)  + (z  *  mat 22)  +
 mat2 3)  * (S Z/ or w) )  +  T Z) ;

out- >w[i]  =  ( or w) ;

_________________________________________________________________________

Ass embly Code for SoA Transforma tion

T
Ú

he sample assembly code is an optimized example of transformation of 
da

Ì
ta in SoA format. You can find the code in 

\V TuneEnv\S ampl es \3d Tr ans\ so a\s oa.a sm file of the VTune 
P

ü
erformance Enhancement Environment CD, version 4.0.

In the optimized code the instructions are rescheduled to expose more 
paÏ rallelism to the processor. The basic code is composed of four 
i

¿
ndependent blocks, inhibiting parallel execution. The instructions in each 
bl

Ô
ock are data-dependent. In the following optimized code the instructions 

of eÂ ach two adjacent blocks are interleaved, enabling much more parallel 
exÛ ecution.
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T
Ú

his optimization assumes that the vertices data is already in the cache. If  
t

ß
he data is not in the cache, this code becomes memory-bound. In this case, 
t

ß
ry to add more computations within the loop, for example, lighting 
calÓ culations. Another option is to prefetch the data, using the Streaming 
S

Ü
IMD Extensions prefetch instruction.

Motio n Estimation
T

Ú
his section explains how to use the Streaming SIMD Extensions and 

MM
Ý

X™ technology instructions to perform motion estimation (ME) for the 
MPEG Encoder. Motion estimation (ME) is a video compression technique 
peÏ rformed during video stream encoding. ME benefits situations in which –

• mostâ  of the object’s characteristics, such as shape and orientation, stay 
t

ß
he same from frame to frame

• onÂ ly the object’s position within the frame changes.

The ME module in most encoders is very computation-intensive, so it is 
de

Ì
sirable to optimize it as much as possible.

For complete detail s, see the Using Streaming SIMD Extensions in a Motion 
Est

)
imation Algorithm for MPEG Encoding, Intel application note, order 

nu� mber 243652.

T
Ú

his section includes code examples that implement the new instructions. In 
pÏ articular, they illustrate the use of the packed sum of absolute differences 
(

×
psÀ adbw) i

ê
nstruction to implement a fast motion-estimation error function.

Performanc e Improvements

The Streaming SIMD Extensions code improves ME performance using the 
following techniques:

• Impl
Ä

ementing psad* bw instruction to calculate a sum of absolute 
di

Ì
fferences for 16 pixels. With MMX technology, the code requires 

abÃ out 20 MMX i nstructions, including packed subtract, packed 
adÃ dition, logical, and unpack instructions. The same calculation with 
S

Ü
treaming SIMD Extensions requires only two psadbw*  instructions.

• Reducing potential delays due to branch mispredictions by using 
abÃ solute difference calculation which does not contain any branch 
in

¿
structions.
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• Usi
Ø

ng search algorithm with block-by-block comparisons for error 
caÓ lculation.

• Un
Ø

rolli ng the loop saves four times on loop overhead, that is, fewer 
i

¿
nstructions are executed.

Sum of  Abs olut e Difference s

T
Ú

he motion estimation module in most encoders is very computation- 
i

¿
ntensive, due to the large number of block-by-block comparisons. 
S

Ü
treaming SIMD Extensions provide a fast way of performing the 

fun
Í

damental motion-error calculation using the psÀ adbw instruction to 
coÓ mpute the absolute difference of unsigned, packed bytes. Overall, the 
S

Ü
treaming SIMD Extensions implementation of this error function yields a 

1.7 performance improvement over the MMX technology implementation.

Prefetching

Th
Ú

e prÀ ef etc h instruction also improves performance by prefetching the 
da

Ì
ta of the estimated block. Since precise block position in the estimated 

frame is known, prÀ efe tc h can Ó be used once every two blocks to prefetch 
sixteen 32-byte cache lines for the two next blocks. To avoid prefetching 
more â than once, the prÀ ef etc h in

¿
struction must be placed outside of the 

loop of motion vector search.

Implement ation

T
Ú

he complete sample program for the scalar C, SIMD integer, and SIMD 
floating-point assembly versions of the Motion Estimation algorithm can be 
fo

Í
und in the \ VTuneEnv\ Sample s\ Moti onEst  directory of the VTune 

P
ü

erformance Enhancement Environment CD, version 4.0.

Upsample
T

Ú
his section presents an algorithm called “smoothed upsample” which is a 

subset of a more general class called a “resample” algorithm. Smoothed 
upè sampling attempts to make a better “guess” at the original signal shape by 
f

Í
itting a smooth curve through four adjacent sample points and taking new 
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samples only between the center two samples. This is intended to minimize 
t

ß
he introduction of false higher-frequency components and better match the 
oÂ riginal signal shape.

T
Ú

his algorithm could be applied to any sequential sample stream either to 
increase the number of samples, or it can be used as the first step in 
reduÒ cing the number of samples. In the latter case, the smoothed upsample 
alÃ gorithm would be followed by application of a filter to produce a smaller 
number of samples.

T
Ú

he Streaming SIMD Extensions can provide performance improvements 
for smoothed upsampling, and in general, for any type of “resampling” 
alÃ gorithm.

F
Ö
or complete details, see the A Smoo

+
thed Upsample Algorithm using 

St
í

reaming SIMD Extensions, Intel application note, order number 243656.

Performanc e Improvements

The performance gain of the smoothed upsample algorithm with the 
S

,
treaming SIMD Extensions for the assembly code is from 3.9 to 5.9 times 

f
-
aster than the C code, while the intrinsic code is from 3.4 to 5.2 times faster 

t
.
han the C code.

Whi
/

le a hand-coded x87 version of the algorithm was not implemented, 
t

.
ypical performance improvement of x87 over a version coded in C is 25%– 
an0 d hence approximately half as fast as the Streaming SIMD Extensions 
i

1
mplementation.

T
2
o convert one second of 22 kHz audio samples to one second of 44 kHz 

au0 dio samples, the Streaming SIMD Extensions version would require only 
ab0 out 1.3 to 1.9 mill ion clocks – a trivial fraction of one second’s processing 
on3  a Pentium III processor.

Streami ng SIMD Extensions Implementat ion of  the Up sampl ing 
Algorithm

T
2

he complete sample program for the scalar C, and SIMD-floating point 
(i

4
ntrinsics and vector class) versions of the Upsample algorithm can be 

fo
-

und in the \VT uneEnv \S ample s\ Upsa mpl e di
5

rectory of the VTune 
P

6
erformance Enhancement Environment CD, version 4.0.
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T
2

he performance of optimized assembly version of the smoothed upsample 
al0 gorithm with the Streaming SIMD Extensions can be compared to the C 
v7 ersion of the same algorithm, intrinsics version in C++, or to the FVEC 
c8 lass library version also in C++. The assembly version is substantially 
f

-
aster than the C version.

FIR Filt er Algori thm Using Streaming SIMD 
Extens ions

This section discusses the algorithm for both real and complex 16-tap finite 
du

5
ration impulse response (FIR) filter using Streaming SIMD Extensions 

t
.
echnology and includes code examples that illustrate the implementation of 
th

.
e Streaming SIMD Extensions SIMD instruction set.

F
9
or complete details refer to the 32-

:
bit Floating Point Real & Complex 

16-Tap FIR Filter Implemented Using Streaming SIMD Extensions, Intel 
ap0 plication note, order number 243643.

Performance Improvements f or Real FIR Filter

The following sections discuss considerations and techniques used to 
op3 timize the performance of the Streaming SIMD Extensions code for the 
real;  16-tap FIR filter algorithm. These techniques are generally applicable 
t

.
o optimizing Streaming SIMD Extensions code on the Pentium III 
arch0 itecture.

Paral lel Mult ipl icat ion and Inter leaved Addi tions

Use
<

 parallel multiplications and the CPU-bound interleaved additions to 
i

1
ncrease the number of memory accesses for FIR filter. Al l Streaming SIMD 
Extensions translate to at least two micro-ops. When a large number of 
S

,
treaming SIMD Extensions are used consecutively, the resulting micro-ops 

r; etire quickly which slows down the performance of the decoder.

Reduci ng Data Dependenc y and R egist er Pressur e

In t
=

he optimized version of the Streaming SIMD Extensions technology, 
registers were reallocated, at several points, to reduce register pressure and 
i

1
ncrease opportunities for rescheduling instructions. The primary example 
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o3 f this is the use of x> mm0 to perform parallel multiplications. In the 
un? optimized version, xm> m0 is used exclusively to access data from the input 
array 0 and perform the multiplication against the coefficient array. In the 
op3 timized version, xm> m4 and xmm> 7 are implemented to alleviate pressure 
fro

-
m xm> m0. While xm> m4 is used to compute values for both y(@ n+1)  and 

y(@ n+3) , the only other connection between the parallel multiplies is the use 
of3  xmm> 1 to hold a copy of the input values used by the other registers. This 
r; esults in a few very precise dependencies on the parallel portion of the 
al0 gorithm, and increases the opportunities for rescheduling instructions.

Schedul ing for the Reor der Buf fer and the Reserv ation 
Station

K
A

eeping track of the number of micro-ops in the reorder buffer (ROB) and 
t

.
he Reservation Station is another optimizing technique used for the 
S

,
treaming SIMD Extensions code. Ideally neither the ROB nor the 

R
B

eservation Station should become saturated with micro-ops (limit is 40 for 
t

.
he ROB, 20 for the Reservation Station). Usually, the saturation can be 
elC iminated through careful scheduling of instructions targeted to different 
CPU po

D
rts, and by taking into account instruction latencies when 

scheduling.

Wrappi
E

ng the Loop A round (Soft ware Pipel ining)

T
2

he interleaved additions at the end of the loop are completely CPU-bound 
an0 d very dependent upon one another. The result of this is that the ROB and 
t

.
he Reservation Station quickly saturate, preventing new micro-ops from 
enC tering the ROB. Due to data dependencies, the instructions could not be 
rescheduled very far back into the main loop body. To alleviate this 
co8 ndition, the first set of multiplies (against the first column of coefficients) 
an0 d the loop control instructions were pulled out of the top of the loop and a 
co8 py placed at the bottom. While this increased the size of the code, the 
r; esulting opportunities for instruction scheduling prevented the saturation of 
t

.
he ROB and Reservation Station while improving the overall  throughput of 
t

.
he loop. A second copy of the instructions must be placed outside the top of 
t

.
he loop to “prime” the loop for its first iteration.
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Advancing Mem ory Loads

Memory accesses require a minimum of three clock cycles to complete if 
t

.
here is a cache hit on the L1 cache. These potentially long latencies should 
be

F
 addressed by scheduling memory accesses as early and as far away as 

poG ssible from the use of the accessed data. It is also helpful to retain data 
ac0 cessed from memory within the CPU for as long as possible to reduce the 
neH ed to re-read the data from memory. You can observe this in the FIR filter 
peG rformance when using the xmI m1 as a storage area to hold four input 
v7 alues while they are multiplied by four different sets of coefficients.

Separating Memory Access es f rom Oper ations

S
,

eparating memory accesses from operations that use the accessed data 
al0 lows the micro-ops generated to access memory to retire before the 
micro-ops which actually perform the operation. If a memory access is 
co8 mbined with an operation, all the micro-ops generated by the instruction 
wJ ait to retire until the last micro-op is finished. This can leave micro-ops 
use? d to access memory waiting to retire in the ROB for multiple clocks, 
t

.
aking up valuable buffer space. Compare the unoptimized code to the 
op3 timized code for performing multiplications against the coefficient data in 
th

.
e example that follows.

Uno
<

ptimized code:

    movap s xmm0, xmm1;          ;  Relo ad [ n-1 3: n- 16] for  n ew p r oduc t

    mulps  x mm0,  [ eax  +  1 60] ;    ;  xmm0 =  i npu t [n -1 3: n-1 6]  *  c 2_4

Op
K

timized code:

    movap s xmm4, [ea x + 160 - 3 2] ;    ; Load c2 _2 f or  ne w pr oduc t

    m ul ps x mm4,  xmm1;                 ; xm m4 = in put  [n -5 :n -8]  * c 2_2

Unrolling the Loop

The C code of the FIR filter has two loops: an outer loop to move upward 
t

.
hrough the input values, and an inner loop to perform the dot product 
be

F
tween the input and taps arrays for each output value. With Streaming 

S
,

IMD Extensions technology, the inner loop can be unrolled and only a 
single loop can control the function. 



A-20

A Intel Architecture Optimization Reference Manual

L
L

oop unrolling benefits performance in two ways: it lessens the incidence 
of 3 branch misprediction by removing a conditional jump and it increases the 
“pool” of instructions available for re-ordering and scheduling of the 
prG ocessor. Keep in mind though that loop unrolling makes the code larger. 
C

D
onsider whether you need to gain in performance or in code size.

Minimizi ng Pointer Ar ithmetic/Elimina ting Unnec essar y 
Micro-ops

In the unoptimized version, the pointer arithmetic is explicit to allow for a 
de

5
tailed explanation of the accesses into the taps arrays. In the optimized 

v7 ersion, the explicit arithmetic is converted to implicit address calculations 
co8 ntained in memory accesses. This conversion reduces the number of 
noH n-essential micro-ops generated by the core of the loop and the goal of 
op3 timization is to eliminate unnecessary micro-ops whenever possible.

Prefetch Hints

Becau
M

se the FIR filter input data is likely to be in cache, due to the fact that 
t

.
he data was recently accessed to build the input vector, a prefetch hint was 
i

1
ncluded to pre-load the next cache line worth of data from the input array. 
Accesse

N
s to the taps arrays and to the historical input data occur every 

iteration of the loop to maintain good temporal locality after their initial 
acc0 ess. Keep in mind though that the processor will  not follow all of the 
hi

O
nts and therefore the performance benefits of the prefetch hint can be 

quP estionable.

Minimizi ng Cac he Pollut ion on W rite

The way the output vector is used influences the method of data storage. 
Basi

M
cally, either the output vector (in the calling program) is used soon after 

i
1
t is populated, or it will not be accessed for some time. In the first case, the 

mova ps  instruction should be used to write out the data. In the second case, 
i

1
f the output vector is not used for some time, it may be wise to minimize 
cac8 he pollution by using the moQ vn tp s  instruction.
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Performanc e Improvements for the  Comple x FIR Filter

T
2

he techniques described for real FIR filter above apply to the complex 
16-tap FIR filter as well. The following sections discuss a few particular 
t

.
echniques applicable to the complex FIR filters.

