Intel® Ar chitecture
Optimization

Refeence Manual

Copyright © 1998, 1999 Intel Corporation
All Rights Reserved

Issued in U.S.A.

Order Number: 245127-001

Intel® Architecture
Optimization
Reference Manual

Order Number: 730795-001

Revision Revisi on His tory

Date

001 Documents Streaming SIMD Extensions optimization

techniques for Pentium® Il and Pentium IIl processors.

02/99

Information in this document is provided in connection with Intel produds. No license express or inplied, by esbppel
or atherwise, to any intellectud property rights is granted by this doaument. Except as provided in Intel's Terms and Con
ditionsof Sde for sudh products, Intel assunes no liability whatsoever, and Intel disclaims any expressor implied war-
ranty, relating tosde ard/or use ofintel productsincluding liahlity or wararties rdating to fitnessfor a paticular
pumose merchantabil ity, or infringenent of anypatent, copyright or other intellectud propety right. Intel products are
notintended for usein medical, life saving, or life susténing applications.

This Intel® Architecture Optimization manual as well asthe software desaibedin it is furnishedunde licenseand may
only beused or copiedin accordance with the tams of the license. The information inthis manud is furnished for infor-
mational use oty, is subgd to change without notice, and should notbe ®nstued as acommitment by Intel Corpora-
tion. Intel Comordion assunes norespansibility or liability for any errors or inaccuracies that may appear in this
doaument or any software that may be provided in asscciation with this doawment.

Except as pemitted by sut license no part of this doaiment may bereproduced, stored in aretrieval sysem, or trans-
mitted in any form or by ary means without the expresswritten cansent of Intel Corporation.

Intel may make changes to speifications anl praduct desciiptions atany time, without notice.
* Third-paty brands aml nanes arethe prgperty of their respective owners.
Copyright © Intel Corporation 1998 1999.

Contents

Intr oduction
Tuning Your Applicationeeveiiiiiiiiiiiiee e XVii
About This Manual............ccooiiiiiiiii e, XVili
Related Documentationcooevvvveieiiiiiieeeeee e XiX
Notational ConveNtioNS.........coooeeviiiiiiiiee e, XX

Chapter 1 Processor Architecture Overview

The Processors’ Execution Architecture.........ccccoeeevvvieeeeeenn. 1-1
The Pentium® Il and Pentium Ill Processors Pipeline....... 1-2
The In-order Issue Front Endccoooovvviiiiiiiiiiineeeeen, 1-2
The Out-of-order Core.......ooocovviiiiiiiiie e, 1-3
In-Order Retirement Unit..........coooeevviieiiiiiieeeeee e 1-3
Front-End Pipeline Detailccoooevvviiiiiiin e, 1-4
Instruction Prefetcher ..o, 1-4
DECOAEISo 1-4
Branch Prediction OVervieW..........cccoeeevvvieeeeienieeeennnnn. 1-5
Dynamic Predictioncccoevvvviiiii e 1-6
Static PrediCtionocveviiiiiiieeee e 1-6
Execution Core Detailccovveeieiiiiiiiiiiiiii e 1-7
Execution Units and POrts........c..cccvveeieiiivie e, 1-9
Caches of the Pentium Il and Pentium Il
PrOCESSOIS .. i 1-10
Store BUFfErs ..., 1-11

Intel Architecture Optimization Reerence Manual

Chapter 2

Streaming SIMD Extensions of the Pentium Il Processor... 1-12

Single-Instruction, Multiple-Data (SIMD)...........c.cccveeeeen. 1-13
NEeW Data TYPES ..uuu it ee et e e 1-13
Streaming SIMD Extensions Registers..........cccccvvvveeeenn. 1-14
MMX™ TeChNOIOgYcuuvuiiiiieeeiieeiice e ee e 1-15

General Optimi zation Guide lines

Integer Coding Guidelinesevvvieeiiiiiiiiii e 2-1
Branch PrediCtioncccooiiii 2-2
Dynamic Branch PrediCtion...........cccccveeeiiiiiiiiiiieie e 2-2
Static Predictioncccccci 2-3
Eliminating and Reducing the Number of Branches 2-5
Performance Tuning Tip for Branch Prediction.................. 2-8
Partial Register Stallsooviiiiiiiiiiiiieeeee s 2-8
Performance Tuning Tip for Partial Stalls......................... 2-10
Alignment Rules and Guidelines............ccccvvvieeeieiiiiiiinnennn. 2-11
COdE i 2-11
DATA ..eeieiiie e e e eee 2-12
Data Cache Unit (DCU) Split..........ccoevevvvviiiiiiieenreennns 2-12
Performance Tuning Tip for Misaligned Accesses...... 2-13
Instruction Schedulingcccoviiiiiiiic e, 2-14
Scheduling Rules for Pentium Il and Pentium 111
PrOCESSOIS. .. e 2-14
Prefixed OpCodes.........coovviiiiiiiiiiiecceeci e 2-16
Performance Tuning Tip for Instruction Scheduling......... 2-16
INStruction Selection ..o 2-16
The Use of lea INStruCtioncccccoemviniiiniinniiiniinnnnnns 2-17
Complex INSIFUCLIONSvvieiiecicerecee e 2-17
ShOrt OPCOAESvviiiiieeiii e 2-17
8/16-bit OPErandsccceeveeeiiiiiiiiiiiie e e 2-18
Comparing Register Valuesoccvvveveeieiiiiiiiiiiieeeen, 2-19
Address Calculationsccccooeiiuiiiiiiiie 2-19

Contents

Clearing @ REQISterccoeeeieieiiiie e 2-19
INteger DIVIAEoooviiiiiiiiiieee e 2-20
Comparing with Immediate Zerocccccvvvveiiieeveennnns 2-20
Prolog SEQUENCEScccoiiiiiiiiiieeee et 2-20
EpPIlog SEQUENCESccevviiiiii et 2-20
Improving the Performance of Floating-point
APPICALIONS ... 2-20
Guidelines for Optimizing Floating-point Code............... 2-21
Improving Parallelismccccceeiiiiiiiiee 2-21
Rules and Regulations of the fxch Instruction................ 2-23
MemOry OPErandS.........coovcvuririeiieeiiiiiiieee e e e 2-24
Memory Access Stall Information.............ccceevvvviinineenn. 2-24
Floating-point to Integer Conversionccccceeeeeeeeenn. 2-25
(IoToT o U] £0] | 1] o [2-28
Floating-Point StallS............oooiiiiiic 2-29
Hiding the One-Clock Latency of a
Floating-Point StOre..........ccvvevvieiiiiieee e 2-29
Integer and Floating-point Multiply................cceeevien. 2-30
Floating-point Operations with Integer Operands...... 2-30
FSTSW INSIrUCtiONSccooiiiieiiiieiee 2-31
Transcendental FUNCLIONS..........ccooevciieiiine 2-31

Chapter 3 Coding f or SIMD Architect ures
Checking for Processor Support of Streaming SIMD

Extensions and MMX Technology.........cccccccvvviiiiiieevecvinnnns 3-2
Checking for MMX Technology Supportcccccceeveinineee. 3-2
Checking for Streaming SIMD Extensions Support.......... 3-3

Considerations for Code Conversion to SIMD

Programmingcoeeeooiiiiiiii e 3-4
Identifying HOISPOLSvuvveiii e 3-6
Determine If Code Benefits by Conversion to

Streaming SIMD EXtensionsccceevvvvviiiiieiiieeeeeieenns 3-7
Coding TEChNIQUES.......uiiiiiieiiiiiiie e 3-7

Intel Architecture Optimization Rderence Manual

Chapter 4

Vi

Coding MethodologIEScoviiieiiiieeicc e, 3-8
ASSEMDIY ..o 3-10
INEFINSICS ..ttt ee e 3-11
ClaSSES ...ooeeieeeeeeeeeee 3-12
Automatic Vectorization.............cceeveeeeeiieiiiiiiiiiininennn. 3-13

Stack and Data AlIgNMENtccooviiiiiiiiiieeieee e 3-15

Alignment of Data Access Patternsccccoeeeevvveevvnnnnn. 3-15

Stack Alignment For Streaming SIMD Extensions.......... 3-16

Data Alignment for MMX Technologyccccvevvvvinnnnnnn. 3-17

Data Alignment for Streaming SIMD Extensions 3-18
Compiler-Supported Alignment.........cccccceeeeiiieevreennnns 3-18

Improving Memory Utilizationcccooeiiviiiieiieeiniiiien, 3-20

Data Structure LayouUtceveeeeieiiiiiiiii e eeaens 3-21

SP MINING .« 3-23

[oTo] o = (o To3 (] o PSP 3-25

Tuning the Final Applicationcccccviiiiiiiiiiieeeniie 3-28

Using SIMD Integer Inst ructions

General Rules on SIMD Integer Code.......cccoovveevvivviiiiiinnnnnn. 4-1
Planning Considerations..............cevveeeriiiiiiiiiiieeeee e 4-2
CPUID Usage for Detection of Pentium Il Processor
SIMD Integer INStrUCLIONS..........ceiiieieieiiiiie e 4-2
Using SIMD Integer, Floating-Point, and MMX Technology
INSTTUCTIONS ... 4-2
Using the EMMS INSErUCtionc..vvvvveeeeiiniiiiiiiieeeeeee 4-3
Guidelines for Using EMMS Instructionccceeevuee. 4-5
Data AlIGNMENToooiiiiiiiie e 4-6
SIMD Integer and SIMD Floating-point Instructions 4-6
SIMD Instruction Port ASSIgNMENTSccceeeriniiiiirereeeeennn. 4-7
Coding Techniques for MMX Technology SIMD Integer
INSITUCTIONS .. 4-7
Unsigned UNPacK............ueeiiieeiiiiiiiiiieeee e 4-8
Signed UnpackK.........ceiiiie e 4-8

Contents

Interleaved Pack without Saturationccooeeeeinne 4-11
Non-Interleaved UnNpack...........ccccoovviiiirieiieiniiiiiieeeen 4-12
Complex Multiply by a Constant............cccoevvvvieiiineeeene. 4-14
Absolute Difference of Unsigned Numbers 4-14
Absolute Difference of Signed Numbersccccccuee.. 4-15
Absolute Value..........cccooe i 4-17
Clipping to an Arbitrary Signed Range [high, low].......... 4-17
Clipping to an Arbitrary Unsigned Range [high, low]...... 4-19
Generating ConstantS..........cceevvieeiiveeiiice e 4-20
Coding Techniques for Integer Streaming SIMD

(=] 0157 0] £ PP 4-21
EXIract WOrd.........uuuuiiiiiiiiiiiiiiiiiieieieieieieeee e 4-22
INSEIt WOKd......ooeiiiiiiieee 4-22
Packed Signed Integer Word Maximumccee..... 4-23
Packed Unsigned Integer Byte Maximum....................... 4-23
Packed Signed Integer Word Minimumc.ccccceeee... 4-23
Packed Unsigned Integer Byte Minimum...............c........ 4-24
Move Byte Mask to Integer.........cceevvvceeiiiiiieeieecein, 4-24
Packed Multiply High Unsigned............ccccccoeeiiiiiiiinneenn. 4-25
Packed Shuffle Word ... 4-25
Packed Sum of Absolute Differencesccccccccvvvevveenen.. 4-26
Packed Average (Byte/Word).........cccooevvieeiiiieeiiiiinineeeen, 4-27
Memory OptiMIZAtiONSc..vvviieeieeeeiie e 4-27
Partial Memory ACCESSES.....cccuvvvueviiiiiieeeeeeeerieien e 4-28

Instruction Selection to Reduce Memory Access Hits.... 4-30
Increasing Bandwidth of Memory Fills and Video Fills... 4-32
Increasing Memory Bandwidth Using the MOVQ

INSEIUCHION ..o 4-32
Increasing Memory Bandwidth by Loading and

Storing to and from the Same DRAM Page............. 4-32
Increasing the Memory Fill Bandwidth by Using

AlIgnNed StOreSooiiii i 4-33

Vii

Intel Architecture Optimization Rderence Manual

viii

Chapter 5

Use 64-Bit Stores to Increase the Bandwidth

tO VIAEO ... 4-33
Increase the Bandwidth to Video Using Aligned
SEOIES. .o, 4-33
Scheduling for the SIMD Integer Instructionsc......... 4-34
Scheduling RUIESoovevii 4-34

Optimi zing Floating-point Applications

Rules and SUQQESHIONS.......cuiiiiiiiiiiiiiie e 5-1
Planning ConsiderationsS...........cccovvvvvviiiiiie e e ee e 5-2
Which Part of the Code Benefits from SIMD
Floating-point INStruCtionS?c.ccvvvveveeeiiiiiiiiieeeeeeeee 5-3
MMX Technology and Streaming SIMD Extensions
Floating-point Codecceeiiiiiiiiiiicee e 5-3
Scalar Code OptiMIZationccooveiviiiieeeeniiiiiieeeeenn 5-3
EMMS Instruction Usage Guidelines............ccoevvevvvvvnnnnnnn. 5-4
CPUID Usage for Detection of SIMD Floating-point
1Y] o] oo & AP PR 5-5
Data AlIGNMENTcoooiiiiiiiiieee e 5-5
Data Arrangement.........coviiieiiieeeeie e e 5-6
Vertical versus Horizontal Computation 5-6
Data SWIZZIING.......ooiiiiiiiiieiee e 5-10
Data DesWiIzzIiNg.......cccuvvvieeieeeiiiiiee e 5-13
Using MMX Technology Code for Copy or Shuffling
FUNCHIONS ... 5-17
Horizontal ADDccoooiiiiiiiee e 5-18
SCheduling ...cooo o 5-22
Scheduling with the Triple-Quadruple Rule.................... 5-24
Modulo Scheduling (or Software Pipelining) 5-25
Scheduling to Avoid Register Allocation Stalls................ 5-31
Forwarding from Stores to Loads.........ccccceveeveevvriviennnnnnn. 5-31
Conditional Moves and Port Balancing............cccccevvvivinnnen. 5-31
Conditional MOVES..........coooiiiiiiiiii, 5-31

Contents

Port BalanCingccuuuieeiiiiiiiieecee e 5-33
Streaming SIMD Extension Numeric Exceptions................ 5-36
EXCePtion Priorityuuveiiieeieieieecin e 5-37
Automatic Masked Exception Handlingcccccccecee. 5-38
Software Exception Handling - Unmasked Exceptions .. 5-39
Interaction with x87 Numeric Exceptionscccco..... 5-41
Use of CVITPS2PI /EVITSS2SI Instructions 5-42
FIUSh-t0-Zero MOdeceveviieiiiiiiiieieieiieeie e 5-42

Chapter 6 Optimi zing Cac he Utiliza tion for Pentium 1ll Processors

Prefetch and Cacheability Instructions..............coeeevvvvvivvnnnnnn. 6-2
The Prefetching ConCept..........oooiiviiiiiieieiiiiiiieeeeee s 6-2
The Prefetch INStrucCtions..........ccccuvuviviiiiiiiiiiiiieiceeeeeeeeeenn 6-3
Prefetch and Load InStructions.........ccccccevvvvviveiieeiieneeee. 6-4
The Non-temporal Store Instructionsccccccceeeveeeeenn. 6-5
The sfence INStruction ..., 6-6
Streaming Non-temporal Stores..........cccvvvvvviiiiiieeeeeeeennnn, 6-6

Coherent REQUESTES.......cociiiiiiiiiiiiii e 6-8
Non-coherent REQUESES..........coovvviiiiiiiieeceeecee e 6-8
Other Cacheability Control Instructions............cccccceeeueee. 6-9

Memory Optimization Using Prefetch........cccccccooviiiiiiininnnnnn. 6-10
Prefetching Usage Checklistccccvvviiiiiiiiiiiiienneenn 6-12
Prefetch Scheduling Distancecccccvvvvviiiiiinineeenn, 6-12
Prefetch Concatenationeeeveeevveveiiiiiieiieieieeeieeee, 6-13
Minimize Number of Prefetches 6-15
Mix Prefetch with Computation Instructions 6-16
Prefetch and Cache Blocking Techniques...................... 6-18
Single-pass versus Multi-pass Execution........................ 6-23
Memory Bank Conflictscccvevviiiiiii e, 6-25
Non-temporal Stores and Software Write-Combining 6-25
Cache Managementcoooeuiieiii e eeeeeeecce e e e e e 6-26

Video ENCOUENcoooiieei e 6-27

Intel Architecture Optimization Rderence Manual

Vide0 DECOETuviiiiiiiiiiiiiiiiieeieeeieeee et 6-27
Conclusions from Video Encoder and Decoder
Implementationccccooriiiiiiiiiee e 6-28
Using Prefetch and Streaming-store for a
Simple Memory COopY.......cuveeeeriniiimiiieeee e 6-28
TLB Primingcoovvieiiiiiiie e 6-29
Optimizing the 8-byte Memory Copyccccvvveeeeennne 6-29

Chapter 7 Application P erformance Tools

VTune™ Performance Analyzer........ccccccoieiiieiiiieiiiiiiineeeeeeees 7-2
Using Sampling Analysis for Optimization 7-2
Time-based Samplingcccveviviiiiiiice e, 7-2
Event-based Samplingcccccoviiiiiiiiiii 7-4
Sampling Performance Counter Eventscccc....... 7-4

Call Graph Profiling........ccuveiiiiiiiii e 7-7
Call Graph Windowcoiiiiiiiiiiieiie e 7-7
Static Code ANAIYSIScooiiiiiiiiiiieee e 7-9
Static Assembly AnalysSisccccvveviviiiiiiieeeeece, 7-10
Dynamic Assembly Analysisccccccceeriiiiiiiiienneeen. 7-10
Code Coach Optimizations...........ccccvveeieieeeveeeeiiiinn, 7-11
Assembly Coach Optimization Techniques................. 7-13

Intel Compiler PlUg-in ..o 7-14
Code Optimization OPLioNScccvvvrreeeeeeriiiiiiieeeenn. 7-14
Interprocedural and Profile-Guided Optimizations 7-17

Intel Performance Library SUiteccccoooiiiiiiiiieeinnniiiene. 7-18
Benefits SuUmMmary..........ooouiieiiieeeeieeece e, 7-19
Libraries Architecture ..., 7-19
Optimizations with Performance Library Suite 7-20
Register Viewing TOOI (RVT) ...ccoiiiiiiiiiiiiiieeeieiiiiiieee e 7-21
Register Data@........oooovvieiiiiiiii e 7-21
Disassembly Data...........uuuvvieeiiiiiiiiiiiiece e 7-21

Contents

Appendix A Optimi zation of Some K ey Algorithms for the
Pentium I Il Processors

Newton-Raphson Method with the Reciprocal Instructions... A-2

Performance Improvementscccooovcvvvveieeeeeniisciiiieeenn. A-3
Newton-Raphson Method for Reciprocal Square Root A-3
Newton-Raphson Inverse Reciprocal Approximation A-5
3D Transformation Algorithms.............ccc, A-7
Aos and SoA Data StruCturesoooeeeeeeeeeeeieieeee e A-8
Performance Improvementscccccevveveevvveeeiiiiiin e A-8
SO e A-8
PrefetChing......cooo e A-9
Avoiding Dependency Chains..........cccccceeviiiiviineeeeenn. A-9
Implementation...........ocouiiiin e A-9
Assembly Code for SoA Transformation......................... A-13
MOtION EStMALION......uuiiiiiiiiiiiiiiieiiieeieeeieee e A-14
Performance Improvementsoccvveveeeeeeiiiiiinineeeenn. A-14
Sum of Absolute Differencescccccvvvveieeiiieiinnien.. A-15
Prefetching........c..oveevi A-15
Implementation...........c..ciiiii i A-15
UPSAMPIE .. A-15
Performance Improvementscccceeeveieeviveeviiiiin e, A-16
Streaming SIMD Extensions Implementation of the
Upsampling Algorithmcccccoeeeei, A-16
FIR Filter Algorithm Using Streaming SIMD Extensions..... A-17
Performance Improvements for Real FIR Filter A-17
Parallel Multiplication and Interleaved Additions........ A-17

Reducing Data Dependency and Register Pressure. A-17
Scheduling for the Reorder Buffer and the

Reservation Station..........cccccoeeveeiie e, A-18
Wrapping the Loop Around (Software Pipelining)...... A-18
Advancing Memory Loadsccccuvvveeeeeeriiiiiniiienenn. A-19
Separating Memory Accesses from Operations........ A-19

Xi

Intel Architecture Optimization Rderence Manual

Unrolling the LOOPooovevvieiiiiie e, A-19
Minimizing Pointer Arithmetic/Eliminating
Unnecessary MICrO-0PSoccuvvrvreeeeiiniirieeeeee s A-20
Prefetch HiNtS ... A-20
Minimizing Cache Pollution on Write.............cc.occuueee. A-20
Performance Improvements for the Complex FIR Filter.. A-21
Unrolling the LOOPcuviiiiiieieeeiiiee e A-21
Reducing Non-Value-Added Instructions A-21
Complex FIR Filter Using a SIMD Data Structure....... A-21
Code SaMPIESccovveeecc e A-22

Appendix B P erformance-Mo nitoring Events and Counter s

Performance-affecting EVENts...........cccccceeviiiiiiieieee B-1
Programming NOtESccoevviiiiiiiie e, B-13
RDPMC INStrUCHION «.coeeeeeeieeeeeeeeeeeeeeeeeeeeeee e B-13

Instruction Specificationccoooeeeviviviiiiieeeeeeeins B-13

Appendix C Inst ruction to Decoder Specification
Appendix D Streaming SIMD Extensions Thr oughpu t and Latenc y

Appendix E Stack Alignment for Streaming SI MD Extensions

StaCK FramMeS.......coiiiiiiiiiiiiiiiiiitieeeeer e E-1
Aligned esp-Based Stack Frames............cccccevveeiniiiiiinnnn. E-4
Aligned ebp-Based Stack Frames..........ccccoooeeevvviviiinnnnnn. E-6
Stack Frame Optimizationscccvvveeieeeenniiiiiieeeeeeee E-9

Inlined Assembly and €bX..........ccoovviiiiiiiciiie e E-9

Appendix F The Mathematics of Prefetch Scheduling Distance

Simplified EQUALION ... F-1
Mathematical Model for PSDcccccceiiiiiiiiiiiieeee F-2
No Preloading or PrefetCh...........ccccvvieiiieiiiiiiiiieceeeee F-5
Compute Bound (Case:Tc >= T+ Tp) ccccevviireiiiiniiiee . F-7

Xii

Contents

Examples

Compute Bound (Case: TI+ Th >Tc > Th) ...cceveveeeveeennnn. F-8
Memory Throughput Bound (Case: Tb >=TC) F-9
EXAMPIE oo F-10
2-1 Prediction AlIgorithmcccovviiiiiiiiee e 2-4
2-2 Misprediction EXamplecccccvviiiiiiiiiiiiecceeee e 2-5
2-3 Assembly Equivalent of Conditional C Statement 2-6
2-4 Code Optimization to Eliminate Branches 2-6
2-5 Eliminating Branch with CMQV Instruction 2-7
2-6 Partial Register Stallcooovvviiiiiiii e, 2-9
2-7 Partial Register Stall with Pentium 1l and Pentium Il
PrOCESSOIS ...t 2-9
2-8 Simplifying the Blending of Code in Pentium Il and
Pentium [Il ProCessorscccccvevivevieiiiiiiiiieiiieieeeeeen, 2-10
2-9 Scheduling Instructions for the Decoder 2-15
2-10 Scheduling Floating-Point Instructions 2-22
2-11 Coding for a Floating-Point Register File 2-22
2-12 Using the FXCH INStructioncccvvieeveeeennniiiinnne. 2-23
2-13 Large and Small Load Stallscccccovvveviviviiiiiiinnnnn. 2-25
2-14 Algorithm to Avoid Changing the Rounding Mode 2-26
2-15 Loop UNrollingooeevvieieiii e 2-28
2-16 Hiding One-Clock LatenCycccccovvvvviieiieeeniiiiieene, 2-29
3-1 Identification of MMX Technology with cpuid 3-2

3-2

3-3

3-4

3-6
3-7

Identification of Streaming SIMD Extensions with
cpuid 3-3

Identification of Streaming SIMD Extensions by

the OS s 3-4
Simple Four-Iteration LOOPccoevvveeeviiiiiiiiiiiiee e 3-9
Streaming SIMD Extensions Using Inlined Assembly
ENCOAING .ooviiiiiiii e 3-10
Simple Four-Iteration Loop Coded with Intrinsics 3-11
C++ Code Using the Vector Classescccccceeeeeeeenn. 3-13

Xii

Intel Architecture Optimization Rderence Manual

Xiv

3-8 Automatic Vectorization for a Simple Loop 3-14
3-9 C Algorithm for 64-bit Data Alignmentcccceeeene 3-17
3-10 A0S data SIrUCLUIEuvuvuvuiiiiiiiiiniiniiieeeeeneeeeieeeneenes 3-22
3-11 SOA data SrUCLUIEeeevieeiieiiiieeeeieeeeee e 3-22
3-12 Pseudo-code Before Strip MiNiNgcecvvveveveeeeeinennee. 3-24
3-13 A Strip Mining Codeoovviiiiiiiiiiiiieieeee e 3-25
3-14 Loop BIOCKINGuvviiiiiiiiiiiiiiiiiiiieieeeieeeeeeeeeeeeee e 3-26
4-1 Resetting the Register between __m64 and FP

DAta TYPES .oeeiiieiiiieeiee e e 4-5
4-2 Unsigned Unpack INStructionsccccceceieiunvnnnennnnnnns 4-8
4-3 Signed Unpack INStructionsccccccuvmvevmvmmineinnennninnnns 4-9
4-4 Interleaved Pack with Saturationccccceevvvevinenee. 4-11
4-5 Interleaved Pack without Saturationcccceeeeeee.. 4-12
4-6 Unpacking Two Packed-word Sources in a

Non-interleaved Way ... 4-13
4-7 Complex Multiply by a Constantccccccoeciuiiienennns 4-14
4-8 Absolute Difference of Two Unsigned Numbers 4-15
4-9 Absolute Difference of Signed Numbers 4-16
4-10 Computing Absolute Valueccccviveiiiiiiiiiiieee, 4-17
4-11 Clipping to an Arbitrary Signed Range [high, low] 4-18
4-12 Simplified Clipping to an Arbitrary Signed Range 4-19
4-13 Clipping to an Arbitrary Unsigned Range [high, low] ..4-20
4-14 Generating Constantscccccvvviiiiriierieen s 4-20
4-15 pextrw Instruction Codeccccvviiiiiiiiiiieenneen 4-22
4-16 pinsrw Instruction Codeccccceeiiiiiiiiiiiinieneiii 4-23
4-17 pmovmskb Instruction Codeccccoevviieiiviiiiiiiiineneen, 4-24
4-18 pshuf Instruction Codeccccceeeeiiiiiiiiiiiecee e 4-26
4-19 A Large Load after a Series of Small Stalls 4-28
4-20 Accessing Data without Delaycccccvvvveeiiiiiiinnnn. 4-29
4-21 A Series of Small Loads after a Large Store 4-29
4-22 Eliminating Delay for a Series of Small Loads after

A Large STOre ...oooveiiiiiiee e 4-30
5-1 Pseudocode for Horizontal (xyz, AoS) Computation 5-9

Contents

5-2

5-3

5-5
5-6

5-7

5-9
5-10

5-11
5-12
5-13
5-14
5-15
5-16
6-2
6-3
6-5
6-6

6-7

6-9

Pseudocode for Vertical (xxxXx, yyyy, zzzz, SoA)

(670101 o1 r= 11 0] o [P 5-9
SWIZzIiNg DAtac.cevvviiieieeiiieeee e 5-10
Swizzling Data Using IntrinsSIiCScccccvvveiiiiveeveennns 5-12
Deswizzling Dataccoovviiimmiiiiieeieiiieee e 5-14
Deswizzling Data Using the movlhps and

shuffle INStruCtionscccooieiiiiiiii s 5-15
Deswizzling Data Using Intrinsics with the movlhps

and shuffle INStructionsccccvvveviiiiiiiiieeiieieeneeen. 5-16
Using MMX Technology Code for Copying or

SHUFFIING e 5-18
Horizontal Add Using movhlps/movlhps 5-20
Horizontal Add Using Intrinsics with

movhlps/movlhps 5-21
Scheduling Instructions that Use the Same Register . 5-22
Scheduling with the Triple/Quadruple Rule 5-25
Proper Scheduling for Performance Increase 5-29
Scheduling with Emulated Conditional Branch 5-32
Replacing the Streaming SIMD Extensions Code

with the MMX Technology Codecccccveeeiniiinnne. 5-34
Typical Dot Product Implementationccc.oee... 5-35
Prefetch Scheduling Distancecccccccceeeniiiiinnnen. 6-13
Using Prefetch Concatenationcccevvvvvicinnneennn. 6-14
Concatenation and Unrolling the Last Iteration of

T aTaT=] e T} o I PP PP 6-15
Prefetch and Loop Unrollingcceevviiiiiiiiiiiieneee, 6-16
Spread Prefetch INStructionscccooevvviieeeeeiinnnns 6-17
Data Access of a 3D Geometry Engine without
SHP-MINING coeeiiiii e 6-21
Data Access of a 3D Geometry Engine with

SHHP-MINING oo e e e eeeees 6-22
Basic Algorithm of a Simple Memory Copy 6-28
An Optimized 8-byte Memory Copyceevvvvveeieeeennn. 6-30

XV

Intel Architecture Optimization Rderence Manual

XVi

Figures

A-1

A-2
A-3
E-1
E-2
F-1

11

1-2

1-3

1-5
1-6
2-1

2-2
3-1
3-2

3-3

4-2
4-3

4-5
4-6
4-7
4-8

Newton-Raphson Method for Reciprocal Square Root

PaY o] o] £0) (] 4= U1 o] o [P A-4
Newton-Raphson Inverse Reciprocal ApproximationA-5
Transform SoA Functions, C Codecovevvvvvvnvennnenn. A-10
Aligned esp-Based Stack Framesccccvvveeeeennns E-5
Aligned ebp-based Stack Framesccccvvvvivvnnnnnn. E-6
Calculating Insertion for Scheduling Distance of 3 F-3

The Complete Pentium Il and Pentium I

Processors ArChiteCtUrecoooeeeiieviiieii e 1-2
TExecution Units and Ports in the Out-Of-Order

Core 1-10

TStreaming SIMD Extensions Data Type 1-14
TStreaming SIMD Extensions Register Set 1-14
TMMX Technology 64-bit Data Typeccccccceeerennnns 1-15
TMMX Technology Register Setcooevvciiiiieiiennnnn, 1-16
TPentium Il Processor Static Branch Prediction

Algorithm ... 2-4
DCU Splitin the Data Cachecccccocviiiiiiiiiienennnnne 2-13
Converting to Streaming SIMD Extensions Chart 3-5
Hand-Coded Assembly and High-Level Compiler
Performance Tradeoffscooooiiiiiiiiiiii e 3-9
Loop Blocking Access Patternccccceeevvveeeevveeinnnnnnn, 3-27
Using EMMS to Reset the Tag after an

MMX INSEIUCLION ... 4-4
PACKSSDW mm, mm/mm64 Instruction Example 4-10
Interleaved Pack with Saturationcccccvvvvevvveneee. 4-10
Result of Non-Interleaved Unpack in MMO 4-12
Result of Non-Interleaved Unpack in MM1 4-13
PEXtrW INSIFUCLIONvvvieii e 4-22
PINSIW INSTIUCLION ...eeiviiiiiiiiiiiie e 4-23
pmovmskb Instruction Examplecccccvviiiininennen, 4-24

Contents

Tables

4-9 pshuf Instruction Exampleccccoooevvvviiiiiiiiiieeeeeeeeens 4-25
4-10 PSADBW Instruction Exampleccccccoviiiiiiinnnennn. 4-26
5-1 Dot Product Operationccccceeeieeiiiiii, 5-8
5-2 Horizontal Add Using movhlps/movihps 5-19
5-3 Modulo Scheduling Dependency Graph 5-26
6-1 Memory Access Latency and Execution Without

L 1= 1= o] o TP 6-11
6-2 Memory Access Latency and Execution With

PrefetCh ... 6-11
6-3 Cache Blocking - Temporally Adjacent and

Non-adjacent PasSescccccvvvvviiiiiiieiieeeieeiien e 6-19
6-4 Examples of Prefetch and Strip-mining for Temporally

Adjacent and Non-adjacent Passes LOOPS 6-20
6-5 Benefits of Incorporating Prefetch into Code 6-23
6-6 Single-Pass vs. Multi-Pass 3D Geometry Engines 6-24
7-1 Sampling Analysis of Hotspots by Location 7-3
7-2 Processor EVeNnts LiStcccccccoeimiumieimiiiiiiiiiiiiieiininnenns 7-5
7-3 Call Graph WIiNdowccccooeveviiiiiiiiiiieeereeee e, 7-8
7-4 Code Coach Optimization AdVICEcccceeeeriiinnnnnnn. 7-12
7-5 The RVT: Registers and Disassembly Window 7-22
E-1 Stack Frames Based on Alignment Typeccccceevnnee E-3
F-1 Pentium Il and Pentium Il Processors Memory

Pipeline SKetCh ... F-4
F-2 Execution Pipeline, No Preloading or Prefetch F-6
F-3 Compute Bound Execution Pipelineccccccceevnnns F-7
F-4 Compute Bound Execution Pipelinecccevvvvnnnnnn. F-8
F-5 Memory Throughput Bound Pipelinecccccceeeeennnns F-9
F-6 Accesses per Iteration, Example 1oooovvevivvnnnnnn. F-11
F-7 Accesses per Iteration, Example 2cccooiiviineennn. F-12
1-1 Pentium Il and Pentium Il Processors Execution

1 1) £ 1-8

XVii

Intel Architecture Optimization Rderence Manual

xviii

4-1
5-1
5-2
5-3
5-4
5-5
B-1
C-1

C-2

D-1

POrt ASSIQNMENTScoeeeviiiiiii e 4-7
EMMS Instruction Usage Guidelinescccccceeeeennns 5-4
SoA Form of Representing Vertices Data 5-7
EMMS Modulo Schedulingcccvvvveeiiiiiiiiiiieeeeeee 5-27
EMMS Schedule — Overlapping lterations 5-27
Modulo Scheduling with Interval MRT (11=4) 5-28
Performance Monitoring Eventscccccooovvviviieiiiienn. B-2
Pentium Il and Pentium Il Processors Instruction

to Decoder Specificationccccceevviiiiiiieeen i C-1

MMX Technology Instruction to Decoder

Specification ... C-17

Streaming SIMD Extensions Throughput
AN LAENCY ..vevviiiiiiiieiiiieieeeieee ettt

Introduction

Developing highpeiformarce appicaions br Intel® archtecure
(IA)-basedprocessors ca be mare efficientwith betterunderstamling of the
newestlA. Even hough the gplicaions developedfor the 86/8083,
80286, Intel386™ (DX or SX), andIntel486™ processas will exeaute on
the Pentium®, Pertium Pro, Paatium Il ard Pentium 11l processos without
arny madificaion or recanpuing, the code @timizaion techiques
combined wih the adwantages of the nevestprocessas can hep you une
your gpplication to its greatest potential. This manual provides information
on Intel archiecture as wdlas deschies ode @timizaion techriques b
erable you tune yar applcaion for bestresuts, spedically whenrun on
Pentium Il andPentium Il processos.

Tuning Your Application

Tuning an appicaion high performare acrgs Intel architecure-tesed
processos requires lackgound nformaion éoutthe foll owing:
® the Intel arclitecure.

* criticd stall situatons hat mayimpactthe performane of your
application and dgher peformancesebacks wthin your appicaion

® your compler ogimizaion capailities

®* mornitoring the appicaion’s performance

To hep you uneerstand yaur applcation and wkere tobegin tuning, youcan
uselntel’s VTune™ RerformanceAnalyzer. Thistool heps yau see lie

paformance @ert couniers dda d you code povided by the Patium I
ard Pentium Il processas. This marual informs youabou appropriate

XVii

Intel Architecture Optimization Rderence Manual

xviii

paformance cainter for meastement For VTune Performace Anayzer
order information, see is web hane paget
http://devel oper.intel.com/vtune.

About This Manual

This manwa assumethatyou arefamiliar with A basics, aswell as with C
or C+ and assmbly language progammirg. The mamal consgts of the
following parts:

Introduction. Defines he pumpase andutlines the corterts d this marual.

Chapter 1—Processor Acchitecture Overview. Overviews the
architecures @ the Pemium Il and Pertium Il processcs.

Chapter 2—Gereral Optimization Guidelines. Descrbes the cde
developmenttechngues toutilize te achitedure of Pertium Il ard
Pentium Il processis as wel as generalstategies d efficientmemory
utilization.

Chapter 3—Coding for SIMD Architectures.Descibes the following
cading mehodblogies:assemby, inlined-assemly, intrinsics,vector
classes, @to-vedorization, ad libraries. Alsodiscusses strajees for
altering dat layout andrestructuring algorithms for SIMD-style codng.

Chapter 4—Using SMD Integer Instru ctions. Describesptimizaion
rules and ¢chnques or high-performancenteger and MMX ™ techndogy
applications.

Chapter 5—Optimizing Floating-Point Applications. Descibes rules
ard opimization techniques, andprovides codeexamples speciic to
floaing-point cade, ncluding SIMD-floating point code for Sreamng
SIMD Extensions.

Chapter 6—Optimizing Cacdhe Utilization for Pentium Il Processos.
Descrbes he memory hierarcly of Pentum Il andPentum Il processor
archtectures, ad how to bestuseit. The pr efe tc h instruction andcache
control managemeninstructions for $reaming SIMD Extensions ae ako
desciibed.

Introduction

Chapter 7— Application Performance Tools. Describespplicaton
peformance bols: VTune andyzer, Intel® Compiler dug-ins, andintel®
Performance libraries Sute. For eachtool, technjues andcodeoptimizaion
strategies hat help you 1o take advantage ofthe Intel architecureare decribed.

Appendix A—Optimization of Some Key Algorit hms for the Fentium |l
and Pentium Ill Processors.Descibes hav to optimize thefollowing comman
algorithms ushgthe Steamng SMD Extersions. 3D lighting and tansform,
imagecompressin,audb decompaition, ard others.

Appendix B—Performance Monitoring Events and Counters. Describes
paformance-monioring eserts ard caunters andheir functons.

Appendix C—Instruction to Decode Specffication. Summarizs tte IA
macroinstrudionswith Pentium 11 and Rentium Il processa decaling
information to enable scheduling.

Appendix D—Streaming SIMD Extensions Throughput and Latency.
Summarizs ina &ble the instructions’ throughputarnd latency charateristcs.

Appendix E—Stack Alignment for Streaming SIMD Extensions. Details on
the dignment of the sacks ¢ dak for Sreaming SIMD Extensions.

Appendix F—The M athematics of Prefetch Scheduling Distance.Discisses
how far avay prefetd instructions shoud be nsered.

Related Documentation

For more nformaion an the Intel architecure, sgcific technques anl
processor ardbecureterminology referencedn this manwal, see lhe following
documenétion:

Intel Architecure MMX™ Techndogy Programmer's [&ference Marual, order
number243007

Pentium Processor lamily Developer’s Manual, Volumes 1, 2and3, order
numbers 241428 241429,and 2143

Pentium Pio Processa Family Developa’s Marual, Volumes 1 2, and 3,order
numbess 22690 242691 ,and 226

Pentium Il Processor Devdoper’s Manual, order number 243602

Intel C/C++ Compiler for Win32* Systems User’s Guide order number
718195

XiX

Intel Architecture Optimization Rderence Manual

Notation al Conventions

This manu&uses tle following corvenions:

This t ype style

THIS T YPES TYLE

This t ype s tyle

(ellipses)

XX

Indicaesan eemern of synix,a reservé word,a
keyword, afilenameinstrudion, compuer
output, or pat of aprogram exkampk. The text
appears m lowercase nless upgrcases
significant

Indicaes avalue, for exampk, TRUE CONSTL, or
a \variable, for exampk, A, B, or register mmes
MNOD throughMNT .

| indicakes bwercasdetter L in exampks. 1 isthe
number 1 h exampks. Qisthe upgercase Ori
exampks. 0 is the number On exampes.

Indicaes aplacehdder for an dertifier, an
expressim, a sting, asymbo| or a vale.
Subsitute one of theseitems for he dacehotle.

Indicate that afew lines @ the cod are omited.
Indicates ahypeatext link.

Processor Athitectuie
Overviev

This chapier providesan overview of the archiecural feaures of he
Pentium® [1 and Rentium |1l processors andexplains he new capabiities of
the Pentium Il proeessor The Steaming SMD Extersions of he Rentium
Il processolintrodue nev genera purpose hteger andfloaing-point
SIMD instructons,which acceérae applications performanceover the
Pentium Il processas.

The Processors’ Execution Architecture

The Fentium Il ard Penium Il processors are ggessve microarditecural
implementétions of he 32-bit Intd® arclitecure (IA). They are dsigned
with a dynamr execuion achitedure that provides tre following featires:
® out-of-order speculative execution to exposeparallelism

® superscahbr isse o exploit parallelism

® hadware register renanmgto avoid register name sace imitations

* pipdinedexecuion o enable high clock speds

® brarch pedictionto avoid pipeline ddays

The microarclitecure s desgned b execue legagy 32-bit Intel archtecure
code as quikly as posdile, withou additional effort from the programmer.
This optimization manual assiss the developer in leveraging the featuresof
the microarchiteciure to attéin greater peformance ly undestanding and
working with thesefeatures tomaximaly enhance peformance.

11

1 Intel Architecture Optimization Reference Manual

1-2

The Pentium ® II and Pentium Ill Processor s Pipeline

The Rentium Il and Rntium Il processos pipelines corain three pats:
® the in-order isse frontend

® the aut-of-order core

® the in-order retrementunit.

Figure 1-1 gives an overview of the Rentium Il and Pentium Il processors
archtecure.

Figure 1-1 The Comple te Pentium 1 and Pentium Il Processor s Architecture

Bus Interface Un it

L1 instructi on
cache

Fetch

T Store

Fetch & Decode Unit
(In order unit)

«Fetches instructions
«Decodes instructions to pOPs
«Performs branch prediction

Retirement Unit

(In order unit)

*Retires instructions in order
*Writes results to registers/memory

Instructi on Pool/reorder buffer
*Buffer of nOPs waiting for execution

The In-order Issue Front End

The frort end supplies nstructons n program orde to the outof-order
core. It fetches anddecales Inél archtecure-basegrocesso
macranstuctions, ad kreaks them davn into simple opeations called
micro-ops(pops). Itcanisswe mutiple pgps pe cycle, in original program
order, to the out-of-order cae. Sincethe core ggressrely reorders ath
exeautes instructionsout of program oder, the mostimportant
consideration in paformance tining is to ersure that enaighpopsare read

Processa Architecture Overview 1

for execution. Accurag branchpredction, instruction prefeth, and &st
decoding are esseidl to geting the mostperformae ou of the in-order
fronterd.

The Out- of-order Core

The core's alility to execute instructions out of order is akeyfactorin
exploiting pailelism. This feaure erables the pocessorto reorder
instructions so hatif onepopis delayed whle waiting for dag or a
contendedresouce, ather pops that arelaterin progam orde mayproceed
around it. The pocessorempbys s&era buffers tosmooh the flow of
pHops. Thisimplies that whenoneportion of the fipeline experiences a
dday, that delay may becovered by other operations eecued in pamllel or
by execuing pops with were previously queted up ina kuffer. Thedelays
desaibed in this chapter are treaed in this manner.

The aut-of-order core biffers pogin a Reseration Sation (RS) wntil their
operandsare readyand resarces arevailable. Each gscle, he cae may
dispatch up to five ops, as exdained in more detail later in the chapter.

The cae isdesgnedto facilitate parllel execution. Loadand sbre
instructions may be issd similtaneasly. Most simple operaions, suclas
integer opertions, foaingpaint add, and floaing-point mutiply, can be
pipdinedwith athroughput of oneor two opestions per clock g/cle. Long
latency opeations can poceedin paralel with shortlatency opeations.

In-Order Retirement Unit

For sematicaly-correctexecution, the resuls of instructions mustbe
processedri original program oder. Likewise, ay excegionsthat occur
mustbeprocessedn program order When apopcompktes andwrites its
resut, it is retired. Up to three pops may beretired pea cyde. The unit in the
processor whih buffers compdted pops s the reorar buffer (ROB). ROB
updats the arclitecural state in orde, thatis, updates the stateof
instructions andregisters n the praggram semaiits order ROB also
marages lte adering of excegtions.

1-3

1 Intel Architecture Optimization Reference Manual

1-4

Front-End Pipeline Detall

For beter understanding goeration of the Pentum Il andPentum Il
processos, this secion explains tte man processing unts of their frontend
pipdines:instruction prefetcher decodes, and brarnch prediction.

Instr ucti on Pref etcher

The instruction prefether performs aggssive prefetch of staight line
code. The Rentium 1l and Fentium 1l processas readn instructions from
16-byte-alignedbourdaiies. for exampk, if the modilo 16 kranch #rget
address the addess ofa labd) is equal to 14, aly two usetll instruction
bytes ae fetched in the first ¢/cle. The rest o the instruction bytes ae
fetchedin subseqentcycles.

NOTE. Instruction fetch is always ntendedfor an aligned 16-byte
blodk.

Decoder s

Pentium Il and Rentium IIl processors hee three deoders. Ineach tock
cycle, he first decode is cgpabk d decodng onemacronstuction made
up of four or fewer pogs. It can tandle ary numberof bytes upto the
maxmum d 15, hut nine- or more-byte instructions require additiond
cycles. In @ch cbck cycle, the oher ivo decoders en eat decale an
instruction of onepop,andupto eightbytes. Instructionscomposed of more
thanfour p@s ke multiple cycles b decock.

Simple instructions hae ore four pops;comgex instructions for
exampk, cmpxc g) genedlly have more than four pops. @mplex
instructions reqire mutiple cyclesto decale.

During every clock gscle, W to three maooinstrudionsare decded.
However, if the instructions are comfex or ae over seven bytes long the
decoderislimited b decaling fewer instructions.The deodess can deode:
* uptothree macraistuctions pr clock g/cle

® uptosix pops perclock cycle

Processa Architecture Overview 1

When programnrig in assenbly language try to schedue you instructions
in a4-1-1 ue seqencewhich meas instructon with four pops folowed
by two instructions eachwith one pop Scheduhg te instrudions na
4-1-1 popsequace ncreass the numigr of instructions tat can fe
decodedduring one cbck cycle.

Most ammmonly used nstructions hae the following p@ numbers:

® Simple instructions of the registerregister form have only onepop
® Loadinstructions ae only one p@.

* Storeinstructions fave two Lops.

* Simple read-modify instructions ae wo pofs.

* Simpleinstructions of he register-memay form have two to three

HOps.
* Simple rea-modify-write instructions have four pops.

See Appadix C, “ " for atable
speifying the nunber of u@s reqired by each nstruction in the Intel
architecure nstructon set

Branch Prediction Overview

Pentium Il and Rntium Il processors use Branchtamet buffer (BTB) to
predct the direction andtarget of branches lased m aninstruction’s
address. he adlress oflte lranch instruction is available bdore the brarch
has beerdecoad, soa BTB-basedorediction canbe mae as eayl as
possille to avoid delys ausedby going the wrong direcion ona biarch.
The 512-enty BTB stores he history of previously-seen lvanchesand heir
targets. When a kranch is prefethed, he BTB fedls te targetaddress
directly into the instruction fetch unit (IFU). Once the branch is executed,
the BTB is updatd with the targetaddess. Ugigthe brand target buffer
allows dynamic predction d previously seen braches.

Oncethe branch irstrudion is decaled, he direcion ofthe branchforward
or baclkward) is known. If there was ot a \alid entry in the BTB for the
brarch, he statc predctor makes a pediction basedn the drection of the
brarch.

15

1 Intel Architecture Optimization Reference Manual

1-6

Dynamic Prediction

The branch target buffer predction dgorithm includes patern maching ard
cantrack upto the last four brarch drecions pe branchaddess For
exampk, aloop with four or fewer iteratons shald have abaut 100%
corred prediction.

Additionally, Pentium Il and Pentium Il processors have a return stadk
buffer (RSB) that canpredct return addressegor procealures tlat arecall ed
from different locaionsin successin. This increaes the berfit of
unrolling loops coraining funcion cdls. It also mtigates the neel to put
certin proceduresn-line sncethe retirn peralty porton of the procedue
cal overhead sredued.

Pentium Il and Rentium |1l processos have three kvels of branchsupport
that can be quantified in the rumber of cydeslost

1. Branches thatare nottaken suffer no pendty. This apples o those
brarches hat arecorrecty predcted & not taken by the BTB, and b
forward lranchethatare rot in the BTB and ae predcted as nottaken
by default.

2. Branctes thatare corredy predctedas tken by the BTB sufer a
minor penaly of losing me g/cle of instruction fetch. Aswith ary
taken branch the decode d the restof the pgs afer the brarch is
wasted.

3. Mispredctedbranctes sufer a sgnificantperelty. The penalty for
mispredcted rancha is atleastnine g/cles (he kength of thein-order
isste pipdine) of lost instruction fetch, plus additional time spent
waiting for the mispredicted branch instruction to retire. This pendty is
depencentuponexecuton drcumstarces. Fpicaly, the average
number of gcles bstbecaise of amispredcted branchis betveen 10
ard 15cycles ad psidy as mag as 26cycles.

Static Prediction

Branctes that are notin the BTB, but are corredy predicted by the sttic
predction meclanism, sufer a snal pendty of abait five or six cycles (the
length of the pipeline this pant). This peralty gpplies touncanditional
directbrarches hat have never been sen béore.

Processa Architecture Overview 1

The satic predction mectanism predcts backvard condtional branches
(those wih negative displacemet), sud as log@-closing branbes, as tieen.
They suffer oy a smadl penaty of gpproximatly six cycles he firsttime
the ranch s ercourteredanda mior perlty of appoximatdy one gcle
on subsegentiterations when e negative branchis correctly predicted by
the BTB. Forward lranche are predited as nottaken.

The small perdlty for branche thatare notin the BTB but are corredy
predctedby the deoder s appoximatdy five cycles of bstinstrudion
fetch. This compares © 10-15 ¢ycles for a banch thatis incorrecty
predcted or that has o predction.

In order b take advantage of the forward-rot-taken andbackward-taken
static predctions, he coa should be arangedsothatthe likely target of the
brarch immedéetely follows forward branbes. ®e &kampks onbranch
predction in

Execution Core Det ail

To sucessfuly implemert parallelism, informaion onexecuton urits’
latency is required.Also mportantis the information onthe exeaution unis
layout in the pipelines anl onthe pops that execute in pipeines. This
secton cetail s onthe execuion core operation including the discussbn an
instruction latency andthroughput, execuion units and ports, cachesand
store hiffers.

Instr ucti on Latenc y and Thr oughp ut

The cae’s ability to exploit parallelism canbe enlancedby ordering
instructions so hat their operands age ready ad their coresponding
exeaution units are free whethey reach lhe resenaton sations. Knaving
instructions’ latencies helps in scheduling instructions appropriately. Some
exeaution units are nd pipelined, suchthat popscanna be dispathed in
consectuitve cycles and he throughput is less han onepercycle. Table 141
lists Pentium Il and Pentium |1l processos execution unis, their latency, and
their issue iroughput

1-7

1 Intel Architecture Optimization Reference Manual

Table 1-1 Pentium Il and Pentium Il Processors Execution Units
Port Execution Un its Latency/Through put
0 Integer ALU Unit: Latency 1, Throughput 1/cycle
LEA instructions Latency 1, Throughput 1/cycle
Shift instructions Latency 1, Throughput 1/cycle
Integer Multiplication Latency 4, Throughput 1/cycle
instruction
Floating-Point Unit:
FADD instruction Latency 3, Throughput 1/cycle (horizontal align with
FADD)
FMUL instruction Latency 5, Throughput 1/2cycle?! (align with FMULL)
FDIV instruction Latency: single-precision 18 cycles, double-precision
32 cycles, extended-precision 38 cycles. Throughput
non-pipelined (align with FDIV)
MMX™ technology ALU Unit Latency 1, Throughput 1/cycle
MMX technology Multiplier Latency 3, Throughput 1/cycle
Unit
Streaming SIMD Extensions See Appendix D, “Streaming SIMD Extensions
Eli?/fg:;gsz(sjg:eu;g;y;:gsg' Throughput and Latency”
instructions
1 Integer ALU Unit Latency 1, Throughput 1/cycle

MMX technology ALU Unit
MMX technology Shift Unit

Streaming SIMD Extensions:
Adder, Reciprocal and
Reciprocal Square Root,
Shuffle/Move instructions

Latency 1, Throughput 1/cycle
Latency 1, Throughput 1/cycle

See Appendix D, “Streaming SIMD Extensions
Throughput and Latency”

continued

Processa Architecture Overview 1

Table 1-1 Pentium I and Pentium Il Processors Execution U nits (continued)
Port Execution Units Latency/Throug hput
2 Load Unit Latency 3 on a cache hit, Throughput 1/cycle

Streaming SIMD Extensions See Appendix D, “
Load instructions

3 Store Address Unit Latency 0 or 3 (not on critical path), Throughput
1/cycle?

Streaming SIMD Extensions See Appendix D, “
Store instruction

4 Store Data Unit Latency 1, Throughput 1/cycle

Streaming SIMD Extensions See Appendix D, “
Store instruction

1. The FMUL unit cannot accept a second FMUL in the cycle after it has accepted the
first. This is NOT the same as only being able to do FMULs on even clock cycles.
FMUL is pipelined once every two clock cycles.

2. Aload that gets its data from a store to the same address can dispatch in the same
cycle as the store, so in that sense the latency of the store is 0. The store itself takes
three cycles to complete, but that latency affects only how soon a store buffer entry is
freed for use by another pop.

Execution Units and Ports

Each gcle, the core maydispath zero or one popon apott to ary of the
five pipdines ghown in Figure 1-2) for a maxmum issue bandavidth of five
Hops percycle. Each ppdine ontains seera executon urnits. The p@s ae
dispached b the pipelinethat comespords b its type of operation. For
example, aninteger arithmetic logic unit (AL U) and the floating-point
exeaution units (addetr muttiplier, ard divider) share a ppeline. Knawvledge
of which pogs are gecutedin the same ipelinecan ke usefulin ordering
instructions b avoid resaurce canflicts.

19

1 Intel Architecture Optimization Reference Manual

Figure 1-2 Execution Units a nd Ports in the Out -Of-Order Core

Port 2

Store Address
Calculation
Unit
(12-entry b uffer)

Store
Data Unit
(12-entry bu ffer)

Port 3

Port 4

Port O

Port 1

Integer
Unit

MMX™ technology

Pentium(R) Ill process or

FP Unit

Caches of the Pentium Il and Penti um |1l Processor s

The m-chip cathe sulsystem of Pertium Il ard Pentium 11l processos
consisk of two 16-Kbyte fourway setassaiative aches wih a cahe Ine
length of 32 bytes. The cabies emply a write-back mectanism anda
psaudo-LRU (leastrecenly used) rephcemenalgorithm. Thedat cacle

consiss of eight banls intedeawed onfour-byte baindares.

1-10

Processa Architecture Overview 1

Level two (L2) caches hee been off chip but in the same pd@age.They are
128K or morein size. L2 latencies arein the range of4 to10 cycles. An L2
miss hitiates a tansadibn across he busto memory clips. Suchan &cess
requres o the order of ateastl1 adlitiond bus g/cles, assumiga DRAM
page hi. A DRAM pagemiss ncurs anoherthreebus g/cles. Eah bus
cycle equals several processor ycles, for @amge, one lus g/clefor a

100 MHz husis equalto four processocyclesona 400 MHz pocessarThe
speed of the bus andsizes of L2 cacles aremplemenétion dgpendent,
however. Check he specficaions d a given sysem b undersénd the
predsecharaceristics d theL2 cache

Store B uffers

Pentium Il and Fentium Il processors hee twelve store huffers. These
processorsédmporatly store eachwrite (sbre) o memoryin a sbre huffer.
The stae bufferimproves procesorperformance ly allowing the processo
to continue &ecuing instructionswithout having to wait until a wite ©
memoryandbr cache 5 complete. It alsoallows writes to be ddlayed for
moreefficientuseof memory-acess lis g/cles.

Writes sbred n the stare buffer are &ways written to memory in program
order. Pentium Il and Pentium Il processos useprocessoordeling o
maintain consstency in the oderin which datais read (oaded)andwritten
(stored) n aprogram ad the ader in which the processor acally carries
out the reads ashwrites. With this typeof ordering, reads can bearied ou
speculatively; and n ary order reads can passufferedwrites, while writes
to memay are alvays carred ait in program oder.

Write hits canmot pass write misss, so peformarce ofcritical loops carbe
improvedby schedlingthe writes b memory Whenyou expectto see
write misses, dredue the write instructions n groups nolarger than
twelve, and sckdule aher instructionsbefore scheduling furtherwrite
instructions.

1-11

1 Intel Architecture Optimization Reference Manual

1-12

Streaming SIMD Extensions of the Pentium Il
Processor

The Sreamng SIMD Extensions d the Periium Il processor acelerate
paformance of appkations over the Fentium Il processas, for example,
3D graphts.The progammirg modl is similar to the MMX™ techrology
model except thatinstructions row operateon rew pacled 1oaing-point
daatypes, which contain four singe-precision floaing-point numbes.

The Steaming SIMD Extensions of he Pemium 1l processor introduce nev
gener pumpose foaing-point instructions, which operate on anew setof
eight 128-bit Sreaming SMD Extensions registers.This gves the
programmer the abilit to develop algaithms that camix pacled
single-precsion floaing-pant and integer using bah Streamng SMD
Extensions aid MMX instructions especively. In addition to these
instructions, Steamng SIMD Extensions echrology also pravide nev
instructionsto control cacheability of al datatypes. These include abili ty to
stream da into the processor whe minimizing pdlution of he cacles and
the alility to prefetch dda keforeit isacudly usel. Both 64-bit integerand
packed floaing point dat canbe steamedo memory

The man focus of mckedfloaing-pdnt instruction is the aceleraton of
3D geomety. The nav definition ako @ntains addtional SIMD integer
instructions b acelerate 3D rendeiing and vdeo ercoding and a&coding.
Together with the cacheability control instructions, this combination
erables the developmert of new algorithms hatcansignrficanty acelerate
3D graphics aml otheraplicationsthat involve intersive omputtion.

The rew Steaming SMD Extersions stde requires opeating systen
support for saving and restoring the new state duinga conext switch. A
new set of atendedfs ave/ fr st or (caled fx save/ fx rs to r) permits
savingfestoring rew andexisting statefor apgicaions awl operating
sysems. b male use bthese nev instructons, @ appicaion mustverify
thatthe processorard opeating sysem suppa Streaming SIMD
Extensions. f both do, then te sdtware applicaion @n usethe nev
feaures.

Processa Architecture Overview 1

The Streaming SMD Extensions are fully compatible with all software
written for Intel architecture microprocessas. All existing sdtware
continues runcorrecty, withou madificaion, onmicroprocessos that
incorporate the Steaming SIMD Extensions, asvell as n the presencef
existingand rew appicaions hatincorporate tis technology.

Single-Ins truction, Multiple-Data (SIMD)

The Sreaming SIMD Extensions sppott opagations on @acked
singlejprecision floaing-point data types, ad the alditional SIMD integer
instructions suppd operations on pacled quadwad data types (byte, word,
or double-word). This appoach vas dhoserbecase mosBD graghics and
digital signal processing (DSP) applications lave thefollowing
characerisics:

* inhegently parald

®* wide dsnamc range, here floaing-point base

® regular andre-occurmg memnory acces paterns

* J|ocalized reoccurring gperatons performean the data

* daa-dindepenent contol flow.

Streaming SIMD Extensions fuly sugport the IEEE Standard754for
Binary Hoaing-Point Architedure. The Steaming SMD Extensions are

accessilbe from all 1A exeaution modesprateded mode real-address
modk, andVirtud 8086 mode.

New Data Types

The pincipd datatype d the Streamng SMD Extensions are a pcked
singlejprecision floaing-point operand specfically four 32-bit
singlejprecision (SP) floaing-point numbers shavn in Figure 1-3. The
SIMD integerinstructions opeate on the packed byte, word, or
double-word ddatypes. The prefethinstrudionswork on acachdine
grarularty regardless oftype.

1-13

1 Intel Architecture Optimization Reference Manual

Figure 1-3 Streaming SIMD Extensions Data Type

127 96 95 64 63 32 31 0

Packed, single-pr ecision FP

Streaming SIMD Extensions Register s

The Sreamng SIMD Extensions povide eght 128-bi gereral-purpose
registers, @ch d which can bedirectly addressedrhese rgistersare a ew
state, requiring sypott from the goerating sysem o use them. They can
hdd packed 128-ht dat, andare accessatiredly by the Steamng SIMD
Extensions wing the register names XMMO to XMM7, seeFigure 1-4.

Figure 1-4 Streaming SIMD Extensions Re gister Set

127 0

XMM7
XMM6
XMM5
XMM4
XMM3
XMM2
XMM1
XMMO

1-14

Processa Architecture Overview 1

MMX™ Technology

Intel’s MM X ™ technobgy is anextension to the Intel architecure (A)
instruction sd. The technology uses a sngle instruction, multiple daa
(SIMD) techrique o speedup mutimeda and conmunicaions softvare by
processing dda elements in pailel. The MMX i nstruction setadds 57
opcodes anda 64-bit quadvord datatype. The 64bit datatype,illustrated n
Figure 1-5, holds paked integer valuesuponwhich MMX instructions
operae.

In addtion, thereare eght 64-bit MMX techndogy registers, each ofvhich
can be dredly addressed sing the register rmmes MMOto MM7.
Figure 1-6 stows the layout of the eght MM X technobgy registes.

Figure 1-5 MMX Technolog y 64-bit Data Type

Packed Byte: 8 bytes packed into 64-bits
63 32 31 16 15 87 0

Packed Word: Four words packed into 64-bits
63 3231 16 15 0

Packed Double-word: Two doublewords packed into 64-bits
63 3231 0

1-15

1 Intel Architecture Optimization Reference Manual

Figure 1-6 MMX Technolog y Register Set

Tag
Field
10 63 0
MM7
MMO

The MMX technobgy is operating-sysem-rans@rentand100%
compatble with all existing Intel archiecture softvare. Therefore dl
applications wil continue © run onprocessos with MMX techology.
Additional information and details about the MM X instructions, data types,
and rajisters carbe found in the Intel Architecure MMX™ Technol ogy
Programmer’s Rderence Manud, order number 24307.

1-16

Genenl Optimization
Guidelines

This chapter discusses general optimization techniques that can improve the
peformance d appicaions for the Rentium® 11 ard Pentium 11l processo
architecures. Itdiscusse generbguidelines as welas spedicsof each
guideline andprovides examples of how to improve you code.

Integer Coding Guide lines

The following guidelines wil hep you ogimize yar coce:

* Use acurrentgereration of compler, suchas tte Intel® C/C++
Compier that will prodwce anoptimizedapplcaion.

®* Write code sothat Intel compiler can optimize it for you:

— Minimize useof globalvariables, ponters, ard compex control
flow

— Use theconst madifier, avoid re gi st er modfier
— Avoid indirectcals and usethe type sytem
— Use mhimum skes br integer andfloaing-point data types b
enable SIMD paall elism

* Improve branchpredictability by using the bianc predction
algorithm. Thisis ore ofthe mostimportant optimizaions for Pentium
Il processos. Improving tranchpredictability alows the codeto sperd
fewer gscles fething instructons die o fewer mispredcted brancles.

® Take advantage of the SIMD capahilities of MM X ™ technology and
Streaming SIMD Extensions.

* Avoid patial registe stlls.

® Ensure proper dataaignmert.

2-1

2 Intel Architecture Optimization Reference Manual

2-2

Arrangecodeto minimize nstruction cabie msses andptmize
prefeth.

Avoid prefixed opcodes other than OF.

Avoid smal loads afte large staesto the same area of memowwoid
large loads d&ter smal staes b the same iBa of memoryLoadand
store daato the same areaf memory ging the samedai sizes and
address agnmens.

Use sofware pipelining.

Avoid =lf-modifying code

Avoid placing data in the coa segment
Calculate sbre addesses as earlaspossble.

Avoid instructions that contin four or more pgps orinstructions hat
are norethan seen byteslong. f possble, useinstructions that require
one pop

Cleanse partial registers bebre caling calee-sase procedues.

Branch Prediction

Branchoptimizaions ae oneof the mostimportant optimizationsfor
Pentium Il processcos. Undeistanding the flow of brandes andmproving
the predictability of brarches en increaseéhe speef your code
significantly.

Dynamic Bra nch Predic tion

Dynamicpredction is always atempedfirst by checkng the brarch target
buffer (BTB) for avalid entry. If one isnot there, staic predictionis used.
Three eémerts d dynanic branchpredction are mportant:

If the instruction address is mt in the BTB, exeaution is predicted to
continue without brancling. This is known as “fall-through” meaning
that the branch is not taken and the subsequent instruction is executed.
Predcted taken branches have a one clock dday.

The Petium Il andPentium Ill processas’ BTB pattern matcles on the
direcion d thelast fou brancles b dynamicaly predct wheher a
brarch will betaken.

Gereral Optimizaion Guidelines 2

During te process binstruction prefetch the adiress ofacondtional
instruction is ched&ed with the enties in the BTB. When he addresssnat
in the BTB, execution is predicted to fall through to the next instruction.
This siggests that branches should befoll owed by code that will be
exewted. The cale folowing the lranchwill be fethed andin the caseof
Pentium Pio, Rentium Il processos, and ntium Il processorthe fetched
instructions will be speculatively executed. Therefore, rever follow a
brarch instruction with dag.

Additionaly, when a instruction addessfor a brarch instruction isin the
BTB ard it is predictedtaken, it sufers a me-clock delay on Pertium I
processos. To avoid the deby of one cbck for taken branches,simply inset
additiond work betveen branhes hat areexpecied b betaken. This dely
restricts the minimum duration of loops totwo clock cycles. f youhave a
very smal loopthat takes lessthantwo clock cycles,unroll it to remoethe
one-clock overhead 6 the brang instruction.

The lranch gredictor on Rentium Il processorsarrecty predcts regular
pdaterns ¢ brancles—up to a length of four. For exampk, it correcly
predcts abranch within a loop that istaken on odd ierations, and nataken
on even iterations.

Static Prediction

On Pattium Il and Pentium Il processors, brahes hatdo nothave a
history in the BTB are predited using a satic predction algorithm as
follows:

* Predct unconditional branchesto be taken.

* Predct backward conditiond branchesto be taken This rule is sutale
for loops.

* Predict forward condtional brarches o be NOT taken.

A brarch tatis staticaly predcted can bse,atmost six cycles of
instruction prefeth. Anincorrectpredttion suffers a pedty of greaér than
twelve clocks. Exampk 2-1 provides the satic branchprediction algorithm.

2-3

2 Intel Architecture Optimization Reference Manual

Figure 2-1 Pentium ® Il Processor Static Branch Prediction Algor ithm
Forward conditional branches not taken (fall through)
If <condition> {
} i Unconditional Branches taken
JMP
for <condition> {
}
Backward Conditional Branches are taken
loop {
} <condition>
Exampk 2-1 andExample 2-2 ilustate te basic rules for he satic
predction algrithm.
Example 2-1 Prediction Al gorithm

Begi n: mov e ax, me m3
an d e ax, ebx

im ul e ax, edx
shld eax, 7
JC Begin

In the above exampe, the backverd branti(J C Be gi n) isna in the BTB
the first time trough therefore,the BTB does wt isste a pedction. The
static predictor, however, will predict the branch to betaken, so a
mispredction will nat occur.

Gereral Optimizaion Guidelines 2

Example 2-2 Misprediction Example

mov ea X, me m3
andea x,eb x

imul eax, e dx

shld eax, 7

JC Begi n

mov eax, O
Begi n Call Convert

The first branch instruction (FCBe gi n) in Example 2-3 segnent is a
conditional forwardbranch It is not in the BTB the firsttimethrough but
the sttic predctor will predct the branchto fall through.

TheCal |l Convert instruction will na be pedcted in the BTB the first
time it is seen by the BTB, but the call will be predicted as taken by the
static predction algorithm. Thisis correctfor an uncondtional branch.

In these exampks, the conditional branchhas ofly two alternaives:taken
ard na taken. Indirectbrarches, sah as swich satemens, compted
GO'Cs a cals through minters, canjump to an abitrary numberof
locaions.Assuning the brant has askewed rget destnation, ard mostof
the ime t branche to the same adtess, henthe BTB will predct
accuraely mostof the ime. If, havever, the target destnation is not
predctale, performane candegrade quickly. Performancean ke
improved ty changng theindirectbranckesto corditionalbranclesthat can
be predicted.

Eliminat ing and Reducing the Number of Branc hes
Eliminating brarches improves grformance dueat
® Reducing the pasilility of mispredictions.
®* Reduwing the number of reqired BTB enties.

Using thesetc c instruction, a using the Rentium 11 and Fentium 111
processors’ coditiond move (cmov or fc mov) instructions can éiminate
brarches.

25

2 Intel Architecture Optimization Reference Manual

Example 2-3

Following is a Ccock linewith acondtion tatis degndert uponone d
the onsbnts:

X=((A< B)? C1: C2
This code conditionally compares two values, A ard B. If the cortitionis
true, X is sé to C1; otherwise it is se to C2. The asembly equivalent is
shown in the Example 2-3:

Assembly Equiv alent of Condition al C Statement

Example 2-4

cmp A B ; condit ion
jg e L30 ; condit ion al branch
mov ebx, CONST1 ;. ebx holds X
jmp L31 ; unconditi onal b ranch
L30:
fmov ebx, CONST2
L31:

If you rephce he jg e instruction in the previous xampk with asetc ¢
instruction, this code canbe ogimized b eliminate the brarches as stwn
in the Example 2-4:

Code Optimization to Elimi nate Branches

Xor ebx, ebx iclear ebx (Xi n theC c ode)
cmp A, B
setg e ebx . Whenebx =0 or 1

;ORth e compl ementcon diti on
dec ebx ;e bx=00..0 O or 11...1 1

and ebx, (CONBT1- COMNST2) ;e bx=0 or (CONST1-C ONST2)
add ebx, CONST2 ;e bx=CONSTlor CONST2

The optmizedcode setebx to zero, hen compees A and B. If A is greder
thanor equl to B, ebx is se to one. Then ebx is decreastand“and-ed”
with the dffererce ofthecorstart values.This ses ebx to either zeroor the

Gereral Optimizaion Guidelines 2

differene of the values. Byadding CONST2 backto ebx, the correct valueis
written to ebx. WhenCONST1 is equal to zero, the last instruction can be
ddeted.

Another way to remove brancheson Rentium 11 and Rentium Il processos
is touse the cmov andfc mov instructions.Example 2-5 stows chaging a
test andbranchinstruction sequene ushg cnov andeliminating a lvanch.
If the st ses the equal flag, the value in ebx will be moved toeax. This

brarch is dat-depencdent, andis repesendtive of an urpredctable brarch.

Example 2-5 Eliminating Br anch with CMOV Instr uction

te st e cx, e cx

jne 1h

mo/ e ax, e bx
1h:

; Toc hanget hec ode, the jneandt hemovin structions
; are combi ned into one cmovcec instructiont hat checks
; the equal f lag. Th e opti mized c ode is :

te st e cX, ecx ; test t he fl ags
cmoveq ea X, eb x ; if the equalfl agis set, move
; eb x to e ax
1h:

Thelabel 1h: isnolonger needed wmless i is the target of arother brant
instruction.

Thecmov andfc mov instructions ae available onthe Petium Fro,
Pentium Il andPentium Ill processos, but noton Pertium processos ard
ealier 32-ht Intel archiecure-basegrocessts. Be sure © check wheher
a ocessosppolts these nstructions wih the cpui d instruction if an
application needsd run onolder processos as well.

2 Intel Architecture Optimization Reference Manual

2-8

Performance T uning Ti p for Branc h Prediction

Intel C/C++ Compiler has a-Qxi switch which turns orPertium Il or
Pentium Il processpspeific code gereration so hatthe canpiler will
generte cmov-/ fc mov instruction seqences whie possble, saving you
the dfort of doing it by hard.

For informaton onbranchelimination, se the Patium Il Processor
Compuer Basedrraining (CBT), which is available with the VTune™
Performance EhhancementEnvironmentCD at

In addition to eliminating kranches the following gudelines mprove
branch predctability:

®* Ensure hateah cal has amatding retirn.

* Don't intermingle daa and instructions.

® Unrall very shot loops.

* Follow staic predction agorithm.

When amisprediction occuss the enire pipelineis flushed upto the branch
instruction andthe pro@ssor vaits for he mispredcted branchto retre.

Branch Mi spredictionRatio= BR Ms s_Pred_Ret /
BR | nst_ Ret

If the lranch misprediction ratio is less ttan alwut 5% then branc
predctionis within normalrange. Oterwise,idenify the branbes hat
cauwse sgnificart mispredctions ad ty to remed the stuation ushg te
technques decribed in the “Eliminaing and Redudng the Numbe of
Branches” eatier in this chaper.

Partial Register Stalls

On Pentium Il and Pentium Il processas, wrena 2-hit register (fa
exampk, eax) is read immeicitely after al6- or 8-bi register (for exampe,
al , ah, ax) is wrtten, the readis stlled urtil the writeretires, dter a
minimum of s@en clock g/cles. Consler Exampke 2-6. The firstinstruction
moves the value 8 into the ax register. The fdlowing instruction acesses
the registereax . This code seqence reslas in a partial register sall as
shown in Example 2-6.

Gereral Optimizaion Guidelines 2

Example 2-6 Partial Register Stall
MY ax, 8
ADD e cx, e ax ; Part ial stall occurs on access
; of t he EAX regi st er
This gpplies todl of the 8- and 16-bit/32-bit registe pairs, listed below:
Small Registers Large Registers:
al ah ax eax
bl bh bx ebx
cl ch cx ecx
dl dh dx edx
sp esp
bp ebp
di edi
Si esi
Pentium processes do nat exhibit this penaty.
Becawse Petium Il ard Perium Il processas can execute codeout of
order, theinstructions reed ot be mmedately adpcen for the sall to
occur. Exampk 2-7 alsocontins apartal stall.
Example 2-7 Partial Register Stall with P entium 1l and Pentium Il Processors

MQ/ al , 8

MQ/ ed x, Ox 40

MO/ edi,ne w_value

ADD edx, eax ; Part ial stall accessi ng EAX

In addition, ary pgos hat follow the stlled popalsowait urtil the clock
cycle ater the stlled popcontinuesthrough te pipe. ih gened, to avoid
stalls, do nd read a &rge (32bit) register (eax) after wrting a smal (8- or
16-bit) register @I or ax) which is congined in tle large ragister.

Special cases breading ard writing smél andlarge register pars are
implemenéd in Pentum Il andPentum Il processas inorder to simplify
the Hending o codeacross proessor geerations. The speal cass are
implemened for xor and sub whenusing eax, ebx, ecx, edx, ebp, esp,

29

2 Intel Architecture Optimization Reference Manual

2-10

Example 2-8

edi , andesi as shwninthe A. throudp E. seriesn. Generallywhen
implemening this sequace, &ways zeo the large register and henwrite to
the lower hdf of the registe.

Simplifying the Ble nding of Code in Pentium 1l and Pentium Il
Processors

A. Xor e ax, e ax
movb al, men8
add e ax, menB2 ; nopartia | stall

B. Xor e ax, e ax
movw ax, menié
add e ax, menB2 ; nopartia | stall

C. sub ax, ax
movb al, men8
add a x, memil6 ; nopartia | stall

D. sub e ax, e ax
movb al, men8
or a x, memil6 ; nopartia | stall

E. Xor ah, ah
movb al, men8
sub ax, menil6 ; nopartia | stall

Performance T uning Ti p for Partial Stalls

Partial stdls can be measurdyy sekcing the Rartial Stall Events or Partia
Stall Cycles eentsin the VTune Rxformance Amlyzerandrunning a
samping a your appicaion. Rartial Stall Everts slow the number of
events and Partial Stall Cycles stow the number of cyclesfor partial stdls,
respetively. To selet theevens, in the VTune andyzer, dick on Conigure
meru\Optionscommand®racessor Eens for EBS for helist of all
processor gents, sekectore of he @ove eserts and daible cick onit. The

Gereral Optimizaion Guidelines 2

Everis Cusbmizaion windav opers where yau cansetthe Cainter Mask
for either of hose events. For more dtails, see

. If apaticular stal occus more than dout
3% of the exeaution time, hen the cale assoated with this stall shaild be
modfied b eliminatethe sall. Intel C/C++Compiler atthe default
optimizaion level (switch -O2) ensurestat parial stalls do notoccu in the
generated cade.

Alignment Rules and Guide line s

This secion discusseguidelines br alignmen of both cade aml dat. On
Pentium Il andPentium Il processors, a nsaigned acess hat crosses a
cache Ineboundary does ncur a pendty. A Data Cache Unt (DCU) spitis
a memory accss thatcrosses aBbyteline lundary. Unaignedaccesses
may cause ©CU spit and sall Pentum Il andPertium Ill processos. For
best performancemake sure hat in data structures andarrays greagr than
32 bytes, thestrudureor array elemens are 32-gte-aligned aml that access
paterns b data stricture andarray elemens do notbre the algnmen
rules.

Code

Pentium Il andPentium Il processos have a cabe ne size of 32 bytes.
Since the instruction prefetch buffers fetch on16-byte boundaies, cale
alignmen has a drectimpacton prefeth buffer efficiency.

For optimal performaice acrosste Intd architedurefamily, the following
isrecommeded:

* Loopernry label shoutl bel6-byte-alignedwhen less han eght bytes
away from a B-byte bounchary.
* Labelsthatfollow a canditional branchneednot be digned.

e |abelkthatfollow an utncorditiond branch a funcion cdl shoud be
16-byte-aignedwhen kss haneight bytesaway from al6-byte
bounday.

® Use acompier thatwill assureliese riles ae metfor the gerrated
code.

2-11

2 Intel Architecture Optimization Reference Manual

2-12

Data

On Pattium Il and Pentium Il processas, avoid loops that execute in less
thantwo cycles. The target of the ightloops shold be aligned on a 16ébyte
bounday to maximize te useof instructions that will be &tched. On
Pentium Il and Rentium Il processos, it can limit the number of
instructions available for exeaution, limiting the number of instructions
retired every g/cle. Itisrecommened that critical loop enties be bcaed
ona cabe Ine bounday. Additiondly, loops thatexecutk in less hantwo
cycles shold be wrolled Seesecion

for more information abou decoding on the Pentum Il andPertium Ill
processors.

A misalgned dhita accesshat causes araccess ragpstfor dag alreadyin
the L1 cache ca costsix to nine g/cles. A msaigned acess hat causs an
acess requs from L2 cache o from memory havever, incurs a pendty
that is processor-dependent Align the daa asfoll ows:

* Align 8-bit dak atary address.

® Align 16hbit daa o be caotaned within an aignedfour byte word.
* Align 32bit daa 0 thatits base addessis amultiple of four.

* Align 64hit data sothatits base addessis amultiple of eight.

* Align 80hit data sothatits bae addessis amultiple of sixteen

A 32-byte a greakr dat structure orarray shoud be algnedso tatthe
beaginning of eachstructure or arrayelementis aligned in away thatits base
address $ a mutiple d thirty-two.

Data Cache Unit (DCU) Split

Figure 2-1 slows the type of code that can @use a cachsplit. The cale
loads the addesses of wo dwor d arrays. In his exampk, everyfour
iterations of the first two dword lcadscause acache spt. The data dechared
ataddress 02870fehis not 32-byte-aligned, herefore eacHoad b this
address andeery loadtha occurs 32 hytes (every four iteraions)from this
address wil cross he @ache ine oundary. When hie misaigned cita
crosses a cach line boundaryit catses a si- to twelve-cycle stdl.

Gereral Optimizaion Guidelines 2

Figure 2 -2 DCU Splitin the Da ta Cache
mov esi, 029%9e70feh
mowv edi, 05be5260h
BlockMove:
mov eax, DWORD PTR [esi]
mowv ebx, DWORD PTR [esi+4]
mov DWORD PTR [edi], eax
mov DWORD PTR [edi+d4], ebx
add esi, 8
add edi, 8
dec edx
Jjnz BlockMove
lteration 1 lteration 2 lteration3 70FEh | Iteration 0
| | |
70ECh * * * . DCU Split access
7100h
D Aligned access
7120h

Performance Tuning Tip for Misaligned Access es

Misalgneddat canbe dteded by using the Misaligned Accessesvent
counter an Pentium Il andPeriium Il processors. Bethe VTune aralyzer’s
dynamt execution functionalty to deermine the exactlocaion o a
misaigned acess. Codand dtarearrangments for optmal memory

usgye are dscussed m Chapter 6 “Optimizing Cache Utilization for

Pertium® lll Processas.”

2-13

2 Intel Architecture Optimization Reference Manual

2-14

Instru ction Scheduling

Scheduingor pipelining shaild be dnein a way that optimizes
paformance acoss al processor gneratons. The following setion
presaits scheduing rules hat canimprove the peformarce ofyour codeon
Pentium |1 and Rentium 11l processos.

Scheduli ng Rules for Pentium Il and Pentium Ill Processors

Pentium Il and Rentium Il processos have three deoders that transhte
Intel archiecure (IA) macronstuctons into pogs as dscussedn
Chapterl, “ .” The decdler imitations are
as fdlows:

®* Ineach cbck cycle, the first demderis camble of decodingone
macranstructon mae upof four a fewer po. It can handle ary
number of lytes upto the maxmum of 15, but nine-or-more-ltyte
instructions reqire additional cycles.

®* Ineach cbck cycle, the ohertwo decodes can eat demde an
instruction of one pop, and um eight bytes. Instructions composed of
morethan four pops tke mutiple cycles to decale.

Appendix C, “ ,” contins atade of all
Intel macronstuctions wih the numler of pgos into which they are
decoded Use his information to determine the decode on which they can
bedecaled.

The macranstuctions engring the deoder tavel through he pipein order,
thereforeif a macroinstriction will notfit in the rext available decodr, the
instruction must wait urtil the next cyde to be decoded. It is possilde to
schedule instructions for he decode so hatthe instructions n the in-order
pipdine ae lesslikely to be stalled.

Consder the following codeseresin Example 2-9.

Gereral Optimizaion Guidelines 2

Example 2-9 Scheduling Inst ructions for the Decoder

A.
add eax, ecx ;1 pop instructio n (decoder 0)
add edx, [ebx] ;2 pop instructio n (stall 1 cycle
s wal t till decoder 0 is available)

B.
add eax, [ebx] ;2 pop instructio n (decoder 0)
mov [eax], ecx ;2 pop instructio n (stall 1 cycle

; to wait until de coder O is available)
C.
add eax, [ebx] ;2 pop instructio n (decoder 0)
mov ecx, [eaX] ;2 pop instructio n (stall 1 cycle

: to wait until decoder O is available)
add ebx, 8 ;1 pop instructio n (decoder 1)
D.
pmaddwd mme, [ebx]; 2 Hops instructio n (decoder 0)
paddd mm7, mm6 ;1 pop instructio n (decoder 1)
add ebx, 8 ;1 pop instructio n (decoder 2)

The setionsof Exampk 2-9 ae explained as bllows:

A. If the next available decoderfor amulti-popinstruction is na decaler0,
the multi-op instruction will wait for decoder O to beavailable; this usu-
ally happens n the next clock, leaving the otherdecaers empy during
the current clock. Hence, the following two instructions will take two
cycles b demde.

B. Duiingthe beginning of the decdaling cycle, if two consective instruc-
tions ae mae than ae u@, decoderO will decale ore instruction and
the rext instruction will nat be decaleduntil the rext cycle.

C. Instructions of theop re g, me mtype reguire two pops: the load from
memoryandthe operaiton op. Shediling for the deeoder empkte
(4-1-1) can improve the decodng throuchputof your application.

In general, op reg, memforms of instructions are usedo reduce
register ressure in coce thatis not memory lmund andwhen he data
isin the cacheUse simjbe instructions for improved spee@n Pentium
Il and Pentium Il processors.

2-15

2 Intel Architecture Optimization Reference Manual

D. The following rulesshoutl be obsevedwhile using theop re g, me m
instruction with MMX techrology: when schduling, keep n mind the
decodertemphte (4-1-1) on Rentium Il and Rntium Il processos, as
shown in Example 2-10, D.

Prefixed Opcodes

On the Pentium Il and Pentium Il processos, avoid thefollowing prefixes:
* lock

®* s@mentoverride

®* adlress size

® operand ste

On Pentium Il and Pentium IlI processos, instructions longe than seven

bytes limit the numler of instructions decded n each gcle. Refixes add
one b two bytesto the length of instruction, pssbly limiting the deoder

Whenever possilde, avoid prefixing instructions. Stiedue them behnd
instructions hat themseles stal the ppefor some dber reaon.

Pentium I and Rentium 11l processos can oly de®de me instruction ata
time when aninstruction islonger than seven bytes. S for best
paformance, we smple instructions hat are less than eght bytes in length.

Performance T uning Ti p for Instruct ion Scheduling

Intel C/C++ Compiler generates highly optimizedcode specifically for the
Intel architecure-basedprocesses. For assembyl cade aplicaions,you
canuse he assembl coach of he VTune anayzer to geta scleduling
advice, see Clyater 7, “

Instruct ion Selection

The following setionsexplain which instruction sequenes b avoid or use
whengeneating optimal assemby cock.

2-16

Gereral Optimizaion Guidelines 2

The Use of | ea Instruc tion

In many cases de a instruction or a segenc of le a, add, sub, ard
shif t instructions carbe usedo replace onsent multiply instructions.
Usethe integer multi ply instruction to optimize code designed for
Pentium Il andPentium 11l processos. Thele a instruction can te used
someimes as ahree/four operad adlition instruction, far examge,

le aec x, [e ax+ebx+4+a]

Using thele a instruction in this way canavoid someunneessay register
usaje by nd tying up registerss for the opeands of somearithmeic
instructions.

On the Rentium Il and Pentium Il processors, bath le a andshi ft
instructions are sigle op instructions hat execute in onecycle. Havever,
that short latency may not persistin future implemenations. The Intel
C/C++ Compiler checks b ensure hat these hstructions araused corectly
wherever posdle.

For the bestblendedcode replace he shif t instruction with two or more
add instructions, since he stlort latency of this instruction maynotbe
maintainedacross dlimplemenations.

Comple x Instruc tions

Avoid using @mmplex instructions for exampk, ent er , le ave, orlo op)
that generally have more thanfour pops andrequire multiple cycles o
decode. Ug sequeces ofsimple instructions nstead.

Short Opcodes

Use me-byteinstructions & much & possble. This reduces codesizeand
increass instrudion densty in the instruction cade. For exampk, use the
push andpop instructions instead of mov instructons to sae registers ©
the sack

2-17

2 Intel Architecture Optimization Reference Manual

2-18

8/16-bit Operands

With eight-bit operands try to use te byte opcales, ather thanusing 32-bit
operations on sgn andzem-extended kytes. Refixes br opeand size
overide gply to 16-bit operands, notto eight-bit opernds.

Sign extersion is usualy quite expersive. Ofen, the semarits canbe
maintainedby zero-exterding 16bit operands.For example, the Ccodein
the fdlowing satemens does na need sgn extension, nor tes it need
prefixesfor operanl size overrides:

static short int a, b;
if (a==b) {

}
Codefor comparng these 16bit operands nght be:
X0r e ax, e ax
Xor e bx, e bx
mow ax, [a]
mow bx, [b]
cmp e ax, e bx

Of couse, hiscan aly be dne inder @rtain drcumstarces, loit the
circumstance tend bequite common This would notwork if the
compare ves for greger than, less han,greaer than o equal ard so m, or
if thevalues ineax or ebx wereto be used imnotheroperaton wheresign
extension wes required

mo/sw eax, a ;1 prefix + 3
movsw ebx, b . 5
cmp ebx, eax ;9

Pentium Il and Rentium Il processos provide specal sugport to XCR a
register with itsef, recanizing tat cleaing aregister doesnot depgend m
the dd value ofthe register. Additionaly, specal suppat is provided for the
above spedic coc sequene toavoid the partial stall. See

sectio for more informaion.

The performance d the movz x instructions tas bea improved in orderto
rediwce he pevalerce of patial stdls onPentum Il andPeriium llI
processors. Use theovzx instructions whercoding for these pocessos.

Gereral Optimizaion Guidelines 2

Usete st whencomparingavaluein aregiste with zero.Test essantially
andsthe opeandstogeherwithout writing to a detination register. Test is
preferred over and becaiseand writes he resit register, which may
subsequettly cause amattificial output depaderce onthe piocessor. Test
is better thancmp . ., 0 becausdhe instruction sizeis snaller.

Comparing Register Values

Usete st when canparing the resit of alogicaland with animmedete
constant for equdity or inequality if the register iseax for cases suchs:

i f (avar & 8) { }

Address C alcul ations
Pull address calulations nto load andstoreinstructions.Interrally,
memoryreferencenstructons ca have four gperand:
® relocatbe load-timeconstant
* immedete corstart
®* base egister
® scakdindex register.
In the sgmerted modé, a sgment register may castitute anaddtional
operandin the linear addressatculation. In mary cass, several integer

instructions carbe eiminated by fully using the operamls of memory
refererces.

Clearing a Register
The peferred seqence 6 move zero b aregister is:
Xor reg,r eg

This sares mde spce lit ses the condition codes. In cantexts wherethe
condition codes mustbe peserved, move 0 into the register:

movre g,0

2-19

2 Intel Architecture Optimization Reference Manual

2-20

Integ er Divide

Typically, an nteger divide is preededby acdq instruction. Divide
instructions useeDX: EAX as hedividerd andcd g sets ugEDX. It is better to
copy EAX into EDX, thenright-shift EDX 31 places ¢ sign-extend.If you
know that the value is postive, use seqgence

xor edx, edx
On Pentium 1l and Pentium 1l processors, e cd g instruction is faste since

cdq isa shgle p@ instruction as opposedto two instructions br the
copy/s hif t sequace.

Compar ing with Im mediat e Zero

Often whena \value is comparedvith zero, the operaton prodices he value
sek condition cades,which can betested drecly by ajc c instruction. The
most notable exceptions are mov andle a. In these caes, usees t .

Prolog Sequ ences

In routines thado notcal otherroutines(leafroutines) use ESP asthe base
register tofree UpEBP. If you are not using the 32bit flat mode, remembe
that EBP canrot be wsed as agenesl purpose lase egister beause t
referenes he sack sgmern.

Epilog Sequences

If only four bytes were dbcated in the sack frame fortie airrentfunction,
usepop instructions nsteadof incremening the saick pointer by four.

Improving the Performance of Floating-point
Applications

When pogrammng floaing-pont applications,it is bestto startatthe C,
C++, or FORTRAN language level. Mary complers perform floaing-point
scheduling ard ogtimizationwhen t is possble. Hovever in orderto
produceoptimal cade, he compier may ned somessisane.

Gereral Optimizaion Guidelines 2

Guidelines f or Optimizing Float ing-point Code

Follow these ules to improve the speedf your floding-point appicaions:
® Understard how the compler hardles floating-point code

®* Lookatthe assemlyldump ard see whatransforms ee already
peformed onthe piogram.

® Study the loop ness in the gplication thatdominate the execution
time.

* Determine why the canpiler is na creating the fastest code.

* Seef there sa depnderce hat canbe restved.

® Consder large memoy bandvidth requiremens.

® Think o poor cahe bcdity improvement

* Seeif there is alot of long-latency floating-point arithmetic operations.

* Do nad usehigh precision unkss neessay. Single pecision (32-bits) is
fasteron some operabns andconsumes dy hdf the memory spacas
double predsion (64-bits) or doulle extended @0-bits).

®* Make sur you have fast float-to-int routines. Many libraries domore
work than is necessarymale sure pur floatto-int is a fastrouine.

* Makesuryourapgicaion stgsin range. Qut of rangenumbels cause
very high overhead

® FXCHcan behebful by increasing the effective name spee. Thisin
turn allows instructions to be reordered to make instructions available
to be executed in parallel. Outof orderexecuion precludes he needfor
using FXCH to move instructions fa very short distances.

® Unroll loops ad ppdine your cade.

® Perform transformatnsto improve memoryacaess piterrs. Useloop
fusion or compresseinto keep as much of &computation in the cache
as pssble.

®* Break ¢pendng chans.

Improving Parallelism

The Rentium 1l and entium Il processos have a ppelinedfloating-point
unit. To achieve maxmum troughputfrom the Fentium Il andPentum 1l
processos floaing-point unit, scredule propery the floaing-point
instructions b improve ppdining. Consicer the exampk in Figure 2-2.

2-21

2 Intel Architecture Optimization Reference Manual

To exploit the parllel capabiity of the Patium Il ard Pantium 11|
processos, deemine which instructionscan beexecutd in pasmld. The
two high-level codestaemernsin the exkampk are ndegndent, therefore
their assembyl instructions ca be sbeduded to execute in parallel, therely
improving the exeaution speedsee sarce cale n Exampk 2-10.

Example 2-10 Scheduling Floating-P oint Instr uctions

A=B+C+ D;
E=F+G+ H;

fld B fld F
fadd C fadd G
fadd D fadd H
fstp A fstp E

Most floaing{point operations iequire that one operand ad the resut use
the top of stack. This makes @ch nstruction dgpendenton te previous
instruction andinhibits overlapping the instructions.

Oneobvious way to get aroundthis is to imagie that we have aflat
floaing-point register file available, rather than astad. The cale s shavn
in Example 2-11.

Example 2-11 Coding f or a Floating- Point Register File

fl d B ?F1
fadd F1, C ?F1
fl d F ?F2
fadd F2,G ?F2
fadd F1,D ?F1
fadd F2,H ?F2
fstp F1 ?A
fstp F2 ?E

2-22

Gereral Optimizaion Guidelines 2

In order b implementthese maghnary registers we needto use he FXCH
instruction to change the value on the top of stack. This provides away to
avoid the top of stackdepemleng. The FXCHinstruction use no etra
exeaution cycles on Pentium |1 andPentium |1l processos. Exampk 2-12
shaws its wse.

Example 2-12 Using t he FXCH Instruction

STO ST1
fl d B BF1 fl dBB
fadd C BF1 fadd C B+C
fl d F B2F2 fl dFB+ C
fadd G 2F2 fadd G F+G B+C
fx ch ST(1) B+C F+G
fadd D 5F1 fa dd D B +C+D F+G
fxch ST(1) F+G B+C+D
fadd H 2F2 fa dd H F +G+H B+C+D
fx ch ST(1) B+C+D F+G+H
fstp D BA fstpAF+ G+H
fstp E 5E fstpE

The FXCHinstructions mee an @erandinto postion for the next
floaing-point instruction.

Rules and Regulat ions of th e fxch Instruct ion

The fx ch instruction costs no extra cycles on Pentium I andPentium 111
processors. fie instruction is almost“free” ard canbe usd to acess
elemerts in the deepe levels of the floaing-point stackinstead of sbring
them and thenloading them aain.

2-23

2 Intel Architecture Optimization Reference Manual

2-24

Memory Ope rands

Flodaing-point opelands that are 64hbit operandsneed ¢ be
eight-byte-aligned. Rrforming a floaing-pont operaion on amemory
operandinsteadof ona sack reister o Pentium Il or Pentum IlI
processoyproduces wo pops, which canlimit decodng. Additionally,
memoryoperaids may euse adat cacle miss, causiga perlty.

Memory Acc ess Stall Information

Floaing-point registers alow loading of 64-bit values & dolbles. hsteadof
loadng single arrayvalues thatare 8, 16-,0r 32bits long, cansider loadng
the values n asingle quadvord, then incrementing the stucture or array
painter accordingly.

First, the loadng andstaing of quadword ddais moreefficientusing the
larger quadword dat block sizes. &cond this heps 1 avoid the mixing of
8-, 16-, or 32-bit load andstae opeationswith a &-bit load andstae
operaton to the memoryaddressThis avoids he possbility of amemory
acessstall on Pettium Il and Petium |1l proessors. Mmory &cess stalls
occur when

* smal loads folow large sbres b the same i@a of memory
® large loads fdlow smal stores b the same i@a of memory

Constler the following casain Exampk 2-13. In thefirst case (A, there is
a large load afte a serés of smdlstaresto the same areaf memory
(beginning at memory addessmen), and the large load will stall.

Thefl d must wait for the sbres b write o memory befoeit canaccessla
the cata it requires This stall can aso occurwith other daatypes(for
exampk, when lytes orwords are sbred aml then words or doublewords ae
readfrom the same @a of memory).

Gereral Optimizaion Guidelines 2

Example 2-13 Large and Small Load S talls

;A. Large | oad st all
fnov nmem, e ax st oredwordt oad dress*“ nent
nov mem + 4, ebx; st oredword toaddress“ nem+ 4"

fld mem ; load gword at address “ment, stalls
:B. Snmall L oad st all

fstp mem ;s tore gwordto address “m ent

mov b xmemt+2; |oad word at address “ mem+2", stalls
mov ¢ Xx,;mem+4 ; |load word at address “ nem+4", stalls

In the secand case (B), thre is a seriesf@mall loads after alarge staeto
the same area bmemory (leginning atmemoryaddressnen), ard the smél
loads will stall.