Unrolling the Loop

T
2

he change to the taps array increases the number of iterations of the inner 
l

R
oop of the basic FIR algorithm. This, combined with an increased number 
o3 f instructions due to the complex multiply, results in many more 
i

1
nstructions when the loop is unrolled, and the code size increases. 
Ho

S
wever, if the loop is not unrolled, the algorithm produces a branch 

misprediction and pipeline stall for every iteration of the outer loop. 

T
2
o reduce branch mispredictions and minimize code size, the inner loop 

may be unrolled only enough times to reduce the number of iterations to 
fou

-
r because the architecture only supports four bits of branch history (a 

fou
-

r-branch history) in its branch prediction mechanism.

Reduci ng Non-V alue-Added Inst ruct ions

T
2
o limit the use of shuffle, unpack, and move instructions in an algorithm is 

de
5

sirable because these instructions do not perform any arithmetic function 
on3  the data and are basically “non-value added.” An alternative data storage 
format

-
, geared towards parallel (or SIMD) processing, eliminates the need 

t
.
o shuffle the complex numbers to enable complex multiplies. However, 
sometimes the SIMD structures do not fit well with the object-orientated 
proG gramming. The tradeoff of eliminating “non-value added”  instructions is 
a sp0 eed-up resulting from this elimination versus how much overhead is 
neH cessary to use the SIMD data structures before executing the function.

Comple x FIR Fil ter Using a SIMD Data Structur e

T
2

he definition of SIMD techniques is that a single instruction operates upon 
mulT tiple data elements of the same type. A more efficient version of the 
co8 mplex multiply can be implemented if the real and imaginary components 
of t3 he complex numbers are stored separately, in their own arrays.
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Code Sampl es

T
2

he complete sample program code for the scalar C, and SIMD floating- 
poG int (intrinsics and vector class) versions of the Upsample algorithm can 
be

F
 found in the 32

:
-bit Floating Point Real & Complex 16-Tap FIR Filter 

I
U
mplemented Using Streaming SIMD Extensions, I

=
ntel application note, 

or3 der number 243643, the \V TuneEnv\ Tra in in g\ rc _fi r. pdf  file of the 
VT

V
une Performance Enhancement Environment CD, version 4.0.
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Performance-Monitoring 
Events and Counters B

T
2

his appendix describes the performance-affecting events counted by the 
co8 unters on Pentium® II and Pentium III processors.

T
2

he most effective way to improve the performance of application is to 
de

5
termine the areas of performance losses in the code and remedy the stall 

c8 onditions. In order to identify stall conditions, Pentium II and Pentium III  
prG ocessors include two counters that allow you to gather information about 
t

.
he performance of applications by keeping track of events during your code 
eC xecution. The counters provide information that allows you to determine if 
an0 d where an application has stalls.

The counters can be accessed by using Intel’s VTune™ Performance 
Anal

N
yzer or3  by using the performance counter instructions within the 

ap0 plication code.

Performance-affec ting Events
Th

2
is section presents Table B-1 that lists those events which can be counted 

wiJ th the performance-monitoring counters and read with the RDPMC 
instruction.

T
2

he columns in the table are as follows:

• The Unit column gives the micro-architecture or bus unit that produces 
t

.
he event.

• The Event Number column gives the hexadecimal number identifying 
t

.
he event.

• The Mnemonic Event Name column gives the name of the event.
• The Unit Mask column gives the unit mask required (if any).
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• The Description co
2

lumn.
• The Comments column gives additional information about the event.

T
2

hese performance-monitoring events are intended as guides for 
peG rformance tuning. The counter values reported are not always absolutely 
acc0 urate and should be used as a relative guide for tuning. Known 
di

5
screpancies are documented where applicable. All performance events are 

model-specific to the Pentium II and Pentium III processors and are not 
ar0 chitecturally guaranteed in future versions of the processors. All  
peG rformance event encodings not listed in the table are reserved and their 
use?  wil l result in undefined counter results.

Table B-1 Performanc e Monit oring E vents

Unit
Event 
No.

Mnemonic  
Event Name

Unit  
Mask Descripti on Comments

Data Cache 
Unit (DCU)

43H DATA_MEM_R
EFS

00H A
X

ll loads from any memory 
typ

Y
e. All stores to any memory 

typ
Y

e. Each part of a split is 
couZ nted separately. 
NOTE: 80-bit floating-point 
acce[ sses are double counted, 
si\ nce they are decomposed 
into a 16-bit exponent load and 
a[  64-bit mantissa load. 
Memory accesses are only 
couZ nted when they are actually 
performed, e.g., a load that 
ge] ts squashed because a pre-
vi^ ous cache miss is outstand-
ing to the same address, and 
which finally gets performed, is 
on_ ly counted once. 
Does not include I/O accesses, 
or_  other non-memory 
acce[ sses.

45H DCU_
LINES_IN

00H Total number of lines that have 
been allocated in the DCU.

46H DCU_M_
LINES_IN

00H Number of Modified state lines 
tha

Y
t have been allocated in the 

DCU.

continued
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Data Cache 
Unit (DCU)
(cont’d)

47H DCU_M_
LINES_OUT

00H Number of Modified state lines 
tha

Y
t have been evicted from 

th
Y

e DCU. This includes evic-
ti

Y
ons as a result of external 

sno\ ops, internal intervention, 
or_  the natural replacement 
al[ gorithm.

48H DCU_MISS_O
UTSTANDING

00H W
`

eighted number of cycles 
wha ile a DCU miss is outstand-
ing. Incremented by the num-
ber of outstanding cache 
misses at any particular time. 
C

b
acheable read requests only 

ar[ e considered. Uncacheable 
requests are excluded. Read- 
f

c
or-ownerships are counted as 
wa ell as line fills, invalidates, 
an[ d stores. 

An a
X

ccess that also 
misses the L2 is 
sho\ rt-changed by two 
cycleZ s. (i.e. if count is N 
cycleZ s, should be N+2 
cycleZ s.) Subsequent 
loads to the same 
caZ che line will not result 
in any additional counts. 
Co

b
unt value not 

precise, but still useful.

Instruction 
Fetch Unit 
(IFU)

80H IFU_FETCH 00H Number of instruction fetches, 
both cacheable and 
non-cacheable. Including UC 
fe

c
tches. 

Will be incremented by 
1 for each cacheable 
line fetched and by 1 for 
ead ch uncached instruc-
ti

Y
on fetched.

81H IFU_FETCH_
MISS

00H Number of instruction fetch 
misses. All instruction fetches 
tha

Y
t do not hit the IFU i.e. that 

produce memory requests. 
Includes UC accesses.

85H ITLB_MISS 00H Number of ITLB misses.

86H IFU_MEM_
STALL

00H Number of cycles instruction 
f

c
etch is stalled, for any reason. 
Includes IFU cache misses, 
ITLB misses, ITLB faults, and 
o_ ther minor stalls.

87H ILD_STALL 00H Number of cycles that the 
instruction length decoder 
s\ tage of the processors pipe-
line is stalled.

continued

Table B-1 Performance  Monit oring E vents (continued)

Unit
Event 
No.

Mnemonic  
Event Name

Unit 
Mask Descripti on Comments
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L2 Cache 28H L2_IFETCH MESI 
0FH

Number of L2 instruction 
f

c
etches. This event indicates 
th

Y
at a normal instruction fetch 

wa as received by the L2. The 
couZ nt includes only L2 cache-
a[ ble instruction fetches; it does 
not include UC instruction 
fetches. It does not include 
ITLB miss accesses.

2AH L2_ST MESI 
0FH

Number of L2 data stores. This 
ed vent indicates that a normal, 
unlocked, store memory 
acce[ ss was received by the L2. 
Specifically, it indicates that
th

Y
e DCU sent a read-for- own-

erd ship request to the L2. It also 
includes Invalid to Modified 
requests sent by the DCU to 
the

Y
 L2. It includes only L2 

cachZ eable store memory 
acce[ sses; it does not include 
I/O accesses, other non-mem-
or_ y accesses, or memory 
acce[ sses like UC/WT stores. It 
includes TLB miss memory 
acce[ sses.

24H L2_LINES_IN 00H Number of lines allocated in 
the

Y
 L2.

26H L2_LINES_
OUT

00H Number of lines removed from 
t

Y
he L2 for any reason.

25H L2_LINES_
INM

00H Number of Modified state lines 
a[ llocated in the L2.

27H L2_LINES_
OUTM

00H Number of Modified state lines 
removed from the L2 for any 
reason.

2EH L2_RQSTS MESI
0FH

Total number of all L2 
requests.

21H L2_ADS 00H Number of L2 address strobes.

22H L2_DBUS_
BUSY

00H Number of cycles during which 
the

Y
 L2 cache data bus was 

busy.

continued

Table B-1 Performanc e Monit oring E vents (continued)

Unit
Event 
No.

Mnemonic  
Event Name

Unit  
Mask Descripti on Comments
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L2 Cache
(cont’d)

23H L2_DBUS_
BUSY_RD

00H Number of cycles during which 
the

Y
 data bus was busy 

tran
Y

sferring read data from L2 
to 

Y
the processor.

External 
Bus Logic 
(EBL)

62H BUS_DRDY_
CLOCKS

00H 
(self) 
20H 
(any)

Number of clocks during which 
DRDY# is asserted. Essen-
tia

Y
lly, utilization of the external 

syste\ m data bus.

Unit Mask = 00H counts 
bus clocks when the 
processor is driving 
DRDY Unit Mask = 20H 
cZ ounts in processor 
clZ ocks when any agent 
is driving DRDY.

63H BUS_LOCK
CLOCKS

00H 
(self) 
20H 
(any)

Number of clocks during which 
LOCK# is asserted on the 
ed xternal system bus.

Always counts in 
processor clocks.

60H BUS_REQ_O
UTSTANDING

00H 
(self)

Number of bus requests out-
sta\ nding. This counter is incre-
mented by the number of 
cachZ eable read bus requests 
ou_ tstanding in any given cycle.

Co
b

unts only DCU 
full-line cacheable 
reads, not Reads for 
o_ wnership, writes, 
instruction fetches, or 
anythi[ ng else. Counts 
“waiting for bus to com-
plete” (last data chunk 
received).

65H BUS_TRAN_
BRD

00H 
(self) 
20H 
(any)

Number of bus burst read 
tran

Y
sactions.

66H BUS_TRAN_
RFO

00H 
(self) 
20H 
(any)

Number of completed bus read 
for ownership transactions.

67H BUS_TRAN_
WB

e 00H 
(self) 
20H 
(any)

Number of completed bus write 
back transactions.

68H BUS_TRAN_
IFETCH

00H 
(self) 
20H 
(any)

Number of completed bus 
unstruction fetch transactions.

continued

Table B-1 Performance  Monit oring E vents (continued)

Unit
Event 
No.

Mnemonic  
Event Name

Unit 
Mask Descripti on Comments
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External 
Bus Logic 
(EBL)

(cont’d)

69H BUS_TRAN_
INVAL

00H 
(self) 
20H 
(any)

Number of completed bus 
invalidate transactions.

6AH BUS_TRAN_
PWR

00H 
(self) 
20H 
(any)

Number of completed bus 
partial write transactions.

6BH BUS_TRAN_P 00H 
(self) 
20H 
(any)

Number of completed bus 
partial transactions.

6CH BUS_TRAN_
IO

00H 
(self) 
20H 
(any)

Number of completed bus I/O 
tran

Y
sactions.

6DH BUS_TRAN_
DEF

00H 
(self) 
20H 
(any)

Number of completed bus 
de

f
ferred transactions.

6EH BUS_TRAN_
BURST

00H 
(self) 
20H 
(any)

Number of completed bus 
burst transactions.

70H BUS_TRAN_
ANY

00H 
(self) 
20H 
(any)

Number of all completed bus 
tr

Y
ansactions. Address bus utili-

zatg ion can be calculated know-
ing the minimum address bus 
o_ ccupancy. Includes special 
cycleZ s etc.

6FH BUS_TRAN_
MEM

00H 
(self) 
20H 
(any)

Number of completed memory 
tran

Y
sactions. 

64H BUS_DATA
RCV

00H 
(self) 

Number of bus clock cycles 
du

f
ring which this processor is 

receiving data.

continued

Table B-1 Performanc e Monit oring E vents (continued)

Unit
Event 
No.

Mnemonic  
Event Name

Unit  
Mask Descripti on Comments
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EBL

(cont’d)

61H BUS_BNR_
DRV

00H 
(self)

Number of bus clock cycles 
du

f
ring which this processor is 

dr
f

iving the BNR pin.

7AH BUS_HIT_
DRV

00H 
(self)

Number of bus clock cycles 
du

f
ring which this processor is 

dr
f

iving the HIT pin.

Includes cycles due to 
sno\ op stalls.

7BH BUS_HITM_
DRV

00H 
(self)

Number of bus clock cycles 
du

f
ring which this processor is 

dr
f

iving the HITM pin.

Includes cycles due to 
sno\ op stalls.

7EH BUS_SNOOP
STALL

00H 
(self)

Number of bus clock cycles 
du

f
ring which the bus is snoop 

sta\ lled.

Floating- 
point Unit

C1H FLOPS 00H Number of computational   
f

c
loating-point operations 
retired. Excludes floating-point 
comZ putational operations that 
cauZ se traps or assists. 
Includes floating-point compu-
tat

Y
ional operations executed by 

the
Y

 assist handler. 
Includes internal sub-opera-
ti

Y
ons of complex floating-point 

instructions such as a tran-
scen\ dental instruction. 
Excludes floating-point loads 
an[ d stores.

C
b

ounter 0 only.

10H FP_COMP_
OPS_EXE

00H Number of computational float-
ing-point operations executed 
including FADD, FSUB, FCOM, 
FMULs, integer MULs and 
IMULs, FDIVs, FPREMs, 
FSQRTS, integer DIVs and 
IDIVs.
NO

h
TE: counts the number of 

op_ erations not number of 
cycleZ s. This event does not 
di

f
stinguish an FADD used in 

t
Y
he middle of a transcendental 
flo

c
w from a separate FADD 

instruction.

C
b

ounter 0 only.

11H FP_ASSIST 00H Number of floating-point 
ed xception cases handled by 
microcode.

C
b

ounter 1 only. This 
ed vent includes counts 
du

f
e to speculative exe-

cutZ ion.

continued

Table B-1 Performance  Monit oring E vents (continued)
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Floating- 
point Unit
(cont’d)

12H MUL 00H Number of multiplies.
NO

h
TE: includes integer and 

FP multiplies.

Co
b

unter 1 only. This 
evd ent
includes counts due to
s\ peculative execution.

13H DIV 00H Number of divides. 
NO

h
TE: includes integer and 

FP multiplies.