Theword loads mustwait for the quadword sbreto write to memay befae
they canaccesshe datthey requre. This stdl canalso ocar with other
daatypes {or examplke, whendowlewords orwords ae staed andhen
words o bytes ae read from lhe same areafanemory). his can ke
avoidedby movingthe sbreas fr from theloads & possible. In generd, the
loads and gtres slould be sepaated by at least10 instructions to avoid the
stall condiion.

Floating-point to Integ er Conversion

Many libraries provide the float to intege library routines that convert
floating-point valuesto intege. Many of these libraries conform to ANSI C
cading sandards which state tat the rounding moc shoud be tuncation.
The default of thefi st instruction is roundto neaest therefore mary
compiler writers mplementa chang in the rounding moc in theprocessor
in order to conform to the C anl FORTRAN stardards. Ths
implemenétion requres danging the corrol word on the processor sing

2-25

2 Intel Architecture Optimization Reference Manual

thefl dcw instruction. This instruction is a synchronizing instruction and
will cause a sigficantslowdown inthe performaneof your application on
all IA-based pocessors.

When mplemening an apgicaion, onsder if the rourding moce is
important to the results. If not, usethe algorithm in Example to avoid the
syrchronizaion and overhead dé thefl dcw instruction andchamging the
rounding male.

Example 2-14 Algor ithm to A void Changing the Rounding Mode

_fto 132pr oc

le a ecx,[esp- 8]

s ub esp, 16; al lo cate f rame

a nd ecx,-8; al ign pointer on boundary of 8
fl d st(0) ;d wuplicate FPUst ackto p

fi stp gword ptr[ecx]

fild gwor d ptrle cx]

mov edx, [ecx+4] ; highdword of i nteger

mov eax,[ecx] ; low dword of in te ger

t est eax, eax

j e in te ger_QnaN_or _zero

continued

2-26

Gereral Optimizaion Guidelines 2

Example 2-14 Algor ithm to A void Changing the Rounding Mode (continued)

arg is not in te gerQ naN:
fs ubp st(l), st ; TOS=d- ro und(d),
;o { st(l)=st(l)-st & pop ST)
te st edx, edx ; what'’s signof integer
jns posi ti ve ; number i s negativ e
;d ead cycl e
;d ead cycl e
fs tp dword ptr[ecx] ; r esult of subtraction
AoV ecx, [ecx] ; dword of diff (sin gl e-
; precis io n)
add esp, 16
Xor ecx, 80000000h
add ecx, 7fff ff ff h; i f di ff <O th en d ecrement
; in te ger
adc eax, 0 ;in ce ax(add CARRY fl ag)
ret
posi ti ve:
fs tp dwordpt r[ecx]; 17-18re sult of
subt ra cti on
AoV ecx,[ecx] ; dword o f diff (si ngle -
; precis io n)
add esp,1 6
add ecx,7 ff fff ff h ; if di ff <Oth en de cr ement
; in te ger
sbb eax,0 ; dec eax (s ubtra ct CARRY fl ag)
ret
in te ger_QnaN_or _zero :
te st edx, 7ff ff ff fth
jn z arg_is_ not_in te ger _QnaN
a dd esp, 16
ret

2-27

2 Intel Architecture Optimization Reference Manual

2-28

Loop Unr olling

Example 2-15

The benefits o urrolling loops are:

Unrolling amotizes he lranch overhead. The BTB is goodat
predctingloops onPenitum Il andPerium Il processors ahthe
instructions b incremei the loop index and jump areinexpensive.
Unrolli ng alows you to aggressvely schedule (or pipeine) the loop to
hidelatencies. Ths is usdul if you have enaughfreeregisters tokeep
variables live as yu stetch ou the depeeng/ chain to expose he
criticd path.

You can aggessively schedule the loop to beter setup I-fetch and
decode conshints.

The backwerds brarnch (predictedas gken) has only al clock pendty
on Pertium Il ard Penium Il processors, so you can urroll very tiny
loopbodes for free

You can use aQunro | | option of the Intel C/C++ Compiler, see Intel
C/C++ Compiler Users Guide for Wh32* Systems order number718195.

Unrolling canexpose dher optimizaions, & shavn in Example 2415. This
exampk illustates a bop executes D0 imes asgjning x to every
even-rumberedelenentandy to every odd-humbeled element.

Loop Unrolling

Before unroll in g:

doi =1,10 0

if (i mod2== 0)t hena(i) =x
elsea(i) =y

enddo

Afte runr ol li ng

doi =1,100, 2
a(i) =y
a(i+1) = x

enddo

By urrollingtheloop you can male loth assgnmerts each teration,
removing ane brarch in the loop body.

Gereral Optimizaion Guidelines 2
Floating-Point Stalls

Many of the floaing-point instructions h&e alatency gredaerthan one cycle
but, becausef the ou-of-order natire of Rentium Il andPentum 111
processos, stalls will not necessaly occur onan nstruction or pop basis.
However, if an nstruction hasa very long ktency sud as arfd iv , then
scheduling can improve the throughpu of the overall appicaion. The
following setionsdisauss schedling issues andffer good tips for ary
IA-basedprocessn

Hiding the One-Clock Latency of a Floating-Point Store

A floaing-point store mustwait an extracycle for its floaing-point
operand.After anfl d, anfs t mustwait ore clock After the common
anithmeic opeations,fmul andfad d, which normally have a latency of
three,fs t waits an extra cycle for atotal of four. This seé dso includes
other instructions, br examge, fa ddp andfsu br p, see Eampk 2-16.

Example 2-16 Hiding One-Cloc k Latency

; St orei sde pendent onth epr eviouslo ad.

fld mem :1fl dta kes1l clock

; 2 fst wait s, schedule s onething here
fs t mem2 ; 3,4f st t akes 2 cl ocks
fadd meml ; lad dta kes3 clocks

;2 add, schedul e something here
;3 add, schedul e something here
; 4 fst wait s, schedule s omething here

fs t men2 ; 5,2f st t akes 2 cl ocks

; Storei s not dependent on the previous loa d:

fl d menm 1

fl d menm2 ;2

fxch st (1) ;2

fs t menB3 : 3 stores values| oaded f rom menh

; A r egist er maybeused immaiately after it has
; beenloa ded(w it hF LD):

fl d meml s
fa dd men 02, 3,4

2-29

2 Intel Architecture Optimization Reference Manual

2-30

Use ofaregister by a floating-point operaton immedetely after it has been
written by anotherfa dd, fs ub, orfmul causes &wo-cycle deby. If
instructions are inserted between these two, then latency and a patential stdl
canbe hdden.

Additionally, whil e the multi-cycle floating-point instructions, fd iv and
fs grt, execuein the floaing-point unit pipe,integerinstructions carbe
exeauted in paralel. Emitting a number of integer nstructions after sub an
instruction asfd iv orfs grt will keep the integer execution units busy.
The exacthumberof instructions apend onthe floating-point instruction’s
cycle count.

Integer and Floating- point Multiply

The integer multiply operations, mnd andimul , are e&ecuted n the
floaing-point unit so hese nstructions cannotbe execued in parllel with a
floaing-point instruction.

A floaing-point multiply instruction fmul) delays for ore gycle if the
immedetely precedng cycle execued anfmul oranfmul /fx ch pair. The
multiplier canonly accepta rew par of operand every oter gcle.

For the bestblendedcode rephce he integer mutiply instrudion with two
or more add instructions, since the sort latercy of this instruction may not
bemairtained acrossall implemenétions

Floating-point Operations with Integer Operands

Flodaing-point opeitions hat take integer opeands (i add orfi sub ..)
should be awided. These instructions shaild be sgit into two instructions:
fi Id and afloding-point opestion. The rumberof cycles tefore andher
instruction can bessued throughput) for fi add is four, whilefor fild and
simple floaing-point opeationsit is one as shwn in the canpaison
bdow.

Complex Instructions Use These for Potential Overlap
fi add [e bp] ; 4 fi Id [ebp ; 1
fa ddp st(l) ; 2
Using thefi |l d-fa ddp instructions yelds wo free gcles for eectting
other instructions.

Gereral Optimizaion Guidelines 2
FSTSW Instructions

Thefs ts winstruction that usudly appeas ater a loaingpoint
comparson instruction (fc om fc onp, fc onpp) delays for three gcles.
Other instructions nay be inseted after the comparison instruction in order
to hide the latency. On Pentium Il and Pentium Il processorshe fc mov
instruction canbe wsed nstead.

Transcend ental Functi ons

If anapplcaion neels o emukbte these mdt functions in sofware, it may
beworthwhile to inline someof these mat library cdls beause hecal |
ard the probgue/eilogue nvolved wih the cals can significartly affectthe
latency of the gperations. Enulating these opegtionsin software will not be
faster than the hardware urlessaccurag is sacrficed

2-31

Coding
for SIMD Architectures

The capabili ties o the Pentium® 11 and Rntium 11l processors endb the

developmentof adranced mutimeda appicaions. The Steaming SIMD

Extensions and MM X™ technology provide caling extensions to make use

of the processs’ multimedi feaures, spcifically, the shgle-instrudion,

multiple-data (SIMD) charateristics of the instruction setarchtecure

(ISA). To take advantage of the peifformanceoppatunities preseied by

these new capabil iti es, tde into consideration the following:

® Ensure that your processorsupprts MMX techndogy and Steaming
SIMD Extensons

®* Employ all of the oggimizaion andschediling strategies desdbedin
this bok.

® Use sackand dita alignmenttechngues b keepdat properly aligned
for efficientmemory ge.

® Utilize be @acheabity instrudions offered ty Streaming SIMD
Extensions.

This chapter gives anoverview of the capahilities that alow you to better
undeistand SMD features and develop applcaions utilizing SIMD featres
of MMX techndogy and $reaming SIMD Extensions.

3-1

3 Intel Architecture Optimization Reference Manual

3-2

Checking for Processor Support of Streaming SIMD
Extensions and MMX™ Technology

This secton shavs how to check wrether a sysém suports MMX™
techrology andStreamng SMD Extensions.

Checking f or MMX Technolog y Suppor t

Before you sart codingwith MM X technology check f MM X technology
is available onyour systen. Use hecpui d instruction to ched the featire
flags intheedx register. If cpui d returnshit 23 s to 1 in the featureflags,
the processor syports MMX tecology. Use he cale sgmentin
Exampk 3-1 to load hefeature flags in edx ard test tle resit for the
existerce ofMMX technobgy.

Example 3-1 Identifica tion of MMX Technolog y with cpuid
-..identify e xistenceof cpuidi nstruction
- ; id enti fyIn te lpr ocessor
mov eax, 1 ; requestf or f eature fl ags
cpui d ; OFh, 0 A2hc puidi nst ruction

te st e dx, 0 0800000h; i s MM te chnol ogy bit(bit
23)i n feature f lags equal to 1

jnz Found

For mare information on cpui d see ntel Processa Identification with

CPUID Instruction, ordernumber241618.Oncethis checkhas bkeenmade,

MM X tedhnology can beincluded n your applicationin two ways:

1. Checkfor MMX technology duiing instdlation. If MMX technobgy is
available,the appopriate DLLs can beinstaled.

2. Checkfor MMX tecmology during program executon andinstdl the
proper DLLs atrunime. This is dfective for programs hat may ke
exewted on differentmachnes.

Coding for SMD Architectures 3

Checling for suport of Steamng SMD Extensians onyour grocessors
similar to doing the sane for MMX techology, but you mustalso chek
whehe your operaing sysem (OS) spports Streaming SIMD Extensions.
Thisis becase tle OS meds ® marage saing andrestaing the nev siate
introduced ty Steamng SIMD Extensions fr your applicaion to properly
function.

Checking for Streaming SI MD Extensions S upp ort

To check wheher your system spports Sreamng SIMD Extensians,
follow these stps:

1. Checkthatyourprocessoihas the cpui d instruction and isin the Intel
Pentium Il andPentium Il processos.

2. Checkthe featire bts of cpui d for Sreaming SIMD Extensions
existerce.

3. Checkfor OS suportfor Streamng SMD Extensimns.

Example 3-2 shawvs hav to findthe Sreaming SIMD Extensians feature bit
(bit 25) in the cpui d feature flags.

Example 3-2 Identification of St reaming SIMD Extensions with cpuid

...identify e xistence of c puidin struction
i denti fy | ntel Pr ocessor
mov eax, 1 ; r equest for fe ature f | ags

cpui d ;. OFh, O0AZ2h cpuid instruction
te st EDX, 0 02000000h; bit 25in f eaturef lag s equal to 1
jnz Found

To find out whether the opeating systen suppots Sreaming SIMD
Extensions, sinply execute a $reamng SIMD Extension ard trap for he
exception if one occurs. Aninvalid opcode will beraised by the operating
sysem aml proessorfi either is not enabéd for Streaming SMD
Extensions. Caching the exaeption in asimple try/except clause (using
structured eception handingin C++) and diecking whether he excegion
code s an nvaid gocodewill give youthe answerSee Exampk 3-3.

3-3

3 Intel Architecture Optimization Reference Manual

34

Example 3-3 Identification of St reaming SIMD Extensions b y the OS

bool OSSuppor tCheck() {

_try |
__asm xorps xmmO, x D ;Str eamin g S| MDEX te nsio n

}
_except(E XCEPTI ON EXEQUTE_HANDLLER) {

i f (_exception_code() ==STATUS_IL LEGA._| NSTRUCTI ON)
r eturn (false); Stream ng SIMDE xtensi onsn ot s uppor te d
}
Stre aming S| MD Ext ensi ons ares upportedby OS
return (t rue);

}

Considerations for Code Conversionto SIMD
Programming

The VTune™Peformane EnhancenentErvironmen CD provides bols
toaid inthe evaluaion andtuning. But before you staiimplemening them,
you ned to know the arswersto the following questions:

1. Will the aurrentcodebenédit by usng MMX technology or Streamirg
SIMD Extensions?

Isthis coce integeror floaing-paint?

What coding techniques shoutl | use?

What guidelines a | needto follow?

How should | arange andalign the ddatypes?

Figure 3-1 provides a fowchart for the processof corverting code to MM X
technology or the Streaming SMD Extensions.

vk WwN

Coding for SMD Architectures

Figure 3-1 Converting to S treaming SIMD Extensions Char t

la. Identify hotspots in the code.

v

1b. Determine if code benefits by
using SIMD technology.

2b.
—< Why FP data?

FP data 2a.

. Integer data
FP or Integer?

Performance v

3. Convert the code to use SIMD-
FP or SIMD-Integer

2c.
Conversion to
Integer without datg
loss?

VVY

Range or Precision A 4

4. Follow the SIMD-Integer or
SIMD-FP coding techniques.

\ 4
| 5. Use data alignment rules. |

Convert to
SIMD-FP?

\ 4
| 6. Use memory optimizations |

v

7. Use aggressive instruction
scheduling

To useMMX techrology or Steamng SIMD Extensians ogtimaly, you
mustevaluat the following sgmens of your cade:

* sgmensthatare conputatonaly intersive

* s@mensthat requre integer implemenétions hatsupportefficientuse
of the cachearchiecture

* sgmens that require floaing-point computatons.

3-5

3 Intel Architecture Optimization Reference Manual

3-6

Identifying Hotspots

To optimize performaoe, yal canuse he VTunePerformane Analyzer b
isolate the computation-intensive sectionsof code. For detail s an the VTune
aralyzer, see . VTune
aralyzer provides a lotspots view of aspecfic madule © hdp youidentify
sections in your code that take the most CPU time and that have potential
peformance prolems.For more &planaton, seesecion

, which includes arexampk of a
hotspots report. The hdspds view heps yau idenify sectons n your code
that take the most CPU time andthat have potenial performanceroblems.

The VTune aalyzer embles youto charge he view to shav hotspots by
memorylocaion, fundions,classes, or soce fles. Youcan daible-click
ona hdspot and goen he souce a assemby view for the hotspotarnd see
moredetil edinformation abou the performanceof eachinstrudion in the
hotspot.

The VTune analyzer ofers focusedanalsis andperformancealata atall
levels of your souce ®de and can also piovide adiice atthe assmbly
language ével. The cale cach amlyzes ad idenifies gopottunities for
beter paformarce of C/C++, FORTRAN andJava* programs, ad
suggess speciic optimizaions. Where pprogiate, he coachdisplays
pseido-code D sugyestthe useof Intel’s Hghly opimized intrinsics arl
functions of he MMX technology ard Steaming SIMD Extensions from
Intel® Performage Library Sute. Becaus&/Tune anayzer is designed
speificaly for all of the Intel archtecure (1A)-based praessors,
Pentium 1l and Rentium Il processors inparicular, it can dfer these
dedailed aproactes b working with I1A. See

, for more @tails andexampk of a @de ®ach alvice.

Coding for SMD Architectures 3

Determine If Code Benefit s by Conversion to Streaming SIMD
Extensi ons

Identifying code that benefits by using MM X technology and/or Streaming
SIMD Extensions can be time-consumng and difficult. Likely cardidaies
for converson ae gplicaions hatare hghly compuation- intensive such
as the fdlowing:

® spech canpressbn agorithms andfilters

* video display routines

® rendering routines

* 3D gaphics (gemetry)

®* imageand \ideo processig algorithms

* gspatial (3D) audio

Genealy, thesecharaceristics can be dentified by the useof smal-sized
repetitive loops tat opeate a integers of 8 or 16 bits for MMX
techrology, or shgle-precsion, 2-bit floaing-point data for Sreamng
SIMD Extensions techndogy (integer andfloating-point dat items shoudl
besequatia in memory. The repetiveness bthese bops ncurs costy
application processig ime. Havever, these rotines tave potenial for
increasd peformarce whenyou cowert them b use MMX techology or
Streamng SIMD Extensions.

Onceyouidenify your oppottunities for ushg MM X techndogy or
Streaming SIMD Extensions, you mustevaluae whatshaild bedoneto
determine whether the currem dgorithm o a modfied onewill ensure e
best performance.

Coding Techniq ues

The SMD features of Sreamng SIMD Extensions ail MMX tecmology
requre new metods of codng algorithms. One bthem isvecbrizaion.
Vecbrizaion isthe piocess of transforming seqenially executing, or
scahr, coce into coce that can &ecute in paralel, taking alvantage of he
SIMD architedure parallelism Using this feature is aitical for Streaming
SIMD Extensions andMMX techndogy. This secton dscissesltie caling
technques &ailable for an appicaion o mae use é the SIMD
archtecure.

3-7

3 Intel Architecture Optimization Reference Manual

3-8

To vecbrize you codeand hus take advantageof the SIMD architedure,

do the following:

* Determine if the memory acessesdve dependencies hat would
prevert parallel exeaution

* “Strip-mine”’ theloop to reduce the iteration count by the length of the
SIMD opektions §our for Streaming SIMD Extensions and MM X
technology)

®* Recodethe loop with the SIMD instructions

Eachof theseactonsis discussedn deail in the subsegentsedionsof this
chaper.

Coding Methodologies

Software developers ned to compare he peformarce mprovemern that
canbe dtained from assably codeversus the costof those improvemens.
Programmirg directy in assembyl language for a trget platform may
producetherequred performance gin, however, assembyl code i not
portable betveen praessor arakecures ad is expensve write ard
maintain.

Performance dojecives ca be meby taking adwantage @ the Steaming
SIMD Extensions or MMX techology ISA using highdevel languages as
well as assenbly. The newv C/C++ language extensions cesigned
speificaly for the Streamig SIMD Extersions arl MM X techrology hdp
male this possible.

Figure 3-2 illustrates he tradeffs involved n the performancenf hard-
coded asembly versus the easef programming and mrtability.

Coding for SMD Architectures 3

Figure 3-2 Hand-Coded Assembly and High-Le vel Comp iler Performance
Tradeoffs

Assemby

Intrinsics

C++ classes

Automatic
vectoriztion

— Performance—»

Partability,
ea® of use >

The examples ttet follow illustrée the use d assenbly coding adustments
for this new 1 SA to bergfit from the Steamng SIMD Extensians and
C/C+t language extersions. Fbding-point data may ke usedwith the
Streamig SIMD Extensions as wel asthe intrinsicsandvector classes wh
MM X technology.

As a lasisfor the usag@ modeldiscussed in this seciton, cansider a sinple
loopshavn in Exampk 3-4.

Example 3-4 Simple Four-Iteration Loop

void add(fl oat *a,f loat * b, fl oat *c)
{
in ti;
for (i

ol]

0; i <4 i ++) {
a[i] + b[1] ;

}
}

39

3 Intel Architecture Optimization Reference Manual

Note that the loop runs for only four iterations. Ths dlows a simple
replacenentof the cale with Sreamihng SMD Extensions.

For the gptimal useof the Steamng SIMD Extensions hat neal daa
alignmern on the 16byte boundhty, this examge assumeshat the arays
passed tolie routine, a, b, ¢, are dignal to 16-byte bouraiiesby a caling
routine. See Intel application nate AP-833, Data Alignment and
Programming Considerations for Streaming SMD Extensionswith the Intel
C/C++ Comypiler, ordernumber 24372,for the mehodsto ensue this

alignmen.

The setionstha foll ow detail onthe following codng methoddogies:
inlined assenbly, intrinsics, C+ vecbr classes, ahaubmaic

vecbrizaion.

Assemb ly

Key loopscan e codal direcly in assemiyt languageusing anassemtasr
or by using inlined assenbly (C-asm) in C/C++ code. The Intel compiler or
assemler recognizes he new instructions andregisters, hendirectly
generates the carespnding code This madel offers the geatest
performance, hut this paformarce s not portade acrosshe dfferert

processor arclecures.

Exampk 3-5 shaws the Steamirg SIMD Extensions inlinedasm encodng.

Example 3-5 Streaming SIMD Extensions Us ing Inlined As sembly Encoding

void add(fl oat *a, flo at * b, f loa t

{
__asm{
mov eax, a
mov edx, b
mov ecx, ¢
movaps x mmD, X MMWRD PTR [ea X]
addps x nmD, X MMWRD PTR [ed X]
movaps X MWWORDPTR [e cx], xmmO
}
}

3-10

Coding for SMD Architectures 3
Intrinsi cs

Intrinsics povidethe access b the ISA functionality using C/C++ style
cading instead & assemby language.Intel has defned o ses of intrinsic
functions thatare implementd in the Intel C/C++ Compiler to syppott the
MM X technology and the Sreaming SIMD Extensions.Two nev C data
types, represening 64-bit and 28-bit objecs (__ m&4 and__ m128,
respedively) are used as the operands d these intrinsic functions. This
enables o chase he implemenétion d an agorithm directy, while dso
peforming optimal registea allocation and nstruction scleduling whee
possille. These intrinsics areportable amog all Intel architecture-tased
processors symrted by a ompiler. The use of ntrinsicsallows you ©
ohtain peformance cbse b thelevels achievable with assembyl. The cost of
writing and mantaining pragyrams wih intrinsics s considerabl less. for a
detailed desaiption dof the intrinsics and their use, refer to the Intel C/C++
Compiler Users Guide

Example 3-6 stows the loop from Example 3-4 using intrinsics.

Example 3-6 Simple Four-Iteration Loop Coded with Int rinsic s

#i nclu de <x mnn tr in. h>
void add(fl oat *a,f loat * b, f loat *c)

{
_ m28t0 , t1;
t0 = _ mmlo ad_ps(a);
t1 = _ mmlo ad_ps(b);
t0 = _ mmadd_ps(t 0, tl);
_mm.st ore _ps(c, t 0);
}

The intrinsics map ore-to-one with acual Steaming SMD Extensians
assemly code Thexmmint ri n. h healer file in which the piototypesfor
the intrinsics are defnedis part of the Intel C/C++ Compiler for Win32*
Systems included wih the VTune RrformanceEnhancemei Environment
CD.

3-11

3 Intel Architecture Optimization Reference Manual

3-12

Intrinsics arealso ddinedfor the MMX techndogy ISA. These are sed on
the _m64 daatype D represat the corterts d anmnregister You @n
speify values n bytes, stort integers, 32-bit values, oras a64-hit objed.

The __m64 ard __m128 datatypes, havever, are nota kasic ANSI C dat
type, andtherefore youmustobsenre the fdlowing usage resictions:

® Use_ m#&t and___m128 datony on theleft-handside of an
assgnmaent as a rairn value or & a paramedr. You cainotuseit with
other arithmetc expressiams (‘+”, “>>", andso on).

® Use_ m& and__m128 object in aggegates, suctas undns to
acess be byte elemens andstuctures;the addess ofan__me64 object
may be abo sed.

® Use_m&tand__mi128 dataonly with the MMX intrinsics desdbed
in this guide.

For camplete details o the hadwareinstrudions,see he Intel Architedure

MMX™ Technology Programmers ReferenceManual. For desciptions of

daa types e heIntel Architecure Sofware Developer's Manal, Volume

2: Instrudion SetRegrence Manud.

Classes

Intel has ésodeined a sé of C++ classesd provide bdh a highe-level
alstracion and moeflexibility for programming with MM X techndogy
and the Sreamng SIMD Extensions. Theseclasses provide an @sy-to-use
and flexible interface b the intrinsic fundions,allowing developesto write
more naural C++ code wihout worrying aboutwhich intrinsic orassenbly
language hstruction © use for a gven opektion. Snce he intrinsic
functions undelie the implemenétion of hese C++ classes,he
peformance ofgpplications using this metiodlogy canappoad that of
one ushgtheintrinsics. Rurther detils i the wse of hese tassesan e
foundin the Intel C++ ClassLibraries forSIMD Opeations User’s Gude,
order numbe 69330.

Exampk 3-7 shavsthe C+ cade sing a \ecbr classlibrary. The exampke
assumes the arrays pssed ¢ the rautine are ateadyaligned to 16-byte
boundaies.

Coding for SMD Architectures 3

Example 3-7 C++ Code Usingt he Vector Class es

#i nclu de <f vec. h>
void add(fl oat *a,f loat * b, f loat *c)

{
F32vec4 * av=(F32vecd *) a;
F32vec4 * bv=(F32vec4 *) b;
F32vec4 * cv=(F32vecd *) c;
*cv=*av+ * bv

}

Here,fve c. h isthe clss ddhitionfile andF32vec4 isthe chss
representing an aray of four floats. The “+” and “=" operabrs are
overloaded sothatthe acual Steaming SMD Extersions mplemenétion
in the previous kamge is alstradced out, or hidden,from the develope.
Note how mud morethis resembes the aiginal code,allowing for simpler
ard faster programnmg.

Again, the exampk is assunmg the arrays pssed ¢ the rautine are ateady
alignedto 16-byte baunday.

Automatic Vectorization

The Inel C/C++Compler provides anoptimization mechansm by which
simple loops,such ain Exampk 3-4 can beaubmaically vecbrized,or
converted into Sreaming SIMD Extensions codeThe compier uses simar
technques b thoseused ly aprogrammerd idertify whether a loopis
suitable for conversion o SIMD. This involves deermining wheherthe
following mght prevert vecborizaion:

* the layout of the loopandthe daa structures usd

* depencencies amogstthe dat acessesn ead itergion and acoss
iterations

Oncethe compler hagmade sule a cetermination, it cangeneate
vecbrized cale for heloop, alowing the appicaion to use he SIMD
instructions.

3-13

3 Intel Architecture Optimization Reference Manual

3-14

Example 3-8

The careatto thisis tha only certain typesof loops ca beaubmaically
vecbrized, andn mostcases user ieraction with the compiler is neededo
fully enabe this.

Exampk 3-8 shavs the codefor aubmaic vectorizaion far the simde
four-iteration loop (from Examge 3-4).

Automatic Vectorization f or a Simple Loop

void add (f loat *restr ict a,
fl oat *restri ct b,
fl oat *restri ct c)

in ti
for (i = 0,1 < 100;i ++) {
c[i] =a[i +b[i];

Compile this code using the -Qvec ard -Qre st ri ct switches of the Intel
C/C++ Compiler, version 4.0 or later.

There st ri ct qudifier in the argument list is necessay to let the compiler
know that there areno oher aliases 6 the memory 6 which the ponters
paint. In otherwords, te pointer for which it is used provides the only
mears of accesirg the memoryin quesion in the scopen which the
poainters live. Without this qualifier, the compl er will na vecbrize te loop
becauseti cannotascetain whetherthe aray references n the loop overap,
ard without this informaion, genegting vecrized ©de s unsak.

Refer tothe Intel C/C++ Compler User's Gude for Win32 Systems, order
number718195 for more detail s onthe use baubmaic vectorizaion.

Coding for SMD Architectures 3
Stack and Data Alignment

To ge the mostperformanceout of code witten for MMX techndogy and
Streaming SIMD Extensions, dta shoutl be formated in memory
according tothe gudelinesdescribed inthis secton. Amisaigned access in
assemly codeis alot mare cosly than an alignedaccess.

Alignment of Data Acc ess Patterns

The rew 64-bit paked daatypes deihedby MMX techndogy, and te
128-bit pacleddai types for Steamng SMD Extensions creae more
patential for misaigned dita accesseslhe dat acess paerns of may
algorithms ae inherently misalgnedwhenusing MMX tecmology ard
Streaming SIMD Extensions.

However, when &cessng SMD daiausing SMD opesgtions, acesst® dag
can be mproved simply by a chage n the dechraton. For exampk,
consider adechraton d a stucture,which regesens apoint in spaceThe
structure cansists of three 16-bit values plus onel6-bit value for paddng.
The sampe dechraton follows:

ty pedefs truct { short x,y,z; short j unk; } Poin t;
Poin tptf NJ;
In the following code,
for (i =0; i <N, i++) pt[i]. y *= sc al e
the seonddimensiony need tobe mudtipliedby a scaing value. Here lhe
fo r loop accesses eaghdimersion inthearraypt thus avoidingthe acces

to contiguous @ta, which can causea seifous numberof cache méses ad
daggradethe performane of he gplicaion.

The following dechraton alows you vectorize the scéing ogeraton and
further mprove the alignmentof the data access gterns:

short ptx [N], pty[N], ptz[N];

for (i =0; i <N; i+ +) pty *= s cale;

3-15

3 Intel Architecture Optimization Reference Manual

3-16

With the SIMD &chology, chdce of dat organizaion kecomes more
important andshould be mad caefully basedn the opeations hatwill be
peformed onthedat. In some appicaions, taditional dat arrargemens
may notlead b the maximum performane.

A simpleexample of this isan FIR flter. An FIR filter is effectively a vecor
dat produd in the length of the numberof coeficient taps.

Consider the following code:

(data [j] * coeff [0] + data [+ 1] *coeff [1]+.. .+ data
[[+numof t aps-1]*coeff [numof t aps-1]),

If in the cale alove the filter operation of dab dementi isthe vecior da
productthat begins atdat elemenj , then the filter operation of data
elemen i+ 1 bgyins atdat demeant j+ 1.

Assuming pu have a 64-bit algned aita vector and ab4-bit aligned
coefficiens vecbr, thefilter operaion onthe first daaelementwill befully
aligned For the secod dat element however, accessa the dda vecor will
bemisalgned The Intel apgicaion nde AP-559, MMX Instuctions to
Comput a 16Bit RealFIR Filter, order nunber 243044, shows an @amge
of how to avoid the misdignment problem in the FIR filter.

Duplicaion and pdding ofdat structures can be used aoid the poblem
of data accessein algorithmswhich are hhereatly misaigned

CAUTION. The dupicationand mdding technique overcomestie
misalignmentproblem, tus avoiding the expersive pendty for
misaligned dhta access, atthe price d increasng the data sze When
developing your @de you shaild corsider this tradeof and wse the
optionwhich gives he bestperformane.

Stack Alignmen t For Streaming SI MD Extensions

For best performance, he Streamihg SMD Extensions requie their
memoryoperauls o bealigned to 16-byte (16B) boundaries. Unaigned
daacan case ggnificant performanceenaties compard to aligneddata.
However, the &isting sdtware wnvertions for IA-32 (st dcal | , cdecl ,
fa st call) as impemented in mostcomplers, @ notprovide ay

Cading for SIMD Architecures 3

meclanism for ensuing that certin local data ard certin paraméers ae
16-byte aigned.Therefore, Intel has @fined a rew setof IA-32 sofware
convertions or alignmentto support thenew __ m128 dattype hat mees
the following caonditions:

®* Funcions hatuse Steaming SIMD Extensions data neal to provide a
16-byte algnedstad frame.

® The__mi128 parametrs ned to bealigned to 16-byte baundares,
possilly creaing “hales” (due b padding) in the agumentblock

These w conwenions preseted in this secion as mplemenéd by the
Intel C/C++Compler canbe usd as aguideline for anassemhyl language
code as wdl In mary casesthis set¢ion assumegie wse of he _ mi128
daatype, & definedby the Intel C/C++ compler, which represent anarray
of four 32-bit floats.

For more details on the sad dignment for Streaming SMD Extensions,
seeAppendx E, “ 8

Data Alignmen t for MMX Technology

Example 3-9

Many canpilers erable alignmentof variables ushg @wntrols. This aigns
the variables’ bit lengths tothe appopriate bourdaties. f some 6the
variabdesare notappropriately aligned asspecfied, you canalign them
using the C agorithm shown h Examge 3-9.

C Algor ithm for 64-bit Data Alignment

#i nclu de <s td io .h >
#i nclu de<st dl ib .h >
#i nclu de<mdl oc.h >
void main (v oi d)
{

double a[5] ;

do uble *p ,*n ewp;

double i, r es;

continued

3-17

3 Intel Architecture Optimization Reference Manual

3-18

Example 3-9 C Algorithm for 64-bit Data Alignment (continued)

p = (double *) mdl oc (((siz eof a[0]) *5)+4);
newp= ((unsi gnedin t) (&p) +4) & (~O0x7);
/*

res=0 ;

for(i =0; i <4; i+ +)
{

re s+= a[i] ;

}

printf ("r es = %l d\n"r es);
*/

The aborithm in Exampk 3-9 digns a64-bit variable on a64-bit bourdaly.
Oncealigned, every acess ¢ this variable save sixto nine cycles on he
Pentium Il and Rentium Il processos when he misaigneddag previously
crossel a cahe ine bainday.

Another way to improve data aignment is to copy the datainto locations
thatare algned m 64-lit boundares. \WWhen te dda is accessd frequertly,
this canprovide asignificart performancemprovement

Data Alignmen t for S treaming SIMD E xtensi ons

Data mustbe 16-byte-aignedwhen sing the Sreamng SIMD Extensions
to avoid se\ere peformarce paalies a best andatworst, execution faults.
Althoughthere ae move instructions @nd intrinsics)to allow unaligned
daa o becopied nto andoutof Sreamng SIMD Extension regsters when
nat using aigneddata, suchopeationsare muchslowerthan aligned
acesses.fl however thedatais not 16-byte-aligned and he programmer or
the compiler does ot detectthis and ses tte algnedinstructions,a fault
will occur. Sq the rukis: keepthe dat 16-byte-aigned. Such alignment
will also wok for MMX techrology code,eventhoughMMX techrology

Cading for SIMD Architecures 3

only requires 8byte alignment The following discussbn and e&xampks
describe alignmenttechnques for Patium Il processoas impemented
with the Intel C/C++ Compiler.

Compil er-Support ed Alignm ent

The Inel C/C++Compler provdes he folowing mehods toensuretat
the daais aligned.

Alignment by F32ve c4 or __m128 Data Types.When caonpiler cetecs
F32vec4 or ___m128 data declarabns orparameters,tiwill forcealignmern
of theobjectto a16-byte bourdaly for both globd and locd data, as well as
parameters. If the declaration is within a function, the compiler will also
align the function’s stack frame to ensurethatlocal data andparamedrs are
16-byte-aligned. Pease efer to the Intel appicaion noe AP589, Software
Conwenions for Streaming SIMD Exenrsions order number243873, for
ddails on the stak framelayout tha the comjiler geneates br both debug
ard opimized (“release”-mde) coml ations.

The _decls pec(al ig n(1 6)) specficaions carbe phcedbeforedata
declarationsto force B-byte dignmen. This is particularly useful for local
or global daa ceclaations that are asginedto Streamng SMD Extensions
daatypes The gntax for it is

__decl spec(al ig n(int eger-c onst ant))

where tle i nt eger- consta nt is an integral powerof two but no geater
than 32. For exanple, the following increaseshe alignmentto 16-bytes:

__decl spec(al ign(16))fl oatbu ffe r[400];

The variable buff er coud then beusedas ifit cortained 1000bject of
type_ _m128 orF32vec4. Inthe coa belbw, the caostriction of the
F32vec4 obect, x, will occurwith aligned dita

void f oo() {
F32vecd x=* _ m128*) buffer;

}
Without the declaraton of __decl spec(alig n(16)) , a faut may ocur.

3-19

3 Intel Architecture Optimization Reference Manual

3-20

Alignment by Using aunio n Structure. Preferaly, when feadile, a
unio n can beused wih Sreamihg SMD Extersions daa types toallow
the campil erto align the data structure by default. Doing sois preferred to
forcing dignment with __decls pec(al ign (1 6)) becase t expases tle
true program intent to the compiler in that __m128 datis being wed. For
exampk:

unio n{
fl oat f[4 00];
__m128 m[100] ;
}Ybu ff er;

The 16-byte aignmentis usedby default due bthe m128 typein the
unio n; it is not necessay to use__decl spec(alig n(16)) toforceit.

In C++(but notin C) itis also p@sideto force he algnmern of a
cl ass/st ru ct /unio n type, as in the code that follows:

struct _ decl spec(alig n(16)) my_ml1?8
{

kh

fl oatf [4];

But, if the datain suc acl ass is gaoing to be wed wih the Steamng
SIMD Extensions, it is preferalte to use ainio n to make this explicit. In
C++, an anmymous unio n can beused 6 make this more converiert:

cl ass my _m128 {
unio n {
__m128 m;
fl oat f[4];

h

In this exampk, be@use he uni on isanmymous, the nanes, mandf , can
beused aimmedate menber namesf my m128. Note that

__decl spec(al ig n) has noeffectwhen appied toacl ass, st ruct, o
unio n membermn either C or C++

Cading for SIMD Architecures 3

Alignment by Using __m&4 or double Data. In somecases, for &tter
performance, he compier will align rouines wth __m64 ordoubl e daa
to 16-bytes bydefault. The canmand-ine switch, -Qsf al ig n16, canbe
usel to limit the comgiler © only align in routines hat contan Streamng
SIMD Extensons data. The default behavioristo use - Qsf al ig n8, which
instructs 1o align routines wth 8- or 16-byte ddatypes b 16-bytes.

For moredetils, seethe Intel appicaion nate AP-833, Data Alignmemand
Programning Isstes with the Intel C/C++ Compiler, ordernumber243872,
ard Intel GC++ Compiler for Wndows3 Systems Uskr Guide order
number718195

Improving Memory Utilization

Memory performarce carbe improved byrearanging dat andalgorithms
for Streaming SIMD Extensions ad MMX technology intrinsics. The
mehods for improvingmemoty peformarce nvolve working with the
following:

* Datastructure layout
® Strip-mining for vectarization and memoy utilizaion
®* Loopblocking

Using the cacheaility instructions, prefeth and steamihg sbre, dso
gredly enhane memory tilization. For tese irstrudions, see Chagt 6,

Data Structure Layou t

For cerain algorithms, like 3D ransformabns andighting, there arewo
basic ways of aranging the veatices dta. The traditiond methad is the
arrayof stuctures (AoS) arrangmenf with a stucture for eah verex.
Howewer this mehaod daes nottake full adzantageof the Steamng SIMD
Extensions $MD capalilities. The bestprocesang metlod for code @ing
Streamng SIMD Extensions s to arrang the ddain an arrayfor each
coordinake. This dab arrangmentis caled stucture of arrag (SoA). This
arrargementallows more dicien use of he parallelism of Streamig
SIMD Extensions becase he ddais realy for transformaion. Arother
advantageof thisarrangemeis reduced menory taffic, because aly the

3-21

3 Intel Architecture Optimization Reference Manual

relevant dat is loadedinto the cache Data thatis not relevantfor the
transbrmaion (suchas:texture coadinates, cobr, andspecudr) is not
loaded nto the cahe.

There ardwo options for ransforming datain AoS format Oneis o
peform SMD opeiations on e aiginal AoSformat. Howeuer, this option
requiresmore cakulations. In addition, some 6the opesetions @ na take
advantageof the four SMD elemens in the Sreaming SIMD Extensions.
Therefore this optionis less é&ficient. The recommeded wayfor
transforming datain AoS formatis to temporartly transpae eab setof four
vertices b SoA formatbefore processig it with Streaming SIMD
Extensions.

The following is asimplified transpasition example:

Original format:

x1,yl,24 X2\y2,z2 x3,y3z3 x4,y4,z4

Transposed format:

x1,x2,x3,x4 yly2,y3y4 z1,2,23,4

The dhta structures for the mehodsare preseited respectvely, in
Exampk 3-10 andExampk 3-11.

Example 3-10 AoS data structur e

ty pedefs truct{
fl oatxy ,z;

intco lor ;
} Ve rt ex;
Vert ex Vert ic es[NumOfVerti ces];

Example 3-11 SoOA data structur e

ty pedefs truct{
fl oatx[N umOfVert ic es] ;
fl oaty[N umOfVert ic es] ;
fl oatz[N umOfVert ic es] ;
in tco lor [NumOfVert ice s];

} Vert ice sLis t;
Vert ic esLis t Vert ic es;

3-22

Cading for SIMD Architecures 3

The ranspaition mehods ako aply to MMX techology. Consider a
simple exampk of addng a 16-bit bias to all the 16-bit elements of a vecbr.
In regular scahr cod, you would loadthe bias nto a regster atthe
beginning d the loop, acess tle vecor eemens in andher register anddo
the aldition of ore eementata ime.

Convetting this routineto MMX technobgy code,you would expect a four
times speedp snceMMX i nstructions can pocess fouelemens of the
vectar ata imeusing the movq instruction,and @n peform four addtions
ata ime usngthe paddw instructon. However to acheve the expgced
speedup, youwould neel four configuouscopies ofthe bias inan MM X
techrology register when addng.

In the original scalr code only one cqy of the bias sin memory To use
MM X instructions,you muld usevaious maipulations to getfour copies
of the bias h an MM X techndogy register. Or you could formatyour
memoryin advaice b hold four cantiguous opies of he bias. Then, you
need ony load hese copes using one M@/Qinstruction bdore theloop, and
the four times spedupis acheved

Additionaly, when acesang SMD data with SIMD operatons, access$o
daacan ke improvedsimply by a dange in the detaraton. For exampk,
consider a delaration of a stucture hatrepresetsa pontin spae. The

structure cansists of three 16-bit values pus onel16-bit value for padding:;

ty pedefs truct { short x,y,z; short j unk; } Poin t;
Poin tptf NJ;
In the following codethe seconl dimensony needs tobe multi plied by a
scalng vdue. Herethefo r loop acceseseachy dimersionin thept array

for (i =0; i <N, i++) pt[i]. y *= sc al g
The acess $ notto contiguous dita, which cancausea sgnificant numbe
of cache nsses at degade he appicaion performane.
Howe\er, if the ddais declared as
short ptx [N], pty[N], ptz[N];
for (i =0; i <N, i+ +) pty[i * = scale;
the s@ling opegtion an bevecbrized.

3-23

3 Intel Architecture Optimization Reference Manual

3-24

Strip Mining

With the MMX tecmology intrinsics andStreaming SIMD Extensions, dat
orgarizdion becomesnore importantandshoutl be basedn he
operatons to be mrformed onthe da&. In some aplications,tradtional
daaarrangemeis maynotleadto the maxmum peformarce.

Strip mining, dsoknownas bop setioning, is a loop transformation
technque for erabling SIMD-encodings of loops,as wellasproviding a
mears of improving memory peformarce. This techngue, first introducd
for vecorizors, is he generabdn of code when eackecbr operatonisdone
for a sizless han orequal to the meximumvecbor length on a gven vedtor
machne. By fragmeting a large loop into smaler segmets a strips, his
technque transformstie loop structure twofold:

®* |tincreaseshetempmral and sptal locality in the dda ache f the
daaare reusdle in differentpassesof an dgorithm.

® It reduces he numker of loopiteratons ty thelength of ead “vecor,”
or numberof opertions béng peformedperSIMD operation. In the
caseof Streamhng SMD Extersions, this vecbor o strip-length is
redwed by 4 tines:four floating-point data items per sigle Streamig
SIMD Extensions opegtion ae processedConsider Exampk 3-12.

Example 3-12 Pseudo-code Be fore Strip Mining

ty pedefs truct _VERTEX{

fl oat x, y, z, nx, ny, nz, u, v,
} Vertex _rec;
main ()

{

Vert ex_re cv[Num];

1-‘.0 r (i =0; i <Num i+ +) {
Transfo rm(v [i]) ;

}

for (i =0; i <Num i+ +) {
Li ghtin g(v[i]);

Cading for SIMD Architecures 3

The man loop corsists of two functions: tansbrmaion and lighting. For
each ohed, the mainloop @lls a tansbrmaion routine to updatesome
data, then calls the lighting routine to further work on the data. If the
transbrmaiton loopuses aly pat of the data, say xy, z, u, v, ard the
lighting routine accesses dp the oherpieces ofthe stucture (nx, ny, nz,
for exampk), the samecachdineis acessedwice n the man loop. This
situation is called false sharing.

However, by appying stip-mining a loop-sectoning techmiques, e
number of cachenisses du#o false shamg canbe minimized.As shownin
Example 3-3, the original object loop is stip-mined into a two-level nested
loopwith resgectto a sebcted strp length (st ri p_si ze) . The strip-length
shailld bechosenso hatthe total size of the stip is smalkr thanthe cacle
size. As aresult of this ransbrmaion, the dat broughtin by the
transformaibn loopwill notbeevicted from the @ache lefore it can ke
reused in the lighting routine. See Example 3-13.

Example 3-13 A Strip Mining Code

man ()
{

Vert ex_re cv[Numj;

epil ogue_num = Num %s trip_size;
for (i=0; i < Num,; i+ =str ip _siz e) {
for (=1,] < min(Num, i +strip_ si ze); j ++) {
T ransfor m(v[j]);
Lighting (v[] ;
}
}

3-25

3 Intel Architecture Optimization Reference Manual

3-26

Loop Blocking

Loopblocking is arotherusetill technique br memory peformarce
optimizaion. The man purpose & loop Hocking is also b eliminateas
mary cacle misses as posdile. This technque transformshe memory
domainof a gven problem into smalkr chunks ether than seqanially
travesing through the enire memory domain Each chunk should besmall
ermoughtofit all the da& for a givencompuaton into the ache thereby
maxmizing catareuse. hfact, one @n treatloop Hocking as siip mining
in two dmersions. Congiler the codein Exampk 3-16andaccespaternin
Figure 3-3. The twodimersional array A is referenced in thej (column)
direcionand then referenced inthei (row) direcion; wherea arrayB is
referened in the qpacsite manrer. Assume te memoy layoutisin
cdumn-maja order;therefore, lhe access sides of arrayA and B for the
code n Exampk 3-14 would be 1 and N, resggdively.

Example 3-14 Loop Block ing

A. Original loop
fl oat AIM AX, MA X], B]M AX, MA X]
for (i =0; i < MAS; i ++) {
for (=0; j < MAG | ++) {
Ali, J] = A, j] + B[, i];
}
}

B. Transformed Loo p after Bloc king

fl oat AIM AX, MA X], BI[M AX MA X];

for (i =0; i < MAX; i +=blo ck_siz e) {
for (j =0;] < N;j +=blo ck_siz e) {

for (i i=i ; i <i +blo ck_si ze; ii ++) {
for (j=j; j < +block_size; jj ++) {
AL j 1 = AL j1 + B[jj , i
}
}

Cading for SIMD Architecures 3

For the firstiteraton d the inner loop, e&h acces toarray B will generate a
cache msgs. If he sie of ;e row d array A, that is, A[2, 0: MAX-11,is
large enaigh, by the time he seonditeraion strts,each acessa arrayB
will always gnerae a @ache més. For instance, m the first iteration, the
cache Ine cantaningB[0, 0: 7] will be boough in whenB[0, 0] is
referercedbecase tlefl oat type variable is four bytes andeachcache
line is 32 bytes. Due d the limitation of cacle capaity, this line will be
evicted due b conflict misses bedre theinnerloopreacheshe end. for the
next iteration ofthe outer loop,anohercache mss wil begeneated while
referercing B[0, 1] . In this manner a cabe mis occus when egh
elemert of arrayB is referencd, thatis, there s no dalreusem the cachet
all for arrayB.