Co
b

unter 1 only. This 
ed vent includes counts 
du

f
e to speculative exe-

cutZ ion.

14H CYCLES_DIV
BUSY

00H Number of cycles that the 
di

f
vider is busy, and cannot 

acce[ pt new divides. 
NO

h
TE: includes integer and 

FP divides, FPREM, FPSQRT, 
etcd . Counter 0 only. This event 
includes counts due to specu-
lative execution.

Co
b

unter 0 only. This 
ed vent includes counts 
du

f
e to speculative exe-

cutZ ion.

Memory 
Ordering

03H LD_BLOCKS 00H Number of store buffer blocks. 
Includes counts caused by pre-
cedZ ing stores whose 
ad[ dresses are unknown, pre-
cedZ ing stores whose 
ad[ dresses are known to con-
flict, 

c
but whose data is 

unknown and preceding stores 
tha

Y
t conflict with the load, but 

which incompletely overlap the 
load.

04H SB_DRAINS 00H Number of store buffer drain 
cycleZ s. Incremented during 
ed very cycle the store buffer is 
drai

f
ning. Draining is caused by 

se\ rializing operations like 
C

b
PUID, synchronizing opera-

tion
Y

s like XCHG, Interrupt 
ac[ knowledgment, as well as 
o_ ther conditions such as cache 
fl

c
ushing.

continued

Table B-1 Performanc e Monit oring E vents (continued)

Unit
Event 
No.

Mnemonic  
Event Name

Unit  
Mask Descripti on Comments



Performance-Monitoring Events and CountersB

B-9

Memory 
Ordering
(cont’d)

05H MISALIGN_
MEM_REF

00H Number of misaligned data 
memory references. Incre-
mented by 1 every cycle during 
wa hich either the processor load 
o_ r store pipeline dispatches a 
isaligned µop. Counting is per-
formed if its the first half or 
seco\ nd half, or if it is blocked, 
squ\ ashed or misses.
NO

h
TE: in this context

misaligned means crossing a
64

i
-bit boundary.

It should be noted that  
MISALIGN_MEM_REF 
is only an approxima-
tion

Y
, to the true number 

o_ f misaligned memory 
references. The value 
returned is roughly pro-
portional to the number 
o_ f misaligned memory 
acce[ sses, i.e., the size 
of _ the problem.

Instruction 
Decoding 
and 
Retirement

C0H INST_
RETIRED

00H Total number of instructions 
retired.

C2H µOPS_
RETIRED

00H T
j
otal number of µops retired.

D0H INST
DECODER

00H T
j
otal number of instructions 

de
f

coded..

Interrupts C8H HW_INT_RX 00H T
j
otal number of hardware 

interrupts received.

C6H CYCLES_INT
_MASKED

00H T
j
otal number of processor 

cycleZ s for which interrupts are 
di

f
sabled.

C7H CYCLES_INT
_PENDING_
AND_

k

MASKED

00H Total number of processor 
cycleZ s for which interrupts are 
di

f
sabled and interrupts are 

pending.

Branches C4H BR_INST_
RETIRED

00H Total number of branch instruc-
tion

Y
s retired.

C5H BR_INST_
PRED_
RETIRED

00H Total number of branch   
mispredictions that get to the 
point of retirement. Includes 
not taken conditional branches.

C9H BR_TAKEN_
RETIRED

00H Total number of taken 
branches retired.

continued
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Branches
(cont’d)

CAH BR_MISS_
PRED_TAKEN
_RET

00H Total number of taken but 
mispredicted branches that get 
to 

Y
the point of retirement. 

Includes conditional branches 
o_ nly when taken.

E0H BR_INST_
DECODED

00H Total number of branch instruc-
ti

Y
ons decoded.

E2H BTB_MISSES 00H Total number of branches that 
the

Y
 BTB did not produce a pre-

di
f

ction for.

E4H BR_BOGUS 00H Total number of branch predic-
ti

Y
ons that are generated but 

a[ re not actually branches.

E6H BACLEARS 00H T
j
otal number of time 

BACLEAR is asserted. This is 
the

Y
 number of times that a 

s\ tatic branch prediction was 
made by the decoder.

Stalls A2H
k

RESOURCE_
STALLS

00H Incremented by one during 
ed very cycle that there is 
ar[ esource related stall. 
Includes register renaming 
buffer entries, memory buffer 
end tries. Does not include stalls 
du

f
e to bus queue full, too 

many cache misses, etc. In 
ad[ dition to resource related 
sta\ lls, this event counts some 
oth_ er events.
Includes stalls arising during 
branch misprediction recovery 
ed .g. if retirement of the mispre-
di

f
cted branch is delayed and 

sta\ lls arising while store buffer 
is draining from synchronizing 
op_ erations.

D2H PARTIAL_RAT
_STALLS

00H Number of cycles or events for 
partial stalls.
NO

h
TE: Includes flag partial

sta\ lls.

continued
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Segment 
Register 
Loads

06H SEGMENT_
REG_LOADS

00H Number of segment register 
loads.

Clcocks 79H CPU_CLK_
UNHALTED

00H Number of cycles during which 
the

Y
 processor is not halted.

MMX 
Instructions 
Executed

B0H MMX_INSTR_
EXEC

00H Number of MMX instructions 
ed xecuted.

B3H MMX_INSTR_
T

l
YPE_EXEC

0
m

1H MMX Packed multiply 
instructions executed.

02
m

H MMX Packed shift instructions 
ed xecuted.

04
m

H MMX Packed operations 
instructions executed.

0
m

8H MMX Unpack operations 
instructions executed.

B3H 
(cont’d)

MMX_INSTR_
TYPE

l
_EXEC 

(cont’d)

10H MMX Packed logical 
instructions executed.

20
n

H MMX Packed arithmetic 
instructions executed.

MMX 
Saturated 
Instructions 
Executed

B1H MMX_SAT_
INSTR_EXEC

00H

MMX µops 
executed

B2H MMX_µOPS_
EXEC

0FH Number of MMX µops 
executed.

MMX 
T

l
ransitions

CCH FP_MMX_
T

l
RANS

00H

01H

T
j
ransitions from MMX instruc-

tion
Y

 to FP instructions.

Transitions from FP instruc-
tion

Y
s to MMX instructions.

MMX 
As

k
sists

CDH MMX_ASSIST 00H Number of MMX Assists. MMX Assists is the 
number of EMMS 
instructions executed.

MMX 
Instructions 
Retired

CEH MMX_INSTR_
RET

00H Number of MMX instructions 
retired.

continued
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Segment 
Register 
Renaming 
Stalls

D4H SEG_RENAM
E_STALLS

01
m

H

02
m

H

04
m

H

08
m

H

0F
m

H

Segment register ES

Segment register DS

Segment register FS

Segment register FS

Segment registers ES + DS + 

FS + GS

Segment 
Registers 
Renamed

D5H SEG_REG_
RENAMES

01
m

H

02
m

H

04
m

H

08
m

H

0F
m

H

Segment register ES

Segment register DS

Segment register FS

Segment register FS

Segment registers ES + DS

+ FS + GS

Segment 
Registers 
Renamed & 
Retired

D6H RET_SEG_
RENAMES

00H Number of segment register 
rename events retired.

Execution 
Cluster

D8H EMON_SSE_
INST_
RETIRED

00H

01H

0: packed and scalar

1: scalar

Number of Streaming 
SIMD Extensions 
retired

D9H EMON_SSE_
COMP_INST_
RET

00H

01H

0: pac
m

ked and scalar

1: scalar

Number of Streaming 
SIMD Extensions 
comZ putation 
instructions retired.

Memory 
Cluster

07H EMON_SSE_
PRE_
DISPATCHED

00
m

H

01
m

H

02
m

H

03
m

H

0: pre
m

fetchNTA

1: prefetchT0

2: prefetchT1, prefetchT2

3
o

: weakly ordered stores

Number of 
prefetch/weakly- 
or_ dered instructions dis-
patched (speculative 
prefetches are included 
in counting)

4BH EMON_SSE_
PRE_MISS

00
m

H

01
m

H

02
m

H

03
m

H

0: pre
m

fetchNTA

1: prefetchT0

2
n

: prefetchT1, prefetchT2

3
o

: weakly ordered stores

Number of 
prefetch/weakly- 
or_ dered instructions 
tha

Y
t miss all caches.

Table B-1 Performanc e Monit oring E vents (continued)

Unit
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No.

Mnemonic  
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Programmi ng Notes

P
6

lease take into consideration the following notes when using the 
information provided in Table B-1:

• S
,

everal L2 cache events, where noted, can be further qualif ied using 
the Un

p
it Mask (UM

q
SK) f

r
ield in the Perf EvtS el 0 and Per fE vt Sel1  

res gisters. The lower four bits of the Unit Mask field are used in 
cot njunction with L2 events to indicate the cache state or cache states 
involved. The Pentium II and Pentium III processors identify cache 
states using the “MESI ” protocol, and consequently each bit in the Unit 
Ma

u
sk field represents one of the four states: UM

q
SK[3 ] =  M ( 8h)  state, 

UM
q

SK[2 ] =  E  ( 4h)  state, Uq MSK[1 ] = S (2h )  state, and 
UM

q
SK[0 ] =  I ( 1h)  state. Uq MSK[ 3:0 ] =  MESI  (F h)  should be used 

to
p

 collect data for all states; UM
q

SK = 0h , for the applicable events, will 
result in nothing being counted.

• Al l of the external bus logic (EBL) events, except where noted, can be 
further qualified using the Unit Mask (UM

q
SK)

r
 field in the 

Perf EvtSe l0  and Perf EvtS el1  registers. Bit 5 of the UM
q

SK field is 
usev d in conjunction with the EBL events to indicate whether the 
prow cessor should count transactions that are self generated (UM

q
SK[5 ]  

= 0 )
r
 or transactions that result from any processor on the bus 

(
4
UM

q
SK[5 ] = 1 ).

r

RDPMC Instruc tion

Th
2

e RD
x

PMC (
4
Read Processor Monitor Counter) instruction is used to read 

t
p
he performance-monitoring counters in CP

y
L=3 if bit 8 is set in the CR

y
4 

register (CR
y

4. PCE)
r
. This is similar to the RDTSC (Read Time Stamp 

C
D

ounter) instruction, which is enabled in CPL
y

=3 if the Time Stamp Disable 
b

F
it in CR

y
4 (CR

y
4. TSD) is n

r
ot disabled. Note that access to the 

pew rformance-monitoring Control and Event Select Register (CE
y

SR) is n
r

ot 
pow ssible in CP

y
L=3.

Instr ucti on Specif ication

Opc
z

ode 0F
{

 33

Description Read event monitor counters indicated by ECX into 
EDX: EAX

Ope
z

ration EDX: EAX ← | Event Counter [ECX]
}
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Th
2

e value in ECX (either 0 or 1) specifies one of the two 40-bit event 
cot unters of the processor. EDX i

~
s loaded with the high-order 32 bits, and 

EAX with the low-order 32 bits.

IF  C R4.PC E = 0 AND CPL < > 0 THEN # GP(0 )

IF  E CX = 0 THEN E DX:EA X :=  P er fCn tr 0

IF  E CX = 1 THEN E DX:EA X :=  P er fCn tr 1

ELSE # GP(0)

END IF

P
�

rotected and Real Address Mode Exceptions

#GP( 0)  if  ECX d
�
oes not specify a valid counter (either 0 or 1).

#GP( 0)  if  RDPMC is used in CP
y

L<> 0  a� nd CR
y

4. PCE =  0

16-bit code

RDPMC wiJ ll execute in 16-bit code and VM mode but wil l give a 32-bit 
res sult. It wi ll use the full ECX index.
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Instruction to Decoder
Specification C

T
2

his appendix contains two tables presenting intstruction to decoder 
specif ications for the general instructions of the Pentium® II and Pentium III 
pw rocessors (Table C-1) and MMX™ technology instructions (Table C-2).

Table C-1 Pent ium II  and Pentium III Processors Instr uction to Decoder  
Spe

�
cifica tion

Instruct ion
# o
�

f 
µ� ops Instructi on

# of 
�

µ� ops

AAA 1 ADC rm8,r8 2

AAD 3 ADD AL,imm8 1

AAM 4 ADD eAX,imm16/32 1

AAS 1 ADD m16/32,imm16/32 4

ADC AL,imm8 2 ADD m16/32,r16/32 4

ADC eAX,imm16/32 2 ADD m8,imm8 4

ADC m16/32,imm16/32 4 ADD m8,r8 4

ADC m16/32,r16/32 4 ADD r16/32,imm16/32 1

ADC m8,imm8 4 ADD r16/32,imm8 1

ADC m8,r8 4 ADD r16/32,m16/32 2

ADC r16/32,imm16/32 2 ADD r16/32,rm16/32 1

ADC r16/32,m16/32 3 ADD r8,imm8 1

ADC r16/32,rm16/32 2 ADD r8,m8 2

ADC r8,imm8 2 ADD r8,rm8 1

ADC r8,m8 3 ADD rm16/32,r16/32 1

continued
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ADC r8,rm8 2 ADD rm8,r8 1

ADC rm16/32,r16/32 2 AND AL,imm8 1

AND eAX,imm16/32 1 BTC rm16/32, r16/32 1

AND m16/32,imm16/32 4 BTR m16/32, imm8 4

AND m16/32,r16/32 4 BTR m16/32, r16/32 complex

AND m8,imm8 4 BTR rm16/32, imm8 1

AND m8,r8 4 BTR rm16/32, r16/32 1

AND r16/32,imm16/32 1 BTS m16/32, imm8 4

AND r16/32,imm8 1 BTS m16/32, r16/32 complex

AND r16/32,m16/32 2 BTS rm16/32, imm8 1

AND r16/32,rm16/32 1 BTS rm16/32, r16/32 1

AND r8,imm8 1 CALL m16/32 near complex

AND r8,m8 2 CALL m16 complex

AND r8,rm8 1 CALL ptr16 complex

AND rm16/32,r16/32 1 CALL r16/32 near complex

AND rm8,r8 1 CALL rel16/32 near 4

ARPL m16 complex CBW 1

ARPL rm16, r16 complex CLC 1

BOUND r16,m16/32&16/32 complex CLD 4

BSF r16/32,m16/32 3 CLI complex

BSF r16/32,rm16/32 2 CLTS complex

BSR r16/32,m16/32 3 CMC 1

BSR r16/32,rm16/32 2 CMOVB/NAE/C 
r16/32,m16/32

3

BSWAP r32 2 CMOVB/NAE/C 
r16/32,r16/32

2

BT m16/32, imm8 2 CMOVBE/NA 
r16/32,m16/32

3

BT m16/32, r16/32 complex CMOVBE/NA r16/32,r16/32 2

continued

Table C-1 Pent ium II  and Pent ium III Processors Instr uction to Decoder  
Spe
�

cifica tion (continued)