This situation can be awided if the loop is blockedwith respedt to the cahe
size. InFigure3-3, abl ock_siz e issekced aghe loop Hocking facor.
Suppase hatbl ock_si ze is8, then the Hocked chunk of each array will
beeight cacle lines (32bytes each)ln the first iteration of the inne loop,
A[0, 07] and HO, 0:7] will be boughtinto the cahe. B0, 0:7] will be
compleely consumd by thefirst iteraon d the ouerloop. Consegenty,
B[O, 0:7] will only experience ore cacle miss afte applying loop blocking
optimizaion in lieuof eight misses forhe original algorithm. As ilustrated
in Figure 3-3, arays A and Bare blocked nto smalkr recangdar chunks so
that the total size oftwo blocked A ard B churks is smaler than the catie
size. This dlows meximum data reuse

3-27

3 Intel Architecture Optimization Reference Manual

Figur e 3-3 Loo p Blocki ng Access Patter n

Aii, Jj) access pattern Af{i, J) access pattern
. after blocking

FI.

!

. < gache
Bjii, 1) access pattern size B(i, j} access pattern
after blocking

b

As ore cansee, dlthe redundantcache mgses calbe eiminated by
applying this loop Hocking techmique. f MAX is huge, bopblocking can
also telp redue the perlty from DTLB (daatrarslaion look-ahead
buffer) misses. In aditionto improving the caachememory grformance,
this optimization techniquealsosaves gternal bus andwidth.

Tuning the Final Application

The best wayto tune your agplicaion ace t is funcioning wrrecty is to
usea profier thatmeasureshie gplication while it is running on asysten.
Intel’sVTune anayze can telp youdeermine where d meke chages n
your apgicaion o improve peformane. Using the VTuneanal/zercan
hdp youwith various phasesequired for optimized grformance See

3-28

Cading for SIMD Architecures 3

for more detils an using
the VTuneanalzer. After evey effort to optimize, you shalld check the
paformance @ins tosee whezyou ae making your major optimizaion
gans.

3-29

Using
SIMD Int@er Instructions

The SMD integer nstructons pravide peformance mprovemerts in
applicationstha are integerintersive and can take advantageof the SMD
architecure d Pentum® Il andPentum Ill processors.

The guidelines for using these instructions in additi on to the guidelines
described in Chapter 2 “ > will help
develop fastand eficientcoce that scakés wel across al processors Wi
MM X™ techndogy, as well as he Pentum Il andPertium Il processors
that useStreamirg SIMD Extensions (SSB with the new SIMD integer
instructions.

General Rules on SIMD Integer Code

The overal rules ard sug@stons are as fdbws:

® Do not intermix MM X instructions, nev SIMD integerinstructions,
ard floaing-point instructions. See
sedion.
* All optimizationrules andguidelines described in Chapiers 2 and 3 tht
apply to bath Pentum Il andPentum Il processors using the new
SIMD integerinstructions.

4-1

I Intel Architecture Optimization Reference Manual

4-2

Planning Considerations

The daming casicerations dscussedn

in Chager 3 apgdy when onsdering
using the nev SIMD integer instructions aailable with the Sreaming
SIMD Extensions

Applications that benefit from these naw instructions include video
erncoding and écodng, as wellas spedt processirg. Mary existing
applications mg also baefit from someof these ne instructions,
paticulany if they use MMX tecmology.

Review the planning consderatons n the cited abose setion in Chaper 3
to deermine if an applcaton is compuationdly integer-intensive andcan
take advantage of he SIMD archtecure. If ary of the consderatons
discussd in Chaper 3 apply, the appicaion is a canidlate for performance
improvemerts wsing the nev Pentum Il processo SIMD integer
instructions, orMMX techndogy.

CPUID Usage for Detection of Pentium® IIl Processor
SIMD Integer Instructions

Applicaions musbeablk to dgermine if Sreaming SIMD Extensions are
available. Fallow the guidelines outlined in section

in Chaper 3 toidenify wheher a sgtem (pocessor ath
operaing sysem) supprts he Streamirg SIMD Extensions.

Using SIMD Integer, Floating-Point, and MMX™
Technology Instruct ions

The sameules and onsideratons for mking MM X techndogy and
floaing-point instructions appy for Pertium Il procesor SIMD integer
instructions. The Rentium IIl processar SIMD integer instructions wse the
MM X technology registess, which are maped onto the floaing-point
registers. Thus,mixing Pertium Il processoiSIMD integeror MM X

Using SIMD Integer Instrictions I

instructions with floatingpoint instructions s na recommendé.
Pentium Il processa SIMD integer and MM X instructions, however, can
beintermixed with no ranstion required.

Using the EMMS Instruction

When geneating MMX tecmology code, leep inmind tha the eight MM X
techrology registers are absed m the floaing-pant registers. Svitching
from MMX instructions b floaing-point instructions ca take up to fifty
clock cycles, so t is the bestto minimize swiching ketween these
instruction types.But when you needto switch, youneedto use a secial
instruction known as he emms instruction.

Usingenmsis like empying a catainer to accanmodate new ontent For
exampk, MM X instrudions aubmaically enabé atag word inthe regster
to vaidate the wse of the__ m64 datatype. This validation resetsthe FP
register o enalbe its alas asan MM X techndogy regster. To enable an FP
instruction agan, resetthe regster stae with the enms instruction

_m empy() asillustraed in Figure 4-1.

4-3

I Intel Architecture Optimization Reference Manual

Figure 4 -1 Using E MMS to Reset the Tag after an MM X Instruction

MMX Instruction Registers Need __IT54 Data types

1 FP Tag 0 63 MM Registers 0

T 0T e
(e O N I B I Y8

FP Tag Word Aliases FP Registers to Act Like MI™ Registers to Accept__I’Tﬁ4 Data Types

!

Clear Tag Word
with EMMS
_mm_empty()

|

FP Instruction Registers Need to be Reset to Accept
FP Data Types of 32, 64, and 80 bits

1FPTag 0 79 FP Registers 0

[T] I I I
T] [(T-TT T eer

_mm_empty() Clears the FP Tag Word and Allows FP Data Types in Registers Again

@ CAUTION. Failureto resetthe tag word for FP instructionsafter using
an MMX instruction can esult in faulty executon a poorperformance.

4-4

Using SIMD Integer Instrictions I

Guideline s for Using EMMS I nstruction

Example 4-1

When wiiting an application that uses bth floaing-point and MM X
instructions, usehe following guidelines b help youdetrmine whento use
enms:

®* [nextinstruction is FP—Use nmm enpt y() afte an MMX
instruction if the next instruction is an FP instruction; for example,
before doing cakulations onfloas, cubles o long daibles.

* Don't empy when already empy—If the nextinstruction uses an MMX
regster _nm_enpt y() incurs anopeition with no tenefit (no-op).

* Grouw Instructions—Use dfferentfuncions r regions that useFP
instructions andthose hat useMMX instructions. This eliminates
needing anEMMS instruction within the bod of acritical loop.

®* Ruwntime initializaion—Use _nm_enpt y() dulingruntime
initialization of __m64 and AP ddatypes. This ensures retiag the
register betweendat typetrarsitions. e Exampk 4-1 for codng
usage.

Resetting the Regist er between __m64 and FP Data Types

Incorrect Usage Correct Usage
_ m&4 x = _mpaddd(y, 2z); __mB4x = _mpaddd(y, z);
loat f =1 nit(); fl oat f = (_mmempy () , init ());

Further, youmustbe awaref the following situations when your cock
genertes anMMX i nstruction which useshe MMX techrology registers
with the Intel C/C++ Campiler:

®* whenusihng an MMX tecmology intrinsic

* whenusng aSteamirg SIMD Extension (for those ntrinsics hat use
MM X technology data)

®* whenushg an MMX instruction through inline assembyl
* whenreferering an__mé64 data type variable

45

I Intel Architecture Optimization Reference Manual

4-6

When dveloping cade with both floaingpoint ard MMX instructions,
follow these sps:

1. Always cal the enmsinstruction atthe erd of MM X tednology code
whenthe coc transtionsto x87 floaing-paint code.

2. Insertthisinstruction attheend d all MMX techrology coce sgmens
to avoid an overflow excepton in the floaing-point stak whena
floaing-point instruction is executd.

3. Use theemns instrudion to clear he MMX tecmology registers ai
sd the value of the floating-point tag wordto empty (that is, dl ones).
Since the Patium Il processo SIMD integer instructions se te
MM X technology registess, which are alased m the floaing-point
registers, i is critical to clearthe MMX technology registers kefore
issung afloaing-point instruction.

The enmsinstruction des na need b be execuiedwhentranstioning
beweenSIMD floaing-point ard MMX techology or Streaming SIMD
Extensions $MD integerinstructions orx87 floaing{poaint instructions.

Additionalinformaiton onthe floating-point programming modelcanbe
found in the Pentium Processor Emily Developer's Manud, Volume 3,
Architecure andProgramming, order number24143). For more
documentgtion anemms visit theht t p: //d evel oper.i ntel .c om
web ste.

Data Alignment

Make suie your daa is 16-byte digned. Refer to seciton

for information on both Pentum Il andPentium 111
processas. Review this information to evaluate your data. If the data is
known to be undigned, usemovups (move waligned @ackedsinge
predsion) to avoid a gerral protecion excepton if movaps is usel.

SIMD Integer and SIMD Floating-point Instructions

SIMD integerinstructions andSIMD gloaing-point instructions ca be
intermixedwith somerestrictions. These resictionsresult from their
respetive port assigments. Port assignmis are shavn in Apperdix C.
The port assignment for the rebvant instructions are shan in Table 4-1.

Using SIMD Integer Instrictions I

Table 4-1 Port Ass ignments

Port O Port 1

pmul huw ps hufw

pmin pext rw

pmax pi nsrw

psadw pmin

pavgw pmax
pmov mskb
psadw
pavgw

SIMD Instruction Port Assignments

All the abwee instructionsincur one pu@ with the excepion ofps adw which
incursthree pogs, andpi nsrw, which incurs two pops. Note that sane
instructons, sub aspnin and pmex, can &ecute onboth pats.

These instructions can be intermixed with the SIMD floating-point
instructions. $nce the SMD floaing-{poaint instructions ae two Lops,
intermix those wih differentport assgnments from the curent instruction
(see Apendk C, “ ").

Coding Techniques for MMX Techno logy SIMD Integer
Instruct ions

This secton cortainssevera simple exampks thatwill hdp youto get
started with coding your gpplication. The goaisto provide smple,
low-level operaions that are freqanty used. The examplesuse a minmum
numberof instructions neessay to acieve bestpeformarce on tke
Pentium, Petium Pro, Pertium II, and Rentium 1l processes.

Each eamge includes a shrt description, sampé cade, aml ndesif
necessaryThese gampks b notadiress schauling as t is assumedhe
exampks will beincomporatedin longercode segences.

4-7

I Intel Architecture Optimization Reference Manual

Unsigned Unpac k

The MMX technobgy providesseveral instructions hat are used b pack
ard unpack daa in the MM X technology registers. The urpack nstructions
canbe sed b zao-extendan wsigned rumber Exampk 4-2 assumede

souce s a pakedword (16-bit) dat type.

Example 4-2 Unsigne d Unpack Instructions

;o In put: MM sourcev alu e

: MM7 O a local variable canb e used
: instead ofth ere gi ste r MM7 if

: desir ed.

; Outp ut: MM two zero -ex te nded 3 2-b it
: doubl ewor ds fr omt wo lo w-end

: wor ds

; MVIL two zero -ex te nded 3 2-b it
: doubl ewor ds fr omt wo hi gh-e nd

: wor ds

movq MM, MM ; copy s ource

punpck lwd MND, MM/ ; unpack t he 2 lo w-endw ords
:into two 32-bit double word

punpck hwd MM, MM/ ; wunpack t he 2 hi gh-e nd word s
:into two 32-bit double words

Signed Unpac k

Signed rumbess shalld be sgn-extended whenunpaking the values. This
is donedifferenty thanthe zero-exttend showvn alove. Example 4-3assums

the saurce s a paked-word (16-bit) data type.

Using SIMD Integer Instrictions I

Example 4-3 Signed Unpack Instructions

; Input. MM source va lu e

; Outp ut: MM two si gn- exte nded 3 2-b it

; doubl ewords fr omt he two lo w-end
; wor ds

; M ML two si gn- exte nded 3 2-b it
; doubl ewords fr omt he two hi gh-e nd
; wor ds

movq MM, MMO ; copy so urce

punpckhwdvML, MN) ; unpack t he 2 hi gh-end words of t he
: source into t hes econd andf our th
;. wordso f the destinati on

punpcklwd MNO, MMD ; wu npack the 2 | owendwords of t he
; source intot hes econd andf our th
;. wordso f the destinati on

psrad MND, 16 ; signextend the 21 owendwords of
; the source into t wo 32-bit s ign ed
:do ublew or ds

psrad MM, 16 ; sign-extend the 2high-end words
: of t he sourcei ntot wo3 2-bit
;si gneddo uble word s

Interleaved Pack with Sa turation

The pack hstructions pa& two valuesinto the desination register in a
preceterminal orde. Specffically, the pac ks sdw instruction packs two
signad dowblewords from the sairce ogerandand tvo signeddowblewords
from the destination opeiand into four signed words in the destination
register asshown in Figure 4-2.

4-9

I Intel Architecture Optimization Reference Manual

4-10

Figur e 4-2 PACKSSDWmm, mm/mm 64 Instruction E xample

mm/m64

Figure 4-3 llustrates tvo values nterleaved in the destnation register. The
two signeddoubewords ae usel as sowce opeands awl the resut is
interleaved signed words. The packinstrudionscan beperformedwith or

without satiration as reeded

Figur e 4-3 Interleaved Pack with S aturation

MM/M64 mm

. b_[¢ LB 1 A |

N e

[D] B,m[mc,[A

Exampk 4-4 uses ginal dowblewords as sorce oprandsand heresultis
interleaved signed words. The packinstrudionscan beperformedwith or

without satiration as reeded

Using SIMD Integer Instrictions I

Example 4-4 Interleaved Pack with Saturation

; Input: MMO si gnedso urcel value

; MM1 si gned so urce2 valu e

; Ouput: MO the fi rst andt hirdwords contain t he
si gned-sa tu rate d doubl ewor ds f rom MM,
the se condan dfo urthwo rdsco ntain

si gned-sa tu rate d doubl ewor ds f rom MML

packssdw MM, MM ; pack and si gns aturate
packssdw MM, MML ; pack and si gns aturate

punpcklwd MM, MML ; interl eave the lo w-end 1 6-bit
; values of the operands

The pack instructions alvays assuméha the source perand are sgned
numbers. e resul in thedesination register is alvays defned ly the pack
instruction that performs lhe geraton. For exampk, the pack ss dw
instruction pads eachof the wo sighed32-bi values of the wo sourcs
into four saurated 16-bit signed values in the destination registe. The
pack uswb instrudion, on te other hard, paks eactof the fou signed
16-bit values ofthetwo soucesinto four satirated eight-bit unsgnedvalues
in the destination. A compkte spedicaion of the MMX instrudion set can
befoundin the Intel Architecture MMX Techrology Programner’s
Reference Manual, order number243007.

Interlea ved Pack without Sat uration

Exampk 4-5 is similar to the lastexcept thatthe resufing words are nb
saurated. In addtion, in orderto protectagainstoverflow, only the low
order 16 hits of eah daubleword ae usedin this goeration.

4-11

I Intel Architecture Optimization Reference Manual

4-12

Example 4-5

Interleaved Pack without Saturation
; Input: MM si gned s our ce v al ue
; MML sig nedso urceva lu e

; Outp ut: MND the fi rsta ndt hirdwords contain t he

: | ow 16-bits of the doubl ewordsin MM,

; th e second and fourth words contain t he
; |l ow 16-bits of the doubl ewordsin MM

psll d MM, 16 ; shift t hel6L SBf romeach of t he
: double word valuest o the 16 M®B

; p ositi on
pand MND, { O, ffff, O ff ff } ;mask to zero t hel 6 MSB
; of each double word valu e
por MND, MML ; mergeth e two opera nds

Non-Interleaved Unpack

Figure 4-4

The unpak instructionsperform aninterleave meige of the data elemens of
the destination and sairce ogerands nto the desination register. The
following examplk megges he two operand into the desinaton ragisters
without interleaving. For exampl, take two adacent elemens of a
packedword dda typein sour ce 1 and pacethis value in the low 32 bits of
the reslts. Thentake two adjacentelemerts d a pacled-word daa typein
sour ce 2 ard place his value in the high 32 hits of the resuts. Ore of he
destination registers will have the combination ill ustrated in Figure 4-4.

Result of Non-Inter leaved Unpack in MMO

mm/m64 mm
[Zs] 22 2.] 2o] [L] L] LT L]

Using SIMD Integer Instrictions I

Figur e 4-5

The ahe desination register will cortain the oppasite combination
illustrated in Figure 4-5.

Result of Non-Inter leaved Unpack in MM1

mm/m64

mm
[Z2 12]2] 2] [L[L] L[L]

[(Z[%[L[L]

mm

Example 4-6

Codein the Exampk 4-6 unpadks wo paclked-word souces ina
non-interleazed way. The goal is to use he instruction which unpaks
doublewords b a quadvord, insteal of using the instuction which urpacks
words o doublewords.

Unpac king Two Packed-word Sour ces in a Non-int erleaved Way

; Inputt MM packed-word s ource val ue
; MML packed-word s ource val ue

; Ouput: MM contains the two lo w-end words of t he
: original sources, non-interl eaved

: M2 contains the two high end wordso f the
; original sources, non-interl eaved.

nmov(q MN2, MM) ; copy sourcel

punpckldg MMD, MM ; replacet het wohigh-endwords
; of MMQuith two low-e nd words of
: MML; | eavet het wo lo w-end words
; of MMO n pl ace

punpckhdg MN, MML ; move two hi gh-end words of MM
; tothet wl owend words of MMZ;
; place the two hi gh-end wordso f
;MM 1i ntw ohi gh-endwordsof MM

4-13

I Intel Architecture Optimization Reference Manual

Complex Multiply by a Constant

Compkx multtiplicaion is an geraton which requiresfour mutiplicaions
and two aditions. Thisis exactly how the pnaddwd instruction ogeraes. In
order to use this instruction, you need to format the data into four 16-bit
values. The realard imagnary camponents shou be 16-bits ead.
Conster Examge 4-7:
® Lettheinput databe br andDi where Dr is real compamentof the data
ard Di is imagihary compaentof the dat.
®* Formatthe corstant complex coeficients in memory agour 16-ht
values[Cr - G Cr]. Remember ¢ loadthe values into the MMX
techrology register ushgamovq instruction.
® The realcomponant of the compex productis
Pr = Dr*Cr - Di*Ci
and the imaginary comporentof the ammplex produd is
Pi=Dr*C + Di*Cr.

Example 4-7 Comple x Multipl y by a Constant

;In put: MM comgde xval ue,Dr ,Di
: MML constant co mpe x coeff icient i nt hef orm

; [Cr -C iCr]

; Oup ut: MM two 32-bit dwords containing[Pr Pi]
punpckldg MN), MMD; m&kes [DrDi DrDi]

pmad dwd MVD, MML; done, ther esult is

; [(Dr *Cr- Di*Ci)(Dr*Ci+ Di*Cr)]

Note that the autputisa pacled dableword. If neededa p&k instruction
canbe sed b convert the resuli to 16-bi (thereby mathing the format d
the input).

Abs olute Differe nce of Unsigned Numbe rs

Exampk 4-8 compuesthe absalte differerce of vo ursigned rumbers. It
assumes an msigned mckedbyte ddatype. Here, wenake useof the
subtract instruction with unsigned sauration. This instruction receives

4-14

Using SIMD Integer Instrictions I

Example 4-8

UNSI GNED operais andsubtacs them with WNSI GNED sduration. This
support exists only for pacled bytes and pckedwords, na for packed
dwords.

Absolute Di fference of Two Unsigned N umbers

; Input: MM source op erand
MML sour ce op er and

Outp ut: MND absol ute di ff erence of t he u nsign ed

op er ands
movq MN2, MMO ; makea c opy of MM
psubusb MM, MML ; c onputedi ff erence o ne way
psubusb MML, MN ; conputedi ff erencet he ot her way
por MM), MM1 ; OR the m to geth er

This exampk will notwork if the operandsare signed.

Absol ute Difference of S igned Number s

L)

Exampk 4-9 compues the absalte differerce of o signednumbers.

NOTE. There isno MMX technology subtact instruction that receves
S| GNEDoperands ad sibtracts them wth UNSIGNED sauration.

The techique wsed hereis to first sat the arrespomling elemens of the
inpu operand into pacled-words of e maxmum vaues,and
packed-words d the minmum values.Then the mnimumvalues are
suliradedfrom the maxmum values b generat the requred absolte
differen@. The key is a fast soring techngjue that uses he fact that

B = xor(A, x or(AB)) andA = xor (A,0).Thus ha paked chita
type havingsome edmens bang xor (A, B) ard somebeing Q you could
xor suchan gerandwith A andreceve in some phces values d A and in
somevaluesof B. The following exampks assume a pked-word dagatype,
each eementbdang a sgned value.

4-15

I Intel Architecture Optimization Reference Manual

Example 4-9 Absolute Di fference of Signed Numbers

; Input: MM si gned s our ce o perand
; MML si gned s our ce o perand

;Out put: MM absolutedi ff erence of t heu nsign ed

: op er ands

movq MM2, MM ; make a copy of sourcel (A)

pcmptw MM, MML ; create mask of s ource 1>source?2

(A>B)

finovq MM, MN2 ; make a not her copy of A

pxor MM2, MM ; create t he inte rmediat e valu e of
; t heswapo peration - xor(A, B)

pand MM2, MM ; create a mask of Os an d xor(A, B)

: ele ments. Where A>B there will
: be a valuexo r(A,B) andwhere
;A< =B therewi Il be O.

pxor MM4, M\ ;. mini maxo r(A, swap mask)
pxor MML, M\ ; maxi maxo r(B, s wap mask)
psubw MM, MM4 ; absolu te di ff erence =

;. maxi ma-min ima

4-16

Using SIMD Integer Instrictions I

Use Exampk 4-10 o computie| x| , wherex is sgned. This example
assumes sigied words to be he gerand.

Absol ute Value

Example 4-10 Computing Absolute Value

; Input: MM si gned so urce o perand
;Ou tput: MM ABS(MMO)

movq MM, MM ; me&ke a copyof x
psraw MWD, 15 ; replicate signbi t (use31i f doing
; DWORS

pxor MVD, MML ;ta ke 1'sco mpge ment of just th e
; negat iv e fi el ds

psubs WMML, MM) ; addl to j ust the negative fi elds

@ CAUTION. The alsolute value d the most regative number (bat is,
8000 hex for 16-bit) doesnot fit, but this codesugyests what is possble
to dofor this case: it gves0x 7f ff which is off by one

Clippi ng to an Arbitrary S igned Rang e [high, lo w]

This section explains hav to clip a sgned value the sgned ange[hi gh,

lo w). Specifically, if thevalueis less than lo w or greager thanhi gh then
clip tolo w orhi gh, respecively. Thistechnque wses the paked-adl ard
packed-subirad instructions wih unsgned satrration, which means hat
thistechngue can aly be sed onpacled-byte and paked-word datatypes.

4-17

I Intel Architecture Optimization Reference Manual

4-18

Exampk 4-11 andExampk 4-12in this section use he mnsants

pack ed_max andpacked_min ard shav opetions onword values. For

simplicity we usehe following mnsants (correspording corstarts ae used

in case tle operation is doneon byte vaues):

® packed_max equak Ox7f f f7f ff 7f ff 7f ff

® packed_min equals 0x8000800080008000

® packedD_| ow cortains thevaluelo win al four words ofthe
packedwords dita type

® packed_hi gh cortains thevalue hi gh in dl four words ofthe
packedwords chta type

® packed_usma all values egual 1

® high_us adls te hi gh value o dl dat demerns (4 words) of
packed_min

®* Jo w_us addsthel ow value b all datelemens (4 words) d
packed_min

Example 4-11 Clipping to an A rbitr ary Signed Rang e [high, | ow]

; Input: MM si gned s our ce o perands

; Outp ut: MM signedo perands clipped to t heun si gned
; range [h igh ,lo w]

add MND, p acked_mn ; addwi th no satur ation
p _
) 0 x8000t o convertt ou nsi gned

paddusw MM, (p acked_usmax - hi gh_us)

; i neffectt hisclipst ohigh
psubusw MMO, (packed_usmax-h igh_us + |ow_us)

; in effect t his clips t o low
paddw M M), p acked _low;u ndot hepr evi oust woof fs ets

The cale almve cowertsvalues b unsignednumbersitst and thenclips
them to anunsigned range. The last instruction converts the data back to
signeddat ard placesthe daa within the sgnedrange.Conversia to
unsigned datais required for correct resuts when (hi gh - low) < 0x8000.

Using SIMD Integer Instrictions I

If (high -lo w) >=0x8 000, the aborithm canbe smplified as shovnin
Example 4-12:

Example 4-12 Simplified Cli pping to an Arbitr ary Signed Ra nge

Clippi ng to

; Input: MM si gned so urce o perands

; Outp ut: MM signedop erands clipped to t heun si gned
; range [hi gh,lo w]

paddssw MM, (packed_mex - packed_hig h)
; in ef fect t his cli pst o high
psubssw MM, (packed usmax -pa cked_high +
pack ed_ow);
; clip s tol ow
paddw MM, low ; undo th e previo us two of fs ets

This dgorithm saves a cgle when it is known that (hi gh - lo w) >=
0x8000. The three-instruction agorithm dces notwork when(hig h - lo w)
< 0x 8000, becauseoxff ff minus ary number< 0x 8000 will yield a
number greatr in magiitude han0x8000, which is anegative number.
When he secondnstruction,

psubssw MMD, (O xf fff - high + low),
in the three-sep aborithm (Exampke 4-12) is execued, anegative number is
suldiraded The resull of this subtacion catses tle values inNiN to be
increasd instead & decreasgdas shald be he case, ad anincorrect
arswer is generated.

an Arbitrary Unsi gned Rang e [high, low]

The cale n Exampk 4-13 cips anunsignedvalue to the unsgned range
[hi gh,lo w]. If the va@lue isless thanlow or greagr thanhi gh, thenclip
tolo worhi gh, respecively. This techngjue useshe pacled-add and
packed-subirad instructions wih unsgned satiration, thus his techrique
can only be usedon packed-bytes anl pa&kedwords dada types.

The exampk illustrates he geraton onword values.

4-19

I Intel Architecture Optimization Reference Manual

4-20

Example 4-13 Clipping to an A rbitr ary Unsi gned Range [high, lo w]

7 Inputt MND
;Out put: MM
,paddusw
psubusw
paddw

unsi gned so ur ce o peran ds
unsi gned op erands cl ip pedt ot heun si gned
range [HIGH, LOW]/ /
MMQ Ox ff ff -hi gh
; in effect t his clips t o high
MWD, (Oxfff f - high+ low)
; ineffect t his clips t o low
MMQ lo w
; undot he previoustw o of fsets

Generating Con stants

Example 4-14

The MM X instructi

on set does not have an instruction that will load

immedate corstarts o MM X techndogy registers. The following cocke
segmens gererate frequertly used caostantsin an MMX technology

register. Of course,
but whendoing so
values wih amovg

you can abput consénts aslocal variablesin memory,
besure b duplicak te values n memory andload te
instruction, see Eamge 4-14.

Generating Constants

pxor MMO, MMD
pcmpeq M1, MML

pxor MMO, MMD
pcmpeq VM1, MML
psubb MMO, MML

; generate a zero register i nMN

; Generate all 1' s in r egist er MML,
; which i s -1 i neach of t he pa cked
; data ty pef ields

[p subb M M), MM] (p subd MN), MML)

continued

Using SIMD Integer Instrictions I

Example 4-14 Generating Constants (continued)

L)

pcmpeq MM, MML
psrl w MML, 1 6-n

pcmpeq MM,
psil w MML, n

;t hreei nstruct io ns a bove generate
; the constant 1 in every

;p acked-byte[o r packed-word]

;(or packed-dword) fi el d

(ps rl d MM, 32-n)

; tw oin structionsabovegenerate
; th esi gned constant 271 in ev ery
;p acked-word (o r packed-dword) f ield

MML
(pslldMM, n)

; tw oin structionsabovegenerate
;t hesigned constant -2"inev ery
;p acked-word (o r packed-dword) f ield

NOTE. Beause he MMX instruction se& does nd support shift
instructions for btes,2n-1 and-2 n are relevantonly for paded words

and packed dvords.

Coding Techniques for Integer Streaming SIMD
Extensions

This section contains exanples d the new SIMD integer instructions. Each
exampk includes a shi description, sampé code, andnotes whee

necessary

These sbrt examges,which usudly are incorporatedin longercade
seqiences, do rot addessscheduing.

4-21

I Intel Architecture Optimization Reference Manual

Extract Word

The pext rw instruction t&kes the word in the desgnated MM X techndogy
register séected by the two least sigrificanthits of the immedate value and
moves it tothe lower hdf of a32-bit integer registe, see Fgure 4-6 and

Example 4-15.

Figur e 4-6 pextrw Instruction

63

MM

X4 X3

X2

X1

31

R32

0..0

X1

Example 4-15 pextrw Instruction Code

In put: e ax sourcev alu e immedi ate v al ue:“0”

Outp ut: edx 32-bit i nte ger

regi ste r containin g the

extr acte dword i nt he lo w-ord er bi

hi gh-ord er bits z ero-e xt ended
movq mn0D, [e ax]
pext rw e dx, mm, 0
Insert Word

Thepi nsrw instruction loadsa word from thelower half of a 32hit integer
register or frommemory andinsertsit in the MM X techndogy destnation
register ata position defined by the wo leastsignificart bits of the
immedate corstart. Insertion is donein such away thatthe tree dher
words from the desination register are left unouched, se Figure 4-7 and

Example 4-16.

4-22

Using SIMD Integer Instrictions I

Figure 4 -7 pinsrw Instruction

63 MM 0

X4 X3 Y1 X1

31 R32 K 0

Y2 Y1l

Example 4-16 pinsr w Instr uction Code

7 In put: 32-bit in teger register. sourcev alue
immedi ate v al ue: “17".

; Outp ut: MNK te chnol ogy regi ste r with new 16-bit
valu eins erted

movq mn0, [e dx]

pi nsrw mnD, eax, 1

Packed Signed Integer Word Maximum

The pmax sw instruction retumns the maximum baweenthe four signed
words in eithertwo MMX tedhnology registers, @ oneMMX techndogy
register ard a &-bit memory locafon.

Packed Unsigned Integ er Byte Maximum

The pmaxub instrudion returns the maximum bdweenthe eght ursigned
bytes in either two MMX techrology registers, orone MMX tedhnology
register ard a &-bit memory locafon.

Packed Signed Integer Word Minim um

The pmin sw instrudionreturns the mnimum betveen he four signed
words in either two MMX technology registess, @ oneMMX technadogy
register ard a 61-bit memory locaion.

4-23

I Intel Architecture Optimization Reference Manual

Packed Unsigned Integ er Byte Minim um

The pnin ub instrudion returns the mnimum betveen he eight unsgned
bytes in either two MMX techrology registers, orone MMX techology
register ard a 61-bit mamory locaion.

Move Byte Mask to Integer

The pmov mskb instrudion returns an 8bit maskformed from he mast
significant bits d each lgte of its sourceoperanl, seeFigure 48 and
Example 4-17.

Figur e 4-8 pmovms kb Instr uction Example

MM
63 55 47 39 31 23 15 7 0
31
0..0 0..0
7 0
R32
Example 4-17 pmovmskb Instruction Code
; In put: source v alu e
; Outp ut: 32-bit r egi st er c ontai ni ngt he by te mask
in t hel ower eight bit s
movq mmd, [edi]

pmovmskb eax, mnD

4-24

Using SIMD Integer Instrictions I

Packed Multipl y High Unsigned

Packed Shuffle Word

Figur e 4-9

The pmul huw instruction multi plies the four unsigned words in the
destination goerandwith the four unsgned words in the source gerand
The hightorder 16bits d the 32-hit immedate resuts are writen to the

destination qoerand

Thepshuf instruction (see kgure 4-9,Example 4-18) wses tle immedate
(imm¥@ operandto selet between the four words in either two MMX
techrology registas or one MMX tehndogy register and a 64-bimemory
locaion.Bits 1 andO of the immedate value ercodethe sourcedor
destinationword 0 (MVX[15 -0]), andso onas shan in the able:

Bits Word
1-0 0
3-2 1
5-4 2
7-6 3

Bits 7 ard 6 ercode for word 3 (MVX[63 -4 8]). Similarly, the 2-bit
erncoding represens which sairce word is usel, for exampk, binary
ercoding of 10indicates that sourceword 2 (MVR/ mem[47-3 2]) is usel,
seeExample 4-18 and Exampk 4-18.

pshuf Instr uction Example

63

MM/m64

X4

X3

X2

X1

63

X1

X2

X3

X4

4-25

I Intel Architecture Optimization Reference Manual

Example 4-18 pshuf Instr uction C ode

In put: edi sourcevalue
; Output: MM MM regi st er containing the byte mak i n
the lowere ight bits
movg mmoO, [edi]
pshufw mmil, mn0, Ox1b

Packed Sum of Absolut e Differences

The PSADBWinstrudion (seeFigure 410) computes he alsolute value o
the dffererce ofunsignedbytes for either two MMX technology registers,
or one MMX technology register aad a64-bit memory bcaion. These
differenes are hen summeda producea word resut in the lower 16-bit
field, andthe upger three words are seto zero.

Figure 4-10 PSADBW Instr uction Example

MM/m64
63 0

X8| X7 | X6 | X5 | X4 | X3 | X2 | X1

63 MM 0
Y8| Y7 | Y6 | Y5 | Y4]| Y3 | Y2 Yl

63 ~Tem P_ 0
T8 | T7 | T6 T5 | T4 | T3 | T2 T1

N

MM

63 47 31 15

0..0/ 0..01 0..0| TL+T2+T3+T4+T5+T6+HT7+T8

0

4-26

Using SIMD Integer Instrictions I

The subtacion operaton presenid above is an absate difference, that is,
t = abs(x -y). The byte values are sbred n tempaary spaceal vaues
aresummed bgeter, ard the resull is written into the lower word of the
destination register

Packed Average (Byte/Word)

Thepavgb ard pavgw instructions ad the unsigneddaia elemens of the
souce operand ¢ the unsgneddat elemerts d the destnation ragister,
along with a carry-n. The resuls of the aldition are heneach
indgoendatly shifted to the right by ore bit position. The high orderbits of
each eementarefilledwith the arry bits of the carespnding sum.

The destination gperandis an MMX technology register The saurce
operandcan eiher bean MMX technology register @ a 64bit memory
operand.

The PAV@B instruction operates on packed wnsignedbytes ad the PAVGW
instruction operates on packedunsgnedwords.

Memory Optimizatio ns

You can improve memoryaccessesdang the following echiques:

® Partial Memory Accesses
® Instruction Sekction
® Increasing Bandwidth of Memow Fills and \ideo Fills
* Prefetching datwith Sreaming SMD Extersions (see Chajgt 6,

p).
The MM X technolog registers allow you to mae large quantities d data
without stalling theprocessorinstead of loaling sirgle array values ttatare
8, 16, or 32 bislong, consder loading the values inasingle guadword, then
incremeiing the stucture or arraypointer accodingly.

Any dat that will be manpulated ty MM X instructionsshoul be loaded

using either:
* the MMX instruction thatloads a 8-bit operand(for example, novq
MIND, 1m64)

4-27

I Intel Architecture Optimization Reference Manual

4-28

* the registermemory fam of ary MMX instruction that operates on a
quadword memay opeand (for xampk, praddw MMO, mé4)

® al SIMD datashoutl be sbredusing the MM X instruction thatstaes a
64-bit operand for examgde, movg m64, MND)

The godof these ecanmendatons stwofold. First, theloading and sbring
of SIMD data is more eficientusing the larger quadword bock sizes.
Second this helps o avoid the mixing of 8-, 16-, or 32-bit load andstae
operatons with 64-bit MMX techndogy load am sbre operatons to the
sameSIMD dat. This, in turn, prevenss situatons n which smal loads
follow large sbres b the samearea of memiy, or large loads folow smal
stores b the sane area bmemory. Perium Il ard Pertium Il processas
stall in these situaions

Partial Memory Accesses

Let's consider a cae wih large load after a serés of smdlstares to the
samearea of memy (baginning at memoryaddressner). The large load
will stdl in this caseas shown in Example 4-19.

Example 4-19 A Large Load after a Series of Small Stalls

mov mem, e ax ; storedwordt o addre ss “ nent
fmov mem+ 4, ebx ; storedwrdt o address “ mem+ 4"

novg mm, mem ;| oadgwordat ad dress“ menf, st alls

The movqg mustwait for the gores towrite memory before itan accessall
the data it requires This stall can aso occurwith other daatypes(for

exampk, when lytes orwords are sbred anl then words or doublewords ae
readfrom the same Bea of memory) Whenyou chamge te cale segence
as slown in Examge 4-20, he processorcan acess he daa withoutdday.

Using SIMD Integer Instrictions I

Example 4-20 Accessing Data without Delay

movd mm, e bx ; buil ddata into a gword fi rst
; before storing it to menory

movd mn2, e ax

psllq nmil 32

por nmi, mm 2

movq mem, mm1l ; store SINMD vari abl e to “ mem" as
;aqw ord

movq mrd, mem ; 1 oadgword SI M “mem”, nos tal |

Let usnow consiter acase wih a serés of smdlloads afér a large sbre ©
the sane area of mmory (b@inning @ memay addess mer). The srmall
loads will stall in this case as shown in Example 4-21.

Example 4-21 A Series of Small Loads after a Large Store

movq mem, mmO ; storeqwordt o addre ss “ nment
fov bx, mem+ 2 ; load word at “mem+ 2" stalls
mov cX, men+4; loadword at “mem+ 4" stalls

Theword loads mustwait for the quadword sbreto writeto memay befae
they canaccesshe dat they requre. This stdl canalso ocarr with other
daatypes {or examplke, whendoiwblewords orwords ae staed andhen
words a bytes ae read from the same areafanemory). When gu change
the code segene as shwn in Exampk 4-22, the processor camccesshe
daa withou delay.

4-29

I Intel Architecture Optimization Reference Manual

4-30

Example 4-22 Eliminating De lay for a Series of Small Loads after a Large Store

movq mem, mmO ; store gword to ad dress “mem"
movq mn, mem ; | oadgwordat address “ nment
movd eax, mmil ; tr ansfer “mem+ 2" t o eax fro m
; MM tec hnol ogy regis ter, n ot
; memay
psrlq nmil 32
shr eax, 16
movd ebx, mml ; tr ansfe r “mem+ 4" t o bx f rom
; MM tec hnol ogy regis ter, n ot
; memay

and ebx, O fff fh

These tansformabns, n generalincrease he nunber of nstructons
requiredto perform the desired operation. For Pentium Il and Pentium Il
processors,he performance pnaly dueto the increasedhumtler of
instructons s more hanoffsetby the bermfit.

Instruction Selection to Reduce Memor y Access Hits

An MMX instruction may hae two register ogerands ©Pr eg, reg) or
one rajister and ane memaoy operand(OP r eg, men), whereOPrepesens
the instruction opcode, re g represens the ragister andmemrepresensg
memory 0P re g, neminstructons ae usefulin somecasesd redice
register pressure, increasethe numbe of opeations gr cycle, andreduce
code ske.

The fdlowingdiscussbn essumeshatthe memory @erandis presenin the
daacachelf it is not, thenthe resuling perelty is usially large enouch to
obviate the scleduling efects dsaussedm this secton.

In Pentium processors, OP reg , me m MMX instructions donat have
longer latercy than OPr eg, re g instructons (assming a cabe ht).
They do heve mare limited paring gopottunities, howvever. In Pentum |l
and Pentum Il processas, OP re g, memMM X instructions translae into

Using SIMD Integer Instrictions I

two pogs, as oposedto onepopfor theGP reg , re g instiuctions. Thus,
they tend o limit decoding bandvidth and acccupy more resouces than
OPre g, re g instructions.

Recommeded usag of OPre g, meminstructions depnds onwhether the
MM X technology code s memory band(thatis, execuion speed & limited
by memoryaccesses). Gerally, an MMX techology code sedbn is
considered b be memory-baindif the following inequaity is true
Instructions/2 < Memory Accesses + non-MMX Instructions/2
For memoryboundMMX techrology code, the recanmendaibn is to
mege bads whenger the same memory ddresss usedmore han aice.
This reducs the numter of memoryaccesses.

For exampk,

OP MM, [address A]
OP MM, [address A]

becomes
aovqg MM2, [a ddre ss A]
OoP MM, MM2
oP MM1, MM

For MMX tedhnology code hatis notmemay-bourd, loadmerging is
recanmendednly if the samanemory addess isused moe than tice.
Where badmemging is not passide, usageof OPre g, neminstructionsis
recanmendedo minimize nstruction caintandcodesize.

For exampk,
movqg MMQ [a ddre ss A]
oP MM, MMN)
becomes
OP MM, [a ddress A]

In many cases, anovq re g, reg ard GPre g, mencan ke replcedby a
movg r eg, memandOPre g, re g. Thisshalld be done Were possble,
sinceit saves onepop o, Pentium Il and Rentium 11l processes.

4-31

I Intel Architecture Optimization Reference Manual

4-32

The cale béow, where OP $ a canmugtive operaton,

movqg MM1 MM (1 pop)

OP MM, [address A] (2 pops)
becomes:

movqg MM1, [address A] (1 pop)

OP MM, MMO (1pop)

Increasing Band width of Mem ory Fil Is and Video Fill s

It is beneicial to undestand how memory is accesse andfilled. A
memoryto-memaoy fill (for exkamplkea memoryto-video fill) is d€inedasa
32-byte (cade ine) load from memory whéh isimmedately stored tack b
memory(such as videoframebuffer). The following areguidelines for
ohtaining higher landwidth ard shorér latencies for segenia memory
fills (videofills). These reommendé&onsare reévant for all Intel®
archtecure pocessors vih MMX techrology andrefer tocasesn which
the loads andstaes do rot hit in the secondevel cache.

Increas ing M emory Bandwidt h Using the M OVQ Instr ucti on

Loadingary value will cause a entire cach line to be loaled into the
onchip cacke. Butusingmovq to stae the datback b memory instead @
using 3-bit stores (for exanple, movd) will rediwce by hdf the umber d
stores pememory fll cycle. As a resul the bandwidth of the memoy fill
cycle increasesignificanty. On some éntium processor-based systms,
30% highea bandwdth was measted when64-bt siores were useihstead
of 32-bit stores. Addtionaly, on Rentium Il and ntium IIl processas, this
avoids aparial memay access wén bdh the loads ad sbres are dne
with the MIOVQnstruction.

Also, intermking readsand wriesis slover than doinga series of read
thenwriting ou the data. For examplke when meing memory it is faster ©
readseveral lines nto the cachefrom memory henwrite them ait agan to
the rew memory bcation, instead of issung one red andonewrite.

Increas ing Memory Band widt h by Loading and Storing to
and from the Same DRAM Page

DRAM isdivided nto pages,which are no the same aseraing sysem
(OS) pages. he skze d a DRAM pageis afuncion of the total size d the
DRAM and he aganizaion of the DRAM. Page skes of seeral Kbytes are

Using SIMD Integer Instrictions I

common. Like OS pages, DRAM pages ae castucted of seqienia
addresses. &uertial memory acessesatthe same DRAM pagehave
shater latencies thaseqeential acesses to dierent DRAMpages. In
mary sysems he latency for apagemiss (hatis, anaccessd adifferent
page nstead d the pag previously access#) can le twice as brge as he
latency of amemory pag hit (accessd the same pagas he previous
aacess). Terefore, i the loads ad sbres of he memory fll cycle are b the
sameDRAM page, asigrificantincreasen the bamwidth of the memory
fill cycles can b acheved.

Increas ing the Mem ory Fill Bandwidth by Using Aligned
STORES

Unalignedstores wil doulde the rumberof sitores ® memory Intel stondy
recanmends hat quadword sbres ke 8-byte aligned. Four aligned
quadword sbres ae requred D write a cacle line to memory If the
quadword store is nat 8-byte digned, thentwo 32-bit writes result from
each M/Qstore instruction. On some sysims, a 20% Mer bandwidth was
measued when64-bt misdigned sbres were ugkinstead of digned
stores.

Use 64-Bit Stores to Incr ease the Band width to Video

Althoughthe PCI lus betveen the processor ath the framebuffer is 32 bits
wide, sing novg to siore o video is faste on mostPentium
processoibased sytems than usingtwice as may 32-bit stares to video.
This occus becase tle bamwidth to PCI write kuffers (which are bcaked
beaweenthe processor iad the PCI hus) is higher whenquadword sbresare
usel.

Increas e the Bandwidt h to Video Using Ali gned Stor es

When anoraligned sore s ercourtered there s adramaic decreasén the
bandwidth to video. Misdignment causes wice asmany sores and the
latency of sbres onthe PCI lus (tothe frame laffer) is much bnger. On e
PCI bus, it is nat pasdble to lurst seqentia misaigned sores. On Patium
processoibased sytans, a decease of80% in the video fill bandvidth is
typical whenmisdigned sbres are sed nstead ¢ aligned sbres.

4-33

I Intel Architecture Optimization Reference Manual

4-34

Scheduling for the SIMD Integer Instructions

Scheddinginstructons dfects performancéecase he latency of
instructions afects oher instructions ating on hem.

Scheduli ng Rules

All MM X instructions @n be pipelined, including the multiply instructions
on Pertium Il ard Perium Il processorsAll instructions take a shgle
clock to execute except MM X technology multiply instructions which take
three ¢ocks.

Since multiply instructions take three docks to exeaute, the result of a
multiply instruction can ke usedonly by otherinstructions ssuedhree
clocks later. For this reasonavoid schediing adependntinstruction in the
two-instruction sequences foll owing the multiply.

The sore d a register afer writing the register mst wait for two clock
cycles afer the uplaie of the register Schediuling the sbre of & leasttwo
clock cycles after the updde avoids a ppeline stll.

Optimizing
Floating-point Applications

This chapter disaussa general rules for optimizing single-ingruction,
multiple-data (SIMD) floating-point code andprovides examples that
illustrate the gotimizaion technques for $MD floaing-point applicaions.

Rules and Suggestions

The wles ard sugyestons listedin this se¢ion help optimize floating-point
code cataning SIMD floaing-point instructions. Genadlly, it isimportant
to undestand and kalance paot utilization to creak eficient SIMD

floaing-oint cade. The hkesic rules andsuggestons include the following:

Balancethe limitationsof the archiecure.
Schedue instructions b resolve dependences.
Schedue usageof the tiple/quadruple ile (port O, pott 1, port 2, 3
ard 4).
Groupinstructions that use he sameaegistersas cbsel as pssble.
Take into consideration the resdution d true depedercies.
Intermix SIMD floaing-paint operations hat use rt 0 andpott 1.
Do not isste corsecuive instructions hatusethe same ort.
Excepions:maskexceptions b acheve higher performane.
Unmasled exceptons maycausea redutionin the retremert rate.
Utilize te flush-b-zeromode fa higher peformarce b avoid the
penalty of dedingwith denormals andundeflows.
Incorporate the prefetch instruction wheneer possilde (for detils,
refer toChapter 6, “

5).

5-1

5 Intel Architecture Optimization Reference Manual

5-2

Planning

* Try to emuhbte conditional moves by ushng maked canpares ad
logicals instead ¢ ushg canditional jumps.

®* Use MMX™ techndogy instructionsif the omputatons carbe dne
in SIMD integer, for shufling dag, or for copying data tha is notused
later in SIMD floaing4oint computtons.

* If the aborithm requres etended preésion, then cowersian to SIMD
floaing-point code & notadvised be@use he Sreaming SIMD
Extensions br floaing-point instructions ae single-precision.

® Use he rec¢procal instructions followed by iteraton far increased
acairag/. These instrudionsyield reduce accuacy but execue much
faste. Note the following:

— If reduced acurag isaccepale, use hem wih noiteraton.

— If nea full accuracy is needd, usea Nevton-Raphsoniteration.

— If full accurayg is nealed, hen use dvide andsquae rootwhich
provide mae accuray, but slow dowvn peformarce.

Considerations

Whetheradating an «isting appicaion orcreating a nev one,usirg

SIMD floaing-point instructions b optimal advantage requires

consideration of several issues.n genedl, when chaosing camlidates for

optimizaion, look for codesegmens that are camputationally intensive and

floaing-point intensive. Alsoconsder efficientuseof the cade

architecure. Intel provides bols for evaluaionand tining.

The setionstha follow arswerthe questions hat stould beraised before

implemendétion:

® Which pat of the code beefits from SIMD floating-point instructions?

® Isthe arrent algorithm the mostappopriate for SIMD floaing-point
instructions?

* |Isthe wde foaingpont intensive?

* Isthe data arangedfor efficiert utilization of the SMD floating-point
registers?

® |sthisapplcaion targeted for processos withou SIMD floaing-point
instructions?

Optimizing Floating-paint Applications 5

Which Part of the C ode Benef its from SIMD Floating- point
Instructions?