Instruct ion
# of 
µ� ops� Instructi on

# of 
µ� ops�
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BT rm16/32, imm8 1 CMOVE/Z r16/32,m16/32 3

BT rm16/32, r16/32 1 CMOVE/Z r16/32,r16/32 2

BTC m16/32, imm8 4 CMOVNS r16/32,r16/32 3

BTC m16/32, r16/32 complex CMOVOr16/32,m16/32

BTC rm16/32, imm8 1 CMOVOr16/32,r16/32 2

CMOVL/NGE 
r16/32,m16/32

3 CMOVP/PE r16/32,m16/32 3

CMOVL/NGE r16/32,r16/32 2 CMOVP/PE r16/32,r16/32 2

CMOVLE/NG 
r16/32,m16/32

3 CMOVS r16/32,m16/32 3

CMOVLE/NG r16/32,r16/32 2 CMOVS r16/32,r16/32 2

CMOVNB/AE/NC 
r16/32,m16/32

3 CMP AL, imm8 1

CMOVNB/AE/NC 
r16/32,r16/32

2 CMP eAX,imm16/32 1

CMOVNBE/A 
r16/32,m16/32

3 CMP m16/32, imm16/32 2

CMOVNBE/A r16/32,r16/32 2 CMP m16/32, imm8 2

CMOVNE/NZ 
r16/32,m16/32

3 CMP m16/32,r16/32 2

CMOVNE/NZ r16/32,r16/32 2 CMP m8, imm8 2

CMOVNL/GE 
r16/32,m16/32

3 CMP m8, imm8 2

CMOVNL/GE r16/32,r16/32 2 CMP m8,r8 2

CMOVNLE/G 
r16/32,m16/32

3 CMP r16/32,m16/32 2

CMOVNLE/G r16/32,r16/32 2 CMP r16/32,rm16/32 1

CMOVNO r16/32,m16/32 3 CMP r8,m8 2

CMOVNO r16/32,r16/32 2 CMP r8,rm8 1

CMOVNP/PO 
r16/32,m16/32

3 CMP rm16/32,imm16/32 1

continued

Table C-1 Pent ium II  and Pentium III Processors Instr uction to Decoder  
Spe
�

cifica tion (continued)

Instruct ion
# of 
µ� ops� Instructi on

# of 
µ� ops�
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CMOVNP/PO r16/32,r16/32 2 CMP rm16/32,imm8 1

CMOVNS r16/32,m16/32 3 CMP rm16/32,r16/32 1

CMP rm8,imm8 1 FADDm32real 2

CMP rm8,imm8 1 FADD m64real 2

CMP rm8,r8 1 FADDP ST(i),ST 1

CMPSB/W/D 

m8/16/32,m8/16/32

complex FBLD m80dec complex

CMPXCHG m16/32,r16/32 complex FBSTP m80dec complex

CMPXCHG m8,r8 complex FCHS 3

CMPXCHG rm16/32,r16/32 complex FCMOVB STi 2

CMPXCHG rm8,r8 complex FCMOVBE STi 2

CMPXCHG8B rm64 complex FCMOVE STi 2

CPUID complex FCMOVNB STi 2

CWD/CDQ 1 FCMOVNBE STi 2

CWDE 1 FCMOVNE STi 2

DAA 1 FCMOVNU STi 2

DAS 1 FCMOVU STi 2

DECm16/32 4 FCOM STi 1

DECm8 4 FCOM m32real 2

DECr16/32 1 FCOM m64real 2

DECrm16/32 1 FCOM2 STi 1

DECm8 4 FCOMI STi 1

DIV AL,rm8 3 FCOMIP STi 1

DIV AX,m16/32 4 FCOMP STi 1

DIV AX,m8 4 FCOMP m32real 2

DIV AX,rm16/32 4 FCOMP m64real 2

ENTER complex FCOMP3 STi 1

continued
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F2XM1 complex FCOMP5 STi 1

FABS 1 FCOMPP 2

FADD ST(i),ST 1 FCOS

FADD ST,ST(i) 1 FDECSTP 1

FDISI 1 FINCSTP 1

FDIV ST(i),ST 1 FIST m16int 4

FDIV ST,ST(i) 1 FIST m32int 4

FDIV m32real 2 FISTP m16int 4

FDIV m64real 2 FISTP m32int 4

FDIVP ST(i),ST 1 FISTP m64int 4

FDIVR ST(i),ST 1 FISUB m16int complex

FDIVR ST,ST(i) 1 FISUB m32int complex

FDIVR m32real 2 FISUBR m16int complex

FDIVR m64real 2 FISUBR m32int complex

FDIVRP ST(i),ST 1 FLD STi 1

FENI 1 FLD m32real 1

FFREE ST(i) 1 FLD m64real 1

FFREEP ST(i) 2 FLD m80real 4

FIADD m16int complex FLD1 2

FIADD m32int complex FLDCW m2byte 3

FICOM m16int complex FLDENV m14/28byte complex

FICOM m32int complex FLDL2E 2

FICOMP m16int complex FLDL2T 2

FICOMP m32int complex FLDLG2 2

FIDIV m16int complex FLDLN2 2

FIDIV m32int complex FLDPI 2

FIDIVR m16int complex FLDZ 1
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FIDIVR m32int complex FMUL ST(i),ST 1

FILD m16int 4 FMUL ST,ST(i) 1

FILD m32int 4 FMUL m32real 2

FILD m64int 4 FMUL m64real 2

FIMUL m16int complex FMULP ST(i),ST 1

FIMUL m32int complex FNCLEX 3

FNINIT complex FSUB ST,ST(i)

FNOP 1 FSUB m32real 2

FNSAVE m94/108byte complex FSUB m64real 2

FNSTCW m2byte 3 FSUBP ST(i),ST 1

FNSTENV m14/28byte complex FSUBR ST(i),ST 1

FNSTSW AX 3 FSUBR ST,ST(i) 1

FNSTSW m2byte 3 FSUBR m32real 2

FPATAN complex FSUBR m64real 2

FPREM complex FSUBRP ST(i),ST 1

FPREM1 complex FTST 1

FPTAN complex FUCOM STi 1

FRNDINT complex FUCOMI STi 1

FRSTOR m94/108byte complex FUCOMIP STi 1

FSCALE complex FUCOMP STi 1

FSETPM 1 FUCOMPP 2

FSIN complex FWAIT 2

FSINCOS complex FXAM 1

FSQRT 1 FXCH STi 1

FST STi 1 FXCH4 STi 1

FST m32real 2 FXCH7 STi 1

FST m64real 2 FXTRACT complex

continued
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FSTP STi 1 FYL2X complex

FSTP m32real 2 FYL2XP1 complex

FSTP m64real 2 HALT complex

FSTP m80real complex IDIV AL,rm8 3

FSTP1 STi 1 IDIV AX,m16/32 4

FSTP8 STi 1 IDIV AX,m8 4

FSTP9 STi 1 IDIV eAX,rm16/32 4

FSUB ST(i),ST 1 IMUL m16 4

IMUL m32 4 JBE/NA rel8 1

IMUL m8 2 JCXZ/JECXZ rel8 2

IMUL r16/32,m16/32 2 JE/Z rel16/32 1

IMUL r16/32,rm16/32 1 JE/Z rel8 1

IMUL 

r16/32,rm16/32,imm8/16/32 

2 JL/NGE rel16/32 1

IMUL 

r16/32,rm16/32,imm8/16/32 

1 JL/NGE rel8 1

IMUL rm16 3 JLE/NG rel16/32 1

IMUL rm32 3 JLE/NG rel8 1

IMUL rm8 1 JMP m16 complex

IN eAX, DX complex JMP near m16/32 2

IN eAX, imm8 complex JMP near reg16/32 1

INCm16/32 4 JMP ptr16 complex

INCm8 4 JMP rel16/32 1

INCr16/32 1 JMP rel8 1

INCrm16/32 1 JNB/AE/NC rel16/32 1

INCrm8 1 JNB/AE/NC rel8 1

INSB/W/D m8/16/32,DX complex JNBE/A rel16/32 1

continued
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INT1 complex JNBE/A rel8 1

INT3 complex JNE/NZ rel16/32 1

INTN 3 JNE/NZ rel8 1

INTO complex JNL/GE rel16/32 1

INVD complex JNL/GE rel8 1

INVLPG m complex JNLE/G rel16/32 1

IRET complex JNLE/G rel8 1

JB
�

/NAE/C rel16/32 1 JNO rel16/32 1

JB
�

/NAE/C rel8 1 JNO rel8 1

JB
�

E/NA rel16/32 1 JNP/PO rel16/32 1

JNP
�

/PO rel8 1 LOCK ADC m16/32,r16/32 complex

JNS
�

 rel16/32 1 LOCK ADC m8,imm8 complex

JNS
�

 rel8 1 LOCK ADC m8,r8 complex

JOrel16/32
�

1 LOCK ADD 

m16/32,imm16/32

complex

JOrel8
�

1 LOCK ADD m16/32,r16/32 complex

JP
�

/PE rel16/32 1 LOCK ADD m8,imm8 complex

JP
�

/PE rel8 1 LOCK ADD m8,r8 complex

JS
�

 rel16/32 1 LOCK AND 

m16/32,imm16/32

complex

JS
�

 rel8 1 LOCK AND m16/32,r16/32 complex

LAHF 1 LOCK AND m8,imm8 complex

LAR m16 complex LOCK AND m8,r8 complex

LAR rm16 complex LOCK BTC m16/32, imm8 complex

LDS r16/32,m16 complex LOCK BTC m16/32, r16/32 complex

LEA r16/32,m 1 LOCK BTR m16/32, imm8 complex

LEAVE 3 LOCK BTR m16/32, r16/32 complex

continued
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LES r16/32,m16 complex LOCK BTS m16/32, imm8 complex

LFS r16/32,m16 complex LOCK BTS m16/32, r16/32 complex

LGDT m16&32 complex LOCK CMPXCHG 

m16/32,r16/32

complex

LGS r16/32,m16 complex LOCK CMPXCHG m8,r8 complex

LIDT m16&32 complex LOCK CMPXCHG8B rm64 complex

LLDT m16 complex LOCK DECm16/32 complex

LLDT rm16 complex LOCK DECm8 complex

LMSW m16 complex LOCK INCm16/32 complex

LMSW r16 complex LOCK INCm8 complex

LOCK ADC 

m16/32,imm16/32

complex LOCK NEGm16/32 complex

LOCK NEGm8 complex LODSB/W/D 

m8/16/32,m8/16/32

LOCK NOTm16/32 complex LOOP rel8 4

LOCK NOTm8 complex LOOPE rel8 4

LOCK 

ORm16/32,imm16/32

complex LOOPNE rel8 4

LOCK ORm16/32,r16/32 complex LSL m16 complex

LOCK ORm8,imm8 complex LSL rm16 complex

LOCK ORm8,r8 complex LSS r16/32,m16 complex

LOCK SBB 

m16/32,imm16/32

complex LTR m16 complex

LOCK SBB m16/32,r16/32 complex LTR rm16 complex

LOCK SBB m8,imm8 complex MOV AL,moffs8 1

LOCK SBB m8,r8 complex MOV CR0, r32 complex

continued
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LOCK SUB 

m16/32,imm16/32

complex MOV CR2, r32 complex

LOCK SUB m16/32,r16/32 complex MOV CR3, r32 complex

LOCK SUB m8,imm8 complex MOV CR4, r32 complex

LOCK SUB m8,r8 complex MOV DRx, r32 complex

LOCK XADD m16/32,r16/32 complex MOV DS,m16 4

LOCK XADD m8,r8 complex MOV DS,rm16 4

LOCK XCHG 

m16/32,r16/32

complex MOV ES,m16 4

LOCK XCHG m8,r8 complex MOV ES,rm16 4

LOCK XOR 

m16/32,imm16/32

complex MOV FS,m16 4

LOCK XOR m16/32,r16/32 complex MOV FS,rm16 4

LOCK XOR m8,imm8 complex MOV GS,m16 4

LOCK XOR m8,r8 complex MOV GS,rm16 4

MOV SS,m16 4 MOV rm16,ES 1

MOV SS,rm16 4 MOV rm16,FS 1

MOV eAX,moffs16/32 1 MOV rm16,GS 1

MOV m16,CS 3 MOV rm16,SS 1

MOV m16,DS 3 MOV rm16/32,imm16/32 1

MOV m16,ES 3 MOV rm16/32,r16/32 1

MOV m16,FS 3 MOV rm8,imm8 1

MOV m16,GS 3 MOV rm8,r8 1

MOV m16,SS 3 MOVSB/W/D 

m8/16/32,m8/16/32

complex

MOV m16/32,imm16/32 2 MOVSX r16,m8 1

MOV m16/32,r16/32 2 MOVSX r16,rm8 1

continued
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MOV m8,imm8 2 MOVSX r16/32,m16 1

MOV m8,r8 2 MOVSX r32,m8 1

MOV moffs16/32,eAX 2 MOVSX r32,rm16 1

MOV moffs8,AL 2 MOVSX r32,rm8 1

MOV r16/32,imm16/32 1 MOVZX r16,m8 1

MOV r16/32,m16/32 1 MOVZX r16,rm8 1

MOV r16/32,rm16/32 1 MOVZX r32,m16 1

MOV r32, CR0 complex MOVZX r32,m8 1

MOV r32, CR2 complex MOVZX r32,rm16 1

MOV r32, CR3 complex MOVZX r32,rm8 1

MOV r32, CR4 complex MUL AL,m8 2

MOV r32, DRx complex MUL AL,rm8 1

MOV r8,imm8 1 MUL AX,m16 4

MOV r8,m8 1 MUL AX,rm16 3

MOV r8,rm8 1 MUL EAX,m32 4

MOV rm16,CS 1 MUL EAX,rm32 3

MOV rm16,DS 1 NEGm16/32 4

NEGm8 4 POP GS complex

NEGrm16/32 1 POP SS complex

NEGrm8 1 POP eSP 3

NOP 1 POP m16/32 complex

NOTm16/32 4 POP r16/32 2

NOTm8 4 POP r16/32 2

NOTrm16/32 1 POPA/POPAD complex

NOTrm8 1 POPF complex

ORAL,imm8 1 POPFD complex

OReAX,imm16/32 1 PUSH CS 4
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ORm16/32,imm16/32 4 PUSH DS 4