Determine which code wil benefit from SMD floaing-point instructions.
Floaing-point intersive gplications thatrepeaedly exeaute similar
operaions where peratons are repatal for multiple dat ses, suchas
loops, might benéit from using IMD floating-point instructions.Other
facors that neal to beconsteredinclude dta organizaion if the kernel
operaton can usearalelism.

If the aborithm empoyed requres performancerangeand pecison, then

floaingpoint compuation isthe besichoice.If peformanceis the primary

reasa for floaing-pdnt implemenétion, then hie aborithm could increase
its pefformanceif converted to SSMD floating-point code

MMX Technolog y and Streaming SIMD Extensions Floating-point
Code

When generating SMD floaing-point code,the rles for mixing MMX
techrology cock andfloating-point codedo rot apply. Since the SMD
floaing-point registers ae sgarate registers andare nd mgppedonio
existing registeas, SIMD floaing-point cade canbe mked with
floaing{oint ard MMX tecmology cade. The SMD floating-point
instructons mapto the same pas asthe MMX techrology and
floaingoint cade. o avoid instruction stlls, consut Appendix C,

“ ;" when wrting an application that
mixes these wrious cods.

Scalar Code Optimization

In terms of rformancethe Steamng SMD Extersions scahr cock can
do as wel as x87hbut has he foll owing advantages:

® Using aflat register mod rather than a shckmodel

®* Mixingwith MM X technology code wihout penatty.

® Using scéarinstructions am pacled SMD floaing-oint data when
needed,since hey bypass he ypper felds of the paked dita. This
bypassing mecharsm alows scahr cale b have extra ragister sbrage
by using the upger fields for empaoary sbrage.

5-3

5 Intel Architecture Optimization Reference Manual

The following are sane additional points to take into consideration when
writing scahr code:

®* The scéar code ca runon wo execuion potts in addtion to the load
and sbre pots, anadwantage eer x87 codewhere it had only one
floaing-point execuion pott.

® The scéarcode s demdedas 1 jer cycle.

* Toincreasgerformancevhile avoiding this decoar limitation, use
implicit loads with arithmetic instructions that increase the number of
Hops deoded

EMMS Instruction Us age Guidel ines

The EMMS instruction sets the values of dl the tags in the floating-point
unit (FPU) tag word to empy (al ones).

There areno reqiirementsfor using the emns instruction when mking
SIMD floaing-point code wth either MMX tecmology code or
floaing-point cade. The enmsinstruction reed mly beused n the context
of the eisting rules for MMX technology intrinsics and foaing-point code.
It isonly requiredwhen tanstioning from MM X technobgy code b
floaing-point code. e HEble 541 for detlls.

Table 5-1 EMMS Instruction U sage Guidelines

EMMS
Flow 1 Flow 2 Required
x87 MMX technology No; ensure that
stack is empty
x87 Streaming SIMD Extensions No; ensure that
stack is empty
x87 Streaming SIMD Extensions- No
SIMD floating-point
MMX technology x87 Yes
MMX technology Streaming SIMD Extensions- No
SIMD integer
MMX technology Streaming SIMD Extensions- No

SIMD floating-point
continued

Optimizing Floating-paint Applications 5

Table 5-1 EMMS Instruction Us age Guidelines (continued)

EMMS
Flow 1 Flow 2 Required
Streaming SIMD x87 Yes
Extensions-
SIMD integer
Streaming SIMD MMX technology No
Extensions-
SIMD integer
Streaming SIMD Streaming SIMD Extensions- No
Extensions- SIMD floating-point
SIMD integer
Streaming SIMD x87 No
Extensions-
SIMD floating-point
Streaming SIMD MMX technology No
Extensions-
SIMD floating-point
Streaming SIMD Streaming SIMD Extensions- No

Extensions- SIMD integer
SIMD floating-point

CPUID Usage for Detection of SIMD Floating-point Suppor t

Applicaions musbeablk to deermine if Sreaming SIMD Extensions are
available. Please referhe setion

for the
technques b deermine whether the pro@ssor anaperaing system
suport Sreamng SMD Extersions.

Data Alignmen t

The ddaa must ke 16-byte-aligned for paked floaing-point opeaations (hat
is, noalignmentcorstraint for scahr floaing-pont). If the datais not
16-byte-aligned a gemral protecion excepion will be gererated. If you
know that the ddais not aligned, use the movups (mov unaligned)
instruction to avoid the protecion eror excepton. Themovups instruction
isthe orly onethat an acess unkgned dat.

5-5

5 Intel Architecture Optimization Reference Manual

Accessig dat thatis propaly digned cansare six to nine g/cles onthe
Pentium® Il processa If the data is propety digned ona 16byte
bounday, frequentaacess camrovide a sgnificant peformance
improvemen.

Data Arra ngement

Since the Steamng SIMD Extensions ncorporae a $MD archtecture,
arranging the data to fully use he SMD registers pioduces opimum
peformance. Thisimplies mntiguousdata for processimg, which lead to
fewer ache mises ad poertially quaduples be sged. hese
peformance @ins ocur becase he four-element SIMD registers carbe
loaded with 128-it load nstructions mova ps — move alignedpacled
single predsion).

Refer tothe for dam arrangment
recanmendatons. Dupicaing and palding echiques @ercome he
misaignmentprodem that can ocarr in some dta strictures and
arrangmens. This increaseshe dhta spacebut avoids he expensve
penalty for misdigned dat access.

The tadiional dat arrang@mentdoes notlenditsef to SIMD padall el
technques h someappicaions. Taditiond 3D dat structures, for
example, donot lead to full utili zation of the SIMD registers. This data
layout has taditionally been a amay of stuctures (AoS). To fully utlize
the SMD registers, a rw dat layout has ben poposed—a structure of
arrays (SoA). The SoA structure dlows the application to fully utilize the
SIMD registas. With full utilizaion canes more ofmized grformance.

Vertical versus Hor izontal Comput ation

Traditional 3D dat structures donotlend themseles © vertical
computation. The dat can sill be geraed o andcompuation can
proceed but withou optimaly utilizing the SIMD registers. D optimaly
utilizethe SIMD reyisters he dbta canbe oganized n the SoA formatas
mertionad abwe.

5-6

Optimizing Floating-paint Applications 5

Consider 3D geomety data organizaion. One way to apply SIMD
techrology to a typicd 3D geomety is to usehorizontal execuion. This
mears toparalelizethe comptation on the x, y, z, andw compnens ofa
single vertex (that is, of asingle vector simultaneously referredto as @ xy z
daarepreserdtion, seethe diagram lelow).

L x | v | z | w |

Vertical canputton, S@, is recommened over torizontal, for several
reasms:

®* When ompuing o a shgle vecbr (xy z), it iscomman to use aly a
sulset of the vecior compmens, for exampk, in 3D gaphcs he
componenis sanetimes gnared. This meanshat for single-vecor
operations, 1 & 4 canputation sbts isnotbeing utilized.Thisresultsin
a 5% reduction of peak eficiency, and mly 75%peakperformance
can be dained.

* It may kecome dficult to hide bnglaterncy operatons. For instance,
arothercommonfuncion in 3D graphtcs s narmalizaion, which
requiresthe compuation d a reciprocd square root (thatis, 1/iqt);
both the division ard square root are long latency opegtions.With
vertical computation (SA\), eachof the 4 canputation slots in aSIMD
operation is prodwcing a wique lesut, so he netlatency perslotisL/4
whetre Listhe overal latency of the opeation. Havever, for harizontal
compumtion, the 4computtion sbts eaclprodice he sane resut,
hence b produce4 sepaate results requires a netlatency perslot of L.

How can the data be aganizedto utilize al 4 canputaton sbts? Tte vertex
daacan e reorgarized to allow computation on egh canponen of 4
separate vertices, that is, processing multi ple vectors simultaneously. This
will alsobe referredto asan SoA form of refreseting vertices dgta stown
in Table 52.

Table 5-2 SoA Form of Representing Vertices Data

VX array X1 X2 X3 X4 L Xn
Vy array Y1l Y2 Y3 Ya ... Yn
Vz array Z1 z2 Z3 Y4 .. Zn
Vw array w1l w2 W3 w4 L Wn

5-7

5 Intel Architecture Optimization Reference Manual

5-8

Figure 5-1

Organizing dat in this manne yields a unque resut for each

computationa slot for eacharithmetc operaton. Vertical computtiontakes
advantage ofthe inherent pailelism in 3D geomety processimy of vertices.
It assgns he computton of four vertices b the four compue slots o the
Pentium Il processg thereby diminating the disadwantges of the
horizontal appioad descibed eatier. Thedot product opegtion
implemens the SA represerdtion d vertices dad. A schemaic

representation of dot product operation is shavn in Figure 5-1.

Dot Product Oper ation

X1 X2 X3 X4
X Fx Fx Fx Fx
+ Y1 Y2 Y3 Y4
X Fy Fy Fy Fy
+ Z1 z2 Z3 Z4
X Fz Fz Fz Fz
+ W1 W2 W3 W4
X Fw Fw Fw Fw
= R1 R2 R3 R4

Exampk 5-1 shavs hav 1 resut would becompuedfor 7 instructionsif the
datawere organizedas AoS Hence4 results would require 28 instructions.

Optimizing Floating-paint Applications 5

Example 5-1 Pseudocode f or Horizontal (xyz, AoS) Comput ation

nul ps X *X, o yry, zv 7

movaps ; reg->reg move, sin ce next stepsoverwite
shuf ps ; get ba,d,c froma,b,c,d

addps ; getatb ,a+b,c +d,c+ d

movaps ;re g->re g move

shuf ps ; get c+d,c +d,a +b,a+ b fr omp ri or addps
addps ; ge tatb +c+d,a tb+c+d, a+b+c+d, atb+c+d

Now consder the ase wherthe dat is orgarized as $A. Exampk 5-2
demonstates how 4 results ae compuedfor 5 instructions.

Example 5-2 Pseudocode f or Vertical (xxxX, yyyy, zzzz, SoA) Comput ation

mups ; x*x for all 4 x-c omponents of 4 vert ic es
mups ; y*y for all 4 y-c onponents of 4 vert ic es
mups ; z¢z for all 4 z-c onponents of 4 vert ic es

addps ; x*xX + y*Vy
addps ; x* X +y*y +z*z’

For the mast eficientuse @ the four componeirwide registers,
reorganizing the data into the SAA\ format yieldsincreasedhroughput and
hence meeh beter performae for he instructions use.

As canbe sean from this simde examge, vertical compuation yiel ded
100% use othe available SMD registers and pioduced 4 esults. If the daa
structures are rgtricted b a famat that is not “fri endy to vertical
computfation,” it can be rearramgl “onthe fly” to achieve full utilization of
the SMD registers. This operaion referredo as “swizling” andthe
“deswizing” opegtion ae discussedn thefollowing secions.

5 Intel Architecture Optimization Reference Manual

5-10

Example 5-3

Data Swizzling

In many agorithms, swezling detafrom one brmat to anotheris required.
An exampk of thisis AoS format where he ertices ome axy z adjpcent
coordinakes. Rearanging them into SoA format xx xx, yy vy, zzz z, dlows
moreefficient SIMD computations. The following instructions ca be sed
for efficientdat shuflingand swzzling:

®* movl ps,movhps load/stare and move data on hdf sedions d the
registers

® shuf fp s, unpack hps, andunpack Ips urnpackdag

To gather dat from 4 differentmemory bcations on hefly, follow steps:

1. idertify the first half of the 128bit memorylocaion.

2. group the dfferert halves bgether using the movl ps andmovhps to
form anxy xy layout in two registers

3. from the 4 atached heves, gethexx xx by udng one shuffle, theyy yy
by using anoher shuffle.

The zz zz is derived the same &y but only requres ae shifle.
Example 5-3 illustraes the swizzle function.

Swizzling Data

ty pedefs truct _VERTEX AOS{
fl oat x, vy, z, col or;
} Vert ex_aos; /| AoSs tructure decl aration
ty pedefs truct _VERTEX SOA{
fl oat x [4], f loat y[4], fl oat z[4];
f loat color[4];
} Vert ex_soa; /| SoAs tructure decl aration
void s wiz zl e_asm (Vert ex_aos * in, Vertex_soa * out)
{
/I i n mem x1ylzlwl-x2 y2z2w2-x 3y3z3w3-x 4y4z4 w4-
Il SWZZLE XYZW- -> XX XX
asm {
mo/ ecx, i n / | get structur e addr esses
mov e dx, o ut

continued

Optimizing Floating-point Applications 5

Example 5-3 Swizzling Data (continued)

movl ps xmm7, [e cx] [xmm7= -- - - ylxl
movhps xmm7, [e cx+16] / / xmm7= y2 x 2 yl x1
movl ps xmmQ [e cx+32] / / xmmO= -- - - y3 x3
movhps xmm0O, [e cx+48] [/ / xmmO= y4 x 4 y3 x3
movaps xmme xmm7 [/ xmm6= yl x 1 ylxl

shuf ps xmm7, xmmQ 0 x88// xmm7= x1 x2 x3 x4 => X
shuf ps xmm6 xmmQ 0 xDD// xmm6= yly 2 y3y4d =>Y

movl ps xmm2 [e cx +8] [xmm2= -- - - wlzl
movhps xmm2 [e cx+24] [/ / xmm2= w2z 2 ul z1
movl ps xmml, [e cx+40] / / xmml= -- - - s3z3
movhps xmml, [e cx+56] [/ / xmml= wdz 4 w3z3
movaps xmmo, xmm2 [/ xmm0= wlz 1 wlzl

shuf ps xmm2 xmm1 0 x88// xmm2= z1z2 z32z4 =>Z
shuf ps xmmQO, xmm1, 0 xDD// xmm6= wlw2 w3w4d => W

movaps [e dx], x mmv /I stor e X

movaps [e dx+16], xmn6 Il stor e Y

movaps [e dx+32], xmn2 Il stor e Z

movaps [e dx+48], xmnd /I stor e W
I SWZZLE XYZ -> XXX

}

Exampk 5-4 shavs the same dat swizzling aborithm en@dedusing the
Intel® C/C++ Campil er’'s intrinsics for Streaming SIMD Extensions.

5-11

5 Intel Architecture Optimization Reference Manual

Example 5-4 Swizzling Data Using Intr insics

/Il Intr insics versionof data s wiz zl e

void s wiz zl e_in tr in (V erte x_
intst rid e)
{
_ m28 x, y, z, w;
__ml28 tmp;
x = _mml oadl _pi(x,(__m&4
x = _mml oadh_pi(x,(__ m&4
y = _mml oadl _pi(y,(__m&4
y = _mml oadh_pi(y,(__ m&4
tm p= _mmshuffle_ps(x , vy
y = _mmshuff le _ps(x, y,
X = tmp;
z = _mml oadl _pi(z,(__m&4
z = _mml oadh_pi(z,(__ m&4
W =
w = _mml oadh_pi(w, (__nb4
*) (3*stri de+8+(char*)(in)))
w = _mmshuff le _ps(z, w,
z = tmp;
tm p=

_mm_sto re _ps(&out ->x [0], x
_mm_sto re _ps(&out ->y [0],
_mm._sto re _ps(&out->z[0], z
_mm_sto re _ps(&out ->w|0],

aos* in, Vert ex_soa *out,

9 (n) ;

*) (st ri de + (char *) (i n)));
*) (2% stri de+char *)(in)));

) (3 stri de+(char *) (i n)));
, _ MMSHUFFLE(2, 0, 2, 0));
_MM_SHUFFLE(3, 1, 3, 1));

*) (8 + (char *)(in)));
*) (st ri de+8+(char *) (i n)));

mmlo adl pi (w,(_ _mb4 *)(2*str id e+8+(ch ar*) (i n)));

_MM_SHWFFLE(3, 1, 3, 1))

_mmshuffle_ps(z , w, _ MMSHUFFLE(2, 0, 2, 0));

)

y);

)

w);

5-12

Optimizing Floating-paint Applications 5

CAUTION. Avoid creaing a deoendecy dain from pevious
ecomputations becase he movhps/movip s instructions bypass onepart
of the register. Thesame issel canoccur wth the use ofin exclusive-OR
fundion within an inrer loop in oder to clar a register:

XCORPS %xmD, %xmmo0 All O swrittent ox nmD

Althoughthe gerrated resutt of all zeios des na dependon the speciic
daa conained in the source opeand (thatis, XCR of a ragister wih itself
always praluces H zerc), the instruction cannd execute urtil the
instruction that generates xmmO has completed. In the worst case this
credes a épendeng/ chan thatlinks successe iteraions of he loop, even
if those ferations ae ohemwise indegendent; the resulting performance
impactcan be sgnificantdepending on hav muchotherindegendert
intradoop canputation is beng performed.

The samesituation @n ocarr for the alove movh ps/movl ps/shuf ps
seqience Sinceeachmovhp s/movlp s instruction bypasses part of the
destination registet the instruction annotexecute urtil the piior instruction
to generate this regste has canpleted. As with thexorp s exanple, in the
worst case liis dendency can pevent successie loopiterations from
executing in parallel.

A soluionistoincludea 128-bit load(that is, froma dummylocal variable,
sud astmp in Exampk 5-4) to each rgiste to be usedvith a

movh ps/movl ps instruction; this acion efectively breakghe depadercy
by peforming an hdependeat load from amemory or cghedlocation.

Data Deswizzling

In the deswrzle opeation, we want to arrangdhe SoA fomatback nto
AoSformatso be xxxx, yyyy, zzzz are reaargedand sbredin memory
asxyz . To do thiswe can e the unpckl ps/unpckhps instructions b
regeneeste the xy xy layoutand thenstoreeach lalf (xy) into its
coarresponding memory becdion using movl ps/movhps followed by
arnothermovl ps/novh ps to stae thez componaent.

5-13

5 Intel Architecture Optimization Reference Manual

5-14

Example 5-5

Exampk 55 illustrates the deswzzle fundion:

Deswizzling Dat a
void d eswiz zl e_asm(Verte x_soa *in ,
{
__asm{
mov ecx, i n 11
mov edx, o ut
mova ps xmm7, [e cx] 7
movaps xmm6 [e cx+16] // |
movaps xmm5 [e cx+32] /I |
movaps xmm4, [e cx+48] /I |

oads tructure ad

oadx 1 x2x 3 x4
oady 1l y2y 3 vyl
oadz 1l z2z3 z4
oadwl w2w3 w4

/Il START THE DESWZ ZLI NGH ERE

movaps xmmQ, xmm7 /I x mmD= x1 x 2 x3 x4
unpckl ps xmm7, xmm6 /I xm7= x1y 1 x2y2
movl ps [e dx], x nm7 /I v1=x1yl-- -
movh ps [e dx+16], xmnY /| v2 =x2 y2 - - --
unpckhps xmmQ, xmm6 /I x 0= x3y 3 x4 vy4

[e dx+32], xmD // v3=x3 y3--- -
movh ps [e dx+48],
movaps xmmQ, xmm5 /I x mD=

unpckl ps xmm5 xmm4

xmnd // v4 =x4 y4- - --
z1z2 z3 74
/I x b= z1 w1l z2 w2

unpckhps xmmQ xmm4

/I x D= z3 w3 z4 w4

movl ps [edx+8], xmm5 // v1 =x1ylz1l wl
movh ps [e dx+24], xmnb /[v2 =x2 y2z2 w2
movl ps [e dx+40], xmm® / v3 =x3 y3z3 w3
movh ps [e dx+56], xmm® // v 4 =x4 ydz 4 wa

/I DESWIZZLIN G ENDSHERE
}

Vert ex_aos *out)

dr esses

=> X mv
=> X b
=> X mmb
=>x m4d

movl ps

Optimizing Floating-point Applications 5

You mayhave to swiz4e da@ in the reagisters, It not in memory This
occurs whertwo dfferert functions want to process tie daain differen
layout. In lighting, for example, dahcomes asr rr gggg bbbb aaaa, and
you mustdeswizle them into rg ba before converting into integers. In this
case you use hemovih ps/ movhlp s instructions b do the first part of the
deswizzle, fdlowedby shuf fl e instructions,Example 5-6 ard Exampk
5-7.

Example 5-6 Deswizzling Data U sing the mo vihps and s huffle | nstructions

void d eswiz zl e_rgb(Verte x_soa* in, Vert ex_aos *out)

{
/[-- -- -—- - -~ deswizz le r gb---- - - - — -
[l xmml=rr rr ,xm nm2=g9gg gg,x mMmB=Dbb bb,x nm =aa aa
(a ss uned)
__asm{
m ov ecx, in /I lo ads tructur e addr esses
mov edx, out
movaps xmmil, [e cx] I lo adr 1r 2r 3r4 => xmnil

movaps x mm2, [ecx+16] [/ / load glg2 g3g4 =>x mm2

movaps x mB, [ecx+32] [/ / load blb2 b3b4 =>x mm3

movaps x ¥, [ecx+48] [/ / load ala2 a3a4 =>x mm4
/I Start deswiz zl ing here

movaps xmm7, xmm4 /I xmm#& ala2 a3 a4
movhl ps x nm7, xmm3 [| xmm7= b3 b4 a3 a4
movaps Xxmm6 xmm2 [/ xmm6=g1l g2g3g4

xmm3= bl b2 al a2
xmm2= r3 r4 g3 g4

movih ps x M8, xmm4 /
movhl ps x nm2, xmml /
movih ps x nml, xmm6 / xmml=rlr2 gl g2
movaps xmmeG x nmR2 / xmm6= r3 r4 g3 g4
movaps xmm5 x mil /| xmm5=rlr2 gl g2
/
/
/
/

~ ~ ~

shufp s xmm2 x nm7, 0 xDD/ xmm2= r4 g4 b4 a4
shufp s xmml x nmB, 0 x88/ xmm4= rl gl b1l al
shufp s xmm5 x mB, 0 x88/ Xxmm5= r2 g2 b2 a2
shufp s xmm6 x mv, 0 xDD/ xmm6= r3 g3 b3 a3

continued

5-15

5 Intel Architecture Optimization Reference Manual

Example 5-6 Deswizzling Data U sing the mo vlhps and s huffle Instructions
(continued)

movaps [edx], xmm4 /1 vi= rl gl blal
movaps [e dx+16], xmnb I v2 =r2 g2b2 a2
movaps [e dx+32], x nmb /I v3=1r13 g3 b3a3
movaps [e dx+48], x nmR2 Il vA=1r14 94 bdai
/Il DESWIZZLIN G ENDSHE RE

}

Example 5-7 Deswizzling Data U sing Intr insics with the mo vlhps a nd shuffle
Instruc tions

void mmx_deswiz zl e(IVert ex_soa*i n, | Vertex_aos *out)

{
__asm{
mov e bx, in
mov e dx, out
movq mnOD, [e bx] /I mmD=ul u2
movq mmil, [e bx+16] // mml=v 1 v2
movgqg mn2, mmn /I mnm2=ul u2
punpckhdg mnm, mml // mnD= ul vl
punpckl dg mn2, mmlL // mnD= u2 v2
movq [e dx], mnR /I store ulv1
movq [edx+8], mnD /'l storeu2 v 2
movq mmd, [ebx+8] /1 mmD= u3 u4
movqg mm, [ebx+24] /[mml=v 3 v4
movq mne, mn¥# [l mn2= u3 u4
punpckhdg mm4, mm5 // mnOD= u3 v3
punpckl dg mnme, mm5 // mnD= ud4 v4
movq [e dx+16], mm6 /[storeu3v3
movq [e dx+24], mm4 /[s tore udvd
}
}

5-16

Optimizing Floating-paint Applications 5

Using MMX Technol ogy Code for Copy or Shuffling
Functions

If there aresome pad in the mde hataremainly copying, shufling, o

doing logical manpulations hat do not reguire use ofStreaming SIMD

Extensions @de, onsder peforming these adbns wth MMX techmology

code. For exampk, if texture dagis sbred h memay as SoA (uuu, wvv)

ard they needonly to be deswizled nto AoS layout (uv) for the graphic

cads toprocessyoucan se either the Steamng SMD Extersions or

MM X technology code, lut MMX techndogy codehas hesetwo

advantages:

®* The MMX instructionscan deodeon 3decodrs while Streaming
SIMD Extensions codeuses oly onedecod.

®* The MMX instructionsalow you to avoid cansumng Steamihg SIMD
Extension registess for just rearanging ddafrom memory beack to
memory

Exampk 5-8 illustrates hav to use MMX techology code for copying a

shufling.

5-17

5 Intel Architecture Optimization Reference Manual

5-18

Example 5-8 Using M MX Technology Code for Copying or Shuffling

asm("movg T RI COUNT* 12(%eédx, %esi, 4), %m0"); [/ mm= ul
u2

asm("movg T RI COUNT* 16(%edx, %esi, 4), %mil"); [/ mm= vl
V2

asm("movqg %nm0, %mR2"); /I mn2= ul u2

asm("p unpckhdq %mt, %m0") ;/ / mmM=ul v 1

asm("p unpckld q %mi, %mR2") ;/ / mm=u2 v 2

asm("movq %m0, 24+0* 32(%edx) "); // storeul vl
asm("movq %mz2, 24+1* 32(%edx) "); // s toreu2 v2
asm("movq TRIC OWNT*12 (%ebx, %esi , 4), %m4"); [/
mm=u3u4

shoul d be ad dr ess+8
asm("movq TRIC OWNT*16 (%ebx, %esi , 4), %m5"); [/ /
mm=v 3v 4

shoul d be ad dr ess+8
asm("movq %m4,%mne") ;/ /| mm=u3 u4
asm("p unpck hdq %mb, %m4d") ;/ / mm=u3 v 3
asm("p unpckld q %mb, %mb") ;/ / mm=ud v 4
asm("movq %m4, 24+0* 32(%edx) "); // s toreu3 v3
asm("movq %m6 24+1* 32(%edx) "); /| s toreud vd

Horizontal ADD

Althoughvertical compuationsuse he IMD pefformancebeter than
horizontal compuations dg in some eses, he ade mususe a haizontd
operafon. Themovl hps/ movhl ps ard shidfle an beused 6 sum daa
horizontally. For example, starting with four 128-bit registers, to sum up
eadt register haizontdly while having the final results in one register, use
themovinh ps/ movhlp s instructions b align the uppger andlower paitts of
each register. This allowsyou to useavertical add. With the resuting partial
horizontal summaton, full summaton follows easly. Figure 5-2
sclematcally presets horizontal addusing movhlpsinovihps, whie
Exampk 5-9 andExample 5-10 provide the cock for this opestion.

Optimizing Floating-point Applications 5

Figur e 5-2 Horizontal Ad d Using mo vhips/movlhps

xmml xmm2
movlhps movhips movlhps movhlps

shups shufps

addps

5-19

5 Intel Architecture Optimization Reference Manual

5-20

Example 5-9 Horizontal Ad d Using mo vhips/movlhps

void h ori z_add(Vert ex_soa *i n, fl

1

I

asm{
fmov ecx, i n
mov edx, o ut

fmova ps xmmQ, [e cx]

11

I

movaps xmml, [e cx+16] [/ /
fmmovaps xmm2, [e cx+32] [/
mova ps xmm3 [e cx+48] [/

S TART HQRIZONTAL ADD
movaps X nmb, x nmD //
movl hps x mb, x mil //
movhlp sx mil, x D //
addps x mmb, x mml //
novaps xm m4 xm m2

movl hps x mm2, x mB8 //
movhlp sx mB, x nm¥ //
addps x m8, x mm2 //
movaps X nmb, x nmb //

Xxmm5=
XmmS5=
xmml=
Xmm5=

Xmm2=
Xmm3=
Xmm3=
XmmG6=

shuf ps xm mg xm m3 0 x31
| | xnm6=A1+A3,B 1+B3, C1+C3, D1+D3
shuf ps xmm5 xmm3 OxAA
[I xmm5=A 2+A4, B2+B4, C2+C4, D2+D4

addps xmm6 xmm5 //
E ND HORI ZONTAL A DD
movaps [e dx], x mm6

Xmme6=

oat *out){

lo ad st ructurea ddresses

load A1A2 A3 A4 => xmmO

load B1B2 B3B4 => xmml
load C1C2 C3C4 => xmm2
load D1D2 D3D4 => xmm3
A1,A2 A3, Ad

Al,A2 B1, B2

A3,A4 B3, B4

Al1+A3,A 2+A4,B 1+B3, B2+B4

Cl1C2,D1, D2
C3,C4,D3, D4
C1+C3,C 2+C4,D 1+D3, D2+D4
Al1+A3,A 2+A4,B 1+B3, B2+B4

D,CB.A

Optimizing Floating-point Applications 5

Example 5-10 Horizontal Add Using Int rinsics with movhlps/mo vihps

void hori z_add_in tri n(Vert ex_soa *i n, f | oat *out)
{
__ml28 vi, v2, V3, v 4,
_ m28 tmmQt mmM,t mn2, tmm3tm m4t mnd, tmme;
/I T enporar y vari ables

tmmO= _nmmlo ad_ps(i n->x); /t mmM = ALA2A3 Ad
tmml= _nmmlo ad_ps(i n->y); /tt mmM = B1B2B3 B4
tmm2= _mm_lo ad_ps(i n->z); //t mm@ = C1C2C3 C4
tmm3= _mmlo ad _ps(i n->w); //t mm = D1D2D3 D4
tmm5=tmmGQ, [TtrmD = A1A2 A3A4

tmm5= _nm_movelh_ ps(t mms, tm ml); // tmm5= A1A2 B1B2
tmml= _mm_movehl_ ps(t mm, tm m0; / tmml= A3 A4 B3 B4
tmm5= _nm_add_ps(tmm5 tmml);
/1 tmmb = Al+A3 A2+A4 B1+ B3 B2 +B4

tmm4= tmm2

tmm2= _nmm_movelh_ ps(t mm, tm m3); / tmm2= C1C2 D1D2
tmm3= _nmm_movehl_ ps(t mm3, tm m4); // tmm3= C3C4 D3D4
tmm3= _mm_add_ps(tmm3 tmmz2);

/I tmm3= C1+C3 C2+C4 D 1+D3 D 2+D4
tmm6=tmm5 /[1tm6 = Al1+A3 A2+A4 B 1+B3 B 2+B4
tmm6= _nmm_shuf fle _ps(tmmGt mB, 0 x88);

/I tmm6= Al1+A3 B1+B3 C 1+C3 D 1+D3
tmm5= _mm_shuf fle _ps(tmm5t mmB, 0 xDD);

/I tmm5= A2+A4 B2+B4 C2+C4 D2+D4
tmm6= _nmm_add_ps(tmmg tmmb5);

/I tmm6= A1+A2+A3+A4 B 1+B2+B3+B4

/I C1+C2+C3+C4 D 1+D2+D3+D4
_mmst ore_ps(out, t mb);

5-21

5 Intel Architecture Optimization Reference Manual

5-22

Scheduling

Instructions using the same rgisters sbuld beschedied close b each
othe. Thereare tvo read pats for registe's. You can dotain the most
efficientcodeif you scledule thoseinstrudionstha read from the same
registers ogehe withou severely affecing the resolution d true
depencences. As arexercise, frst examinethe norroptimal code n the first
block of Exampk 5-11, thenexamine the secod block of optimized cale.
The read from be registers caronly real two physical registers per abck

Example 5-11 Scheduling Ins tructions that Use the Same Register

intto y(unsig nedch ar*s ptrl,

u nsigned char
{
__asm{

push ecx

mov ebx,

mov eax,

movq mm,

movq mn3,

pxor mnd,

pxor mmb,

px or mne,

p xor mm7,

mov ecx,

to p_of _lo op:

movq mn2,

movq mmd,

paddw mnd,

pmul lw mml, mn3
movq mn3,

movq mnb,

paddw mnt,

*sSptr2)

[e bp+8] /I sptrl

[e bp+12] /I s ptr2

[e ax]

[e bx]

mnd /I i nitialize
mnd /I i nitialize
mnd /I i nitialize
mm7 /I 1 nit iali ze
256 //

[e bx+ecx +8]
[e ax+ecx +8]
mng

[e bx+ecx +16]
[e ax+ecx +16]
mné

mnDt o O
mnbt o O
mn6t o O
mm7 to O

i nit iali ze |l oop c ounter

continued

Optimizing Floating-point Applications 5

Example 5-11 Scheduling Inst ructions that Use the Same Register (continued)

pmul lw mn2,
movq
movq
paddw
pmul lw mn8,
movq
movq
paddw
pmul lw mn4,
movq
movq
paddw
pmul lw mnb,
movq
movq
paddw
pmul lw mnB,
movq
movq
paddw
pmul lw mnv,
movq
movq
paddw
pmul lw mnD,
movq
movq
paddw

mm
mm4
mm6
mmQ

mrb
mm5
mm7
mm1
mne
mm6
mmQ
mm2
mnd
mm7
mml
mm3
mmn
mmQ
mm2
mm4

mm
mml
mm3
mm5
mmn2
mm2
mm4
mme6

[e bx+ecx+ 24]
[e ax+ecx+ 24]
mni

[e bx+ecx+ 32]
[e ax+ecx+ 32]
mno

[e bx+ecx+ 40]
[e ax+ecx+ 40]
mm

[e bx+ecx+ 48]
[e ax+ecx+ 48]
mn2

[e bx+ecx+ 56]
[e ax+ecx+ 56]
mn3

[e bx+ecx+ 64]
[e ax+ecx+ 64]
mm

[e bx+ecx+ 72]
[e ax+ecx+ 72]
mnd

continued

5-23

5 Intel Architecture Optimization Reference Manual

Example 5-11 Scheduling Inst ructions that Use the Same Register (continued)

prul lw mnpil, mm

sub ecx, 64

I[e} to p_of_lo op

/I no hori zontal reducti onneededat the end
movd [eax], mmd

pop ecx

Try to growp instructions usig the same rgisters as asdy as posdile.
Also try to schedule instructions sothat daais stil in the resevation sttion
whenneaw instructions hat usethe same rgisters aressuel to them. The
souce remais n the resevation sttion unil the instrudionis dspdched.
Now you can bypass trecty to the functional unit becaise depndent
instructions hae spaed far enaughaway resdve dgendeacies.

Scheduli ng with the T riple-Quadrupl e Rule

Schedue instructions sing the tiple/quadruple rule, add/mult /lo ad, ard
combine triplets from independent chans ofinstructions. $lit
register-memory nstructions nto a loadfollowed ly the acual
compufation. As an gamge, split addps xmmQ [edi] intomovaps
xmml, [edi] ardaddps xmmQ x mril. Increasdhe dstane between the
loadand he acual compuation and ty to inset independent instructions
beweenthem. This techniue works wel unless ya have register pressue
or you ake limited by decaerthroughput seeExample 5-12.

5-24

Optimizing Floating-paint Applications 5

Example 5-12 Scheduling with th e Triple/Quadr uple Rule

intto y(sptrl,sp tr2)

_me&4 *sptr 1, * sptr2

{

_ me4 srcl; /¥ s ource 1 */
__ mé&4 src2; I* s ource 2 */
__nb4 m [*mul* [/
__mé&4 result; [* r esult */
int i;

re sult =0;

for(i=0; i<n; i+ + sptr 1 +=st ri de,s ptr 2 +=st ri de){

}

srcl="*s ptrl;

src2 = *s ptr2;

m = _mpmul w(srcl,s rc2);
result = _m paddw(re sult , m);

srcl = *(sptr 1+1);

src2 = *(sptr 2+1) ;

= _m pmul w(srcl,s rc2);
result = _m paddw(re sult , m);

return(_ mto_int(re sult));

Modulo Scheduli ng (or Soft ware Pipelining)

This paticular appoach scheduling known & modub sdedulng
achieves high throughpu by overlapping the execution of several iterations
ard thus telps toreduceregister pressue. Thetechniqueuses e same
schedule for each iteration of a loopandinitiates successe iterationsat a
constnt rate, thatis, oneinitiation interval (1) clocks apart. To effectively
code yaur algorithm using this technque, yai neea to know the following:

instruction latencies
the rumber d available resources
availability of adequate registes

5-25

5 Intel Architecture Optimization Reference Manual

5-26

Figur e 5-3

Consider a smple loop hatfetchessr c1 andsr c2 (like inExampe 5-12),
multiplies them, ancaccumubtes the mutiplicaion result The assumpbns
are:

Instruction Latency Throudhput
Load 3clocks 1 clock
Multiply 4 clocks 2 clocks
Add 1dock 1 dlock

Now examine tis simple kernel’s degendercy graph n Figure 53, andthe
schedule, in Table 5-3.

Modulo Sc heduling De pendency Graph

add

Optimizing Floating-paint Applications 5

Table 5-3 EMMS Modulo Sc heduling

clk load mul add
0 lds1

1 Idt1

2 Idt2

3 lds2

4 mull

5

6 mul2

7

8 add1l
9

10 add?2

Now starting from the sheduk for one teration (above), overap the
schedule for seeral iterations ina spreasheetor in atabe as shan in
Table 54

Table 5-4 EMMS Schedule — Overlapping Iter ations

load mul add

o
=~

lds1 prolog
Idt1

lds2

Idt2

lds3 mull

Idt3

lds4 mul2

Idt4

~N o o0~ WN BB O

continued

5-27

5 Intel Architecture Optimization Reference Manual

5-28

Table 5-4 EMMS Schedule — Overlapping Iter ations (continued)

clk load mul add

8 lds5 mul3 addl steady state

9 Idt5

10 Ids6 mul4 add2

11 1dt6

12 mul5 add3 epilog

13

14 mul6 add4

15

16 add5

17

18 add6
Caeful examinaion of this sdedule shows that steady stee execution for
this kernel occus after two iterations.As with ary pipdinedloop,there isa
prolog ard eplog. Thisis also eferredto as loopseup andloop shutiown,
or filling te pipes andlushing te gdpes.
Now assumehteinitiationinterval MR (Il = 4) ard examine the schedulein
Table 55.

Table 5-5 Modulo Sc heduling with Inter val MRT (11=4)

MRT(l1=4)
clk load mul add
0 Id mul add
1 Id
2 Id mul add
3 Id

How do we scledule tis parfcular scenan and alocake registers? he
Pentium Il and Peritim Ill processas can exectte instructions out of order.
Example 5-13 shows an improved version of the code, with proper
scheduling resulting in 20% peformarce increase.

Optimizing Floating-point Applications 5

Example 5-13 Proper Scheduling f or Performance Increase

intto y(sptrl,sp tr2)

unsi gned char * sptrl , *sptr2;

{

asm("p ushl %ecx");

asm("movl 12(%ebp), %ebx") ; // sptrl

as m("movl 8(%elp), %eax") ; /I sptr2

asm("movq (Yoeax ,.%ecx) , %mdi');

asm("movq (%ebx ,%ecx) , %mBi);

asm("p xor %maoO, %m0") ; /[i nitiali ze mmdt 00
asm("p xor %mmb5, %mb") ; /[i nitiali ze mnmbt 00
asm("p xor %rme6, %nmm6") ; // i nitiali ze mm6t 00
asm("p xor %mm7, % mm7) ;/ / ini ti alizemnvto O
asm("movl 16*st ri de, %ex"); / / init ial iz e lo op
counte r

asm("t op_of _| oop: ");

asm("movq 8 (%ebx ,%ecx) , %mai');

asm("movq 8 (Y%eax ,%ecx) , %mdl);

asm("p addw % b, %Ime');

asm("p mulw %S, %m1")

asm("movq s tride (%ebx, %ex) , %m3') ;

asm("movq s tride (Yoeax, %e&x) , %mS) ;

asm("paddw %nm®, %m7);

asm("p mulw %4, %m2");

asm("movq s tride +8(%ebx, %ecx), %m4) ;

asm("movq s tride +8(%eax, %ec) , %me6) ;

asm("p addw Y%7, %ma";

asm("p mulw %nnb, %ma3);

asm("movq 2 *stri de(%ebx, %ecx), %mm5") ;

asm("movq 2 *stri de(%eax, %ecx) , %m7) ;

asm("p addw %m0, %m1");

asm("p mulw %o, %md4');

asm("movq 2 *stri de+8(%ebx,%ecx), %me);

asm("movq 2 *stri de+8(%eax,%ecx), %ma');

continued

5-29

5 Intel Architecture Optimization Reference Manual

Example 5-13 Proper Scheduling f or Performance Increase (continued)

asm("p addw %, %m2') ;

asm("p mulw %rmiz, %mm5') ;

asm("movq 3 *stride (%ebx, %ex) , %m7) ;
asm("movq 3 *stride (Yoeax, %ex) , %ml) ;
asm("p addw %, %m3") ;

asm("p mulw %m0, %mme') ;

asm("movq 3 *stride +8(%ebx, %ecx) , %mQ);
asm("movq 3 *stride +8(%eax, %ecx), %m2);
asm("p addw % s, %m4’) ;

asm("p mulw %m, %mm7") ;

asm("movq 4 *stride (%ebx, %ex) , %ml) ;
asm("movq 4 *stride (Yeax, %ex) , %m3) ;
asm("p addw %mmi, %mb5") ;

asm("p mulw %m®, %mmaQ'") ;

asm("movq 4 *stride +8(%ebx, %ecx) , %mMm2);
asm("movq 4 *stride +8(%eax, %ecx) , %mm4);
asm("p addw % b, %me") ;

asm("p mulw %m®, %mm1") ;

asm("s ubl 4* st rid e, %ecx");

asm("j g to p_of_lo op") ;

/I' no horiz ontal reducti onneededat the end
as m("movd %mMme6, %eax") ;

asm("p opl %ex");

}

Exampk 5-13 also slows that to achieve better performancejt is ne@ssary
to exposethe instruction level parall elism tothe piocessorin exposingthe
paalelismkeep n mind these codaderatons:

® Use the aailable issie ports.

®* Exposeindepementinstructions suchthat the piocessorcanschedue
them eficienty.

5-30

Optimizing Floating-paint Applications 5

Scheduli ng to Avoid R egister All ocation Stalls

After the po are deoded they are dlocaied nto abuffer with the
corresponding data sources b bedispatched b the execuion wnits. If the
souces are aead in the dispdch buffer from pre@ious pralucers 6those
souces, henno stlls will happen. Hovever, if producers and onsumes
are separated furtherthanneeed b resdve degndency, then the producer
resuts will no longer be n the dispath kuffer when tey are needd for he
consumig pops.The genera rule of thumbis to try to balancethe dstance
beweenthe prodicers ad corsumers sohat dgpendengy will have some
time to resoVe, but nat somuchtime hatresiuts are ot lostfrom the kuffer.

Forwar ding fr om Stores to Loads

Be carefliwhen performngloads from a memxy locaion that was
previously ard recetly siored,since ceréin typesof stae forwarding may
incur a longerlatency thanothers. In particular, soring a esult thathas a
smeller data size than that of the following load, may resut in alonger
latency than if a 64-bit load is used An example of this is two 64-bit MM X
techrology stores fnovg) followed ty a128-bt Streamng SMD
Extensions load (movaps).

Conditi onal Moves and Port Balancing

Conditional

Condtionalmoves emulation and port balancing can geatly contribute to
your apgicaion’s peformarce gins ushg the tedniquesexplainedin the
following setions.

Moves

If possibe, emubte condtionalmoves by using masled comparesnd
logical instructions instead & condtionalbrarches. Mspredcted brancles
impedethe Patium IIl processos peformarce. Inthe Periium Il and
Pentium 11l processa's pria to processs with Streaming SIMD
Extensions, eecuion Pat 1 is soély dedcaed b 1-cycle latency pops for
exampk, cj mp). In the Pentium Il processg adlitiond execution urits
were addedto Pott 1, o execue new 3-cycle latency pops éddps, subps,

5-31

5 Intel Architecture Optimization Reference Manual

maxps...), in aditionto the 1-gcle lateng pogs. Thus, single-gcle pors,
including cj mpuop, canbe dlayed mae than in previous Rentium

processors.

Throttling cjm p pops delays resolution d mispredictedcj mp paps.
Potentially, this can ncrease e length of the spealationand mssbly
exeauteon an incorrectpah. Usecmov instead é cj mpinstruction. Inthe
Streamng SIMD Extensions, he cj mpinstruction can e emukted using a

combination of CMPPS instruction andlogical instructions.

Exampk 5-14 shavs two loops: the firstimplements condtional brarch
instruction, the seondomits this instruction.

Example 5-14 Scheduling with Em ulated Conditional Branch
/I Conditi onal branchi ncluded
lo opMax:
cmpnle ps xm ml, xmmO
movmsk ps eax, x mml
cmpea x 0
j € no Max
maxFound:
maxp s [e si+ ecX]
andps Xmm3
maxp s xmm1
noMax:
add 16
addps xmm4
movaps xmml, [e si+ ecX]
jinz lo opMax

/I Useth is structure for

lo opMax:

cmpnle ps

maxp s
andps
maxp s

bett er scheduli ng

xmmO
xmm1
xmm3
Xmm5S

5-32

continued

Optimizing Floating-paint Applications 5

Example 5-14 Scheduling with E mulated Conditional B ranch (continued)

add ecx, 16

addps xmm3 xmnd

mova ps xmml, [es i+ ecX]
mova ps xmmg, xmni

inz lo opMax

The aiginal code’s performane depends o the number of mspredcted
brarcheswhich in turn depenls onthe dbta being sored, whch cortributes
to alarge value for clocks perinstruction (CPl = 1.78. The secod loop
omits the conditiond branch instruction, but does nd balance the port
loadng. A furtheradwantageof the nav codeis that the latency is
indgrendat of the dda values leing soted.

Port Balancing

To further reduce he CR in the aboe exampk, babnce thenumberof pops
issueddn ports O 1, and 2.You cando soby replacing secitons d the
Streaming SIMD Extensions cale with MMX techrology coce. In
paticular, cakuation of the indicescanbe dore with MM X instructions &
follows:

® Creat a mashkvith Streamng SIMD Extensions al sbre nto
memory

® Convert this mask into MM X technology format using movg ard
pack ss dw instructions.

* Extractmax nhdices @ing the MMX tedhnology pnaxs w, pand, and
paddw instructions.

The cale h Exampk 5-15 denonstates these stps.

5-33

5 Intel Architecture Optimization Reference Manual

Example 5-15 Replacing the Str eaming S IMD Extensions Code with t he MMX

Technolog y Code

lo opMax:
cmpnle ps xmml xm mO ;create mask in Streaming SI M
:E xt ensi ons f or mat

maxps xmmQ, [e si +ecx] ;g et max va lu es

movaps [e si +ecx], x mmls to re mask i nto memory
nmovq mml, [e si +ecx];p ut lower part of mask into mmrl
add ecx, 16 ;i ncre ment poin ter
movaps xmml, [e si +ecx] ;| oad next four aligned fl oats
packssdw mm, [esi+ecx-8]; pack lo wer and upper parts
0 fth emask
mask :
pand mml, mn3 ;get indices mask of max va lu es
paddw m nB, mmM ;i ncr ement in dic es
pmaxsw m n2, mm ;g et in di ces cor re spondi ng to max
;v al ues
jnz | oopMax

Exampk 5-15 is the mostoptimal version of coce for the Rentium Il
processor antdhas aCPl of 0.94. This examge illustratesthe importance d
instruction usa@ t maximize pat utilization. See Apendk C,
“Instruction to Decoder Specification,” for atable that details port
assgnmaents of the instructions in the Rentium Il processparchtecture.

Another exampe where rephcing the Steamng SMD Extersions coe
with the MMX techology code cangive god resultsis the dot product
operaton. This operaton is the primary @eraton in matix multiplicaion
thatis usedfrequenty in 3D gplications andother floating-point
aplications.

The bt produd kernel andoptmizaion issuesand cmsiderations ae
preseited inthe following discusson. The cae n Exanple 5-16 represens
a typicd dot prodict implemenation.

Optimizing Floating-paint Applications 5

Example 5-16 Typic al Dot Pr oduct Imple mentation

in ner_loo p:
movaps (Yeax, %ecx, 4), %xmmQ / 1st
finova ps (%ebx, %ecx, 4), %xmm1l
mup s %xmni, %xmmO0
addps %xmno, %xmm7
movaps 16(%eax,%ecx, 4), %mm2 / 2nd
finova ps 16 (%ebx,%ecx, 4), %xmm3
mup s %xmn3, %xmm?2
addps %oxmna, %xmm7
movaps 32(%eax,%ecx, 4), %xmm4/ / 3rd
finova ps 32(%ebx,%ecx, 4), %xnm5
mup s %xmnd, %xmm4
addps %xmmd, %xmm7
movaps 48 (Yoeax,%ecx, 4), %xmm@ / 4th
finova ps 48(%ebx,%ecx, 4), %xmmO0
mup s %Xmnd, %xmmO
addps %xmno, %xmm7
subl $16, %ex [/ / lo op co unt
jnz in ner_loo p

The inner loop in the above example consists of eight loads, four multiplies
ard fouraddtions. Thistranshtes irto 161 oad pops, 8mu popsand 8 add
pops for Sreamng SIMD Extensions amnl 8lo ad pops4md pops and 4
add pops for MMX tecmology.

Whatare he dharacerisics of he dot prodict operaton?

® Ratioof lo ad/mut /add pops 52:1:1.

®* Hardwarelo ad/mdt /add portsis1:1:1.

®* Optimum babnce of parts for lo ad/mut /add is1:1:1.

* Inner loop performance $ limited by asinge lo ad pott.
This kernel's performane canbe mprovedby using ogimization

techniques b avoid performance dss die 1o hardware resourc&onstaints.
Since the ogimum ktency for the inner loop is 16 clocks, &perimening

5-35

5 Intel Architecture Optimization Reference Manual

5-36

with a large numtler of iterations @n reduce barnch penalties. Ropety
scheduled ode @hieves 16 tocksfteration with a large numler of
iterations. But, only four iteratons are pesentin the original cade. The
increasds causedby aBTB (branch target kuffer) warm-up penalty that
occursin the beyinning of the loop. A misgredicted brarnch ocurs onthe
lastiteraton. The warm-uppendty ard mispredcted braaich canbine ©
cawse abat 5 addtional clocksiteraton. The cuse of he performance bss
is a shat loop anda large numler of loads.

Streaming SIMD Extension Nu meric Exceptions

This secion discussesarious aspct of he Sreamng SIMD Extension
numelic exceptions: condiions, prority, aubmaic masled exception
handling, sotware excepton handling with unmasled excepions,
interacion with x87 numeiic exceptons, ad the flushio-zem mode.

Exception Con ditions

The numeic excepton coritions hatcan ocar when execuing Steamng
SIMD Extersion instructions canbereferredto asthe following six classes:
® invalid operation (#l)

¢ divide-by-zero (#2)

®* denomalized oerand ¢D)

* numeric overflow (#O)

* numeilic undeflow (#U)

® inexact resit (precision) (#P)

Invalid, divide-by-zero anddenamal excegions are precmputation
exceptons;they are déededbeforeary arithmetc opeation occurs.
Underflow, overflow and predsion exceptions ae pat-computation
exceptons.

When rumetic exceptons ocarr, a piocesso suppating Streaming SIMD

Extensions tke one d two possble courses ¢ acfon:

®* The pocessorcanhande the excepion by itself, produdng the most
reasmable resut andallowing numert program &ectutionto coninue
undisturbed (thatis, masled exception resporse)

* A software excepton handler canbe nvoked to hande the exception
(thatis, unmaskd excepion response)

Optimizing Floating-paint Applications 5

L)

Each d the sixexception cortlitions asciibed alove hascomrespording flag
ard mask fts in the MIXGR Depending on he flagand maslbit values he
following gperations Bke place

® If anexception is masked (maskbit in M>XCSR = 1), the processotakes
anappopriate default action andconinues wih the canputaton.

* [If theexceptionisunmaskd (maskbit in M>CSR = 0) andthe eraing
sysem (OS) spport Streaming SMD Extersion exceptons (hatis,
CRI. OSXMMEXCEPT = 1), a sofware exception hardler is invoked
immedetely throughStreaming SMD Extersions ecepton interrupt
vecbr 19.

* If the excegionis unmasled (mask bit in MXCSR = 0) andthe OS does
not suppat Streaming SIMD Extension excegions (hatis,

CRi. OSXMMEXCEPT = 0), an invalid opaode &cepionis sgnalled
instead ¢ a Steaming IMD Extensions excepton.

NOTE. Notethat Streaming SMD Extension excepions &clude a
situation when, for example, anx87 floating-point instruction, fwai t, or
a Steaming SMD Extensions instuction cath a perding unmasked
Steaming SMD Extensions ception.

Exception Prior ity

The pocessohandesexceptions accading © a predtamined pre@dence

The pecedere for Steamng SIMD Extension humericexceptions s as

follows:

* |nvalid-opeaation exception

®* QNN opend. Thoud thisis notan excepton,the hanlling of aQNaN
operandhas pecalenceover lower-priority excefdions.For example, a
QNN divided ly zeo resultsin a@NaN nat a zero-divide exaeption.

* Any otherinvalid-opeation exception notmentoned abwe or a
divide-by-zero exaption

* Denamal-opErandexception. If maslked, then nstructon execuion
continues, am a bwer-priority excegtion can @cur aswell

5-37

5 Intel Architecture Optimization Reference Manual

5-38

®* Numerc overflow ard urderflon excepions in conjunction with the
inexactresut exceqion

* Inexact-resit exception

When asubogrand d a paked nhstruction generates wo or more
excepton aondiions, he excegion prece@nce smetimes resus in the
higher-priority excepton beng hardled ard the lower-priority excegions
beng ignored For exampk, dividing anSNaN by zero can patentially signa
aninvalid-arithmeic-operand exception (dueto the SNaN operand)and a
divide-by-zero exception. He, if bath exceptions ae maskd, the
processotandlesthe higher-priority exceptononly (theinvalid-arithmetc-
operand exception), returning a real indefinite to the destination.

Alternatdy, adenormatoperal or inexact-resut excegion can acampany
a rumelic uncerflow or overflow excepton, with bath exceptions being
handled. Prioritizing of exceptions is peformed only on aindividual
subopeiand bass, am notbetweensubgerands. For example, an nvalid
excepton generated by one sib-opemand will not prevent thereporting ofa
divide-by-zero exception gererated by andher suboperand.

Automatic M asked E xception Handling

If the processor dieds anexcepion condition for a maskd excepion, it
ddivers a pedefned déault respase and ontinues &ecuing instructions.
The maskd (defaul) responsesa excefions delver a reasonabk resut for
eadt exception cordition and ae generaly satsfacory for mostapgicaion
code. By maskng or unmasking sgecific floaing-point exceptons n the
MXCSR, prgrammers candlegate resposibility for mostexceptions b
the processor athresere the mostsesere excegtion condtions for sétware
excepton handlers.

Becatuse the excepton flags ae “sticky,” they provide a eamulative recad
of the exceptions that have occured since hey were bst cleared. A
programmer carthus mask al exceptons, runa catulation, and then
inspet the excegdionflags b seef ary exceptons were detciedduring the
calculation.

Optimizing Floating-paint Applications 5

Note that whenexceptons are masid, the processor magetectmutiple
exceptons n a sirgle instruction, becaise:

* Exeation continues afer performing its maked resmnse; fa
exampk, the processorcould deed adenamalizedopeiand, peform
its masled response o this excepton, and hendeectanundeflow.

®* Some &ceptons @cur nauraly in pairs, sich as mmeric uncerflow
ard inexactresut (precision).

®* Packedinstructions can poduceindepemlentexceptons e eah par
of operand.

Software E xception Handling - Unmasked E xceptions

Most of the maslkd excegionsin Streamhg SMD Extensions ae handed
by hadware withou penalty except denomals ad urderflow. Butthese en
also ke hardled without perdlty if flushto-zero male s used.

Your application must ensure that the gperating sysem suports unmaslkd
exceptons lefore unmasking ary of the exceptons i the MXCSR(see

).
If the processor deds acondtion for anunmaskd Steamng SIMD
Extensions gplication exception, a sétware handler is invoked
immedeately atthe endof the excefing instrucion. The hander is invoked
through the Sreaming SIMD Extensions ecegion interrupt (vecor 19),
irrespedtve of the stateof the CR0. NEflag.If anexception is unmasled, but
Streaming SIMD Extension unmasled exceptions are no enabled
(CRA. OSXMVIEXCPT =0), aninvalid opcodefault is generated. However,
the @rrespondng excepion Lt will siill be séin the MXCSR, as t would
beif CR4A0 SXMNEXCPT = 1, since the invalid opcale handler/user need
to determine the causeof the excepion.

A typical acfon d the excepton handleristo stae x87floating-point and

Streaming SIMD Extensions sate information in memory(with the

fx save/fx rs to r instructions) sothat it can evaluate the exception and

formulate anapprgriate respnse.Other ypical exception hander acions

can include:

®* Examining sbredx87 floaing-oint and Sreaming SIMD Extensions
state information (control/status) todeermine the nature of the error.

5-39

5 Intel Architecture Optimization Reference Manual

Taking action to correctthe candition that causedhe error

Clearing the excepton Litsin the X87 floaing-point status word (FSW
or the Streamirg SIMD Extensions contol register (dXCR).

Returning o the interrupted program and esuning nommal exeaution.

In lieu of writing recovery procediures, he excegion hander can dothe
following:

Increment in sdftware an exception counter for later dispay or printing.

Print or display diagnostic information (swch as the Streaming SMD
Extensions egisterstate).

Halt further program execution.

When a unmasked excepion accurs, he processor wi not alter the
contents of the souice Iegister operands pior to invoking the unmaked
handler. Similarly, the integer EFLAGS will also rot be modffied i an
unmasled excepion occus while exeauting the comiss orucomis s
instructions. Exception flagswill be updated according to the fdlowing
rules:

5-40

Excepionflagupddes ae geneated by a logicatOR of exception
conditions for all sub-operand canputatons, whee the OR is dore
independatly for eachtype of excegion. For paclked compuations,
this means far subgerand; for salar compugtons tis means 1
subopeiand (the lowestone)

In the case of aly masled exception cortditions, all flags wil be
updatd.

In the case of amnmaslkd preconputation type of excefdioncondtion
(that is, denormal input), dl flags rdating to all precomputation
conditions (masled or unmasled) will be uglaied, and o subsguent
computation is pefformed hatis, nopostcompuation cndition can
occur if there B an ummasled pre-compuation candition).

In the case ofan utmasked pat-computation excepton candition, all
flags Elating o dl post-computation corditions (masked a unmasled)
will be uglakd; all precomputation conditions, which mustbe masked,
will also ke reported.

Optimizing Floating-paint Applications 5

E NOTE. In certain cases if any numerical excepton is unmasked, te

retiremernt rate might be afected andreduced.This might hagoen vhen
Streaming SMD Extensions cale s scheduled wthout large impact of
the deperdencyandwith the intention to have maxinum &eaition rate.
Usudly sud cade cansists of balancedopeiations sut as pa&ed
floating-point mutiply, add axdload or sbore (or a mix thatincludes
balanced?2 arithmetc goeration/load or sbre with MMX technology a
integer instructions).

Interaction with x87 Numeric Exceptions

The Streaming SIMD Extensians cantrol/status register wassepasted from
its x87 floaing-point counemarts o allow for maxmum flexibility.
Consegenty, the Sreamng SIMD Extensions arcltecure i indegpendet
of the x87floaing-poaint architedure, but has he followingimplicaions for
x87 floaing-point apgicaions hatcdl Streaming SIMD
Extensions-enabled ibraries:

®* The x87 floaing-point rounding male speified in FCWwill notagply
to cdls in a Sreaming SIMD Extensions Ibrary, unesstheroundng
control in MXCSR is explicitly setto the samamode.

* x87 floaing-point excepton dosewvaklity may rot apply to a
Streaming SIMD Extensions Ibrary.

* An goplication that expect tocath x87 floaing-point exceptons hat
occurin anx87 floaing-poaint library will not be ndified if an
excepton accurs h acorrespoding Sreamng SIMD Extensions
library, unless tle exception masks, erabled in FCWhave also been
erabled in M)CSR.

* An application will not be able to unmask exceptions after returning
from aStreaming SIMD Extensionslibrary @ll to detectif an error
occurred. A Sreaming SIMD Extensions ecegion flagthat was set
whenthe coresponding exception was unmaked will nat generate a
fault; only the rext occurenceof that exception will gererate an
unmasled fault.

541

5 Intel Architecture Optimization Reference Manual

5-42

* An aplication which checks=SwWto determine if any masked exasption
flags wee setduing an x& floating-point library cal will also ned ©
checki>CSRin order to obsere a similar occurrene of a maked
excepton within a Sreamig SIMD Extensions lbrary.

Use of EVITPS2PI /EVTTSS2SI Instr ucti ons

Thecvitt ps2pi andcvtt ss2si instructions encde he truncae/cop
rounding mode inplicitly in the instruction, thereby taking precedene over
the unding mode spcified n the M)CSRregista. This behavior can
eliminatethe needo chamge te runding mode fom round-neasest,to
truncde/cha, ard thenback b round-neakestto resume canputton.
Frequentchanges to the MXCSR register shoud be aoidedsince here isa
penalty assaiated with writing this regster; typically, through the use of the
cvtt ps2pi armdcvtt ss2si instructions, the rounding cntrol in M>XCSR
canbe dways be setto rourd-neaest

Flush -to-Zer o Mode

Activating the flushto-zero modehas he following efects diring
underflow situations:

® Zeroresut is returned when the resut is true.
® Precision and undeflow excepton flagsare setto 1.

The IEEE mandaedresporse b uncerflow is to deliver the cenomalized
resul (that is, graduad underflow); consegenty, the flushto-zer male s
not compatble with IEEE Standard 754. It is provided for applicatons
where undeflow is comman. Undeflow for flushto-zero modeoccuis
whenthe exporentfor a canputed resuifalls in the denamal rarge,
regardless ¢ whether a loss d accuracy has occured

Unmaslkng the urderflow excepton tekes precedere wer flush-b-zero
moce. For a Sreamng SIMD Extensions hstruction that gererates an
undeiflow cordition an excepton handleris invoked. Unmaking the
underflow exception ocurs, regardless d whetherflush-to-zero moce is
erabled.

Optimizing
Cade Utilization
for Pentiun® /I Processos

Over the pastdecade processor sged fas increasednore han en times,
while memory acess spal hasincreased aly slightly. Many applcaions
can corsiderably improve their performawe if dataresdes h caches sdhe
processor des nothave to wait for the daa from memaoy.

Until now, techngues b bring datainto the processorefreit was neeled
involved addtional progamming. These échriques were nbeasy
implement or reqiired speml steps b prevent from degrading
paformance. The Sreaming SIMD Extensions a@dresslteseissues by
providing the prefeth instruction andits veriations.Prefething is amuch
better meclanism to ensurehat cata are h the ache wien reqeste.

The prefetdh instruction, cantrolledby the progams or caenpilers,retrieves
a minmum of 32 bytes of daa piior to the data actialy being neededThis
hides the latency for dat accessri the time reqiredto process dat already
resdert in the cache Mary algorithms canprovide informaton in adwance
about the ddatha is to be required smn. The new instruction setalso
feaures nontempoal store instuctionsto minimizethe peformancessues
caused ly cache pdlution.

This chaper focuses ortwo maja subgcs:

® Prefetch andCacheablity Instrudions—desches nstructions hat
allow you to implementa dda cachng strakgy.

®* Memory Optmizaion Usng Prefeth—descies an provides
exampks of various echriques for mplemening prefetch instructions.

Note thatin anumber of casesrpsentd in this chaper, the prefething and
cache utili zation areplatform-specific and may change for future
processors.

6-1

6 Intel Architecture Optimization Reference Manual

6-2

Prefetch and Cacheabilit y Instructions

The nav cachehility control instructions allow you tocontrol data caching
strategy in order to increase oghe eficieng/ andminimize cahe wllution.

Data canbe vewed by timeand adress spaecharateristcs as folows:
Temposl datawill be usedhgain soon

Spatial datawill be usedn adjacen locations, for ekampk, the
same ache ine

Nontempaal datawhich are referened orte am notreused in the
immedate future; for exkample, somemultimeda daa
types,such athe wertex bufferin a3D graphics
applicaion

These dta charateristics ae usedn the dscusson that follows.

The Prefet ching Concept

The pr ef etc h instrudion can hdethe latency of dat accesss in
peformance-crtical sectons d appicaion code by alowing datito be
fetchedin adwanceof its adual usageThe pr ef et ch instructions donot
changethe uservisible semantics d a poogram, athoughthey may afect
the pograms performane. The pr ef et ch instuctionsmerel provide
hints © the herdware andgeneally do na generate excepions @ faults.

Thepref et ch (load 32or greater numberof bytes) instructions loadeither
non-temporaldat or temporal dat in the specified @che ével. Thisdat
acess ype aml the ache ével are speified ashints. Dependng on he
implemenétion, the instruction fethes 32 @ more aignedbytes, including
the specified aldress hte, into the instruction-spediied cacte levels.

NOTE. Usingthepr ef et ch instructions s recommendednly if data
does notfit in cache.

Optimizing Cache Utlization for Pentium Il Processrs 6

Geneaaly the pr ef et ch instructions ony provide hintsto the hadware
ard donot gererate exceptions orfaults exceptfor a sgecial case dsciibed
in the sectbn. However, excessie use of
prefeéchinstrudionsmay waste memory Bndwidth ard resut in a
peaformance @naty dueto resource @nstaints.

Nevertheless, he prefetchinstructions can essenthe overhea of memay

transadbns ly preventing cacte polution, andby using the cacheand

memoryefficienty. Thisis particularly important for the goplications that

shae critical sysem resotces, suchas memory is. Seean xampkin
secton.

The Prefetch Instructions

The Sreaming SIMD Extensions nclude four types ofpref et ch
instructions coresponding to four prefetching hints tothe piocessorone
non-tempoal, andthree empoal. They corespond D two types of
operatons, emporalard nontemporal.

E NOTE. If the dda arealready bundin a cade levelthat is closer b the
processor athe ime ofpr ef et ch, no cata movemenbccurs.

The ron-temporalinstruction is

pr ef et chnta fetch data into locaion closestto the processoy
minimizing cacle polution. On te Pentum® II|
processorthis is the L1 ceche.

The mpoad instructions are

prefetcht 0 fetch daainto al cache levels, that is to L1 and L2 for
Pentium Il processos

pr ef et cht 1 fetch datinto all cachedvelsexcep the O level, that is
to L2 only on Pentium Il processos

pr ef et cht 2 fetch daainto al cache levels exapt the 0th ard 1st
levels, thet is, to L2 only on Pentium Il processors

6-3

6 Intel Architecture Optimization Reference Manual

6-4

In the descrption abae, cacle level O is closestto the procesor For
Streamig SIMD Extensions mplementétion, there ae only two catie
levels, L1 and L2. L1 isthe 0" cacte level by the archiectural defnition, as
a resul, pr ef et cht 1 andpre fe tc ht 2 aredesgnedto behave the samen
Pentium® Il processp For future processorshis maychame.

Pref et chnta with Steamng SMD Extersions mplementtion fetches
daainto L1 only, therefore mnimizing L2 cacle polution.

Pref et ch instructions ae manly desgneal to improve aplication
paformance ly hiding memory &étency in the background. If sgmens of
anapplcaion acess da in a predictable manng for exampk, usirg
arayswith known stides, henthey are goodcanddates for using prefetch
to improve performance However, if a program s memory hroughpu
bound,thatis, memory acess ime s mud larger than exeaution time,then
there mg be rot much tenefit from uilizing prefeth.

Bastally, use pr ef et ch in:
® predctade memory acess paerns
® time-consumng imemostloops

® locaions whee executon fpelinestals for dat from memory dueto
flow dependecy

Prefetch and Load Instructions

The Rentium 1l and Rntium Il processos have a deoupkedexecuton ard
memoryarchtecture that allows instrudionsto be xecued indegendenly
with memory acessesfithere 5 no cita andresource dpencdengy.
Programs @ comglers ca use dunmy loadinstructons b imitate prefeach
functionality, but preloadng is notequvalent to prefething Prefeth
instructions prwide a geatr performancéhan préoading.

Currently, the pr ef et ch instruction provides agreaer performane gin
thanprelbadingbecase it:

® has no rgister astination, it only upddescachdines;

® does notstall thenormalinstruction refremer;

® does notaffect the funcional betavior of the program;

®* has no cahe Ine spit accesses;

Optimizing Cache Utlization for Pentium Il Processrs 6

® does notcause @&cepions &cep when te LOCK prefix is used;for
Pentium Il processos, an nvalid opcodeexception is geneated when
the LOXK prefx is used wih prefeth instructions;

® does notcamplete its ovn executon if that would cause a dult;

* isignoredif thepref et ch targets an ucackeabk memay region, for
exampk, USWC andUC;

® does notperform a pag table walk if it resultsin a pag miss.

The curent advantages dthe prefeth over prelcading instructions are
processosspecfic. The nature andextert of the adentagesmay chage n
the future.

The Non-temporal S tore Inst ructions

The ron-temporalstore nstructons (movntp s, movnt g, and mask movq)
minimize cachepollutionwhile writing cata. The man difference btween a
non-temporalstore anda regular cacheble sbre & in the write-alocaion
behavior: the procasor will fetch the carespnding cacle lineinto the
cache herarcly prior to peforming the stoe and he memory type ca take
preedene over the ron-temporalhint.

Currenty, if you sgecify a no-temporalsiore b cacleabe memay, they
mustmantain cchereng. Two cases magpccur:

* If the dataare presenin the cachehierarcly, the dat areupdadedin-
placeandthe existing memorytype atributes ae retaned. For
exampk, in Streaming SIMD Extensions mplemengétion, if there s a
daahit in L1, then nontemporal staes behae like regular stores.
Otherwise, write 1o memay without cacheline dlocdion. If thedat
arefoundin L2, da@in L2 will beinvalidaied.

* |If the dataare notpresentin the cacle hierarcly, the memoy type
visible onthe tus will reman uncharged,and he trarsacton will be
wealy-ordered;corsequetly, you are reponsble for mantaining
cohereng. Non-emporalsiores wil not write allocat. Different
implemenétions maychooseto collapse ad combne these sires
inside he processar

The behavior descibed abwe is platform-spedfic andmay clangein the
future.

6-5

6 Intel Architecture Optimization Reference Manual

6-6

The sfence Instruction

Thesf ence (sto re fe nce)instruction males itpossblefor everyst or e
instruction that preceles he sf ence instruction in program ader to be
globally visible kefore ary st or e instruction that foll owsthe fe nce. The
sf ence instruction provides a efficientway of ensuing ordering beween
routines hat produceweakly-orderedresuts.

The wse of weakl/-ordered memoryypes carbe mportantunder cerdin
daasharhgrelaionshps, suchasa poducerconsumer redtionship. Using
weally-ordered memiy canmake assembhg the dat more éficient but
caremustbe tken to ensurehat the consumer obtains he ddatha the
producer intended b see Somecommonusage mdels may ke affected n
this way by weakl-ordered sbres. kamges ae:

® library fundions,which use wekly-orderedmemory o write results

* compilergeneated code which alko kenefits from wriing
weakly-ordered reslis

* hand-crafted cade

The degreeto which a caxsumer of dta knows thatthe dagis
weally-ordered canary for these cases. As aresut, thesf ence instruction
shaild beused ¢ ersure ordering betveen putines that produce
weally-ordered dta and ratines that consune this data. The sf ence
instruction provides a prformance-dicientway by ensuing the ordeing
whenevery st or e instruction that precees tte st or e fe nce instruction
in program oderis globally visible before ary st or e instruction which
follows thefe nce.

Streaming Non-temporal Stores

In Streaming SIMD Extensions,the movnt ¢, mornts andmaskmov g

instructons are seamng, non-empoal siores.With regardto memory

characerisics andordering, they aresimilar mosty to the

Write-Combining (Q memorytype:

®* Write combning — siccessie writes t the samecachdineare
combired

®* Write collapsing— succesie writesto the same Yte(s) resull in only
the last wrie keing visible

Optimizing Cache Utlization for Pentium Il Processrs 6

® Weakly ordered —no ordering is presewed betveenw Cstores, or
beaweenu/Cstores andtherloads orstores

® Uncacheable and nat write-all ocating —stared data is written around
the cacte ard will not generat a readfor-ownershp bus reqestfor the
corespnding cacle line

Because streming sbres are wedk ordereda fencng operaion is
requred to ensue thatthe staed dda is flushedfrom the pro@ssor
memory Failure to usean appropriate fencemay resulin daia being
“trapped” within the processorandwill preventvisibility of this dag by
othe processorsrsystem ages. WC sbres require softwre o ensue
coherenceof dat by performing the fencing opestion.

Streaming SIMD Extensions ntroduce the sf ence instruction, which now
is sdely used to flushuwCdaa from the processor. The sf ence instruction
replaces al other stae fencinginstructions seh asxc hg.

Streamig stares can mprove performancen the following ways:

®* Increae sbre bawwidth since tey do rot requie readfor-ownershp
bus requests

* Reduce dsturbanceof frequently used cahed(tempaal) data, since
they write araundthe processocaches

Streaming staes allow cross-alsing of memory ypes for a gven memory
region; for instance, aregion may bemappedas wrie-bak (g via the
page Bbles(PAT) ormemory ype range ragisters (@TRRS) ard yet is written
using a steamirg sbore.

If a sreamng sbre inds he correspoding line ateadypresenin the
processors cachs, several acions may le taken deperding onthe spedfic
processor mplemenétion:

Approach A The steamng sbre maybe ®mbined wih the eisting
cated dad, andisthustreatd as awBstore (hatis, it is
not writtento sysem memory).

Approach B The carespondng linemay ke flushed fom the
processors cachs, alongwith daa fromthe streaning
store.

6-7

6 Intel Architecture Optimization Reference Manual

6-8

Pentium Il processpimplements acombinaton d both approactes. If he
streamig sbrehitsa line thatis presenin the L1 cade, he siore daawill
becomlined in phce wihin the L1. If the streamng sbrehitsaline present
in the L2, thelineand sbred da& will beflusted from the L2 to system
memory Note that the appro&hes, sparat or canbined, @n bedifferent
for future processaos.

The wo primary usge danairs for streaming store are cberentrequess
and nonrcoheeent requess.

Coherent Request s

Coheratrequess are mrmalloads andstaes b sysem memorywhich
may alsohit cachdines pesentin andher processbin a muti-processor
environmen. With coherentrequess, a steamng sbre ca be sed in the
sameway as a rgular sbre hat has en mapedwith awCmemorytype
(PAT or MTRR). An sf ence instruction mustbe wsed wihin a
producerconsumerusagemode| in order to ensue coheency and visibility
of databetwveen processs. Within a shgle-procaesa sysem, he CPU can
also re-readhe same memory taion and be assurad coherencdthatis,
a shge, consstent view of this memorylocation): the same $ true for a
multi-processor (MPsysten, assunmig an acceted MPsoftware
producerconsumer synchonizaion pdicy is empbyed.

Non-coheren t Requests

Noncoherentrequess arisefrom an 1O device suchas an &P gragics
card thatreads owrites sysem memory gng nan-coherehrequess,
which ae notreflecied onthe piocessorbus ard thus wil not ques the
processors cache. An sf ence instruction must ke used within a
producerconsumerusageanode| in order to ensue coheency and visibility
of daa between processas. In his case if the processo iswriting data to

Optimizing Cache Utlization for Pentium Il Processrs 6

the 1/0 dervice, a steaming sbre @n beused wih a processor wih ary
behavior of aproachA, above, only if the region has alsobeenmappel
with awCmemay type PAT, MTRR).

@ CAUTION. Failureto map the region asWwCmayallow theline b be
speculatively readinto the processar cadhes, hatis, via the wrong pah
of amispredicted band.

In case he region is nat mappedasivG the streaning might updatein-place
in the aache ad asubsegent sfen ce would not result in the daa being
written to systen memory Explicitly mappng the region aswdn this case
ensures that any data read from this regon will not be placed in the
processors cache. A read & this memay locaion by a ron-colerent!/O
device would return incorrectout-of-date results. For a piocessor which
sokly implemens aproachB, abore, a streaing store carbe usd in this
non-cokerentdoman withoutrequring the memory rgion also ke
mapped & WB since ay cacheddat will beflushed to memoryby the
streamig sbre.

Other Cacheability Contr ol Instructions

The mask movg (nontempaal byte maskstare of pacled nteger in an

MM X™ techndogy register) instruction sbres @ta from an MM X
techrology register o the locaion specfiedby the edi register. The most
significant bit in eachbyte of the secondMM X techndogy maskregister is
usedto sdectively write the data of the firstregister ona per-byte basis. The
instruction is implicitly weakly-ordered(that is, siccessie staes may ot
write memoty in original program-ordern), does notwrite-allocat, aad thus
minimizes cachepollution.

Themovntq (nontempoal store d pacledintegerin an MMX techmology
register) instruction sbres da& from an MMX tecmology register to
memory The instrucion is implicitly weakly-ordered, @es no
write-alocak, axd sominimizes cahe pdlution.

6-9

6 Intel Architecture Optimization Reference Manual

6-10

Thenmovntp s (nontempoal stae of packed sngle precision floating point)
instruction is similar tomovntq . It stores déafrom a Steamng SMD
Extensions egisterto memory in 16 byte ganuhity. Unlike movnt g, the
memoryaddress mst ke alignedto a 16-lyte boundary or a germral
protedion exception will occu. Theinstructionis implicitly
weally-ordered, des nd write-allocate andthus mirimizes @ache
padlution.

Memory Optimization Using Prefetch

Achieving the highestlevel of memory opimization usng prefetch
instructions requires anundestanding of the micro-architecture ard sysem
architecureof agiven machne. This secton transhtes he key archtecural
implications into several simple guidelinesfor programmersto use.

Figure 6-1 and Fgure 6-2 slow two scenaios d a smplified 3D geomety
pipdine & an xampk. A 3D-geomety pipeline typically fetchesone
vertex recad ata ime andhen peforms ransbrmaion and lighting
functions on t. Both figures shav two se@rate pipelines, anexecuion
pipdine,and amemory pipéne (frort-side lus). Since thePentium Il and
Pentium Il processos compktely demuple the functionality of executon
ard memoryaccess,Hesetwo pipelines can fuetion corcurrenty. Figure
6-1 shavs “bubbles” in both the exeaution andmemory ppelines. When
loads are issted for aacessirg vertex daa, the execution units sit idle and
wait until dataisreturned. Onthe other hand, the memory bussits idlewhile
the execuion urits are processing \ertices. his scendo severely decreases
the advantage of raving a cecouped archiecure.

Optimizing Cache Utlization for Pentium Il Processrs 6

Figure 6 -1 Memory Ac cess Latency and E xecution Without Pr efetch

» Time

Execution - Execution units idle - Execution units idle

pipeline ' :
-:Issue loads Issue loads
» (vertex data) '
_ Bidle ¥
Front-Side [
Bus
.. e
Vertex n Vertex n+1

Figure 6 -2 Memory Ac cess Latency and E xecution Wit h Prefetch

» Time

EXECLION Vertexn-2 Vertexn-1 © Vertexn+l

pipeline \ issue prefetch \prefetch prefetch |

\ for vertex n Y Vi Vo !
Front-Side ¥ Mem latency for V,
Bus Y

Mem latency: for Vi.q
\ Mem latency for V.,

The performance bss caised ly poor uilizaion d the resourcean e
completely eliminated ty applying prefeth instrudionsappropiately. As
shavn in Fgure 6-2, pefetd instructions are ssuedwo vertex iterations
ahead. his assumedaitonly one \ertex ges processedri one iteraton and
anew data cechelineis needed for each iteration. Asaresut, wheniteration
n, vertex V,, is being processegthe requesteddat is alreadybroudht into
cache. In he meatime, te frontside kus is tansferrng the datneeded for
n+l iteraton, vertex V1. Becausehere s no dependceng beiveen V44
daaand he executon ofV,, the latercy for datiacess of V|41 canbe
ertirely hidden belnd the exeaution of V,. Under such ércumstarces, no
“bubbles” ae presentin the ppdines ad thusthe bestpossble
peformance ca be @hieved.

6-11

6 Intel Architecture Optimization Reference Manual

6-12

The softvare-contolled prefethinstrudions povided in Streamng SMD
Extensions rot only hidethe latency of memory acessesfiproperly
scheduled, but alsoallow youto specfy wherein the cacle hierarcly the
data shoul be placed Prefethingis useful for inner lbops thathave heary
computtons, or are close b the bainday betveen leing canpute-bound
ard memory-badwidth-bound Theprefetchis prolably notvery useful for
loops whidh are pedominately memorybandvidth-bound.Whendat are
alreadylocakd in the Ot level cade, pefetching canbe ustkess ad caild
evenslowv dowvn the performane becaise he etra pogs ether backup
waiting for oustanding memory acesses or malye doppedaltogether.
This behaior is patform-speciic and mg charge in the future.

Prefetchin g Usage Checklist

To usethe prefeth instruction properly, check wheherthe following issues
are aldressedandbr resolved:

* prefeich schedling distarce

* prefeth conatenaton

®* minimizethe numler of prefethes

* mixing pefetchwith computation instructions

® cade bbcking technques (for &k, stip mining)

® singlepassversus miti-pass gecuion

* memorybankconflict issues

* cade malgemenissues

The sulsequent sectons discuss dlthe abwe items.

Prefetch Scheduling Distance

Determining the ided prefetch placemenin the codedepeids onmary
archtecural paramegrs, ircluding the amounbf memory tdoe prefetded,
cade bokuy latency, sysem memorydtency, ard estmate of comptation
cycle. The idealdistancefor prefethingdatis processo ard plattorm-
depencent If the distance § too stort, the prefeth will not effectively hide
the latency of the fetch behind computation. If the prefetch is too far ahead,
the sartup cast for dat not prefetched for nitial iterations diminishes the
benefits of prefething the dda. Also, he prefethed daa may wrap arond
ard dislodgepreviously prefetched d@ta prior to its actual use.

Optimizing Cache Utlization for Pentium Il Processrs 6

Since prefeth dstane is nota wel-defined metic, for this disaussio, we
define anew term, “prefetch schedling distance (PSD),” which is
represented in the numberof iteratons.For large loops,prefetch schediling
distancecan e setto 1, tatis, schedule prefeth instrudionsone teraton
ahead. ler smal loops,that is, loop iterations wih little compuation, the
prefdéch schedling distance mustemore hanone.

A simplified egiaion to compute PP is deducal from the mahemdical
modkl. For a smplified equation, compete mathematical modtl, and
deailed mehodology of prefetch distance @terminaton, refer to
Appendix F, “The Mahematics d Prefeth Sheduing Distance”

In Examge 6-1, he prefetd schedling distance § setto 3.

Example 6-1 Prefetch Scheduling Distanc e

to p_lo op:
prefetchntale dx +esi+32 *3]
prefetchntale dx*4 +es i+32 *3]

movaps xmml [ed x+es i]

mova ps xmm2 [ed Xx*4+es i

mova ps xmm3 [ed x+es i+ 16]
movaps xmm4, [ed x*4 + esi +1 6]
add esi, 32

cmp esi, ecx

il to p_lo op

Prefetch Conc atenation

De-pipelining memoy gererates kubbles n the executon ppdine.To
explain this peformane issue, a geomety pipelineprocessig 3D
verticesin strip formatis used A strip cantains a list of vertices whose
precefined vertex order forms contguots triangles.

6-13

6 Intel Architecture Optimization Reference Manual

6-14

Example 6-2

It canbe eady obsenedthatthe memory [pe is de-ppelined m the stip
bounday dueto ineffective preféch arrangemein Theexecuton ppdine s
stalled for the beginning 2 iterationsfor eachstrip. As a resill, the average
latency for competing an terationwill be 16 clocks. (See Apgendix F,

“ ,” for detailed mamory
pipdine desciiption.)

Thismemory depipelining creaes nefficiercy in both the memay pipeline
and execuion pipeline. This depipelining efectcan beremoved by
applying atechniquecaled prefetch corcaenaton. With this techique,the
memoryaccess rd exeaution can ke fully pipelined and fully utilized

For nestedloops, memuoy de-ppelining culd occur duing the interval
beweenthe lastiteration of an innerloop andthe net iteraton ofits
assodated outer loop. Without paying special attention to prefetch insetion,
the loads from he firstiterationof an nner loop @n miss tke cacle andstdl
the execution pipeline waiting for dat returned, thus agradng the
paformance.

In the codeof Exampk 6-2,the cacle linecontiningali i1 [0] isnot
prefethed atall andalways misseshe ache.This assunes thatno array
al[][1 footprint resides n the ache.Thepenaty of mamory deipeining
stalls can beamotized acioss he innerloopiteratons. Havever, it may
become ery hamful when the inne loop is shot. In addition, the last
prefeth of the inne loop is wasted andconsunes machie resources.
Prefetch conatenation is introducedhere n order to eliminate the
paformance ssue ® memory depipelining.

Using Prefetch Concatenation

for (ii= 0; ii <2100; i i++){
for (jj=0; jj < 32, jj +=8) {

prefetch afi i] [j+ 8]

conputation a[ii][jj]

Optimizing Cache Utlization for Pentium Il Processrs 6

Prefetch con@atenation canbridge te executon ppdine hubbles béween
the boundary of an innerloop andits asso@tedouter loop. Simply by
unrolling the last iteration out of the innerloopand scifying the efective
preféch address fodata usedin the following iteration, the performane
loss of menory de-ppelining can becompktely remored. The re-writen
code s demastraedin Exampk 6-3.

Example 6-3 Concatena tion and Unrolling t he Last Iter ation of Inner Loop
for (ii= 0; ii <100; i i++) {
for(jj =0;jj <24 ;jj +=8){
prefetch a[ii][jj +8]
c onput atio n a[ii][jj]

}
prefet chal[ii+1]] 0]
conputation afi] []]

This codesggment for dai prefetching isimproved, ard only the first
iteration of the ouer loop sufers any memory accss ldercy penalty,
assuning the computation time i larger than e memory dtency. Inseating
a pefetd of the first data elementneead pior to entering the nesédloop
compufation woud eliminate orreduce te stat-up penaly for the very first
iteration of the ouerloop. Thisuncanplicaied hgh-level code opimization
can improve memoryperformancesignificanty.

Minimize Number of Prefetche s

Prefetchinstructions are nbocompetely free n terms of s g/cles, mactiie

cycles and reagces, gen howh they require mirimal clocks arnl memory

bandwidth.

Excessie prefething may kadto the following siudions:

e If the fill buffer is full, prefethesaccumudte inside teload tuffer
waiting for the next fill buffer entry to be deallocated.

* If the load buffer is full, instruction allocation stalls.

* [f the targetloops aresmall, excessive prefething may mposeextra
overhead.

6-15

6 Intel Architecture Optimization Reference Manual

Afill buffer is a temprary space &cated forcache Ine read from owrite
to memay. A load buffer is a seatch padbuffer usecby the memory
sulsystem toimpose acess orderigon memay loads.

Oneapproab to solve the excessve prefething issues to unroll andbr
software-pipeline the loops toreducethe numier of prefetches required.
Exampk 6-4 shavs acodeexample thatimplemers prefetdh andunrols
the loop to remove the reduncant prefetch instructions whae prefetch
addresses hit the previously issted prefetch instructions. Inthis particular
exampk, unrolling the oiiginal loop ance saes wo prefetch instructions
ard three nstructions for eab corditiond jump in every oter teration.

Example 6-4 Prefetch and Loo p Unrolling

top_loop: top_loop:
prefetchnta [edx+esi+32] prefetchnta [edx+esi+32]
prefetchnta [edx*4+esi+32] prefetchnta [edx*4+esi+32]
movaps xmm1, [edx+esi] movaps xmm1, [edx+esi]
movaps xmmz2, [edx*4+esi] movaps xmmz2, [edx*4+esi]
addesi,26 ...
cmp esi, ecx . -movaps xmml, [edx+esi+16]
jl top_loop movaps xmmz2, [edx*4+esi+16]
add esi, 32
cmp esi, ecx
jl top_loop

Mix Prefetch wi th Computation | nstructions

It may sem convenient to insertall the prefetchinstructions atthe
beginning of aloop, but this can lead b severe peformane degradaton. In
order to acheve best possble performane, prefeth instructons musbe
interspersed with other computational instructions inthe instruction

6-16

Optimizing Cache Utlization for Pentium Il Processrs

seaienceratter than cuseredtogether. This improves the instruction level
parallelism and reduces the patentia instruction adlocation stdls due to the
load-buffer-full problem metioned eatrier. It alsoallows potenial dirty
writebacks (aditiond bus trafic cawsed ly evicting modified achelines
from the @ache) b proceedconcurently with other instructions.

Exampk 6-5 illustrates mixing prefeth instructons. A sinple ard useful
heuristic of prefetch spreadng for a 5@ MHz Rentium Il processotis to
inserta preféchinstrudion every 20to 25 g/cles. Rearrarigg prefeth
instructions could yield a ndicedle speedp for he code wlich is limited
in cache resarce.

Example 6-5 Spread Prefetch Instructions

top _loop: top _loop:
prefetchnta [ebx+128] prefetchnta [ebx+128]
prefetchnta [ebx+1128] movps xmm1, [ebx]

prefetchnta [ebx+2128]
prefetchnta [ebx+3128]

prefetchnta [ebx+17128]
prefetchnta [ebx+18128]
prefetchnta [ebx+19128]

addps xmm2, [ebx+3000]
mulps xmm3, [ebx+4000]

“ 3 prefetchnta [ebx+1128]

addps xmm1, [ebx+1000]
addps xmm2, [ebx+3016]

0 prefetchnta [ebx+2128]

mulps xmm1, [ebx+2000]

prefetchnta [ebx+20128] 8 ~. ~. ~. mulps xmm1, xmm2
N A prefetchnta [ebx+3128]

e ~ ~ = O

mulps xmm3, [ebx+4000] T~ D T~ S

addps xmm1, [ebx+1000] > RN a prefetchnta [ebx+18128]

addps xmm2, [ebx+3016] e R

mulps xmm1, [ebx+2000] e N ‘ prefetchnta [ebx+19128]

mulps xmm1, xmm2 S e

~

‘ prefetchnta [ebx+20128]

..... add ebx, 32
add ebx, 32 cmp ebx, ecx
cmp ebx, ecx jl top_loop

jl top_loop

6-17

6 Intel Architecture Optimization Reference Manual

6-18

L)

If all fill buffer enties are ful, the next trarsacton waits inside he load
buffer or stae kuffer. A prefetch opetion cannotcomplete untl afill
buffer enty is allocated. The loadbuffers ae shaed by nomal load pops
ard oustanding prefetches.

NOTE. To avoid instruction alocation stlls dueto a load buffer full
eondition when mking prefdch instructions, pefetch instructions must
beinterspersed wth compugtional instructions.

Prefetch and Cache Bloc king T echniques

Cacheblocking techniques,such a stip-mining, ae used b improve
temporallocdity, andtherely, cache it rate. Srip-mining is a
one-dimensional temporal locality optigaion for memory When
two-dimensonalarays ae usedn programs, bop blocking techngues
(similar to strip-mining but in two dimensions)canbe ajplied for beter
memoryperformance

If anapplcaion uses darge dhta setthat can ke reusedacross muiple
passes of loop it will benefit from stip mining: dat set larger than he
cade wil beprocessd in groups smdlenoug to fit into cache. This
allows mporaldaato reside in the cadie bnger, reducing lus trafic.

Data setsize aml temporallocality (dat chaiacteristics) fundamenmally
affect how prefetch instructions ae apliedto strip-mined code. shows two
simplified scearios for emporaly adjpcent data andtemporaly
non-adpcen data.

Optimizing Cache Utlization for Pentium Il Processrs 6

Figur e 6-3 Cache Bloc king - Tempor ally Adjacent and Non-adjacent Passes

Datasd A Datasd A Pass 1

8
.

Datasd A Datasd B Pass 2

:
g

Datasd B Datasd A Pass 3

I
:

Datase B Datase B Pass 4
Temporally Temporally
adjacent passes non-adjacert
passes

In the temporaly adjpcern scenario, sutsequen passes usthe same da
ard find it ready in L1 cache. RPefetdh issues ade, this is the peferred
situation. In the temporally non-adacent scenao, data usedin passmis
displayed by pasgm+1), requiring datare-fetchif alater pass reses the
data. Both data sds aould still fit into L2 cache, so load operations in passes
3 and 4becone less expensive.

Figure 6-4 shavs hawv prefetch instuctions and stp-mining can be applied
to increae performarein both of these scearics.

6-19

6 Intel Architecture Optimization Reference Manual

6-20

Figur e 6-4

Examples of Prefetch and Strip-mining f or Temporally Adjac ent and
Non-adjacent Passes Loops

fﬁli N (T R
Prefetchnta PrefetchtO
Dataset A Dataset A

—y Sw1
Reuse PrefetchtO
Datasd A Dataset B
= SM2
= BN
Prefetchnta Reuse
Dataset B Dataset A
= sw
Reuse Reuse
DatasetB Dataset B

N i o\ %' /
Temporally Temporally

adjacent passes non-adjacent

passe

For Pentium Il processrs, the left scenard shavs a graplical
implemenétion of using pr efet chnt a to prefetch data into the L1 cache
only (SM1- strip mine L1), minimizing L2 cacle polution. Use

pr ef et chnta if the data seffits into L1 cache or if the daais anly touched
once duing the enire execuion passm orde to minimize cahe mllution
in the hgher level cachesThis provides instant ailability when the red
acess s issted andminimizes 12 cache mllution.

In the right scenarb, keeping the datain L1 cacle doe notimprove cabe
locality. Therefore, usepr ef et chtO to prefetch the data. This hides the
latency of the memoryreferencein passes and2, and keeps aopy of the

Optimizing Cache Utlization for Pentium Il Processrs 6

daain L2 cachewhich redices memoryraffic andlatencies for passes 3
ard 4.To further reduce be latercy, it might be worth cansicering extra

pr ef et chnta instructions prior to the mamory refererces in passes 3
ard 4.

In Examge 6-6, caoisider the dda access pterns é a 3D gemety engine
first without strip-mining and thenincomporating stip-mining. Note that
4-wide SMD instructions of Pertium Ill processas can process 4 ertices
pe evely iteration.

Example 6-6 Data Access of a 3D Geometry Engine without St rip-mining

whil e (nv tx < MAX_NUWM_VTX) {
prefetc hnta vertex; data // v =[xy, z, nx,ny ,nz tu,t V]
pr ef etc hnta v ertex ;;; data
pr ef etc hnta v ertex ;;, data
pr ef etc hnta v ertex j,3 da ta

TRANSFCRMATION code // useonly x,y,z,tut v of a
vert ex

nvtx +=4

}
whil e (nv tx < MAX_NUM_VTX) {
prefetc hnta vertex; data // v =[x Yy, z, nx,ny ,nz tu,t v]
pr ef etc hnta v ertex j;; data
pr ef etc hnta v ertex ;;, data
pr ef etc hnta v ertex ;3 da ta
compute t hel ight vectors // use only x\y, z
PO NT LI GHII NGc ode/ / use only nx,ny, nz
nvtx +=4

Without strip-mining, all four vertices ofthe lighting loop mustbe
re-fechedfrom memory mthesecoid passThis causes uderutilization of
cache Ines fethedduring the trarsformation loop as welas atra
bandwidth wastedin the lighting loop. Now consider the code in Example
6-7 wheee stip-mining has ben incorporated into the loops.

6-21

6 Intel Architecture Optimization Reference Manual

6-22

Example 6-7 Data Access of a 3D Geometry Engine with Strip-mining

whil e (nstr ip < NUM_STRIP) {
[* Strip- minet hel oopt o fit data into L1*/
whil e (nvtx < MAX_NUM_VTX PER_STRIP) {
prefe tc hnta v ertex ; data // v=[x,y,z,nxny, nzt u, tv]
pr efe tc hnta v ertex j;; data
pr efe tc hnta v ertex j;, da ta
pr efe tc hnta v ertex ;,3 da ta
TRANS-ORMATION cod e
nvix +=4
}
whil e (nv tx < MAX_NUMVTX_PER_STRP) {
[* x y z coordinatesarei nL1, no prefetch is
re quir ed*/
compue t hel ight vectors
PO NT LI GHI'I NG code
nvix+ =4

With strip-mining, al the vertex dat canbe lept in the cahe (for @ampk,

L1) during the stip-minedtrarsformationloop ard reusedin the lighting

loop Keepng dat in the ache redces loth bus trraffic and he numbe of

prefethes used.

Figure 6-5 smmarizesthe stgs of he lasic usagemodelincorporaing

prefeth with stip-mining which are:

® Do srip-mining: parition loops so hatthe ddasetfitsinto L1 cache
(preferred) oL2 cache

® Usepref et chnt a if the datais anly used once or the data sd fits into
L1 cade. Usepr ef etc ht 0 if the data sd fits into L2 cache.

The alove seps arelatform-spedfic andprovide an mplemenétion
exampk.

Optimizing Cache Utlization for Pentium Il Processrs 6

Figur e 6-5 Benefits of Incorporating Pr efetch into Code

Use Once Multi-Use
Adjacent pas&eqr-«l{:-n-ﬁ.djﬂnent passses

prefetchntg prefetchnta, SM1 |prefetcht0, sm2, L2 pallutial

Single-pass ver sus Multi- pass Ex ecution

An dgorithm can usesinge- or multi-pass gecution defned & foll ows:

® Single-pass, or nlayeredexecuton passes a sigle cata elementthrough
anenire compuaton gpeline.

* Multi-pass, otayered execuion pefforms a single sageof the pipdine
ona bdch of dat demers, before @ssirg the bach on b the next
stage.