ORm16/32,r16/32 4 PUSH ES 4

ORm8,imm8 4 PUSH FS 4

ORm8,r8 4 PUSH GS 4

ORr16/32,imm16/32 1 PUSH SS 4

ORr16/32,imm8 1 PUSH imm16/32 3

ORr16/32,m16/32 2 PUSH imm8 3

ORr16/32,rm16/32 1 PUSH m16/32 4

ORr8,imm8 1 PUSH r16/32 3

ORr8,m8 2 PUSH r16/32 3

ORr8,rm8 1 PUSHA/PUSHAD complex

ORrm16/32,r16/32 1 PUSHF/PUSHFD complex

ORrm8,r8 1 RCL m16/32,1 4

OUT DX, eAX complex RCL m16/32,CL complex

OUT imm8, eAX complex RCL m16/32,imm8 complex

OUTSB/W/D DX,m8/16/32 complex RCL m8,1 4

POP DS complex RCL m8,CL complex

POP ES complex RCL m8,imm8 complex

POP FS complex RCL rm16/32,1 2

RCL rm16/32,CL complex REP LODSB/W/D 

m8/16/32,m8/16/32

complex

RCL rm16/32,imm8 complex REP MOVSB/W/D 

m8/16/32,m8/16/32

complex

RCL rm8,1 2 REP OUTSB/W/D 

DX,m8/16/32

complex

continued
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RCL rm8,CL complex REP SCASB/W/D 

m8/16/32,m8/16/32

complex

RCL rm8,imm8 complex REP STOSB/W/D 

m8/16/32,m8/16/32

complex

RCR m16/32,1 4 RET 4

RCR m16/32,CL complex RET complex

RCR m16/32,imm8 complex RET near 4

RCR m8,1 4 RET near iw complex

RCR m8,CL complex ROL m16/32,1 4

RCR m8,imm8 complex ROL m16/32,CL 4

RCR rm16/32,1 2 ROL m16/32,imm8 4

RCR rm16/32,CL complex ROL m8,1 4

RCR rm16/32,imm8 complex ROL m8,CL 4

RCR rm8,1 2 ROL m8,imm8 4

RCR rm8,CL complex ROL rm16/32,1 1

RCR rm8,imm8 complex ROL rm16/32,CL 1

RDMSR complex ROL rm16/32,imm8 1

RDPMC complex ROL rm8,1 1

RDTSC complex ROL rm8,CL 1

REP CMPSB/W/D 

m8/16/32,m8/16/32

complex ROL rm8,imm8 1

REP INSB/W/D 

m8/16/32,DX

complex ROR m16/32,1 4

ROR m16/32,CL 4 SBB m16/32,r16/32 4

ROR m16/32,imm8 4 SBB m8,imm8 4

ROR m8,1 4 SBB m8,r8 4

ROR m8,CL 4 SBB r16/32,imm16/32 2
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ROR m8,imm8 4 SBB r16/32,m16/32 3

ROR rm16/32,1 1 SBB r16/32,rm16/32 2

ROR rm16/32,CL 1 SBB r8,imm8 2

ROR rm16/32,imm8 1 SBB r8,m8 3

ROR rm8,1 1 SBB r8,rm8 2

ROR rm8,CL 1 SBB rm16/32,r16/32 2

ROR rm8,imm8 1 SBB rm8,r8 2

RSM complex SCASB/W/D 

m8/16/32,m8/16/32

3

SAHF 1 SETB/NAE/C m8 3

SAR m16/32,1 4 SETB/NAE/C rm8 1

SAR m16/32,CL 4 SETBE/NA m8 3

SAR m16/32,imm8 4 SETBE/NA rm8 1

SAR m8,1 4 SETE/Z m8 3

SAR m8,CL 4 SETE/Z rm8 1

SAR m8,imm8 4 SETL/NGE m8 3

SAR rm16/32,1 1 SETL/NGE rm8 1

SAR rm16/32,CL 1 SETLE/NG m8 3

SAR rm16/32,imm8 1 SETLE/NG rm8 1

SAR rm8,1 1 SETNB/AE/NC m8 3

SAR rm8,CL 1 SETNB/AE/NC rm8 1

SAR rm8,imm8 1 SETNBE/A m8 3

SBB AL,imm8 2 SETNBE/A rm8 1

SBB eAX,imm16/32 2 SETNE/NZ m8 3

SBB m16/32,imm16/32 4 SETNE/NZ rm8 1

SETNL/GE m8 3 SHL/SAL rm16/32,1 1

SETNL/GE rm8 1 SHL/SAL rm16/32,1 1
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SETNLE/G m8 3 SHL/SAL rm16/32,CL 1

SETNLE/G rm8 1 SHL/SAL rm16/32,CL 1

SETNO m8 3 SHL/SAL rm16/32,imm8 1

SETNO rm8 1 SHL/SAL rm16/32,imm8 1

SETNP/PO m8 3 SHL/SAL rm8,1 1

SETNP/PO rm8 1 SHL/SAL rm8,1 1

SETNS m8 3 SHL/SAL rm8,CL 1

SETNS rm8 1 SHL/SAL rm8,CL 1

SETOm8 3 SHL/SAL rm8,imm8 1

SETOrm8 1 SHL/SAL rm8,imm8 1

SETP/PE m8 3 SHLD m16/32,r16/32,CL 4

SETP/PE rm8 1 SHLD m16/32,r16/32,imm8 4

SETS m8 3 SHLD rm16/32,r16/32,CL 2

SETS rm8 1 SHLD rm16/32,r16/32,imm8 2

SGDT m16&32 4 SHR m16/32,1 4

SHL/SAL m16/32,1 4 SHR m16/32,CL 4

SHL/SAL m16/32,1 4 SHR m16/32,imm8 4

SHL/SAL m16/32,CL 4 SHR m8,1 4

SHL/SAL m16/32,CL 4 SHR m8,CL 4

SHL/SAL m16/32,imm8 4 SHR m8,imm8 4

SHL/SAL m16/32,imm8 4 SHR rm16/32,1 1

SHL/SAL m8,1 4 SHR rm16/32,CL 1

SHL/SAL m8,1 4 SHR rm16/32,imm8 1

SHL/SAL m8,CL 4 SHR rm8,1 1

SHL/SAL m8,CL 4 SHR rm8,CL 1

SHL/SAL m8,imm8 4 SHR rm8,imm8 1

SHL/SAL m8,imm8 4 SHRD m16/32,r16/32,CL 4
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SHRD m16/32,r16/32,imm8 4 SUB rm16/32,r16/32 1

SHRD rm16/32,r16/32,CL 2 SUB rm8,r8 1

SHRD 

rm16/32,r16/32,imm8

2 TEST AL,imm8 1

SIDT m16&32  complex TEST eAX,imm16/32 1

SLDT m16  complex TEST m16/32,imm16/32 2

SLDT rm16 4 TEST m16/32,imm16/32 2

SMSW m16  complex TEST m16/32,r16/32 2

SMSW rm16 4 TEST m8,imm8 2

STC 1 TEST m8,imm8 2

STD 4 TEST m8,r8 2

STI  complex TEST rm16/32,imm16/32 1

STOSB/W/D 

m8/16/32,m8/16/32

3 TEST rm16/32,r16/32 1

STR m16  complex TEST rm8,imm8 1

STR rm16 4 TEST rm8,r8 1

SUB AL,imm8 1 VERR m16  complex

SUB eAX,imm16/32 1 VERR rm16  complex

SUB m16/32,imm16/32 4 VERW m16  complex

SUB m16/32,r16/32 4 VERW rm16  complex

SUB m8,imm8 4 WBINVD  complex

SUB m8,r8 4 WRMSR  complex

SUB r16/32,imm16/32 1 XADD m16/32,r16/32  complex

SUB r16/32,imm8 1 XADD m8,r8  complex

SUB r16/32,m16/32 2 XADD rm16/32,r16/32 4

SUB r16/32,rm16/32 1 XADD rm8,r8 4

SUB r8,imm8 1 XCHG eAX,r16/32 3

continued
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SUB r8,m8 2 XCHG m16/32,r16/32  complex

SUB r8,rm8 1 XCHG m8,r8  complex

XCHG rm16/32,r16/32 3 XOR r16/32,imm16/32

XCHG rm8,r8 3 XOR r16/32,imm8

XLAT/B 2 XOR r16/32,m16/32

XOR AL,imm8 1 XOR r16/32,rm16/32

XOR eAX,imm16/32 1 XOR r8,imm8

XOR m16/32,imm16/32 4 XOR r8,m8

XOR m16/32,r16/32 4 XOR r8,rm8

XOR m8,imm8 4 XOR rm16/32,r16/32

XOR m8,r8 4 XOR rm8,r8

Table C-2 MMX Technolog y Instruction to Decode r Specifica tion

Instruct ion # of µ� ops Instruc tion # of µ� ops

EMMS complex PADDB mm,m64 2

MOVD m32,mm 2 PADDB mm,mm 1

MOVD mm,ireg 1 PADDD mm,m64 2

MOVD mm,m32 1 PADDD mm,mm 1

MOVQ mm,m64 1 PADDSB mm,m64 2

MOVQ mm,mm 1 PADDSB mm,mm 1

MOVQ m64,mm 2 PADDSW mm,m64 2

MOVQ mm,mm 1 PADDSW mm,mm 1

PACKSSDW mm,m64 2 PADDUSB mm,m64 2

PACKSSDW mm,mm 1 PADDUSB mm,mm 1

PACKSSWB mm,m64 2 PADDUSW mm,m64 2

PACKSSWB mm,mm 1 PADDUSW mm,mm 1
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PACKUSWB mm,m64 2 PADDW mm,m64 2

PACKUSWB mm,mm 1 PADDW mm,mm 1

PAND mm,m64 2 PSLLQ mm,mm 1

PAND mm,mm 1 PSLLW mm,m64 2

PANDN mm,m64 2 PSLLW mm,mm 1

PANDN mm,mm 1 PSRAD mm,m64 2

PCMPEQB mm,m64 2 PSRAD mm,mm 1

PCMPEQB mm,mm 1 PSRAimmD mm,imm8 1

PCMPEQD mm,m64 2 PSRAimmW mm,imm8 1

PCMPEQD mm,mm 1 PSRAW mm,m64 2

PCMPEQW mm,m64 2 PSRAW mm,mm 1

PCMPEQW mm,mm 1 PSRLD mm,m64 2

PCMPGTB mm,m64 2 PSRLD mm,mm 1

PCMPGTB mm,mm 1 PSRLimmD mm,imm8 1

PCMPGTD mm,m64 2 PSRLimmQ mm,imm8 1

PCMPGTD mm,mm 1 PSRLimmW mm,imm8 1

PCMPGTW mm,m64 2 PSRLQ mm,m64 2

PCMPGTW mm,mm 1 PSRLQ mm,mm 1

PMADDWD mm,m64 2 PSRLW mm,m64 2

PMADDWD mm,mm 1 PSRLW mm,mm 1

PMULHW mm,m64 2 PSUBB mm,m64 2

PMULHW mm,mm 1 PSUBB mm,mm 1

PMULLW mm,m64 2 PSUBD mm,m64 2

PMULLW mm,mm 1 PSUBD mm,mm 1

POR mm,m64 2 PSUBSB mm,m64 2

POR mm,mm 1 PSUBSB mm,mm 1

PSLLD mm,m64 2 PSUBSW mm,m64 2

PSLLD mm,mm 1 PSUBSW mm,mm 1

PSLLimmD mm,imm8 1 PSUBUSB mm,m64 2

continued
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PSLLimmQ mm,imm8 1 PSUBUSB mm,mm 1

PSLLimmW mm,imm8 1 PSUBUSW mm,m64 2

PSLLQ mm,m64 2 PSUBUSW mm,mm 1

PSUBW mm,m64 2 PUNPCKLBW mm,m32 2

PSUBW mm,mm 1 PUNPCKLBW mm,mm 1

PUNPCKHBW mm,m64 2 PUNPCKLDQ mm,m32 2

PUNPCKHBW mm,mm 1 PUNPCKLDQ mm,mm 1

PUNPCKHDQ mm,m64 2 PUNPCKLWD mm,m32 2

PUNPCKHDQ mm,mm 1 PUNPCKLWD mm,mm 1

PUNPCKHWD mm,m64 2 PXOR mm,m64 2

PUNPCKHWD mm,mm 1 PXOR mm,mm 1

Table C-2 MMX Technolog y Instruction to Decode r Specifica tion (continued)

Instruct ion # of µ� ops Instruc tion # of µ� ops
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Streaming SIMD Extensions 
Throughput and Latency D

T
2

his appendix presents Table D-1 which lists for each Streaming SIMD 
E

�
xtension the execution port(s), execution unit(s), the latency number of 

cyt cles and the throughput.