A charactkrlistic of both single-pass ad multi-pass recution is thataspedfic
tradedf exists depanding an analgorithm’s implemenégtion anduse é a
single- or mitiple-pass gecuion, see kgure 6-6.

Multi-pass gecuionis diteneasér to use wken implemening a general
purpose AR, which has bts of differert code pths that canbe &ken,
dependng onthe speific combnation of featiresselected by the applcaton
(for exampk, for 3D graphts,this mightincludethe type d vertex
primitives usedthe numberandtype oflight souces).

With sucha bioadrangeof pemutations pasilde, a shglepass aproach
would be comgicatkd,in terms d codesizeandvalidation. In sud cases,
eah pesibe permutation would require asepaate code seqance.For
exampk, data objectof type N, with features A, C, E erabled, would be e
code pdh. It makes more sese © perform eah ppeline shgeas a segrate
pass, wih conditional clausesd sekctdiffereri feauresthat ae
implemenéd within eachstage. By wsing strip-mining, the amour of
vertices pocessedby each sage (for @ampk, the tetch size) can b sekcked
to ersure hat the bdch stays within the processocacheghrough dl passes.
An intermedite cached luffer isused b pass te bdch of vertices from oe
stagepassto the net one.

6-23

6 Intel Architecture Optimization Reference Manual

Single-pass &ecuton can béetter suted tosane appicaions, which limit
the rumber d features thatmay beused &agiven time.A singe-pass
approachcan educe he amountof data copying that canoccurwith a
multi-pass engie see kgure 6-6.

Figure 6 -6 Single-Pass vs. Multi-Pass 3D Geometry Engines

strip list

80 vis
60 invis
40 vs

Vertex
procesing
(inner loop)

Transform

Lighting

Single-Pass

|

Outer loop &
procesing
stiips

]

Culling

—_—

Lighting

Multi-Pass

6-24

Optimizing Cache Utlization for Pentium Il Processrs 6

The ctoice of shgle-pas or muii-pass en have a umber d performance
implications. For instarce, n amulti-pass pbdine,stags hatare Imited
by bandwidth (either input or output) will reflectmore of this pefformance
limitation in overall execution time. In contrast, for a single-pass ajproach,
bandwidth-limitations @n bedistributed/amotized acoss other
computton-intersive sages. Also, the chace of which prefetch hints
useare ato mpacedby whether a shgle-pasor muti-pass aproachis
usel (see section earlier in this
chapr).

Memory Bank Conflicts

Memory bark corflicts occut when hdependgentmemory refereces gao
the same DRAM bank hut access dferentpages. Conflctingmemory bak
accesses Wi introducelonger memaoy leadof latency due o DRAM page
opening, closing, andopening. To alleviate suchproblems, arange he
memorylayout of data arrays sule that simutaneous preféch of different
pages wil hit distinct memaoy barks. The operating sysem haidles
physical address dbcaion atrun-ime, so copilersprogammers have
little control over this. Pdential solutions are:
* Apply array grouping o group cantiguously used daatogether to
redice excessve memory age a&cesses
* Allocake daawithin 4KB memory pges

Non-temporal Stores and S oftware Write-Combini ng

Use ron-temporalstores n the caes whenhe dat are

®* write-once (na-temporal)

* toolamge and thuscause ache hrashing.

Nontempaal storesdo nd invoke a cacle line allocaion, which meas
they are rot write-allocate As a resul cacles are nopolluted andno drty
writeback s generated to campet with usefil dat bandwidth. Without

using nontempaal sores,bus bamwidth will sufer from lots of dirty
writebacks aféer the pint when c&hes srtto be trashed.

6-25

6 Intel Architecture Optimization Reference Manual

6-26

In the Streamirg SIMD Extensions implemertation, when ron-temporal
stores ae written into writebackor write-combihning memory rgions,these
stores araveakly-ordered then canbined nternally inside he processos
write-canbining buffer, andwritten ou to memory as dine hurst
transadon. To achieve the best possibde performanceit is recanmended
that dat be alignedon a he cachdinebourdary am written consectively
in acachdine seewhile usng nontempaoal stores.If the conseutive
writes ae prohbitive due o programming costraits, hensoftare
write-canbining (SWWC) huffers carbe wsed b erable line burst
transadbns.

You @n declare smdlSWWC huffers (acacte line for each lffer) in your
applicationto erable explicit write-combining operations.Insteadof writing
to non-temporalmemoryspace mmedeately, the progam wiites dda into
SWWC buffers and canbines hem inside hesebuffers. The praggram ony
writes aSWW(C buffer ou using nontemporal staes when he buffer is
filled up that is, a cacke line (32bytes for Patium Il processo). Although
the SWWC method imposes extra exgdicit instructions fa performing
temporarywrites andreads, ltis ersures hat the ransadibn a the
front-side bus causes line transections rather than several partid
transadbns. Application peformance gais consderably from
implemening this techngue. These SVYWC buffers can bemaintaned in
the L1 ard re-usedthroughout the piogram.

Cache Management

The steamig instructions (pr ef et ch andst or es) can beused ® marage
daaand mhimize dsturbanceof tempoal daa held within the processo's
cades.

In addition, Periium Il processorsake adwantage of he Intel C/C++
Compier that suppats CC++ languag-level feauresfor the Steamng
SIMD Extensions. The Streaming SMD Extensionsand MM X technology
instructions provide intrinsics that allow you to optimize cache utilization.
The examples d such Intel compler intrinsics ae_nm pref et ch,
_mm_st ream_nmlo ad, _mmsfe nce. For more ctails onthese
intrinsics refer to the Intel C/C++ Compiler Users Guice for Win32
Systems order numkber 718195.

Optimizing Cache Utlization for Pentium Il Processrs 6

The following examges of using prefething instructons inthe operation of
video enoder an deoder as welas h simple 8-byte memory opy,
illustrate peformarce gain from usng the prefethinginstructons fa
efficientcachemanagment

Video Enc oder

In avideo écoder example, some 6 the dat used during the encaling
process $ kept in the rocessors L2 cacle, © minimizethe numler of
refererce steamshat mustbe re-rea from sysem memoy. To ensurehat
other writes do ot distub the dda in the L2 cache streamirg stores
(movntg) areused o write arourd al processor aches.

The prefething catie managenmimplemened for video encder reduces
the memory traffic. The L2 pollutionreducion is ensued by prevening
single-usevideo frame dta from engring te L2. Implementing a
non-temporalprefeth (r efe tc hnta) instruction bingsdat directy to
the L1 cache wihoutpdluting the L2 cache If the daia brought directy to
L1 isnotre-usedthen tere is aperformane gain from the nam-temporal
preféch over a empaad prefet. The ercoder wes nortemporal
prefdéches b avoid pdlution d the L2 cacle, increasng the numbe of L2
hits anddecreasig the numter of pdluting write-backs 6 memay. The
peformance @in resuts from the more #icientuseof the L2, na only
from the prefetd itsef.

Video Dec oder

In avideo cecoder example, completedramedata is witten toWSWC the
local memory of be graplics cad. A copy of reference da is storedto the
WBmemory & alater time by the processa in order to generate future data.
The assunption is that the size of the datais too large to fit in the
processors cache. A streaning siore s used ¢ write the daa aroundthe
cache, b avoid displacihg other empaal data held in the cachs. Later, the
processo re-read the data wsing pr ef et chnt a, which esures maximum
bandwidth, yet minimizes distrbanceof othercachedtemporal dag by
using the nortempral (NTA) version of prefeth.

6-27

6 Intel Architecture Optimization Reference Manual

6-28

Example 6-8

Conclusions from Video Encod er and Decode r
Implementation

The exampk of video ercode and cecode suggest the mnclusion tat by
using an ajpropriate combnation of nontemporal prefethes ad
non-tempoml stores, arapplicaion canbe dsigred b lessenthe overheal
of memory transadions ly preverting L2 cache pllution, keepng useful
daa in theL 2 cacheard reducing cosky write-back tansadbns. Bren if an
aplication doesnot gain performancesignificanty from having data ready
from prefethes,t canimprove from mae efficientuse d the L2 cacheand
memory Suchdesgn redices he encoar’s cemandfor such citical
resouces ashiie memory bus. This makes he sysem more bianced,
resuting in higher performarce.

Using Prefetch and Streaming- store for a Simple Memory
Copy

A simple memory opy is the ase wherB-byte data elemens are b be
transferred from ie memoy locaion to andher. The copy can e spedup
gredly using prefeth and steamng sbre. Examge 6-8 presets the basc
algorithm of the simple memay copy.

Basic Algor ithm of a Simple M emory Copy

#defin e N 512000

double a[N], b[N];

for (i = 0; i < N; i++) {
b[i] = a[] ;

}

This algorithm canbe gtimizedusing the Streamng SMD Extersions am
taking into consderation the foll owing:

® properlayout of pages in memory

* cade ske

* interaction of the trarsacton lookasde buffer (TLB) with memory
acesses

® combining prefethand steamng-sbre nstructions.

Optimizing Cache Utlization for Pentium Il Processrs 6

The guidelines dscussedhn this chapter comeinto play in this simgde
example. TLB priming, however, is introduced here as it does afect an
optimal implemenétion with prefetding.

TLB Priming

The TLB is a fastmemory liffer thatis used ¢ improve performancef the
transhtion of a vrtual memoryaddressa a plysical memory adress §
providing fastacess topagetable enties. If memory pges are ecessed
and the page table entry is nat resident in the TLB, aTLB miss resuts and
the page &ble must ke read frommemory. The TLB missresults in a
paformance cgradation since a memry accesss sower thana TLB
access. hie TLB canbe peloaded wih the paye tble erry for the next
desiredpageby accessig (a touching) an addess inthatpage.Thisis
similar to prefetch but instead ¢ a daa cache Ine the page Bble entry is
beang loadedin adwanceof its wse. This helps © ensue that the pag table
ertry is restert in the TLB and hat the prefeth hapens & requestd
subsequently.

Optimizing the 8-b yte Memory Copy
Example 6-9 presents the copy algorithm that performs the fdl owing seps:
1. transfers 8-pte data from memory into L1 cacte usig te

_nmm_pr efe tc h intrinsic to completely fill the L1 cache 32 lytes ata
time.

2. transfershe 8byte ddato a diferentmemorylocaion via the

_nm_st rea mintrinsics, typassing the cacle. For this operaion, it is
important to ensure hatthe page &ble enty prefethed for he memory
is preloaded in the TLB.

loads the data into an xmmregiste usirg the _nmm_load_ps intrinsic.

4. streamng-sbres he datato the locaion caresmnding to arrayb.

w

6-29

6 Intel Architecture Optimization Reference Manual

6-30

Example 6-9 An Optimize d 8-byte Memory Copy

#defi ne CACHESIZ E 40 96;
for (kk=0; kk<N; kk+=CACHESI ZE) {
te mp= a] kk+CACHESI ZE];
for (j =kk+4; j< kk+CACHESIZE; | +=4) {
_mmpr efetch((char*)&a[j] , _MMHINT_NTA);
}
for (j =kk; j< kk+CACHESZE; | +=4) {
_mm_st re am ps((fl oat*)&b[j],
_mm/load_ps((f loat*&a[j])) ;

_mm_st rea m_ps((fl oat*) &b[j +2],
_mm_lo ad_ps((fl oat*) &a[j +2]));

}

_mm_sf ence();

In Examge 6-9, wo _mmlo ad_ps and_nmm st re am ps intrinsics are
useal so hatall of the daa prefetched (a 2-byte ache ine) is written bad.
The prefetch andstreaming-stores aie executd in separag loops to
minimizethe number of ranstions betveen reathg andwriting dda. This
significantly improves the bamwidth of the memoryaccesses.

The instruction, te mp= a[kk +CACHESIZ E] , is usél to ensue the pag
table enry for aray a isentered in the TLB prior to prefetching. This is
essetialy a preféchitsef, as acache Ihe sfilled from hat memay
location with this instruction. Hence, the prefetching stats from kk+4 in
this loop.

Application Rrformance

Tools

Intel offers anarray of @plication performane tools that are opimized b
take the bestadantageof the Intel® architecture (I1A)-basel processaes.
This chaper introduces thesetools andexplains teir cgpablities which you
can empby for developing the most dificientprograms.

The following performance tols ae available:
® VTune™Performancénalyzer

This tool is the comerstoneof the application pefformancetools that
male up the VTunePerformane EnhancenentEnvironmen CD. The
VTune amlyzer cdlecs, aralyzes, ad provides Ingl archiecure-
speific sdtware performancedaafrom the system-wide \aw down to
a specific modile, fundion, andinstruction in your code.

® Intel C/C++ Compiler ard Intel Fortran Compiler dug-ins.
Both campilers areavailable as plig-ins o the MicrosoftDeveloper
Studio* | DE. The complers geneate highly optimized foaing-point
code, aml provide wique fedures suchas proile-guded gtimizaions
armd MMX™ technobgy intrinsics.

* Intel® Performane Library Suie

The library sute corsists of asetof softwarelibraries ogimized for
Intel archtecure praessors. fie sute currerly includes:

The Intel Signal Procesang Library (SPL)

The Intel Recognition Primitives Library (RPL)
The Intel Image processimg Library (IPL)

The Intel Math Kernel Library (MKL)

The Inel ImageProcessig Primitives (IPP)
The Intel JPEG library (1JP)

7-1

; Intel Architecture Optimization Reference Manual

7-2

®* TheRegister Viewing Tool (RVT) for Windaws* 95 and VWhdows NT*
erables youto view the catent of the Sreaming single-instruction,
multiple-data (SIMD) Extensians registers. The R/T redaces he
register window nomaly fourd in a déougge.
The R/T dsoprovides dsassemiyl informaion duing delug for
Streamng SIMD Extensions.

VTune™ Performance Analyzer

VTune Rerformance Amlyzer s instrumenal in helping you urderstad
where to bggin tuning yaur apgicaion. VTuneanayzer helps youidenify
and aralyze peformance tends atall levels: the systam, micro-archiecture,
and appicaion.

The setionstha follow disciss tle mapr features of he VTuneanalzer
that help you improve peiformanceandbriefly explain how to use hem.For
more detils onhow to sampeé evenss, runVTuneanalzer and seenline
hdp.

Using Sampling Anal ysis for Optimiza tion

The sampngfeatue of he VTune aalyzer prwides aalysis of the
performance ofyour applicationsusirg ime- or eventbasedsamping and
hatspot anaysis. The ime- or eventbasedsamping anai/sis provides he
capabili ty to non-intrusively monitor all active sdtware on the sysem,
including the appicaion.

Each sanpling sessia contains summary mformaton atwut the sessin,
sud as he rumber of samigscollededateachprivilege level and he type
of interrupt used. Each sesion is assocated wih a datbase. The sessin
daabase alows youto reproduce teresults of asessio ary numberof
times withou having © sampe or profile.

Time-based Sampli ng

Timebased sanimg (TBS) alows youto montor all acive sdtware on
your sysem, ircluding the opeating system, dvice divers, and appicaion
software. TBS collecs information ata regular time nterval. The VTune
aralyzer hen pocesseshis datto provide a desiled view of the sysems
acfvity.

Application Performance Tools ;

Figure 7-1

The ime-basedampling (TBS) periodically interrupts the processor athe
speified samfing interval and ollects sampesof the instruction
addresses, mahes these adresses wh an appicaion a an ogerating
sysem rouine, and ceaks a dabase wit theresuting sampés dat.
VTune anajze can hen grapically display the amaunt of CPUtimespent
in each actve modue, process, iad rocessor (ora mutiprocessor sysim).
The TBS—

* sampes and display a sysem-wide view of the CPU time dstribution
of all the software activity during the sanpling sessim

® deemines wihich sectons n your codeare taking the mostCRU time

* armalyzes hospots, displays the souice coa, ard deermines
paformance ssues the source ad assemly codelevels.

Figure 7-1 providesan exampk of ahotspos report by location.

Sampling Anal ysis of Hotspots b y Location

Usage (percent)
o

10 -

Tt 7 ¢ ¢ Fr v r rtr1rrr1 i T ¢ . F 1T 1T rt1Tr1

7-3

; Intel Architecture Optimization Reference Manual

74

Event-based Sampl ing

You can use gent-based samipng (EBS) to montor all acive sdtware on
your sysem, ircluding the opeating system, dvice divers, and appicaion
software basednthe occurerce of pocessor eens.

The VTune analyzer cdlecs, aralyzes, ad displays the performancevent
counters dat of your code povided by the Petium® I and Pentium |11
processors. fiese processors can geratenumerous gents perclock cycle.
The VTune aalyzer sujports the event assotated with counter 0 ally.

For eventbasedsamping, you can sekctoneor more gerts, in each gent
group. Hawever, the VTune analyzerruns a sepeste sessio to monior
ead eventyou have sekcied. It interrupts the praessor atr a speified
number of @erts and cdlect a samig contining the currentinstruction
address. he frequacy atwhich the sampés are cdlected is deermined by
how often the evert is caused ly the software running in the systen during
the sanpling sessin.

The chta collected alows youto deermine the umber of @erts tat
occurred ad the impactthey hadon performance Samping resits are
displayed in the Modules eport and Hotpots report. Eventdagis also
available & a performane counter in the Chrondogies window. The event
samped per sessiais listed unde the Chronologies enty in the Navigation
tree of he VTuneanayzer.

Sampling Performance Counter Events

Event-based samphg an beused dgether with the hadware performance
counters &ailable in the Intel architecure © provide detiledinformation
onthe befavior of spedfic event in the microprocessor Same of the
micropro@ssor gent that canbe sampd include L2 cade mkses, brach
mispredctions, msaigned dita accessprocessor sils, andinstrucions
executed.

VTune aralyzer pravides acess ¢ the peformance cainters Istedin
Appendix B, “ " The
processors' @formance cainters carbe canfigured b moritor ary of
several differenttypesof events. All the events are Istedin the Configure
meru/OptionscommandProcessorEverts for EBS paye ofthe VTune
aralyzer, see Fjure 7-2.

Application Performance Tools ;

Figure 7 -2 Processor Events List

ne[TM] Performance Analyzer Hi=] E
| Processor Events for EBS
" Select Event Group for Event-Bazed Sampling
I.ﬁ.ll events j
Ewent Mame Sample After | &
B BACLEARS Asserte 5.000
[Bogus Branches 5.000
i [Branch Instuctions Decoded 5.000
' [J Branch Instuctions Retired 5.000
[Branch Mizpredictions Retired 5.000
[J BTE Mizzes 5,000
[J Clocks while interrupts masked 5,000
[J Clocks while interrupts masked and an interrupt iz pending R.000
[J Cpcles Divider Busy 5,000
[Cycles Instruction Fetch Stalled 5,000
[J Cpcles Instuction Fetch stalled -+ pipe 5000
[J Cpcles L2 Data Bus Busy 5,000
[J Cpcles L2 Data Bus Busy transfering data to CPU 5.000
B Clocklicks 200,000
[Data Memory References [all] 5000
O Divides B.000
[J External Bus Burst Instruction Fetches 5.000
[J External Bus Burst Read Operations 5,000
[J Esternal Bus Burst Tranzactions 5.000
[J External Bus Cycles - DRDY Asszerted [busy) R.000
[External Bus Cycles - LOCK signal asserted 5.000 ;I
| Reset | | Check 2l
Cloze I Help

At first glance,it is difficult to know which couniers ae relevant for
undeistanding the peformane effects. For exampk, to better undestand
peformance efects on he cacheand tus befavior with the Petium ll1

75

; Intel Architecture Optimization Reference Manual

7-6

processorthe VTune aralyzer colecied he performancedat with and
without the prefeth and steamhng storeinstructons.The maincourters
that relate to the acivity of the system bus, as wdlas he cahe herarcly
include

L1 cache misses—this event indicates the numler of oustanding L1
cathe mbses aary paricular ime.

L2 cache misses—this event indicates al data memory taffic that
misseste L2 cate. Thisincludes bads, sores, bckedreads, ad
ItoM requests.

L2 cache requests—this evert indicaies &l L2 cacle dab memay
traffic. Thisincludes loads, stres, bcked read, anditoM requets.

Data memory references—this evert indicates all ddamemory
referenes b the L1 daa and instruction cates ad to the L2 cade,
including all loads from andio ary memory ypes.

External bus memory transactions—this eventindicaies al memory
transadons.

External bus cycles processor lisy receving data—V Tuneanalyzer
counts the number of lus clock cycles duing which the pracessors
busy receving dat.

External buscycles CRDY asserted—this eventindicaesthe nunber
of docks duing which DRDY is asseted. This, essetialy, indicates
the utili zation of the data bus.

Other caunters of nterestare:

Instru ctions retir ed—this eventindicaes he numberof instructions
that retired or executed completely. This does nd include patially
processedristructions eeauted dueto brant mispredictions.

Floati ng point operations retir ed—this evert indicatesthe numler of
floaing pant computational opeationstha have retired.

Clocktick s—this event initiates time-based sampling by seting the
counters b count the procssor's abck ticks.

Resource-related stalls—this evert courtsthe rumber d clock cycles
exeauted while a resotce-relatedstal occus. This includes sélls due
to register reraming buffer erries, memoy buffer ernries, brarmch
mispredction recwery, and aédlay in reiring mispredictedbrandes.
Prefetch NTA—this event courts the number & Streamng SMD
Extensions pr ef etc hnta instructions.

Application Performance Tools ;

The rawv dat collecied ty the VTuneanalyzer @n beused b computie
various indicators. For example, ratios of the clockticks, instructionsretired,
ard floaing-point instructions retired can gve you a goodindication as o
which patts of apgicaions ae bestsuied for a ptential re-coding with the
Streamng SIMD Extensions.

Call Graph Profiling

The cdl graph profiles your applications and dspays a cal graphof acive
functions. The cal graphanal/zes the dabt and displaysa glaphcal view of
the threads crea&tdduring the executon of the application, acomplete list of
the functions alled, and the relationship between the parent and child
functions. Use VTine andyzerto profile your Win32* executalde files or
Java* appicaions ad generate a cdl graph of adive funcions.

Call graph pofiling includes collecting and &alyzing all-site information
and displayingthe resuls in the Cdl List of the Cal Graph anl Saurce
views. The cal graph pofiling provides nformaion onhow many times a
function (caller) cdled some dter functon (calee) ard the amout of time
eah cal took.In mary caseshe caler may cal the calee fom severa
places (sites), © cal graph alsoprovides cdl information per site. (Call site
informaiton is na cdleciedfor Jara cdl graghs.)

The View by Call Sites dsplays the infarmation abait cdlers and cétesof
the function in question (also referredto as currert function) by call sites.
This view allows youto locat the mostexpersive cdls.

Call Graph Window

The cdl graphwindow comgises hree vews: Sreadskeet Cal Graph, ad
Call List, see Fgure 7-3. The Call Graph view, displayed onthe lower
secton of the window, correspond © the function (mettod) sekbciedin the
Spreadshet. It disgays the funcion, the funcion’s paents,and Unction’s
child functions.

7-7

; Intel Architecture Optimization Reference Manual

Figure 7-3 Call Graph Windo w

confiqure Window Help

aph Prafiling j }l .l zl&_l%lﬁgal Ll ﬂl E“l"gl I%I%

IThread_fE =]
1|2 [Mocule Class | Funiction | T:ﬂ
Total Process
TEI Process Total Threads
Thread_f&
Total GDIZZ.0LL
TEI GOI52.0L0 Total
0IE2.0LL BitBlt
GDE2.0LL CreateBitmagp

GDI22.0LL CreateCompsatibleBitmagp _lj
4 I I 3

= Esslz])

RegisterisitForinputldle |

GoiDllintialize

DizableThreadlLibraryCalls

4 | of

CallList Call Graph for Thread_f6 |

7-8

Application Performance Tools ;

Each rode pox) in the cll graph represants a funcion. Eachedge(line
with an arow) connecting two nodesrepresens the cal from the parent
(caler) to the chid function (calee). Thenumbe next to the edge(line)
indicates he number 6 cals to that function.

The window has &Call Listtab in the tottom d the CallGraphview. The
Call List view lists all the calers and the @l eesof the fundion selected in
the speadsheeand displayed in the Call Graph view. In addition, the Call
Listhas a iew by Call Sites in which youcan seeal informaion
represerned by call sites.

Static Code Analysis

This feaure anéyzes performare tirouch

* paforming stdic cade aralysis o the funcions o blocks d code n
your appicaion without execuing your application

® gdting alist of funcions wih their respecive addesssfor quick
access ¢ you code

* gdting summary information abou the percertage of paring and
penalies incurred by the instructions n eachfuncion.

The satic codeanayzer povides analsis of the instructions n your

application and heir relationship with eachother, withoutexeauting or

samping them. It provides an esitmation of the peformance of your

application, notacual peformance. The satic coce anayzer anayzesthe

module you speciiedin the Exeautable field and displays the results. By

default, the shtic code anayzeraralyzes ory those tindions n the modué

that have souce coce available.

During the stdic cade aralysis, the statc cade andyzer dos the following
tasks:

® seaches yar program for the delug symbads a prompts youto
specify the symbd files

® searcles he souce drecbries for the souce fles

* armalyzes eak bast bock andfuncion in your program

® creates a ditabase wth the results

79

; Intel Architecture Optimization Reference Manual

7-10

* displays summaryrformaion aboutthe performance of each funicin,
including its nane, addess, he nunmber of nstructions eecued the
percentege d paring, the total clock gcles ncurred, andthe nunber
of dock cycles ncurred die 1o penaties.

Static Asse mbly Analysis

This feaure of he VTuneanalzer cetermines performancessies atthe
processoievel, including the foll owing:

* how mary clocks ech nstruction akes b execute andhov many of
them were incurred due to pendties

®* how you codeis executing in the three écock units of the RFentium |l
ard Petium Il processas

* regardless d the piocessar your systan is using, the shatic assemhy
aralyzer andyzes you applcaion’s peformance ast would runon
Intel processos, from Intel486™ to Pertium Il processors.

The VTune analyzer’s stdic assenbly analyzer analyzes lasic blocksof
cade. It assumes #h the code anddata areareads in the cache anthnares
loops andiumps. It dissssembés you codeand dsplays assemby
instructons, amotated wih performancénformation.

The satic assemby aralyzer dsassemlas hotspots or sttic functions in
your Windows %, 98andNT binaty files andanayzes architectural issues
that effect their performaice. You can invoke Static Assemby Analysis
view ether by performing a static code aalysis or by timeor eventbased
samping d you binary file. Click onthe View Static Assemby Analysis
iconin the VTune and&yzer’s toolbar to view a satic anaysis of your coc
ard display the assembyt view.

Dynamic Assemb ly Anal ysis

Dynamicassembt andysis finetunes settonsof your codeand dertifies
the exactinstrudions hat causecritical performance prollems.It simuates
a Hock of code and discovers such everts & missedcacheaccesses,
renaming stalls, brarch target buffer (BTB) misses, ad misaigneddagthat
candggrade prformance o Intel archtecture-basegrocessrs.

Dynamicanalsis gives youprecse dat aboutthe behavior of the cache
ard BTB by simulating the innerworkings ofIntel’s supeiscahtr,
out-of-order miao-archtedure. The dyramicassembyl aralyzer execttes

Application Performance Tools ;

the application, traces its exeaution, simulates, and monitors the
peformance d the codeyouspecfy. You canperform dynamic anaysis
using three dfferentsimulation methods:

* Selected cock
® Uniform sampghg
* Startandsiop API

These méhods provide aternake ways d filtering data andfocusingon
criticd sections of cock. They differ in the way they invoke dynamic
aralysis, simulate ard andyze spedic instrudions,and n theamoun of
output they display. For exampk, in the sekcied code mehaod, the dynamic
assemly analyzerandyzes and diplays ouput for every instruction within
a séectedrange while in theuniform samping ard sart/stop AR
simulation mehods,only the aitical sectons of cade ae smulated ard
aralyzed.

Code Coac h Optimizations
The cale cach mrforms the following:

®* Analyzes C,FORTRAN, C++, ard Java* sourcecode ad produces
high-level source coce optimization advice.

®* Analyzes assemplcode or dssssembled assempglcodeand poduces
assemly instruction optimizaion avice.

Oncethe VTune andyzer denifies, aralyzes, ad displays the source ode
for hotspos or static funcionsin your gpplication, you can invoke the coach
for advice onhow to rewrite the cale b optimize is performance

Typically, a canpil er is resticted by language pointer sematics when
optimizing cale. Coaclsuggests sarce-evel modificaions b overcome
theseand dher restrctions. Itrecogizes commoly used ode g@tternsin
your appicaion ard sugiess how they canbe malified © improve
peformance. The machwindow is shavn in Figure 74.

You can invoke the cach fom the Souce View window by double-
clicking an a ine d code,or sekcing a Bodk of cade am then dicking on
the mde @ach ton onthe Souce Mew toolbar.

7-11

; Intel Architecture Optimization Reference Manual

7-12

Figure 7-4 Code Coach Optimization Advice

hlyzer - [Advice for Line 128 in vtundemo._c]

Configure “indow Help

iraph Profiling ;I }l -l zl%l%lﬁsal LI _f'F‘\TI E“l’gl Elﬁil

There are JBlrecommendations identified for the selected code. Double-Click on any advice for |-
additional information.
Advice # 1

112 far i = 0: < 100; i++] {

113 iafi] = i+

114 ibli] = ii:

115 izfi] = i"2:

11E h

117 while[iterations--]

11a

114 farfi = 0;0 < 100; i++]

120

121 Global_Test_if_putp =i%2; /7 zet global value

122 test_if [ia, ib. ic. 90);

Fost-increment [or post-decrement] of the loop-contral wanable *iterationz] on line 117 in file
viundemo.c zhould be replaced by test and increment [or decrement] for better performance.
Advice # 2

130 I

131 b

132 A Larger

133 for(i = 0; i< 500 ; j++]

134 i

135 1 = test_oror1[f2, 3, 40]:

136 h

137

138 A Smaller significants

1339 forfi = 0; 1< 200 [1++]

140 i

The argument lizt for the function call to _test_ororl on line 135 in file vtundemo.c appears to be loop-
irveariant. If there are no conflicts with ather wariables in the loop, and if the function has no side
effects and no external dependencies. move the call out of the loop.

i the adwvice.

Application Performance Tools ;

The cach kamines he enire block of code @ funcion you seécied and
seartes for opimizaion opprtunities n the code.Asit andyzes you
code, t isstes error andvarning messags muchlike acompier parser
Oncethe cozh competes analyzing your cale, f it finds sitable
optimizaion advce it disgays the advcein a sepeate window.

The cach mayhave more hanoneadvice for aloop a function. If no
advice s available, it displays an @propriate messag You candolble-
click on ary advce in the cozh window to display cortext-sensiive hédp
with exampks of he aiginal ard optimized cade.

Where performare can bimproved ushg MMX tecology or Steamng
SIMD Extendonsintrinsics, he wmachprovides advice in theform of
C-style pseudeoode leaving the data defnitions, bop cortrol, and
sulscripts the programmer

For the codeusing the intrinsics, yai can dauble-click the left mousebutton
onan agumentusedn the mde b display the description ofthatagument
Click your right mouse lutton an anintrinsic to invoke abrief desciiption of
that intrinsic.

Assemb ly Coach Optimization Techniques

Assemby coach ses mag optimization techniques toproduce s
recanmendedpimized cods, for exampk:

® Instucton Slection—assemly coachanayzes each instruction in
your coce andsuggsts aternat, ejuivalent redacemens that are
faster or more Hicient

® |nstruction Sheduing—assemby coachusestsin-deph knowledge
of processor ehavior to suggestan @timal instructon seqence hat
preseves your cock's sematics.

®* Peephde Optimizaion—assembly coad idenifies paticular
instruction seqencesn your cade aml replaces them with asingle,
equivalent instruction.

® Partial Register Sall Elimination—assembt coachidenifies
instructon segencegha can prodice g@rtial register stalls and
replacesthem with alternative sequeces tlat do nd causepatial stalls.

7-13

; Intel Architecture Optimization Reference Manual

7-14

In Automaic Opimizationand $ngle Step Opimization modesyoucan
sekctor desekctthese ofimization types n the Assemly Coach Opions
tab.

Intel Compi ler Plug-in

The Intel C/C++ compl er is compatible with Micrasoft Visual C++* and is
available & a plg-in to the Microsot Developer Studio IDE.

Intel C/C++compiler dlows you 1o optimize yaur cock by using sgecial
optimizaion commaud-line options decribel in this secion.

The ogimizaion commad-line gotions gerrally are-0 1 ard -0 2. Each of
them embles a nimber of spedic opimizaion gotions. In mosttases;02
isrecommeded wer-O1 because theD2 option endlesinline
expanson, which heps pograms hat have manyfuncion cdls. The92
optionis an by default.

The-0 1 and-0 2 options enale the ogionsas Dllows:

-01 Enables ogions-Og, -0 i- ,-Os,-0vy,-0 bl,-G f,
-Gs, and-G y. However- O1 disabks afew options
thatincrease codeze.

-02 Enables ogions-Og,-0i,-0t,-0 y,-O bl,-G f,
-Gs, ard -G y. Confines optimizations to the
procedusl level.

All the commanedine @tions are dscribed in the Intel C/C++ Compiler
User’s Guide for Win32 §stams, ordernumber718195

The-0 d optiondisales opimization. You can sgcify optimization option
as “any” insteadof -0 1 or-0 2. This is the aly optimizaion notdisabkd
by -Od.

Code Opti mization Opti ons

This seciton descibesthe optons wed b optimize yar codeandimprove
the performance 6 your gpplication.

Application Performance Tools ;

Targeting a PFrocessor(- Gh)

Use-G n totargetan agplicaionto runon aspedic processorfor maximum
paformance. Anyof the -G n sulpbptions yai chase esults in your binaty
running ona coresponding Intel architedure 32-bit processes. -G6 is the
default, ard targets gptimization for the Rentium 1l and Pentium 111
processors.

Automatic Processor Dépach Support (- Qx[ext ensi ons] and
- Qax[ext ensi ons])

The-Qx[ext ensi ons] and-Qax[ext ensi ons] options povide
support to generate codethatis speific to processeoinstruction exensions.

-Qx[e xt ensi ons] gererates spealized cale D runexclusively on the
processorsridicaied ty the exensim.

-Qax [e xte nsio ns] generaes cale speializedto the spedied
extersions, bu dsogeneates genelic IA-32 cale.
The generic cock is usualy slower A runime check
for the processonyipe is made © determine which
code execues.

You @n speify the same ebersions for ether opton & follows:

[Pentium Il and Rentium Il processos, which usethe
CMDVand FCM(instructions

M Pentium Il and Rentium |1l processos
K Streaming SIMD Extensions,which include thei ard i
extensions.

CAUTION. When youuse-Qax[exte nsio ns] in conjuncion with
-Qx[exten si ons] , the exersions spedied by -Qx/ exte nsi ons]
can beused mcondtiondly bythe complier, andthe resuting program
will require the processoexiensons b execuk properly.

7-15

; Intel Architecture Optimization Reference Manual

7-16

Vectorizer Switch Options

The Intel C/C++Comgpler canvecbrize yair coce using the vecborizer
switch optons. The option that endles the vedorizeris-Qvec. The
compiler provides a mmber d other vecorizer swich opions hat allow
you to control vecbrizations. All vectorization switches equire the - Qvec
switch to be on. The default is off.

The vecbrizer swith options canbe ativated from the canmand ine. In
additionto the -Qve c switch, the compiler provides the foll owing
vectarization contol switch opions:

-Qvec_al ig nnent Contols the ddault alignmen of vecorizabke
daa.

-Qvec_ver bose Contols the vecbrizer’s diagnosic levels.

-Qrestr ic t Enables pointer disambiguaion with the

re st ri ct qudlifier.

-Qks calar Peformsall 32-bit floaing point arithmetic using
the Streaming SMD Extensions instead of the
default x87 instructions.

-Qvec_emns[-] Controls the adomaion of EMMS instruction
insetions to empty the MM X instruction
registers.

-Qvec_no_arg_al ia s -]
Assumes p entry that proedurearguments are
not diased

-Qvec_no_al ia s[-] Assumes thatmaliasing canoccur letween
objecs with differentnames.

Prefetching (- Qof [opt i ons])

Use-Qpf toauomatically insert prefetching on a Rentium 1l processor.
This option enables three suboptions (-Qpf _| oop, -Qpf _call , and
-Qpf _ssto re) eat of which improves cabe belavior. The following
exampk invokes-Qpf as ame option with all its functionality:

pronpt > ic | -Qpf prog.cpp

Application Performance Tools ;
Loop Unrolling (- Qunr ol | n)

Use-Qunro Il A to spedy the maximum number of times youwant to
anroll aloop. For examye, to unmwll a loopatmostfour times, useltis
command:

pronpt>ic 1-Q unroll 4a. cpp
To disable loop unrolling, specify n aso.
Inline Expansion of Library Functions(- G ,-Q -)

The canpiler inlines a mmber d stardard C, C++and mah library
functions by default. This ustally results in faster executon of your
program. Saonetimes, lowever inline expansion of library functions can
cause uexpetedresuts. For explanaton, seeintel C/C++ Compiler
User’s Guide for Win32 §stems, ordernumber718195

Floating-point Arithmetic Precision (- Op, - Op-, - Qor ec, - Qor ec_di v,
- Qoc, - Q ong_doubl e)

These ptions piovide optimizationswith varying degees of predsionin
floaing-point aithmefc.

Rounding Control Option (- Qr cd)

The canpiler ises he-Q rc d option improve the peformarce ofcode
that regures floaing pint cakulations. The ogimizaion is obtained ly
controlling the chang of the ounding mode.

The-Qrc d option disabks he chang to truncaion d the oundng mode
in floaing pant-to-integerconversions.

For complete details on all of the mde optimization options, reer to the
Intel C/C++ Compiler User's Guide for Win32 Systems, order number
718195

Interprocedur al and Pr ofile-Guided Optimizations

The following ae wo mehods b improvethe peformane of your coce
based onits urique pofile ard procedural deendercies:

Interprocedural Optimization (IPO)—Use theQip optionto analyze
your coce andapply optimizaions béweenprocealures wihin eachsource
file. Use multifile IPO with - Qip o to erable the gotimizaions betveen
procedues in sepate soucefiles.

7-17

; Intel Architecture Optimization Reference Manual

7-18

Use the Qopti on subopion with the aplicabde keywords to sekect
paticularin-line expansions andoop gtimizaions. f you spedy -Qi p
withoutthe-Qopt io n qualifi caion, he comfl er expads functons inline,
propagaes onstnt algumens, passesr@umaentsin registers, andmontors
module-level statc variables.

Profile-Guided Optimization (PGO)—Creats anmstrumened program
from yaur sourcecodeandspecial codefrom the comier. Each tme ths
instrumentd code & exeauted, the canpiler generaes adynamc
informaion file. When youcomple a £condtime, he dyramic nformaion
files ae merged into a summaty file. Using the profile information in this
file, thecompler atempts to optimizethe execuion d the mostheavily
travelled pathsin the program.

When you wse PGO, cosder the following gudelines:

®* Minimize he changesto your program afer insrumened exeaution
and bebre feedbak complation. Duing feedba& comglation, the
compilerignores dymmic informaion for functons modfiedafter that
informaion was gaerated.

NOTE. Thecompikr isstes a warninghat the dyramic information
correspomls b a malified function.

®* Repeatheinstrumeriation mmpilationif you male mary charges o
your sourcdfiles afer executon and bédore feedlack canpilaton.

For compkte deails ontheinterprocedua and piofile-guided
optimizaions, refer ¢ the Intel C/C++ Compiler User’s Guide for Wh32
Systems ordernumkler 718195.

Intel Performance Library Suite

The Intel Peformarce Library Sute (PLS) includes te following libraries:
* The Intel Signal Procesang Library: setof signd processing functions
similar to those available for most Digital Signal Processors(DSFs)

® The Intel Recognition Primitives Library, ase of 32-hit recognition
primitivesfor developers ofspeech- and charter-recogition softvare

Application Performance Tools ;

* The Intel ImageProcessigLibrary, a sé of low-level image
marnipulation functions paricularly effective attaking advantageof
MM X technology

® The Intel Math Kernel Library, asetof linear algebia and fast Fourier
transbrm functions for developess of scientific programs.

® The Intel ImageProcessig Primitives: a lledion of low-overhead
versions of canmon furctions on D arrays intendedas a spplement
or dternaive tothe Intel Image Pocesang Library.

Benefits Summary

The overall benefits the libraries provide to the application developers ae as
follows:

® Low-level functions for multimedia applications

* Highly-optimized rodines wth a C nterface, “ro assemlyl required”
®* Processotspecfic gptimizaion

®* Processomdedionand DLL dispatching

®* Pue Cersionfor ary IA processo

® Custom DLL builder for reducedmemory footprint

® Built-in error handling facili ty

The libraries are opimized for al Intel archtecture-basegbrocessorsThe

custan DLL builder allows your application to include anly the fundions
requred by the appicaion.

Librarie s Architecture

Each Ibrary in the Intel Performancelibrary Siiteimplemens specific
architecure hat ersures hjh performanceThe Sgnd Procesang Library
(SPL), the Recognition Primitives Library (RPL), and the Math Kernel
Library (MKL) use the ddatypes suchas sgnedand unsignedshot
integers, oufput scde or satration mode,andsingle and @ublepredsion
floas. The hulk of the funcions sppott realard compkx fundions.All
thesefeatures ensuréastinternal computations at higher pecision.

The Imag ProcssingLibrary (IPL) implemens spedfic image praessing
techniques sub as bi deghs, multiple channes, data alignment color
conversion, regon of interestand tiling. Theregion of interest (ROI) defines

7-19

; Intel Architecture Optimization Reference Manual

7-20

apariculararea wihin enireimage andendles youto perform geraions
onit. Tiling isa tehniquetha handles bBrgeimages ly diving an mage nto
sub-blocks.

The ImageProcesing Primitives (IPP) library is a colecion of
high-performance opetions peformedon 1D and 2Darrays of pixels. The
IPP provides bwer-ovetheadversionsof commonfuncions o 2D arays
and isintended asa sugplementor akerrative to he Intel Image Processg
Library.

The Math Kernel Library (MKL) is most helpful for sdentific ard
ergineerng aplications.lts high-performancemathfuncions include
Basic Linear Algebra Sibprograms (BLAS) andfast Fourier transbrms
(FFTs) thet run on multiprocessa sysems. No change of the amdeis
requiredfor multiprocessoisyppott. The library isthreadsake ard shavsthe
best resits whencompied by the Intel compiler.

All libraries empby complicated memory maagemehschemes ah
processordetcion.

Optimi zations with P erformance Librar y Suite

The ALS implemerts anumbe of optimizations discussedtiroughott this
marual, including achitedure-specific tuning such aloop wrolling,
instructions paiing am instructions schedling; memory manaing suchas
prefething andcachetuning.

The library suite focuses an taking advantage of the parallelism of the
SIMD instructions hat comprisethe MMX techology ard Steamig
SIMD Extensions. This tecinique mprovesthe peformane of
computationally intersive imageprocesang functions. Thus he PLS
includes a setof funcions whose p&ormance sgnificartly improves when
usal with the Intel architedure processts. In addtion, helibraries use
table look-up technques awl fast Fourier ransfoms (F-Ts).

The RS frees the appicaion developers from assempprogrammig for
the variety of frequently used tinctions andprepaes he programs br the
new processosince he libraries ae @pabk ofdekcing the processortype,
including the future processos, ard adpsting the code acordingly.

Application Performance Tools 7
Regist er Viewing Tool (RVT)

The Register Viewing Tool (RVT) for Windows 95,98, ad Windovs NT
allows yau to direcly view the cantenss of the Sreaming SIMD Extensions
registers without usng a delugger In addition, the R/T provides
disassemly information during cebug for Streaming SIMD Extensions.
This capéility of viewingthe conents d registeswithou using delugger
is the contibution of the RV T to optimizing your application. For comgete
details, refer to the Register Mewing Tool, version 40 orline telp.

Register Data

The RVT disgaysthe contents ofthe Streaming SIMD Extensionsregstas
in anRVT Dispay window. The cotents of the eght Streaming SIMD
Extensions egisters, XMMO through XMM?7 fields ae displayed n one of
four formats:byte (16 bytes), word (8 words), dword (4 doubdewords) or
single @ sinde words in floating-point formaf. The R/T allows youto set
the format asyou reed.Thenew value apass in red.

The window displays the rappeal code segmentregister andthe trapped
extendedinstruction pointer. The window has a Frst Byte Field which
allows yau to entr thefirst byte value of he break-pont conmand wien a
bre&k pant isreacted. Fom the R/T display window, youcan all the
Disassembly winde.

Disassembly Data

In adelug mode the disassemiyl windaw displays the full disassemly of
the currentElP aldress fus 40bytesof disassemly informaion bdore and
after the current EIP. This information is stown after every debug
bre&point or single-step deperding onhow you setyour dehug
environment, see Fjure 7-5.

7-21

; Intel Architecture Optimization Reference Manual

7-22

Figure 7-5

The RVT: Registers and Disa sse mbly Windo w

Intel Reqister Yiewing Tool - Drver: 2.07 - Build: Moy 30 1998

Cg- Inmh EIF |nn4n1211

tE.

huLi
HULA
AME
HULE)
HLLES
HLLES
HULLS

7

N=g

FiEst

BEryes:

-

..........................

MEdte | Eefreahl]

oo000e-002

+d

.00000e-002

te

.Q0000e-00z2

+0

.00000e+(

+1.

40000e-001

+1.

20000e-001

+1.

o0000e-001

+a

.00000e-(

te.

S0000e-001

te.

S0000e-001

te.

S0000e-001

tZ.

So000e-(

+0.

oo000e+000

+0.

00000e+000

+0.

o0000e+000

+0.

goo00e+(

+0.

00000e+000

+0.

00000e+000

+0.

00000e+000

+0.

ooo00e+(

+0.

Qoo0o00e+000

+0.

go0odde+000

+0.

Qoo00e+000

+0.

gooode+i

+0.

00000e+000

+0.

00000e+000

+0.

00000e+000

+0.

goo00e+(

+0.

00000e+000

+0.

00000e+000

+0.

00000e+000

+0.

ooo00e+(

Disaszsembly Window

000401z03:

Q00401E0a:
* 000401211:

Qoo040lz14:
o00401z17:

WOVaps

WoOvaps

nulps=

addp=

rmml

xmml ,
xmmll

KL
W F

xmml, *IMMWTORD PTR [eax+0607
#ZMMIORD PTR [eax+0e07

XMMIOPD PTR [eax+07fb.

Application Performance Tools ;

To ersure accratedisassemlyl informaion ata kreakpoint, you reed b
erter the correcfirst byte value of the break-pont commandrom the RVT
display window. The RV T uses infomation from memorywhich
rememiersthe value thatyou enter within a loop from ore iteraton to the
next, upto 20 LRU first bytes. Syichonization of the R/T ard the
instructions ocarrs atthe currem EIR.

7-23

Optimization of Somedy
Algorithms for the
Pentiun® /Il Processos

The MMX™ techndogy andStreaming SIMD Extensionsfor the Intel®

architecure (lA) instruction setprovides sngle-instrudion, multiple-data
(SIMD) floating-point instructions and SIMD intege instructions. These
instructions, n their turn, provide ameansa accekerae opeationstypical
of 3D graphics,real-time plysics, spatl (3D) audb, and dhers.

This appendix desciibes severa key algorithms and their optimizaion for
the Pentium® 111 processos. The aforithms dscussedre:

® Using Newvtor-Raptson Method with the reciprocd (rc pps) ard
reciprocal squaeroot (rs grt ps) instructions.

® Usingpr efet ch instruction for trarsformation ard lightng opeations
to reduce memaoy load ktencies.

® Using the packed sum of akolute differencesnstructon (psadbw) to
implementa fast motion-estmation error function.

®* Using MMX technobgy and $reaming SIMD Extensions ntrinsics
and vecbr classes for gnseqienial sampé stream ether toincrease
or reduce he numbe of sampés.

® Using Sreaming SIMD Extensions ecmology intrinsics and vecbor
classesdr both realandcompkx 164ap finite duration impulse
respnse (AR) filter.

A-1

l \ Intel Architecture Optimization Réerence Manual

Newton-Raphs on Method with the Reciprocal
Instruct ions

The Newvton-Raphson brmula for finding the oot of anequetionis

_ _ . Jx)
Xip1 = K==
fHx;)
where
X is the esimated root
f(x;) is the furction evaluated atthe rootestmatke
* (xi) isthe first deiivative of the funcion esaluaid & the root
esimate

The Newton-Raphsonmethodis the preferred methodfor finding the root of
functions for which the deiivative can be asily evaluaied and for which the
deivative is continuous aid nan-zero in the neighbahood of the oot The
Newton-Raphson mehod appoximately doullesthe numbe of significart
digits for eachiteraton if the initial guess § close 1o the rod.