Table D-1 Streaming SIMD Extensions Thr oughput  and Latency

Instruct ion Ports Unit s Latency Throughp ut

ADDPS/ 
SUBPS/

Port 1 PFADDER 4 cycles 1 every 2 cycles

CVTSI2SS  Port 1,2 PFADDER/ 
PSHUF,MIU/

4 cycles 1 every 2 cycles

CVTPI2PS/ 

CVTPS2PI

Port 1 PFADDER 3 cycles  1 every cycle

MAXPS/MINPS Port 1 PFADDER 4 cycles 1 every 2 cycles

CMPPS Port 1 PFADDER 4 cycles 1 every 2 cycles

ADDSS/SUBSS/ Port 1 PFADDER 3 cycles 1 every cycle

CVTSS2SI/ 
CVTTSS2SI

Port 1,2 PFADDER, MIU 3 cycles 1 every cycle

MAXSS/MINSS Port 1 PFADDER 3 cycles 1 every cycle

CMPSS Port 1 PFADDER 3 cycles 1 every cycle

COMISS/ 
UCOMISS

Port 1 PFADDER 1 cycle 1 every cycle

MULPS Port 0 PFMULT 5 cycles 1 every 2 cycles

DIVPS/SQRTPS Port 0 PFMULT 36/58 
cycles

1 every 36/58 
cycles

MULSS Port 0 PFMULT 4 cycles 1 every cycle

continued
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DIVSS/SQRTSS Port 0 PFMULT 18/30 
cycles

1 every 18/29 
cycles

RCPPS/ 
RCQRTPS

Port 1 PFROM 2 cycles 1 every 2 cycles

SHUPPS/ Port 1 PFSHUF 2 cycles 1 every 2 cycles

UNPCKHPS/ 
UNPCKLPS

Port 1 PFSHUF 3 cycles 1 every 2 cycles

MOVAPS load: 2
mov: 0  or 1
store: 3 and 4

MIU
FWU,PFSHUF
MIU

load: 4
mov: 1
store: 4

1 every 2 cycles
1 every 1 cycle
1 every 2 cycles

MOVUPS load: 2
store: 3 and 4

MIU 4 cycles
5 cycles

1 every 2 cycles
1 every 3 cycles

MOVHPS/ 
MOVLPS

load: 2
store: 3 and 4

MIU 3 cycles 1 every cycle

MOVMSKPS Port 0 WIRE 1 cycle 1 every cycle

MOVSS Port 0,1 FP, PFSHF 1 cycle 1 every cycle

ANDPS/ORPS/
XORPS

Port 1 PFSHUFF 2 cycles 1 every 2 cycles

PMOVMSKB Port 1 WIRE 1 cycle 1 every cycle

PSHUFW/ 
PEXTRW

Port 1 PFSHUFF 1 cycle
2 cycles

1 every cycle
1 every 2 cycles

PINSRW/(reg, 
mem)

Port 1 PFSHUFF 4 cycles 1 every cycle

PSADW Port 0,1 SIMD 5 cycles 1 every 2 cycles

PMINUB
PMINSW
PMAXUB
PMAXSW

Port 0,1 SIMD 1 cycle 1 every 1/2 cycle

PMULHUW Port 0 SIMD 3 cycles 1 every cycle

MOVNTPS Port 3,4 MIU, DCU 4 cycles 1 every 2 cycles

MOVNTQ Port 3,4 MIU, DCU 3 cycles 1 every cycle

PREFETCH*/ Port 2 AGU/memory 
cluster

2 cycles 1 every cycle

FXRESTOR/ 
FXSAVE

MICORCODE

continued

Table D-1 Streaming SIMD  Extensions Thr oughput and Latency (continued)

Instruct ion Ports Unit s Latency Throug hput
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reaming SIMD Extensions Throughput and Latency D
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LDMXCSR/ 
STMXCSR

MICORCODE

MASKMOVQ/ Port 0,1,3,4 AGU, MIU, FWU 4 cycles 1 every cycle

SFENCE Port 3,4 AGU, MIU 3 cycles 1 every cycle

PAVGB
PAVGW

Port 0,1 SIMD 1 cycle 1 every 1/2 cycle

Table D-1 Streaming SIMD Extensions Thr oughput and Latency (continued)

Instruct ion Ports Unit s Latency Throug hput
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Stack Alignment for 
Streaming SIMD ExtensionsE

T
2

his appendix details on the alignment of the stacks of data for Streaming 
SI

,
MD Extensions.

Stack Frames
T

2
his section describes the stack alignment conventions for both es p-based 

(no
4

rmal), and ebp-based (debug) stack frames. A stack frame is a 
cot ntiguous block of memory allocated to a function for its local memory 
ne� eds. It contains space for the function’s parameters, return address, local 
v7 ariables, register spills, parameters needing to be passed to other functions 
t

p
hat a stack frame may call, and possibly others. It is typically delineated in 
memory�  by a stack frame pointer (esp) t

r
hat points to the base of the frame 

for t
-

he function and from which all data are referenced via appropriate 
of� fsets. The convention on IA-32 is to use the es p register as the stack 
frame p

-
ointer for normal optimized code, and to use ebp in place of es p 

whenJ  debug information must be kept. Debuggers use the ebp register to 
find the information about the function via the stack frame.

It
�

 is important to ensure that the stack frame is aligned to a 16-byte 
bo

F
undary upon function entry to keep local __m128 data, parameters, and 

xm> m register spill locations aligned throughout a function invocation.The 
I

�
ntel C/C++ Compiler for Win32* Systems supports conventions presented 

here help to prevent memory references from incurring penalties due to 
mi� saligned data by keeping them aligned to 16-byte boundaries. In addition, 
t

p
his scheme supports improved alignment for __m64 and � do

�
ubl e type 

da
�

ta by enforcing that these 64-bit data items are at least eight-byte aligned 
(

4
they wil l now be 16-byte aligned). 
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F
9
or variables allocated in the stack frame, the compiler cannot guarantee the 

ba
F

se of the variable is aligned unless it also ensures that the stack frame 
itself is 16-byte aligned. Previous IA-32 software conventions, as 
i

~
mplemented in most compilers, only ensure that individual stack frames are 
4-

�
byte aligned. Therefore, a function called from a Microsoft* -compiled 

function, for example, can only assume that the frame pointer it used is 
4-

�
byte aligned.

Earlier versions of the Intel C/C++ Compiler for Win32 Systems have 
at� tempted to provide 8-byte aligned stack frames by dynamically adjusting 
t

p
he stack frame pointer in the prologue of maQ in  and preserving 8-byte 
a� lignment of the functions it compiles. This technique is limited in its 
a� pplicabilit y for the following reasons:

• Th
2

e maQ in  function must be compiled by the Intel C/C++ Compiler.
• T

2
here may be no functions in the call tree compiled by some other 

cot mpiler (as might be the case for routines registered as callbacks). 
• S

,
upport is not provided for proper alignment of parameters.

The solution to this problem is to have the function’s entry point assume 
on� ly 4-byte alignment. If the function has a need for 8-byte or 16-byte 
al� ignment, then code can be inserted to dynamically align the stack 
ap� propriately, resulting in one of the stack frames shown in Figure E-1.
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As an
N

 optimization, an alternate entry point can be created that can be called 
whenJ  proper stack alignment is provided by the caller. Using call  graph 
prow filing of the VTune™ analyzer, calls to the normal (unaligned) entry 
pow int can be optimized into calls to the (alternate) aligned entry point when 
t

p
he stack can be proven to be properly aligned. Furthermore, a function 
al� ignment requirement attribute can be modified throughout the call graph 
so as to cause the least number of calls to unaligned entry points. As an 
e� xample of this, suppose function F has only a stack alignment requirement 
of 4� , but it calls function G at many call sites, and in a loop. If G’s alignment 
requs irement is 16, then by promoting F’s alignment requirement to 16, and 
mak� ing all calls to G go to its aligned entry point, the compiler can 
minimize the number of times that control passes through the unaligned 

Figur e E-1 Stack Frames Based on Alignme nt Type
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Parameter
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Parameters
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en� try points. Example E-1 and Example E-2 in the following sections 
i

~
llustrate this technique. Note the entry points fo o and fo o. ali gned , the 

latter is the alternate aligned entry point.

Aligned esp-Based Stack Frames

T
2

his section discusses data and parameter alignment and the 
de

�
cl sp ec( al ig n)  extended attribute, which can be used to request 

al� ignment in C and C++ code. In creating esp-based stack frames, the 
cot mpiler adds padding between the return address and the register save area 
as sh� own in Example 3-9. This frame can be used only when debug 
i

~
nformation is not requested, there is no need for exception handling 
support, inlined assembly is not used, and there are no calls to al lo ca  
wJ ithin the function. 

If t
�

he above conditions are not met, an aligned ebp-based frame must be 
usev d. When using this type of frame, the sum of the sizes of the return 
ad� dress, saved registers, local variables, register spill slots, and parameter 
space must be a multiple of 16 bytes. This causes the base of the parameter 
space to be 16-byte aligned. In addition, any space reserved for passing 
pw arameters for stdc al l  functions also must be a multiple of 16 bytes. This 
mean� s that the caller needs to clean up some of the stack space when the 
size of the parameters pushed for a call to a stdc al l  function is not a 
mul� tiple of 16. If the caller does not do this, the stack pointer is not restored 
to

p
 its pre-call value.

I
�
n Example E-1, we have 12 bytes on the stack after the point of alignment 

fro
-

m the caller: the return pointer, ebx  and edx . Thus, we need to add four 
more to the stack pointer to achieve alignment. Assuming 16 bytes of stack 
space are needed for local variables, the compiler adds 16 + 4 = 20 bytes to 
es p, making esp aligned to a 0 mod 16 address.
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Example E-1  Aligned esp-Based Stack Frames

vo� id   _cd ec l fo o (in t k)

{

 in t j;

 f oo:                              / /  See Not
�

e A

      pus h      e bx

      mov       e bx,  e sp

      sub        e sp,  0 x00000008

      and        e sp,  0 xf f f f f ff0

      add        e sp,  0 x00000008

      jmp        c ommon

fo o. al ign ed:

      pus h      e bx

      mov       e bx,  e sp

 c ommon:                          / /  See Not
�

e B

      pus h      e dx

      sub        e sp,  2 0

j = k;

      mov       e dx,  [ ebx + 8]

      mov       [ esp  +  1 6] ,  edx

fo o( 5) ;

      mov       [ esp ],  5

      cal l      f oo. al ig ned

re tu rn  j;

      mov       e ax,  [ esp + 16]

      add        e sp,  2 0

      pop        e dx

      mov       e sp,  e bx

      pop        e bx

      ret

_________________________________________________________________________
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Aligned ebp-Based Stack Frames

In ebp-based frames, padding is also inserted immediately before the return 
a� ddress. However, this frame is slightly unusual in that the return address 
may�  actually reside in two different places in the stack. This occurs 
whenJ ever padding must be added and exception handling is in effect for the 
function. Example E-2 shows the code generated for this type of frame. The 
stack location of the return address is aligned 12 mod 16. This means that 
th

p
e value of ebp  always satisfies the condition ( ebp & 0x 0f ) = = 0x 08. 

In this case, the sum of the sizes of the return address, the previous ebp, the 
e� xception handling record, the local variables, and the spill area must be a 
mul� tiple of 16 bytes. In addition, the parameter passing space must be a 
multiple of 16 bytes. For a call to a st dca ll  function, it is necessary for the 
calt ler to reserve some stack space if the size of the parameter block being 
pw ushed is not a multiple of 16.

Example E-2 Aligned e bp-based Stack Frames

vo� id  _ std ca ll  f oo ( int  k )

{

 in t j;

 fo o:

      pus h      e bx

      mov       eb x,  es p

      s ub       esp,  0x00000008

      a nd       esp,  0x ff ff ff f0

_____________________________________________________________
continued

NOTE.  A. Al� igned entry points assume that parameter block beginnings 
ar� e aligned. This places the stack pointer at a 12 mod 16 boundary, as 
t� he return pointer has been pushed. Thus, the unaligned entry point must 
f

�
orce the stack pointer to this boundary.
            B. Th� e code at the common label assumes the stack is at an 8 mod 
16

�
 boundary, and adds sufficient space to the stack so that the stack 

po� inter is aligned to a 0 mod 16 boundary.
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Example E-2  Aligned ebp-based Stac k Frames (continued)

      add        e sp,  0 x00000008  / /  es p is  (8  mod 1 6)  
//  af te r ad d 

      jmp        c ommon

 f oo. alig ned:

      pus h      e bx             / /  es p is  (8  mod 1 6)
  //  a f t er push

      mov       e bx,  e sp

 co mmon:

      pus h    e bp            //  t hi s sl ot  wi ll  b e 
/ /  u sed fo r dup li ca te  
//  re tu rn  p t

pu� sh     e bp                     / /  es p is  (0  mod 1 6)  
 // af te r pu sh 

                                  / /  (r tn ,eb x, ebp, ebp)

      mo v     eb p,  [e bx  + 4]       / /  f et ch re tu rn  po in te r 
and st ore  

      mov     [e sp  + 4] , ebp   / /  re la ti ve  to  e bp 
   //  ( r t n, ebx,r tn ,e bp)

      mov     eb p,  es p            //  ebp i s ( 0 mod 16 )

     s ub     es p,  28             / /  es p is  (4  mod 1 6)  
    / /  se e No

�
te A

      pus h    e dx                 / /  es p is (0  mod 1 6)
/ /   af te r push

                                / /  th e goal is  t o make
//  esp and ebp ( 0 mod 
//  16 ) he re

j = k;

      mov     edx,  [e bx  +  8 ]     //  k  i s  (0  mod 16) if
//  ca ll er  a l i gned

                                / /  hi s st ack

      mov     [e bp - 16],  e dx   //  J  i s  (0  mod 16)

fo o( 5) ;

      add      e sp,-4             / /  normal  ca ll  s equence
 // to  u nal i gne d entr y

      mov     [ esp], 5

_____________________________________________________________
continued
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    Example E -2 Ali gned ebp- based Stack Frames (continued)

  

      cal l    f oo               / /  fo r st dca ll , ca ll ee 
 //  cl eans  u p sta ck

fo o. al ign ed(5 );

      a dd     es p, -1 6            / /  a l i gned en tr y,  th is  
 / /  sho ul d be a  

/ /  mul ti pl e of  16

      mov     [e sp ], 5

      cal l    f oo. alig ned

      add     es p, 12             / /  se e N
�
ote B

re tu rn  j;

 mov     eax, [e bp-1 6]

 po p     edx

      mov     esp, ebp

      pop      e bp

      mov     esp, ebx

      pop      e bx

      ret      4

}

_____________________________________________________________

NOTE.  A. Here we allow for local variables. However, this value should 
be

�
 adjusted so that, after pushing the saved registers, esp is 0 mod 16.

           B.
�

 J
�
ust prior to the call, esp is 0 mod 16. To maintain alignment, 

esp�  should be adjusted by 16. When a callee uses the stdcall calling 
seq� uence, the stack pointer is restored by the callee. The final addition of 
12

�
 compensates for the fact that only 4 bytes were passed, rather than 16, 

an� d thus the caller must account for the remaining adjustment. 
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Stack Frame Optimizations

Th
2

e Intel C/C++ Compiler provides certain optimizations that may improve 
t

p
he way aligned frames are set up and used. These optimizations are as 
fo

-
llows:

• If a 
�

procedure is defined to leave the stack frame 16-byte-aligned and it 
cat ll s another procedure that requires 16-byte alignment, then the 
cat llee’s aligned entry point is called, bypassing all of the unnecessary 
al� igning code.

• If a static function requires 16-byte alignment, and it can be proven to 
be

�
 called only by other functions that require 16-byte alignment, then 

t
p
hat function will not have any alignment code in it. That is, the 
cot mpiler will not use ebx  to point to the argument block and it will not 
ha

O
ve alternate entry points, because this function will  never be entered 

wiJ th an unaligned frame.

Inlined Assembly and ebx 

When u
/

sing aligned frames, the ebx  register generally should not be 
mod� ified in inlined assembly blocks since ebx  is used to keep track of the 
ar� gument block. Programmers may modify ebx  only if they do not need to 
ac� cess the arguments and provided they save ebx  and restore it before the 
en� d of the function (since es p is restored relative to ebx  in the function’s 
ep� ilog). 

F
9

or additional information on the use of ebx  in inline assembly code and 
ot� her related issues, see the Intel application note AP-833, Data Alignment 
a� nd Programming Issues with the Intel C/C++ Compiler, order number 
24

¡
3872, and AP-589, Sof

¢
tware Conventions for the Streaming SIMD 

Extensions, order number 243873.

CA
£

UTION.  Do not use the ebx  register in inline assembly functions 
t� hat use dynamic stack alignment for double, __m64, and __m128 local 
va¤ riables unless you save and restore ebx  each time you use it. The Intel 
C/C++ Compiler uses the ebx  register to control alignment of variables 
of¥  these types, so the use of ebx , wit¦ hout preserving it, will  cause 
un§ expected program execution.





F-1

The Mathematics
of  Prefetch Scheduling 
Distance F

T
2

his appendix discusses how far away to insert prefetch instructions. It 
presew nts a mathematical model allowing you to deduce a simpli fied 
eq� uation which you can use for determining the prefetch scheduling 
di

�
stance (PSD) for your application. 

For your convenience, the first section presents this simplified equation; the 
second section provides the background for this equation: the mathematical 
mod� el of the calculation.

Simplif ied Equation
A si

N
mplified equation to compute PSD is as follows:

 

whereJ

ps¨ d is prefetch scheduling distance.

Nl
©

ooku p i
~
s the number of clocks for lookup latency. This 
paw rameter is system-dependent. The type of memory 
usev d and the chipset implementation affect its value.

Nx
©

fe r is the number of clocks to transfer a cache-line. This 
paw rameter is implementation-dependent.

N
©

prefª  and Nst are t� he numbers of cache lines to be prefetched and 
stored.

psd« N
¬

l ookup Nxfer Npref­ N
¬

st®+( )⋅+

CPI Ninst
¯⋅

-------------------------------------------------------------------------------=
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CPI i
~
s the number of clocks per instruction. This parameter 
i

~
s implementation-dependent.

Ninst i
~
s the number of instructions in the scope of one loop 
ite

~
ration.

Co
D

nsider the following example of a heuristic equation assuming that 
paw rameters have the values as indicated:

where 60 J corresponds to Nl
©

ookup, 25 to Nxf er , and 1.5 to CPI .

The values of the parameters in the equation can be derived from the 
do

�
cumentation for memory components and chipsets as well as from vendor 

da
�

tasheets. 

Mathemat ical Model for PSD
The parameters used in the mathematics discussed are as follows:

ps¨ d prefetw ch scheduling distance (measured in number of 
ite

~
rations)

il i
~
teration latency

Tc cot mputation latency per iteration with prefetch caches

Tl memory leadoff latency including cache miss latency, 
cht ip set latency, bus arbitration, etc.

CA
£

UTION.  The values in this example are for illu stration only and do 
no° t represent the actual values for these parameters. The example is 
pr� ovided as a “starting point approximation” of calculating the prefetch 
sc� heduling distance using the above formula. Experimenting with the 
i

±
nstruction around the “starting point approximation” may be required 
t

�
o achieve the best possible performance.

psd« 60 25 N
¬

pr­ ef N
¬

st+( )⋅+

1.5 N
¬

inst⋅
-----------------------------------------------------=
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Tb da
�

ta transfer latency which is equal to number of lines 
pew r iteration * line burst latency

Not
²

e that the potential effects of µop reordering are not factored into the 
est� imations discussed.

E
�

xamine Example F-1 that uses the pr� ef et chnt a instruction with a 
prw efetch scheduling distance of 3, that is, psd = 3. The data prefetched in 
iteration i

±
, will actuall y be used in iteration i+

±
3. Tc represents the cycles 

ne� eded to execute to p_lo op  - assuming all the memory accesses hit L1 
whJ ile il  (iteration latency) represents the cycles needed to execute this loop 
wiJ th actually run-time memory footprint. Tc can be determined by 
cot mputing the critical path latency of the code dependency graph. This 
wJ ork is quite arduous without help from special performance 
cht aracterization tools or compilers. A simple heuristic for estimating the Tc 
v7 alue is to count the number of instructions in the critical path and multiply 
t

p
he number with an artificial CPI. A reasonable CPI value would be 
somewhere between 1.0 and 1.5 depending on the quality of code 
scheduling.

Example F-1 Calculating Inse rtion for Scheduling Di stance of 3

to p_lo op:

  pr ef etc hnta  [ edx+e si +32* 3]

  pr ef etc hnta  [ edx*4 +esi +32* 3]

  . . . .  .

  mova ps xmm1, [e dx+ es i]

  mova ps xmm2, [e dx* 4+es i]

  mova ps xmm3, [e dx+ es i+ 16]

  mova ps xmm4, [e dx* 4+es i+ 16]

  . . . .  .

  . . .

  add esi , 32

  cmp esi , ec x

  jl  t op_ lo op

________ ___________ ___________ _____________ ___________
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Me
u

mory access plays a pivotal role in prefetch scheduling. For more 
unv derstanding of a memory subsystem, consider a Streaming SIMD 
Extensions memory pipeline depicted in Figure F-1.

Assume that three cache lines are accessed per iteration and four chunks of 
da

�
ta are returned per iteration for each cache line. Also assume these 3 

acc� esses are pipelined in memory subsystem. Based on these assumptions,
Tb = 3 * 4 = 12 FSB cycles. 

Figur e F-1 Pentium ®
³

 II  and Pent ium III Processors Memor y Pipel ine Sketc h

1 2 3 41
1 2 3 41

1 2 3 41

Tl Tb
´

: L2 l
µ

ookup miss latency

: M
¶

emory page access leadoff latency

: Latency for 4 chunks returned per line2 31 4
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T
·

l v
¸ aries dynamically and is also system hardware-dependent. The static 

v¸ ariants include the core-to-front-side-bus ratio, memory manufacturer and 
memory controller (chipset). The dynamic variants include the memory 
pa¹ ge open/miss occasions, memory accesses sequence, different memory 
t

º
ypes, and so on.

T
·
o determine the proper prefetch scheduling distance, follow these steps 

an» d formulae:

• Op
¼

timize Tc as much as possible
• Use t

½
he following set of formulae to calculate the proper prefetch 

scheduling distance: 

• S
¾

chedule the prefetch instructions according to the computed prefetch 
scheduling distance.

• F
¿

or optimized memory performance, apply techniques described in 
“M emory Optimization Using Prefetch” in Chapter 6.

The following sections explain and illustrate the architectural considerations 
i

À
nvolved in the prefetch scheduling distance formulae above.

No Preloading or Pr efetch

The traditional programming approach does not perform data preloading or 
prefe¹ tch. It is sequential in nature and will  experience stalls because the 
memoryÁ  is unable to provide the data immediately when the execution 
pi¹ peline requires it. Examine Figure F-2.
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As you can see from Figure F-2, the execution pipeline is stalled while 
wÂ aiting for data to be returned from memory. On the other hand, the front 
side bus is idle during the computation portion of the loop. The memory 
acc» ess latencies could be hidden behind execution if data could be fetched 
eÃ arlier during the bus idle time.

 Further analyzing Figure 6-10,

• assu» me execution cannot continue till last chunk returned and
• δ

Ä
f indicates flow data dependency that stalls the execution pipelines

W
Å

ith these two things in mind the iteration latency (il ) is computed as 
follows:

The iteration latency is approximately equal to the computation latency plus 
t

º
he memory leadoff latency (includes cache miss latency, chipset latency, 
b

Æ
us arbitration, and so on.) plus the data transfer latency where

 transfer latency= number of lines per iteration * l ine burst latency. 

Figure F- 2 Execut ion P ipeline , No Preloading or Prefetch

E
Ç
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Ì
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T
·

his means that the decoupled memory and execution are ineffective to 
eÃ xplore the parallelism because of flow dependency. That is the case where 
pr¹ efetch can be useful by removing the bubbles in either the execution 
pi¹ peline or the memory pipeline. 

W
Å

ith an ideal placement of the data prefetching, the iteration latency should 
be

Æ
 either bound by execution latency or memory latency, that is

 il
Ð

 = maximum(Tc, TÑ b).
Ò

Compute Bound (Case:Tc >= T l + Tb
Ó )

F
¿

igure F-3 represents the case when the compute latency is greater than or 
eqÃ ual to the memory leadoff latency plus the data transfer latency. In this 
caÔ se, the prefetch scheduling distance is exactly 1, i.e. prefetch data one 
i

À
teration ahead is good enough. The data for loop iteration i

Ð
 can be 

pr¹ efetched during loop iteration i-
Ð

1, the δ
Ä

f symbol between front-side bus 
an» d execution pipeline indicates the data flow dependency.

The following formula shows the relationship among the parameters:

Figure F-3 Comput e Bound Execution P ipeline

Front-Side Bus

Execution pipeline T
Õ

cÖ

T l Tb
×

Iteration i It
Ø

eration i+1

T
Õ

cÖ

T l Tb
×

E
Ù

xecution cycles

δ
Ú

f
Û
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I
Ü
t can be seen from this relationship that the iteration latency is equal to the 

coÔ mputation latency, which means the memory accesses are executed in 
ba

Æ
ckground and their latencies are completely hidden.

Compute Bound (Case: T l + Tb > TcÝ  > Tb
Ó )

No
Þ

w consider the next case by first examining Figure F-4.

F
¿
or this particular example the prefetch scheduling distance is greater than 

1. Data being prefetched for iteration i
Ð
 wil l be consumed in iteration i+2

Ð
. 

Figure 6-12 represents the case when the leadoff latency plus data transfer 
la

ß
tency is greater than the compute latency, which is greater than the data 

t
º
ransfer latency. The following relationship can be used to compute the 
prefet¹ ch scheduling distance.

Figure F-4 Comput e Bound Execution P ipeline

Execution cycles

Front-Side Bus

Execution pipeline

i

i+1

i+2

i+3

i
à

i+1

i+2

i+3

Tcá

Tcá

Tcá

Tcá

T l
â Tb

ã

T l
â Tb

ã

T l Tb
ã

T l Tb
ã

δ
ä

f
å

δ
ä

f

T
æ

cá

δ
ä

f

i+4
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In consequence, the iteration latency is also equal to the computation 
latency, that is, compute bound program.

Memory Thr oughput Bou nd (Case: Tb
Ó  >= TcÝ )

W
Å

hen the application or loop is memory throughput bound, the memory 
latency is no way to be hidden. Under such circumstances, the burst latency 
i

À
s always greater than the compute latency. Examine Figure F-5.

T
·

he following relationship calculates the prefetch scheduling distance (or 
prefe¹ tch iteration distance) for the case when memory throughput latency is 
greaç ter than the compute latency.

Figur e F-5 Memory Thr oughput Bound P ipeline

i

Execution cycles

Execution pipeline

i+pid

T
è

cé

δ
ê

f

T
è

cé T
è

cé T
è

cé

i+pid+1 i+pid+2 i+pid+3

Front-Side Bus

T
è

l
ë T

è
b

ì

T l Tb
ì

T l
ë Tb

ì

T l Tb
ì

T l
ë Tb

ì

δ
ê

f δ
ê

f δ
ê

f
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Apparently, the iteration latency is dominant by the memory throughput and 
yoî u cannot do much about it. Typically, data copy from one space to another 
space, for example, graphics driver moving data from writeback memory to 
yoî u cannot do much about it. Typically, data copy from one space to another 
space, for example, graphics driver moving data from writeback memory to 
wriÂ te-combining memory, belongs to this category, where performance 
ad» vantage from prefetch instructions will  be marginal.

Example

As an example of the previous cases consider the following conditions for 
coÔ mputation latency and the memory throughput latencies. Assume Tl = 18 
an» d Tb = 8 (in front side bus cycles).

No
Þ

w for the case Tl =18, Tb =8 (2 cache lines are needed per iteration) 
eÃ xamine the following graph. Consider the graph of accesses per iteration in 
eÃ xample 1, Figure F-6.
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T
·

he prefetch scheduling distance is a step function of Tc, the computation 
latency. The steady state iteration latency (il

Ð
)

Ò
 is either memory-bound or 

coÔ mpute-bound depending on Tc if prefetches are scheduled effectively.

The graph in example 2 of accesses per iteration in Figure F-7 shows the 
results for prefetching multiple cache lines per iteration. The cases shown 
are » for 2, 4, and 6 cache lines per iteration, resulting in differing burst 
latencies. (Tl=18, Tb =8, 16, 24).

Figure F- 6 Accesses per  Iteration, Ex ample 1
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In reality, the front-side bus (FSB) pipelining depth is limited, that is, only 
fou

ï
r transactions are allowed at a time in the Pentium® III processor. Hence 

a t» ransaction bubble or gap, Tgð , (gap due to idle bus of imperfect front side 
b

Æ
us pipelining) will be observed on FSB activities. This leads to 

coÔ nsideration of the transaction gap in computing the prefetch scheduling 
di

ñ
stance. The transaction gap, Tgð , must be factored into the burst cycles, Tb, 

for the calculation of prefetch scheduling distance.

The following relationship shows computation of the transaction gap.

where Â Tl i
À
s the memory leadoff latency, cò  is the number of chunks per cache 

l
ß
ine and nó  is the FSB pipelining depth.

Figure F- 7 Accesses per  Iteration, Ex ample  2
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Index
3D transformation algorithms, A-7

4-1-1 order, 1-5

A

absolute difference, A-15
of signed numbers, 4-15
of unsigned numbers, 4-14

absolute value, 4-17

accesses per iteration, F-11, F-12

address alignment, 2-2

address calculations, 2-19

advancing memory loads, A-19

aligned ebp-based frame, E-4, E-6

aligned esp-based stack frames, E-4

alignment, 2-11
coe, 2-11
data, 2-12
rules, 2-11

AoS format, 3-21, A-8

AoS. See array of structures

application performance tools, 7-1

arithmetic logic unit, 1-9

array of structures, A-8

assembly coach, 7-13

assembly coach techniques, 7-13

assembly code for SoA transformation, A-13

automatic masked exception handling, 5-38

automatic processor dispatch support, 7-15

automatic vectorization, 3-13, 3-14

B

blending of code, 2-10

branch misprediction ratio, 2-8

Branch Prediction, 1-5, 2-1, 2-2

branch target buffer, 1-5

BTB misses, 7-10

BTB. See branch target buffer

C

cache blocking techniques, 6-18

cache hierarchy, 7-6

cache level, 6-2

cache management
simple memory copy, 6-28
video decoder, 6-27
video encoder, 6-27

cache misses, 2-2

cache performance, 7-5

cacheabili ty control instructions, 6-9

calculating insertion for scheduling distance, F-3

call graph profiling, 7-7
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Call Graph view, 7-7

call information, 7-9

changing the rounding mode, 2-26

checking for MMX technology support, 3-2

checking for Streaming SIMD Extensions 
support, 3-3

child function, 7-9

classes (C/C++), 3-12

clearing registers, 2-19

clipping to an arbitrary signed range, 4-17

clipping to an arbitrary unsigned range, 4-19

code coach, 7-11, 7-13

code optimization advice, 7-11, 7-13

code optimization options, 7-14

coding methodologies, 3-8

coding techniques, 3-7
absolute difference of signed numbers, 4-15
absolute difference of unsigned numbers, 

4-14
absolute value, 4-17
clipping to an arbitrary signed range, 4-17
clipping to an arbitrary unsigned range, 4-19
generating constants, 4-20
interleaved pack with saturation, 4-9
interleaved pack without saturation, 4-11
non-interleaved unpack, 4-12
signed unpack, 4-8
simplif ied clipping to an arbitrary signed 

range, 4-19
unsigned unpack, 4-8

coherent requests, 6-8

command-line options, 7-14
automatic processor dispatch support, 7-15
floating-point arithmetic precision, 7-17
inline expansion of library functions, 7-17
loop unrolling, 7-17
prefetching, 7-16
rounding control, 7-17
targeting a processor, 7-15
vectorizer switch, 7-16

comparing register values, 2-19

compiler intrinsics
_mm_load, 6-26
_mm_prefetch, 6-26
_mm_stream, 6-26

compiler plug-in, 7-14

compiler-supported alignment, 3-18

complex FIR filter, A-21

complex FIR filter algorithm
reducing non-value-added instructions, A-21
unrolling the loop, A-21
using a SIMD data structure, A-21

complex instructions, 1-4, 2-17

computation latency, F-8

computation-intensive code, 3-7

compute bound, F-7, F-8

conditional branches, 1-7, 2-5

conditional moves emulation, 5-31

converting code to MMX technology, 3-4

counters, 7-6

CPUID instruction, 3-2

CPUID usage, 4-2, 5-5

D

data alignment, 3-15, 5-5

data arrangement, 5-6

data cache unit, 2-12

data copy, F-10

data deswizzling, 5-13, 5-15

data swizzling, 5-10

data swizzling using intrinsics, 5-11

DCU. See data cache unit

debug symbols, 7-9

decoder, 2-15

decoder specifications, C-1

decoders, 1-4

decoupled memory, F-7

dependency chains, A-9
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divide instructions, 2-20

dynamic assembly analysis, 7-10

dynamic branch prediction, 2-2, 2-3

dynamic prediction, 1-6

E

EBS. See event-based sampling

eight-bit operands, 2-18

eliminating branches, 2-5, 2-7, 2-8

eliminating unnecessary micro-ops, A-20

EMMS instruction, 4-3, 4-5, 4-6, 5-4

EMMS schedule, 5-27

epilog sequences, 2-20

event-based sampling, 7-4

executing instructions out-of-order, 5-28

execution unit, D-1

extract word instruction, 4-22

F

FIR filter algorithm, A-17
advancing memory loads, A-19
minimizing cache pollution on write, A-20
minimizing pointer arithmetic, A-20
parallel multiplications, A-17
prefetch hints, A-20
reducing data dependency, A-17
reducing register pressure, A-17
scheduling for the reoder buffer, A-18
separating memory accesses from 

operations, A-19
unrolling the loop, A-19
wrapping the loop around, A-18

fist instruction, 2-25

fldcw instruction, 2-26

floating-point applications, 2-20

floating-point arithmetic precision options, 7-17

floating-point code
improving parallelism, 2-21
loop unrolling, 2-28
memory access stall information, 2-24
operations with integer operands, 2-30
optimizing, 2-21
transcendental functions, 2-31

floating-point execution unit, 1-9

floating-point operations with integer operands, 
2-
ü

30

floating-point stalls, 2-29

flow dependency, 6-4, F-7

flush to zero, 5-42

forwarding from stores to loads, 5-31

front-end pipeline, 1-4

fstsw instruction, 2-31

FXCH instruction, 2-23

G

general optimization techniques, 2-1
branch prediction, 2-2
dynamic branch prediction, 2-2
eliminate branches, 2-6
eliminating branches, 2-5
static prediction, 2-3

generating constants, 4-20

H

hiding one-clock latency, 2-29

horizontal computations, 5-18

hotspots, 3-6, 7-10, 7-11

I

incorporating prefetch into code, 6-23

increasing bandwidth of memory fills, 4-32

increasing bandwidth of video fills, 4-32
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indirect branch, 2-5

inline assembly, 4-5

inline expansion of library functions option, 7-17

inlined assembly blocks, E-9

inlined-asm, 3-10

in-order issue front end, 1-2

in-order retirement, 1-3

insert word instruction, 4-22

instruction fetch unit, 1-5

instruction prefetch, 2-3

instruction prefetcher, 1-4

instruction scheduling, 4-34

instruction selection, 2-16

integer and floating-point multiply, 2-30

integer divide, 2-20

integer-intensive application, 4-1, 4-2

Intel Performance Library Suite, 7-1

interaction with x87 numeric exceptions, 5-41

interleaved pack with saturation, 4-9

interleaved pack without saturation, 4-11

interprocedural optimization, 7-17

IPO. See interprocedural optimization

L

large load stalls, 2-25

latency, 1-3, 2-29, 6-1

latency number of cycles, D-1

lea instruction, 2-17

loading and storing to and from the same DRAM 
page, 4-32

loop blocking, 3-25

loop unrolling, 2-28

loop unrolling option, 7-17

loop unrolli ng. See unrolli ng the loop.

M

macro-instruction, 2-14

memory access stall information, 2-24

memory bank conflicts, 6-25

memory O=optimization U=using P=prefetch, 
6-
ý

10

memory optimization, 4-27

memory optimizations
loading and storing to and from the same 

DRAM
þ

 page, 4-32
partial memory accesses, 4-28
using aligned stores, 4-33

memory performance, 3-20

memory reference instructions, 2-19

memory throughput bound, F-9

micro-ops, 1-2

minimize cache pollution on write, A-20

minimizing cache pollution, 6-5

minimizing pointer arithmetic, A-20

minimizing prefetches number, 6-15

misaligned accesses event, 2-13

misaligned data, 2-12

misaligned data access, 3-15

misalignment in the FIR filter, 3-16

mispredicted branches, 1-6

missed cache access, 7-10

mixing MMX technology code and 
flo
ÿ

ating-point code, 5-3

mixing SIMD-integer and SIMD-fp instructions, 
4-
�

6

modulo 16 branch, 1-4

modulo scheduling, 5-25

motion estimation algorithm, A-14

motion-error calculation, A-15

move byte mask to integer, 4-24

movntps instruction, A-20

MOVQ Instruction, 4-32

multiply instruction, 2-17
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N

new SIMD-integer instructions, 4-21
extract word, 4-22
insert word, 4-22
move byte mask to integer, 4-24
packed average byte or word), 4-27
packed multiply high unsigned, 4-25
packed shuffle word, 4-25
packed signed integer word maximum, 4-23
packed signed integer word minimum, 4-23
packed sum of absolute differences, 4-26
packed unsigned integer byte maximum, 

4-23
packed unsigned integer byte minimum, 4-24

Newton-Raphson
approximation, A-9
formula, A-2
iterations, 5-2, A-2

Newton-Raphson method, A-2, A-3
inverse reciprocal approximation, A-5
reciprocal instructions, A-2
reciprocal square root operation, A-3

non-coherent requests, 6-8

non-interleaved unpack, 4-12

non-temporal store instructions, 6-5

non-temporal stores, 6-25

numeric exceptions, 5-36
automatic masked exception handling, 5-38
conditions, 5-36
flush to zero, 5-42
interaction with x87, 5-41
priority, 5-37
unmasked exceptions, 5-39

O

optimization of upsampling algorithm, A-16

optimized algorithms, A-1
3D Transformation, A-7
FIR filter, A-17
motion estimation, A-14

Newton-Raphson method with the reciprocal 
instru
�

ctions, A-2
upsampling signals, A-15

optimizing cache utilization
cache management, 6-26
examples, 6-6
non-temporal store instructions, 6-5
prefetch and load, 6-4
prefetch Instructions, 6-3
prefetching, 6-3
SFENCE instruction, 6-6
streaming, non-temporal stores, 6-6

optimizing floating-point applications
benefits from SIMD-fp instructions, 5-3
conditional moves, 5-31
copying, shuffling, 5-17
CPUID usage, 5-5
data alignment, 5-5
data arrangement, 5-6
data deswizzling, 5-13
data swizzling, 5-10
data swizzling using intrinsics, 5-11
EMMS instruction, 5-4
horizontal ADD, 5-18
modulo scheduling, 5-25
overlapping iterations, 5-27
planning considerations, 5-2
port balancing, 5-33
rules and suggestions, 5-1
scalar code, 5-3
schedule with the triple/quadruple rule, 5-24
scheduling avoid RAT stalls, 5-31
scheduling instructions, 5-22
scheduling instructions out-of-order, 5-28
vertical versus horizontal computation, 5-6

optimizing floating-point code, 2-21

out-of-order core, 1-2, 1-3

overlapping iterations, 5-27

P

pack instruction, 4-11
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pack instructions, 4-9

packed average byte or word), 4-27

packed multiply high unsigned, 4-25

packed shuffle word, 4-25

packed signed integer word maximum, 4-23

packed signed integer word minimum, 4-23

packed sum of absolute differences, 4-26

packed unsigned integer byte maximum, 4-23

packed unsigned integer byte minimum, 4-24

pairing, 7-9

parallel multiplications, A-17

parallelism, 1-7, 3-7, F-7

parameter alignment, E-4

parent function, 7-9

partial memory accesses, 4-28

partial register stalls, 2-1, 2-8

PAVGB instruction, 4-27

PAVGW instruction, 4-27

penalties, 7-9

performance counter events, 7-4

Performance Library Suite, 7-18
architecture, 7-19
Image Processing Library, 7-19
Image Processing Primitives, 7-19
Math Kernel Library, 7-19
optimizations, 7-20
Recognition Primitives Library, 7-18
Signal Processing Library, 7-18

performance-monitoring counters, B-1

performance-monitoring events, B-2

PEXTRW instruction, 4-22

PGO. See profile-guided optimization

PINSRW instruction, 4-22

PLS. See Performance Library Suite

PMINSW instruction, 4-23

PMINUB instruction, 4-24

PMOVMSKB instruction, 4-24

PMULHUW instruction, 4-25

port balancing, 5-31, 5-33

predictable memory access patterns, 6-4

prefetch, 1-4

prefetch and cacheability Instructions, 6-2

prefetch and loadiInstructions, 6-4

prefetch concatenation, 6-13, 6-14

prefetch hints, A-20

prefetch instruction, 6-1, A-8, A-15

prefetch instruction considerations, 6-12
cache blocking techniques, 6-18
concatenation, 6-13
memory bank conflicts, 6-25
minimizing prefetches number, 6-15
no preloading or prefetch, F-5
prefetch scheduling distance, F-5
scheduling distance, 6-12
single-pass execution, 6-23
single-pass vs. multi-pass, 6-24
spread prefetch with computatin 

instructions, 6-16
strip-mining, 6-21

prefetch instructions, 6-4

prefetch scheduling distance, 6-12, F-5, F-7, F-9

prefetch use
flow dependency, 6-4
predictable memory access patterns, 6-4
time-consuming innermost loops, 6-4

prefetching, 7-16, A-9, A-15

prefetching concept, 6-2

prefetchnta instruction, 6-20

prefixed opcodes, 2-2, 2-16

profile-guided optimization, 7-18

prolog sequences, 2-20

PSADBW instruction, 4-26

psadbw instruction, A-14

PSHUF instruction, 4-25

R

reciprocal instructions, 5-2
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reducing data dependency, A-17

reducing non-value-added instructions, A-21

reducing register pressure, A-17

register viewing tool, 7-2, 7-21
register data, 7-21

return stack buffer, 1-6

rounding control option, 7-17

RVT. See register viewing tool

S

sampling, 7-2
event-based, 7-4
time-based, 7-3

scheduling for the reorder buffer, A-18

scheduling for the reservation station, A-18

scheduling instructions, 5-22

scheduling to avoid RAT stalls, 5-31

scheduling with the triple-quadruple rule, 5-24

separating memory accesses from operations, 
A-19

SFENCE Instruction, 6-6

short opcodes, 2-17

signed unpack, 4-8

SIMD instruction port assignments, 4-7

SIMD integer code, 4-1

SIMD. See single-instruction, multiple data.

SIMD-floating-point code, 5-1

simple instructions, 1-4

simple memory copy, 6-28

simplified 3D geometry pipeline, 6-10

simplif ied clipping to an arbitrary signed range, 
4-19

single-instruction, multiple-data, 3-1

single-pass versus multi-pass execution, 6-23

smoothed upsample algorithm, A-15

SoA format, 3-21, A-8

SoA. See straucture of arrays.

software pipelining, A-18

software write-combining, 6-25

spread prefetch, 6-17

Spreadsheet, 7-7

stack alignment, 3-16

stack frame, E-2

stack frame optimization, E-9

stall condition, B-1

static assembly analyzer, 7-10

static branch prediction algorithm, 2-4

static code analysis, 7-9

static prediction, 1-6, 2-3

static prediction algorithm, 2-3

streaming non-temporal stores, 6-6

streaming stores, 6-28
approach A, 6-7
approach B, 6-7
coherent requests, 6-8
non-coherent requests, 6-8

strip-mining, 3-23, 3-25, 6-21, 6-22

structure of arrays, A-8

sum of absolute differences, A-15

swizzling data. See data swizzling.

T

targeting a processor option, 7-15

TBS. See time-based sampling

throughput, 1-3, D-1

time-based sampling, 7-2, 7-3

time-consuming innermost loops, 6-4

TLB. See transaction lookaside buffer

transaction lookaside buffer, 6-28

transcendental functions, 2-31

transfer latency, F-7, F-8

transposed format, 3-21

transposing, 3-21
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triple-quadruple rule, 5-24

tuning application, 7-2

U

unconditional branch, 2-5

unmasked exceptions, 5-39

unpack instructions, 4-12

unrolling the loop, A-19, A-21

unsigned unpack, 4-8

upsampling, A-15

using aligned stores, 4-33

using MMX code for copy or shuffling functions, 
5-17

V

vector class library, 3-12

vectorization, 3-7

vectorized code, 3-13

vectorizer switch options, 7-16

vertical versus horizontal computation, 5-6

View by Call Sites, 7-7, 7-9

VTune analyzer, 2-10, 3-6, 7-1

VTune Performance Analyzer, 3-6

W

wrapping the loop around, A-18

write-combining buffer, 6-26

write-combining memory, 6-26