The Nevton-Raphsonmehodis used to ncreasetie accurag of the resuls
for the reciprocal (rc pps) and te reciprocal squaeroot (rs gr tp s)
instructions. Therc pps andrs qgr t ps instructions return aresut, which is
acairak in the 12mostsignificantbits of the mantissa.Thesetwo
instructions hae a 3cycle latency opposedo 26 g/cles equiredto use he
divide instruction.

In somealgorithms, it maybe desiralde to have full accurag whilerealizing
the performance bneft of using the goproximaiton instructions. The
methodillustrated in the exkampkes yields rear ful accurag, andprovides a
sizabke performance gin campared ¢ using the dvide or square root
functions. One teration of the Nevton-Raphson methodis sufficientto
producea resui which is accurag to 23 of 24 bitsfor single precision
numbess 24 bits includes the implied “1” before the nary point).

For compkte detail s, see théncreasingthe Accuracy ofthe Results from he
Reciprocd and Reciprocd Sjuare Rmt Instructions usig the
Newton-Raphsam Method, Intel appicaion nae, ordernumber243%37.

Optimization for SomeKey Algorithms fe the Pentium Il Processas l \

Performanc e Improvements

For the ASM versions, the appoximaion instruction (rc pps) ard the
reciprocal squae root instruction (rs gr tps) by themseles are 1.8&and1.6
times, respetively, faste than implemening the Nevton-Raphso mehod
It is importart to investigate wheher te etra accuacy is required befae
using the Nevton-Raphsa methodto insure that the maxmum
peaformance s ohtained If full accuray isrequred,then te
Newton-Raplson mehod provides a 2 times ncrease for he recprocal
approximaton and35 imes br the reciprocal squae root appoximation
over C cale, and over a3.3 imes an®.6times ncreaseabwe the SIMD
divide instruction, respeadwely for eachoperaion.

Unrolling the loops further entances peformarce. After unrdling, he code
was sdieduled to hide the latency of the multipli es by interleaving any
non-dependen operations. The gain in paformance br unrolling the
reciprocal codewas die o reducedinstructions $5%) andschedling
(45%). The gain in performaie for umolling the reciprocal squae root
code was die o reduced nstructions 30%) and scleduling (70%).

Newton-R aphson Method f or Recipr ocal S quare Root

Exampk A-1 demonstates a Nevton-Raphson approximaiton for
reciprocal square root operaton implemerted with inlinedassemby for the
Streaming SIMD Extensions, heintrinsics, andhe F2vec4 class. Te
complele sampd progam, including the code ér the accuate
Newton-Raphson Méhods carbe found in the

VTuneEnv\ Samgde s\ NRRecip ro cal direcry of the VTune
Performance EBhancementEnvironmentCD, wersion 4.0.

A-3

l \ Intel Architecture Optimization Réerence Manual

A-4

Example A-1 Newton-Raphson Method f or Recipr ocal Square Root
Appr oximation

void Reci pSqRootA ppr oximat io NnASM(fl oat * Ipf Input, f loat *
Ip fRecipOut put, i nt iNumTroDo)

{
_asm
{
moves i,Ip fl nput
moved i,Ip fRecip Outpu t
mov ec X, IN umrloDo
shr ecx, 2 ; divide by4,do 4 at ati me
Invert :
movaps xmmGQ [e si]
add ed i, 16
rsqrtps xmmil xm moO
add es i, 16
movaps [- 16][edi] , xmni
dec e cx
jnzin vert
}
}
void R eci pSqRootA ppr oximat io nl ntr in si cs(f loat * Ip fl nput, f | oat *
Ip fRecipOut put, i nt iNumTroDo)
{
inti;
_ _ml28* n, * Qut;
In = (__ml28 *) | pfl nput;
Ou = (_ ml28*) Ipf Reci pOut put;
iN umToDo /= 4 ; ; divide #to doby 4 sincewe are
; doing 4with eachin tr insic
for(i =0; i < iNumToDo; i + +)
{
*OQut ++ = _mmrs grt_ ps(*I n++);
}
}

continued

Optimization for SomeKey Algorithms fe the Pentium Il Processas l \

Example A-1 Newton-Raphs on Method f or Recipr ocal Squar e Root
Appr oximation (continued)

void Reci pSqRootA ppr oximat io nF32vec4(fl oat* | pflnput, fl oat *
Ip fRecipOut put, i nt iNumTloDo)

{
in ti
F32vec4 * I n, *QOut;
In = (F32vec4 *) Ipf In put;
Ou = (F32vec4 *) Ip fRecip Outpu t;
for(i =0; i < iNumToDo; i +=4)
{
*Out ++ = rs grt(*1 n++);
}
}

Newton-R aphson In verse Recipr ocal Appr oximation

Exampk A-2 demonstatesNewton-Raphson metod for inverse reciprocal
approximaiton ushg inlined assemiyl for the Steamng SIMD Extensions,
the intrinsics, andthe F3%ec4 class. he canplete sampé progam,
including the coek for the accurat Newton-RaphsonMethods can be found
in the VTuneEnv\ Samples\N RRecipr ocal direcbory of the VTune™
Performance BhaacementEnvironmentCD, version 4.0.

Example A-2 Newton-Raphs on Inverse Reciprocal Appr oximation

void Re ci pApprox imat io nASM(fl oat* | pflnp ut, flo at * Ip fRecipO ut put,
in tiN umToDo)
{

_asm

—~

mos esi, | pfl nput

continued

A-5

l \ Intel Architecture Optimization Réerence Manual

A-6

Example A-2 Newton-Raphson Inverse Reciprocal Appr oximation (continued)

mov
mov
shr

In vert :

void Reci pAppro xi matio nl ntri nsics (f loat * Ip fl nput,
i nt iNumTroDo)

movaps mmo, [esi]
edi , 64

add

edi, | pfRecip Outp ut
ecx, i NunToDo

ecx, 4

; divideby 16, do 16 at at ine

movaps xmmz2 [1 6] [e si]

movaps xmm4, [3 2] [e si]
movaps xmme6, [4 8] [e si]
add es i, 64

rc pps xmni, x nMm0O

rc pps xmn3, x nmmi

rc pps xmnd, x nm#

rc pps xmnv, x nmb

movaps [- 64][edi] xmni
movaps [- 48] edi] xmn3
movaps [- 32] edi] xmnd
decec x

movaps [- 16][edi] xmnT
jnzin vert

Ip fR ecipO ut put,

{

inti;
n, * Qut;

_ m128 *

flo at *

continued

Optimization for SomeKey Algorithms fe the Pentium Il Processas l \

Example A-2 Newton-Raphs on Inverse Reciprocal Appr oximation (continued)

In = (__ml28 *) | pfl nput;
Ou = (_ ml28*) Ipf Reci pOut put ;

iN umlfoDo = iN umloDo >> 2 ; ; divide # to do by 4 since we
care doing4 with each intr in sic

for(i =0; i < iNumToDo; i + +)
{

*OQut ++ = _mm_rc p_ps(*| n++);
}

void Reci pAppro xi matio nF32vec4(fl oat * Ip fln put, f loat *
| pf Recip Outp ut, int i NumToDo)

{
in ti
F32vec4* In, *Out;
In = (F32vec4 *) Ipf In put;
Ou = (F32vec4 *) Ip fRecip Outpu t;
iN umToDo = iNumToDo >>2;; divi deby 4, do4 at a ti me
for(i =0; i < iNumToDo; i + +)
{
*Out ++ = rc p(*I n++);
}
}

3D Transformation Algorithms

The examples of 3D transformation gperations algorithms in this section
demonstatehow to write efficiert code with Streamihng SMD Extersions.
The purpose 6 these ajorithms s to malke the ransformaion and lighting

A-7

l \ Intel Architecture Optimization Réerence Manual

A-8

operatons work togeter dficienty andto use mw pref et ch instructions
to reduice memoryload ktencies. The performance 6 codeusing the
Streaming SIMD Extensionsis aroundthree tmes beter thanthe original C
code.

For complete details, refer tathe Sreaming SMD Extensions -- 3D
Transformation, Intel appicaion rote, ordernumber24383L.

Aos and SoA Dat a Struct ures

There ardwo kinds of dda structures:the traditional Array of Structures
(AoS),with data organizedaccorang to vertices - ¥ Yg Zo, and he
Structure of Arrays (SoA), with data organized &cording to coodinaes-
Xg X1 X2 X3. The S\ dat structure s a more atural strudurefor SIMD
instructions.

The best performances adieved by performng the trarsformation with
daain SoA format However sane appicaions reqire the datin AoS
format Inthesecassit is still possbleto use Steamirg SIMD Extensions,
by transpaing the dat to SoA formatbefae the ransformaton and
lighting operations. After theseopesgtions ae compkte, detransppse he
daa back to &S format

Performanc e Improvements

The performance improvemerts for the 3D tansform ajorithms carbe
achieved by

® usingSoA structures

* prefething dag

* avoidingdepeencg chains

SoA

The Sreaming SIMD Extensionsenabg increased rformanceover scahr
floaing-point cade, trough uilizingthe SMD feaure d these
instructions. Whenhte data is arrangedn SoA famat, one instruction
handles four dta elemens. This arrangememndso eliminates bading dag
thatis not relevant for the transformaton, such asexture coordnaes, cdor,
and spetral informaion.

Optimization for SomeKey Algorithms fe the Pentium Il Processas l \

Prefetching

Additional performancegan is acheved by prefething the dat from main
memory and ly redadng the longlatercy divps instruction with alow
latency rc pps instruction, orits Nevton-Raphson appoximation for better
predsion. For more nformaion, seeghe“Newton-Raphsam Method with
the Recproal Instrudions” secion eatier in this goperdix. For comgete
details, refer to the Increasing the Accuracy of the Results from the
Reciprocd and Reciprocd Square Root Instructions ushg the
Newton-Raphsam Method, Intel appicaion nae, ordernumber243637.

Avoidi ng Dependency Chains

Yet anoherpaformance ncrease an be dtained by avoiding wiiting cale
that contains chans of deperdentcakulations. The deperdeng/ prodem
can occu with the movhps/movip s/ shuf ps sequerce, shce @ch

movh ps/movl ps instruction bypasses part ohe desihation register. These
instructions camot exectte wntil prior instructions that gereratethe
corresponding register are canpleed This depemleng/ canprevent
successive loop iterationsfrom executing in parallel.

Onesoluionto this problem s to include a128+bit loadfrom a dummy
local variable to each regjister used with amovh ps/movl ps instruction. This
effectively breaks depadeng by performing an ndependentload fom a
memoryor cacled locaion.n some caes, suclas bading a sedbn of a
transform maix, the cale hat useghe swiz4ed resuts dread/ includes
128-bit loads. h thesecases, maddtional explicit 128-bit dummy loadis
nat required.

Implement ation

The cale ekampkes, including a samfe program sing the techriques
desciibed abae canbe fourd in the\V TuneEnv\S anpl es\3D Tr ans\ aos
and \V TuneEnv\ Sanpl es\3 DTra ns\ soa direcories ofthe VTune
Performance BhancemenEnvironment version 4.0 Exampk A-3 shavs
the code fotthe trarsformation aforithm for the SoA ersion impemerted
in scdar C, awl the intrinsics and \ecbr class for he Streamirg SIMD
Extensions.

A-9

l \ Intel Architecture Optimization Réerence Manual

A-10

Example A-3 Transform SoA Functions, C Code

void T ran sf or mRo jec tSoA(Verti ceslList *inp, Vert ic esList *out, int
count, ca mega * cam

{
in ti
fl oatxy ,z;
fl oatorw ;
for (i=0; i<count; i+ +){
X =inp>xi] , y =inp->y[i] , z= i np->z[I];
orw=Xx*ma t->30 +y*ma t->31+z*ma t-> 32+
ma- >_33;
out- >x[i] = (x*mat-> 00 + y*ma-> 01 + z*mat->_02 +
mat- >_03) *(cam->sx/ orw) + cam->tx ;
out- >y[i] = (x*mat->_10 + y*ma-> 11 + zZ*mat->_12 +
mat - >_13)* (c am>sy/or w) + ¢ am>t v;
out- >z[i] = (x*mat->_20 + y*ma-> 21 + zZ*mat->_22 +
mat - >_23)* (c am>sz/or w) + ¢ am>t z;
out- >Wii] = orw
}
}

/'l This versionus esth ein tr insicsfo rth e Stream ng Sl MD

Exte nsion s.

/I Note th at th eF 32vec4canbeusedi nplaceof _ ml28va ri abl es as
/| operands to t he intr in si cs.

void Tr ansf or mProj ectS oAXMNh tr in (Vert ic esLi st V*inp, Vert ic esLis tV
*out, int c ount, camera *cam)

{
in ti
F32vecdx , vy, z;
F32vec4orw;
F32vec4 S X=cam >sx, SY=cam>sy,S Z=cam >sz;
F32vec4 T X=cam >t x, TY=cam>ty ,T Z=cam >t z;

continued

Optimization for SomeKey Algorithms fe the Pentium Il Processas l \

Example A-3 Transform SoA Functions, C Code (continued)

for (i =0; i <count /VECTORSIZE; i+ +){
x = inp->x[i] , y =i np->y[i], z= i np->z[i];

/I orw= x * ma30+ y * mat31l + z * ma3 2+ mat 33;

orw=(m m_add_ps(
_mm_add_ps(
_mmnul _ps(x, ma30),
_mmmul _ps(y, ma3 1)),
_mmadd_ps(
_mmmul _ps(z, ma3?2),

mat33)));
/I out->x[i] = (Xx*mat- > 00 + y* ma- > 01 + z* ma- > 02 +
mat - >_03)* (c am>sx/ orw) + ¢ am>t X;
out- >x[i] = (_nm_ add_ps(
_mm_nul _ps(
_mm_add_ps(

_mm_add_ps(
mmmu ps(x, mat00),
mmmu ps(y, mat0l)) ,

_mm_add_ps(
mmmu ps(z, mat02),
mat0 3)),

_mm_di v_ps(SX, orw)),
™)

/I out->y[i] = (X*mat- > 10 + y* ma- > 11 + z* ma- > 12 +
mat - >_13)* (c am>sy/ orw) + ¢ am>t v;
out- >y[i] = (_nm.add_ps(
_mm_nul _ps(
_mm_add_ps(
_mm_add_ps(
mmmu ps(x, matl0),

continued

A-11

l \ Intel Architecture Optimization Réerence Manual

Example A-3 Transform SoA Functions, C Code (continued)

mmmu ps(y, matll)) ,
_mm_add_ps(
mmmu ps(z, matl2),
mat 13)),
_mm_di v_ps(SY, orw)),

TY)) ;

/I out->z[i] = (X*mat- > 20 + y *mat- > 21 + z* ma- > 22 +
md- > 23) *(cam->sz/o rw) +ca m->tz ;
out- >z[i] = (_nm_add_ps(
_mm_mul _ps(
_mm_add_ps(
_mm_add_ps(
mmmu ps(x, mat20),
mmmu ps(y, mat2l)) ,
_mm_add_ps(
mmmu ps(z, mat22),
mat 23)),
_mm_di v_ps(SZ, orw)),
T2)) ;

out- >Wii] = orw

}

/I Thi sve rsion use sth eF3 2vec4cl assab str acti on for the Streamn g
/| SIMD Exte nsio ns in tr in si cs.

J= e e e e e emeheem e e em ek ke e e ed ke e e e e

void T ran sf or mRo jec tS oAXMMRvec(V erti cesList V *i np, Verti cesLis tV
*out, int c ount, camera *cam)

{

continued

A-12

Optimization for SomeKey Algorithms fe the Pentium Il Processas l \

Example A-3 Transform SoA Functions, C Code (continued)

in ti

F32vecdx , vy, z,;

F32vec4orw;

F32vec4 S X=cam >sx, SY=cam>sy, S Z=cam >sz;
F32vec4 T X=cam >t x, TY=cam>ty, T Z=cam >t z;
for (i =0; i <count /VECTORSIZE; i+ +){

X = inp>x[i , y =i np->y[i], z= i np->z[I];
orw=x* mat30+y * ma3l + z* mat32+ mat3 3;
out- >x[i] =

((((x* mat00) +(y * ma0l) + (z * mat02) +
ma0 3) * (SX/orw))+ TX);
out- >yJi]
((((x* matl1l0) +(y * mall) + (z * matl2) +
mal 3) * (SY/orw)) + TY);
out- >z[i] =
((((x* mat20) +(y * ma2l) + (z * mat22) +
ma2 3) * (SZ/orw)) + T 2);
out- >Wji] = (orw);

Assembly Code for SoA Transformation

The samfe assembyt coce is an gtimizedexamge of trarsformaton of
daain SoA format You can find the cale n

\V TuneEnv\S anpl es\3d Tr ans\ soa\s oa.a smfile of the VTune
Performance BhancemenEnvironmentCD, version 4.0.

In the optimizedcock the instructions are rescéduled b expose more
padlelismto the procesa. The bast coc is compaed of faur
independat blocks,inhibiting parallel execuion. The instructions in each
block are dda-depenent. In the following optimizedcodethe instructions
of each tvo adpcent blocks ae interleaved, erabling muchmore paalel
execution.

A-13

l \ Intel Architecture Optimization Réerence Manual

A-14

This optimization assumedhiat the verticesdat is already in the cache If
the datis not in the cache this code becomesnemory-bouwnd. In this case
try to add moie computations within the loop, for examge, lighting
calculations.Anotheropton isto prefetch the dag, using the Sreaming
SIMD Extensions prefeth instruction.

Motion Estimation

This secton explains hav to use he Sreaming SIMD Extensions ad

MM X ™ technobgy instructions b peform motion esimation (ME) for the

MPEG Enooder Motion estimation (ME) isa video compressiontechnique

paformed durngvideo steam eroding. ME beneits situations n which —

®* mostof the objects characerisics, suchas shap andorientation, stay
the sane from frame b frame

® only the obpcts position within the frame banges.

The ME module in most encoders is vey computation-intensive, soit is
desiralie o optimize t as mub as pasilie.

For complete detail s, see the Using Steaming SIMD Extensionsin aMotion
Esimation Algorithm fa MPEG Encoding, Intel agplication note, oder
number243652

This sectonincludescodeexampks thatimplemert the rew instructions. In
particular, they illustrate the use of the packed sum of alsdute differences
(psadbw) instruction o implementa fast motion-esimation error functon.

Performanc e Improvements

The Streaming SIMD Extensions @deimproves ME performanceusingthe
following technques:

* Implemening psad bw instrudion to calculate a sum 6 absoute
differenes for 16pixels. With MMX techrology, the cogk requres
about 20 MMX i nstructions, including packed subtact, paked
addition, logical, andunpad instructions. The same aculation with
Streaming SIMD Extensions reqiresonly two psadbw instructions.

®* Redudng potrtial delys due o branch mispredictions ly using
alsolue difference dculation which does notcortain ary branch
instructions.

Optimization for SomeKey Algorithms fe the Pentium Il Processas l \

® Using seach algorithm with block-by-block compaisons br error
cdculation.

® Unralling the loop saves four times on loop overhead, that is, fewer
instructions are recuted.

Sum of Absolute Differences

The moton estimaion modue in mostencalers & very compuaton-
intensive, dwe to the large numigr of block-by-block comparisors.
Streamng SIMD Extensions pride afast way of performing te
fundamendél motion-error catulation wsing the ps adbw instruction to
compute the alsolute differenceof unsgned, packed tytes. Owrall, the
Streaming SIMD Extensions mplemenétion of this error furctionyields a
1.7 performane improvementover the MMX techrology implementgtion.

Prefetching

The pr ef etc h instrudion alsoimproves performace ty prefething the
daaof the estmated block. Since pecise bbck postion in the esimated
frame B known, pr efe tc h canbe usednce esery two blocksto prefetch
sixteen 2-byte cachdinesfor the wo next blocks. To avoid prefetding
morethan once, he pr ef etc h instruction mustbe phceal ouside d the
loop of motion vecbr seach.

Implement ation

The canplete sampé progam for the scaar C, SIMD nteger, and SMD
floaing-point assembhf versions ofthe Motion Estimaion algorithm canbe
found in the\ VTuneEnv\ Sampe s\ Mdi onEst direcory of the VTune
Performance BhancementEnvironmentCD, version 4.0.

Upsample

This secton presets an algorithm caled “smodhed upsampé” which is a
sutset of a more gneralclass ched a“‘resampé” algorithm. Snoothed
upsamping atemps to make a beter “guess” athe original signal shag by
fitting a smoth cuive through four adjacentsampé points and gking new

A-15

l \ Intel Architecture Optimization Réerence Manual

A-16

sampeés only between the center two sampés. This isinterded © minimize
the introducion offalse higherfrequercy commnens andbeter mach the
original signal shape.

This algorithm could be appied to ary sequetial sampé stream ether ©
increasdahe numigr of sampés, a it canbe sed ashefirststepin
redwcing the rumber d samples. In he latter case, te smoohed ypsampé
algorithm would be followed ly applicaion d a filter to produce a smider
number of samies.

The Sreamng SIMD Extensions ca provide peformance mprovemerts
for smodhed upsamping, ard in gereral, for ary type d “resamping”
algorithm.

For complete cetail s, see the A Smothed Upsample Algorithm using
Steaming SIMD Extensions,Intel apgicaion rote, order number24365%.

Performanc e Improvements

The performance @in of the smoohedupsampé dgorithm with the
Streaming SIMD Extensions for he assembyt cock is from 3.9t0 5.9 imes
faster than he C codewhile te intrinsic code s from 3.4t0 5.2 times faser
thanthe C code.

While ahandcodedx87 version of the ajorithm was notimplemened,
typical paformance mprovemert of x87 over a \ersion caded n C is 25%—
and herce appoximatkly haf as Bstas he Sreaming SIMD Extensions
implementétion.

To convert one seondof 22kHz audo sampés o onesecouwl of 44 kHz
audio sampés, the Steaming SIMD Extensions \ersion would requie anly
alout1.3 to 1.9million clocks — drivial fracion ofone seconds processig
ona Patium Il processa

Streaming SIMD Extensions Implementat ion of the Up sampling

Algorithm

The canplete sampé progam for the scahr C, andSIMD-floating point
(intrinsics and vecbr class) ersions of the Upsamfe algorithm can be
found in the\VT uneEnv\S ample s\ Upsample direcbry of the VTune
Performance EhhancementEnvironmentCD, version 4.0.

Optimization for SomeKey Algorithms fe the Pentium Il Processas l \

The performane of optimized assemplversion of the smaothed upsamie
algorithm with the Steamng SMD Extersions carnbe canpared o the C
version of the same ajorithm, intrinsics ersion in C++, o to the FVEC
class likrary version asoin C++ The assenbly version is sibstantially
faster than he C version.

FIR Filter Algorithm Using Streaming SIMD
Extensions

This section discusses th agorithm for both realand canplex 16+ap finite
duration impulse respoge (FIR)filter ising Streamng SMD Extersions
techrology ard includes @deexamplesthatillustrate the implemenétion of
the Streaming SIMD Extensions SIMD instruction se.

For complete details refer tothe 32-bit Floating Point Real & Complex
16-Tap FIR Filter Implemened Using Steaming SIMD Extensions, Intel
application note, oder numbe 243&3.

Performance Improvements f or Real FIR Filter

The following setions discuss cosiderations and echiques sed b
optimize te performance 6the Steaming SMD Extersions coe: for the
real 16tapFIR filter algorithm. These techniques are gearally applicabke
to optimizing Sreamng SIMD Extensions cale onthe Petium 111
archtecure.

Parallel Multiplication and Interleaved Additions

Usepaallel multi plications and the CPU-bound interleaved additions to
increasehenumber of memy accesses for FIRIfer. All Streamirg SIMD
Extensions tanshte o atleasttwo micro-ops. When darge rumber d
Streaming SIMD Extensions araused cosecuively, the resufing micro-ops
retire quickly which slovs davn the peformane of the decode.

Reduci ng Data Dependenc y and R egist er Pressur e

In the optimizedversion of the Sreaming SIMD Extensions echrology,
registers were rdéocatd atseveral points, b redice rayister presste and
increaseoppatunities for rescteduling instructions. The pimary examge

A-17

l \ Intel Architecture Optimization Réerence Manual

A-18

of this is the use d xmmoOto peform parall el multiplications. In the
unoptimizedversion, xmm0Ois used eclusively to access dat from the input
arrayand gerform the mutiplicaion aginstthe codficientarray In the
optimized \ersion, xmm4 andxmn are implemeneéd to dleviate pressure
from xmmQ. While xmm4is usedto compue values fa both y(n+1) and

y(n+3) , the only other conrecion betveenthe paellel multipliesis the use
of xmni to hold acopy of the inputvalues usedy the oherregistess. This
resultsin a few very precise depexdendeson the paralel partion of the
algorithm, ard increaseshe oppatunities for rescheduling instructions.

Scheduling for the Reorder Buf fer and the Reserv ation
Station

Keeping track d the numbe of micro-ops n the reorder buffer (ROB) and
the Reseration Station is anoher optimizing ecmique wsed for he
Streaming SIMD Extensions cale. Idelly neither the ROB nor the
Resewation Sation should becomesaurated with micro-ops (limit is 40 for
the ROB, 20 for the Reserstion Station). Usualy, the satiration canbe
eliminated through caeful scheduling ofinstructions ergeted b different
CPU pats, and by taking into account instrucion latendes wten
scheduling.

Wrappi ng the Loop A round (Software Pipelining)

The interleaved addiions atthe erd of the loop are cmmpletely CPU-bound
and very dependentuponone anther. The resul of this istha the ROB and
the Reseration Station quickly satuate presening rew micro-ops from
erteringthe ROB. Due b daa depemlencies, he instructionscould not be
rescleduled \ery far back into the man loop baly. To alleviate tis
condition, the first setof multiplies (agginstthe first cdumn of coeficierns)
ard theloop cntrol instructions were pulled out of the op of theloopanda
copy placal atthe bdtom. Whie this increased he sie d the coa, the
resulting opportunities or instruction schedling prevenied the satiration of
the ROB and Resewation Station while improving the overal throughpu of
the loop. A secoml copy of the instructions musbe phced owtidethetop of
the loop to “prime” the loop for its firstiteraton.

Optimization for SomeKey Algorithms fe the Pentium Il Processas l \

Advancing Mem ory Loads

Memory acceses reque a mnimum d threeclock g/cles b complete if
there Bacache ht on thelL 1 cacle. These potentially long ktencies shoudl
beaddresse by schedling memory acesses asarlyandas &r avay &
possille from the use bthe accesskdat. It is also hepful to retain data
accessed froomemay within the CPUfor as Iang as possie to redue the
nead b re-readlie dad from memory You can tsenethisin the FIR flter
paformance wha using thexmmlas a sirage aread hold four inpu
values whie they are muliplied by four different setsof coeficiens.

Separating Memory Access es from Oper ations

Separatng memoryaccesses fromperatons hat usethe accesskedat
allows the micro-ops geneatedto access mmaory o refre before he
micro-opswhich acualy perform he operaion. If amemory acess is
combined with an @eraton, al the micro-ops gneraed by the instrudion
walit to retire urtil the last micro-op is finished This can kave miao-ops
useal to accass memory \aiting to retre in the ROB for multiple clocks,
taking up valuable buffer space. Comare he uroptimizedcodeto the
optimized @de br performing mutiplicaions gainstthe wefficiert da@in
the example that follows.

Unoptimized ode:

movaps xmmQ0 xmni; ; Reload[n-13:n-16] for newp roduct
mups x mmD, [eax + 1 60]; ; xmmO= i nput [n-13:n-16] * c2_ 4
Optimized code:
movaps xmm4, [ea x + 160 -3 2]; ; Load c2_2f or ne w product
m ul psx Mm%, xnmi; ; Xm m4 =in put [n -5:n-8 *c 2_2

Unrolling the Loop

The Ccock of the AR filter has two loops:an auter loop © move upward
through the input values,and aninnerloopto perform the dot product
beaweenthe inputand taps arrayg for eachoutput value. With Streamng
SIMD Extensions techndogy, the innerloop @n beunrlled ard orly a
single loop cancontol the fundion.

A-19

l \ Intel Architecture Optimization Réerence Manual

A-20

Loopunrolling berefits peformane in two ways: it lessenshe incidence
of branchmisprediction by removing acondtionaljumpand t increaseshe
“pool” of instructions aailable for re-ordering ard schedling of the
processorKeepin mind though that loopunrolling makes he codelarger.
Consder whether youneedto gain in performanceor in coce size.

Minimizing Pointer Arithmetic/Eliminating Unnec essary
Micro-ops

In the unogimized \ersion, the pointer arithmedic is explicit to allow for a
deailed explandion of the acceses ito the taps arrag. In the ogimized
version, the explicit arithmetic is converted to implicit address @ culations
contained in memoryaccesseshhis converson redices he rumber d
non-essenitl micro-ops germrated by the cae of the loopandthe goa of
optimizaion is to eliminate tnnecasary micro-ops whegver posdile.

Prefetch Hints

Becase e FIR filterinput datais likely to bein cache,due © the factthat
the dbta was recerlly acessedd build the input vector, a pefetd hint was
includal to pre-lbbadthe next cachdineworth of dat from the input array
Accesss tothe taps araysand b the histolical inpu data occur every
iteration of the loopto mantain goad tempoal locality after ther initial
acess. kepin mind thoudh that the piocessomwill na follow all of the
hints ard therefore e performancéeneits d the prefeth hint can be
questbnable.

Minimizing Cac he Pollution on W rite

The way the ouiput vecbr is usedinfluerces he mehod of data staage.
Bastally, either theoutput vecbr (in the caling program) is usedom after
itis populated, or t will not be accssed for someitme In the firstcase, he
movaps instruction should be used to write out the data. In the second case,
if the ouput vecbr is nat used for sane time, it may ke wise to minimize
cade pdlution by using the movntp s instruction.

Optimization for SomeKey Algorithms fe the Pentium Il Processas l \

Performanc e Improvements for the Comple x FIR Filter

The techiques dscribed for realFIR filter aboe apgy to the compéx
16-tap FIR filter as wel. The following sectons dscuss dew paticular
techniques aplicale to the compex FIR filters.

Unrolling the Loop

The changeto the taps arrayincreaseshe rumber of terations of e inner
loop of the besic FIR algorithm. This, conbined wih anincreased mmber
of instructions due to the complex multiply, resutsin many more
instructions wherthe loop s urrolled andthe cock size ncreases.
However, if the loop & not unrolled, the dgorithm produces a band
misprediction ard pipeline stll for every iteraton d the ouger loop.

To redwce brach mispredctions aml minimize ®de ske,the inner bop
may be umolled only erouch times b reduce he numbe of iterations b
four becase tte archiecure oy supmrts faur bits of branchhistay (a
four-brarch history) in its branchpredction mectanism.

Reduci ng Non-V alue-Added Inst ruct ions

To limit the useof shufle, tnpadk, and move instructions in analgorithmis
desiralde becausehese nstructions donot perform awg arithmeic funcion
onthe dat andare basially “non-value ade@d.” An dternaive dat staage
format geared bwards parallel (or SMD) procesgig, eliminates he reed
to shuffle the compéx numbers toenalbe compkx multiplies. Havever,
somdimes he SMD strudures do rot fit well with the olject-orientated
programmirg. The tradeof of eliminatng “non-value alded instrudions &
a speed-upresuting from this dimination versus hav much werhead &
necessaryd use the SIMD data structures beforeexecutng the furction.

Comple x FIR Filter Using a SIMD Data Structur e

The defnition of SIMD technques is tlata sirgleinstruction opestes upon
multiple dat elemens of the same ype.A more eficiert version d the
complex multiply can be mplemenéd if the real and imaghnary compnerts
of the compkx numlers are sired sepratdy, in their ovn arrays.

A-21

l \ Intel Architecture Optimization Réerence Manual

Code Sampl es

The canplete sampé progam codefor the scaar C, andSIMD floaing-
paint (intrinsics and \ecbr class) ersions of he Upsampe algorithm can
befoundin the 32-bit Floating Point Real & Complex 16 Tap FIR Filter
Implemengd Using Streaming SMD Extensions,Intel application note,
order number243%43, te\V TuneEnw Train in g\ rc _fi r. pdf fileof the
VTune Rerformance Bhancemem EnvironmentCD, version 4.0.

A-22

Performance-Monitoring
Events and Countser

This appedix describes the performane-afecting events caunted ly the
counters onPentum® Il andPentum Il processors.

The mosteffective way to improve the performancef appicaton isto
determine the areas of grformance dssedn the codeandremedy te stal
conditions. Inorder to identify stall conditions, Pentium Il and Pentium IlI
processos includetwo couners that allow you to gather information abaut
the pefformanceof applcaions by keepingtrackof events duiingyour coce
exeaution. The counérs piovide informaion thatallows yau todeermine if
and where a appicaion hes stdls.

The caunters carbe acessed Y using Intel’s VTune™Performance
Analyzeror by ushg the peformancecourter instructions wthin the
application code.

Performance-affecting Events

This section presents Table B-1 that lists those everts which can be counted
with the performane-monioring cownters andread wih the RDP\NC
instruction.

The cdumns n the able areas folows:

® The Unit column gives the micro-architecure orbus unt that produes
the evert.

®* The Brent Number coumn gives the hexadeémal number denifying
the event.

®* The Mnemont Event Name coumn gives the name 6 the event
® The Uni Maskcolumn gves the wnit mask requied (if any).

B-1

B Intel Architecture Optimizaton Rderence Manual

® The Description damn.
® The Comments ¢amn gives additional informatin abaut the event.

These grformance-moitoring events are ntendedas gudes for
peformance uning. The counter values rgorted are mt always absoltely
acarate andshout be usedas a elative guide for tuning. Known
discrefncies are doumened where apticalde. All performane evens are
model-specffic to the Rentium 1l andPentum Il proessors andre no
architecurally guaanteed n future versions d the piocessos. All
peformance @ern encodings notlistedin the table are reseed and their
usewill result in undefned ounter results.

Table B-1 Performanc e Monit oring E vents
Event Mnemonic Unit
Unit No. Event Name Mask Description Comments
DataCache 43H DATA_MEM_R 0OOH All loads from any memory
Unit (DCU) EFS type. All stores to any memory

type. Each part of a split is
counted separately.

NOTE: 80-bit floating-point
accesses are double counted,
since they are decomposed
into a 16-bit exponent load and
a 64-bit mantissa load.
Memory accesses are only
counted when they are actually
performed, e.g., a load that
gets squashed because a pre-
vious cache miss is outstand-
ing to the same address, and
which finally gets performed, is
only counted once.

Does notinclude I/O accesses,
or other non-memory
accesses.

45H DCU_ OOH Total number of lines that have
LINES_IN been allocated in the DCU.
46H DCU_M_ OOH Number of Modified state lines
LINES_IN that have been allocated in the
DCU.

continued

B-2

Performance-Monitoring Events and Counters

Table B-1 Performance Monit oring E vents (continued)
Event Mnemonic Unit
Unit No. Event Name Mask Description Comments
DataCache 47H DCU_M_ OOH Number of Modified state lines
Unit (DCU) LINES_OUT that have been evicted from
(cont’d) the DCU. This includes evic-
tions as a result of external
snoops, internal intervention,
or the natural replacement
algorithm.
48H DCU_MISS_ O O00H Weighted number of cycles An access that also
UTSTANDING while a DCU miss is outstand- ~ Misses the L2 is
. short-changed by two
ing. Incremented by the num- N :

. cycles. (i.e. if countis N
be_zr of outstandlng_cache_ cycles, should be N+2
misses at any particular time. cycles.) Subsequent
Cacheable read requests only loads to the same
are considered. Uncacheable cache line will not result
requests are excluded. Read- in any additional counts.
for-ownerships are counted as Count value not
well as line fills, invalidates, precise, but still useful.
and stores.

Instruction 80H IFU_FETCH OOH Number of instruction fetches, Will be incremented by
Fetch Unit both cacheable and 1 for each cacheable
(IFU) non-cacheable. Including UC line fetched and by 1 for
fetches. each uncached instruc-
tion fetched.
81H IFU_FETCH_ OOH Number of instruction fetch
MISS misses. All instruction fetches
that do not hit the IFU i.e. that
produce memory requests.
Includes UC accesses.
85H ITLB_MISS 0O0H Number of ITLB misses.
86H IFU_MEM_ 00H Number of cycles instruction
STALL fetch is stalled, for any reason.
Includes IFU cache misses,
ITLB misses, ITLB faults, and
other minor stalls.
87H ILD_STALL 00H Number of cycles that the

instruction length decoder
stage of the processors pipe-
line is stalled.

continued

B-3

Intel Architecture Optimizaton Rderence Manual

Table B-1 Performanc e Monit oring E vents (continued)

Event
Unit No.

L2 Cache 28H

2AH

24H

26H

25H

27H

2EH

21H
22H

Mnemonic
Event Name

L2_IFETCH

L2 ST

L2_LINES_IN

L2_LINES_
ouT

L2_LINES_
INM

L2_LINES_
OUTM

L2_RQSTS

L2_ADS

L2_DBUS_
BUSY

Unit
Mask

MESI
OFH

MESI
OFH

O00H

OO0H

OO0H

OOH

MESI
OFH

00H
OO0H

Description

Number of L2 instruction
fetches. This event indicates
that a normal instruction fetch
was received by the L2. The
count includes only L2 cache-
able instruction fetches; it does
not include UC instruction
fetches. It does not include
ITLB miss accesses.

Number of L2 data stores. This
event indicates that a normal,
unlocked, store memory
access was received by the L2.
Specifically, it indicates that
the DCU sent a read-for- own-
ership request to the L2. It also
includes Invalid to Modified
requests sent by the DCU to
the L2. It includes only L2
cacheable store memory
accesses; it does not include
1/0 accesses, other non-mem-
ory accesses, or memory
accesses like UC/WT stores. It
includes TLB miss memory
accesses.

Number of lines allocated in
the L2.

Number of lines removed from
the L2 for any reason.

Number of Modified state lines
allocated in the L2.

Number of Modified state lines
removed from the L2 for any
reason.

Total number of all L2
requests.

Number of L2 address strobes.

Number of cycles during which
the L2 cache data bus was
busy.

Comments

continued

Performance-Monitoring Events and Counters

Table B-1 Performance Monit oring E vents (continued)
Event Mnemonic Unit
Unit No. Event Name Mask Description Comments
L2 Cache 23H L2_DBUS_ O0OH Number of cycles during which
) BUSY RD the data bus was busy
(Com d) - transferring read data from L2
to the processor.
External 62H BUS_DRDY_ OOH Number of clocks during which Unit Mask = 00H counts
Bus Logic CLOCKS (self) DRDY# is asserted. Essen- bus clocks when the
(EBL) 20H tially, utilization of the external processor is driving
system data bus. DRDY Unit Mask = 20H
(any) counts in processor
clocks when any agent
is driving DRDY.
63H BUS_LOCK OOH Number of clocks during which Always counts in
CLOCKS (self) LOCK# is asserted on the processor clocks.
external system bus.
20H
(any)
60H BUS_REQ_O OOH Number of bus requests out- Counts only DCU
UTSTANDING (self) standing. This counter is incre- full-line cacheable
mented by the number of reads, not Reads for
cacheable read bus requests ownership, writes,
outstanding in any given cycle. instruction fetches, or
anything else. Counts
“waiting for bus to com-
plete” (last data chunk
received).
65H BUS_TRAN_ O0OH Number of bus burst read
BRD (self) transactions.
20H
(any)
66H BUS_TRAN_ 0O0H Number of completed bus read
REO (self) for ownership transactions.
20H
(any)
67H BUS_TRAN_ O0OH Number of completed bus write
wWB (self) back transactions.
20H
(any)
68H BUS_TRAN_ 00H Number of completed bus
IEETCH (self) unstruction fetch transactions.
20H
(any)
continued

B-5

Intel Architecture Optimizaton Rderence Manual

Table B-1 Performanc e Monit oring E vents (continued)
Event Mnemonic Unit
Unit No. Event Name Mask Description Comments
External 69H BUS_TRAN_ 0O0H Number of completed bus
Bus Logic INVAL (self) invalidate transactions.
(EBL) 20H
(COnt’d) (any)
6AH BUS_TRAN_ O0OH Number of completed bus
PWR (self) partial write transactions.
20H
(any)
6BH BUS_TRAN_P OOH Number of completed bus
(self) partial transactions.
20H
(any)
6CH BUS_TRAN_ O0OH Number of completed bus I/O
10 (self) transactions.
20H
(any)
6DH BUS_TRAN_ O0OH Number of completed bus
DEF (self) deferred transactions.
20H
(any)
6EH BUS_TRAN_ O0OH Number of completed bus
BURST (self) burst transactions.
20H
(any)
70H BUS_TRAN_ OOH Number of all completed bus
ANY (self) transactions. Address bus utili-
20H zation can be calculated know-
(an ing the minimum address bus
y) occupancy. Includes special
cycles etc.
6FH BUS_TRAN_ OOH Number of completed memory
MEM (self) transactions.
20H
(any)
64H BUS_DATA O0OH Number of bus clock cycles
RCV during which this processor is
(Self) receiving data.
continued

Performance-Monitoring Events and Counters

Table B-1

Performance Monit oring E vents (continued)

Unit
Mask

Mnemonic
Event Name

Event
Unit No.

Description

Comments

EBL 61H
(cont'd)

BUS_BNR_
DRV

00H
(self)

00H
(self)
00H
(self)

00H
(self)

7AH BUS_HIT_

DRV
7BH BUS_HITM_
DRV
7EH BUS_SNOOP
STALL

Number of bus clock cycles
during which this processor is
driving the BNR pin.

Number of bus clock cycles
during which this processor is
driving the HIT pin.

Number of bus clock cycles
during which this processor is
driving the HITM pin.

Number of bus clock cycles
during which the bus is snoop
stalled.

Includes cycles due to
snoop stalls.

Includes cycles due to
snoop stalls.

Floating- C1H FLOPS OOH

point Unit

10H FP_COMP_
OPS_EXE

OOH

11H FP_ASSIST O00OH

Number of computational
floating-point operations

retired. Excludes floating-point

computational operations that
cause traps or assists.
Includes floating-point compu-

tational operations executed by

the assist handler.

Includes internal sub-opera-
tions of complex floating-point
instructions such as a tran-
scendental instruction.
Excludes floating-point loads
and stores.

Number of computational float-

ing-point operations executed

including FADD, FSUB, FCOM,

FMULSs, integer MULs and
IMULs, FDIVs, FPREMS,
FSQRTS, integer DIVs and
IDIVs.

NOTE: counts the number of
operations not number of
cycles. This event does not
distinguish an FADD used in
the middle of a transcendental
flow from a separate FADD
instruction.

Number of floating-point
exception cases handled by
microcode.

Counter 0 only.

Counter 0 only.

Counter 1 only. This
event includes counts
due to speculative exe-
cution.

continued

B-7

Intel Architecture Optimizaton Rderence Manual

B-8

Table B-1 Performanc e Monit oring E vents (continued)
Event Mnemonic Unit
Unit No. Event Name Mask Description Comments
Floating- 12H MUL OOH Number of multiplies. Counter 1 only. This
point Unit NOTE: includes integer and event
gy FP multiplies. includes counts due to
(COI‘I'[d) speculative execution.
13H DIV OOH Number of divides. Counter 1 only. This
NOTE: includes integer and event includes counts
FP multiplies. due to speculative exe-
cution.
14H CYCLES_DIV ~ 0O0OH Number of cycles that the Counter 0 only. This
BUSY divider is busy, and cannot event includes counts
accept new divides. due to speculative exe-
NOTE: includes integer and cution.
FP divides, FPREM, FPSQRT,
etc. Counter 0 only. This event
includes counts due to specu-
lative execution.
Memory 03H LD_BLOCKS OOH Number of store buffer blocks.
Ordering Includes counts caused by pre-
ceding stores whose
addresses are unknown, pre-
ceding stores whose
addresses are known to con-
flict, but whose data is
unknown and preceding stores
that conflict with the load, but
which incompletely overlap the
load.
04H SB_DRAINS OOH Number of store buffer drain

cycles. Incremented during
every cycle the store buffer is
draining. Draining is caused by
serializing operations like
CPUID, synchronizing opera-
tions like XCHG, Interrupt
acknowledgment, as well as
other conditions such as cache
flushing.

continued

Performance-Monitoring Events and Counters

Table B-1 Performance Monit oring E vents (continued)
Event Mnemonic Unit
Unit No. Event Name Mask Description Comments
Memory 05H MISALIGN_ O0OH Number of misaligned data It should be noted that
Ordering MEM_REF memory references. Incre- MISALIGN_MEM_REF
(contd) mented by 1 every cycle during is only an approxima-
which either the processor load tion, to the true number
or store pipeline dispatches a of misaligned memory
isaligned pop. Counting is per- references. The value
formed if its the first half or returned is roughly pro-
second half, or if it is blocked, portional to the number
squashed or misses. of misaligned memory
NOTE: in this context accesses, i.e., the size
misaligned means crossing a of the problem.
64-bit boundary.
Instruction COH INST_ 0O0H Total number of instructions
Decoding RETIRED retired.
and
Retirement
C2H HOPS_ O0H Total number of HOPS retired.
RETIRED
DOH INST O0OH Total number of instructions
DECODER decoded..
Interrupts C8H HW_INT_RX O0OH Total number of hardware
interrupts received.
C6H CYCLES_INT O0H Total number of processor
MASKED cycles for which interrupts are
- disabled.
C7H CYCLES_INT O0H Total number of processor
PENDING cycles for which interrupts are
N - disabled and interrupts are
AND_ pending.
MASKED
Branches C4H BR_INST_ OOH Total number of branch instruc-
RETIRED tions retired.
C5H BR_INST_ OOH Total number of branch
PRED_ mispredictions that get to the
RETIRED point of retirement. Includes
not taken conditional branches.
C9H BR_TAKEN_ OOH Total number of taken
RETIRED branches retired.

continued

B-9

Intel Architecture Optimizaton Rderence Manual

Table B-1

Performanc e Monit oring E vents (continued)

Mnemonic
Event Name
BR_MISS_

PRED_TAKEN
_RET

Event
Unit No.

Branches CAH

(contd)

EOH BR_INST_

DECODED

E2H BTB_MISSES

E4H BR_BOGUS

E6H BACLEARS

Unit
Mask
OOH

O00H

O00H

O00H

OO0H

Description

Total number of taken but
mispredicted branches that get
to the point of retirement.
Includes conditional branches
only when taken.

Total number of branch instruc-
tions decoded.

Total number of branches that
the BTB did not produce a pre-
diction for.

Total number of branch predic-
tions that are generated but
are not actually branches.

Total number of time
BACLEAR is asserted. This is
the number of times that a
static branch prediction was
made by the decoder.

Comments

A2H

Stalls RESOURCE_

STALLS

D2H PARTIAL_RAT

_STALLS

OO0H

O00H

Incremented by one during
every cycle that there is
aresource related stall.
Includes register renaming
buffer entries, memory buffer
entries. Does not include stalls
due to bus queue full, too
many cache misses, etc. In
addition to resource related
stalls, this event counts some
other events.

Includes stalls arising during
branch misprediction recovery
e.g. if retirement of the mispre-
dicted branch is delayed and
stalls arising while store buffer
is draining from synchronizing
operations.

Number of cycles or events for
partial stalls.

NOTE: Includes flag partial
stalls.

B-10

continued

Performance-Monitoring Events and Counters

Table B-1 Performance Monit oring E vents (continued)
Event Mnemonic Unit
Unit No. Event Name Mask Description Comments
Segment 06H SEGMENT_ O0OH Number of segment register
Register REG_LOADS loads.
Loads
Clcocks 79H CPU_CLK_ OOH Number of cycles during which
UNHALTED the processor is not halted.
MMX BOH MMX_INSTR_ O0H Number of MMX instructions
Instructions EXEC executed.
Executed
B3H MMX_INSTR_ 01H MMX Packed multiply
TYPE EXEC instructions executed.
02H MMX Packed shift instructions
executed.
04H MMX Packed operations
instructions executed.
08H MMX Unpack operations
instructions executed.
B3H MMX_INSTR_ 10H MMX Packed logical
(contd) TYPE_EXEC instructions executed.
(cont'd)
20H MMX Packed arithmetic
instructions executed.
MMX B1H MMX_SAT_ 00H
Saturated INSTR_EXEC
Instructions
Executed
MMX pops B2H MMX_pOPS_ OFH Number of MMX pops
executed EXEC executed.
MMX CCH FP_MMX_ 00H Transitions from MMX instruc-
Transitions TRANS tion to FP instructions.
Transitions from FP instruc-
01H tions to MMX instructions.
MMX CDH MMX_ASSIST 00H Number of MMX Assists. MMX Assists is the
Assists number of EMMS
instructions executed.
MMX CEH MMX_INSTR_ OOH Number of MMX instructions
Instructions RET retired.
Retired

continued

B-11

Intel Architecture Optimizaton Rderence Manual

Table B-1 Performanc e Monit oring E vents (continued)
Event Mnemonic Unit
Unit No. Event Name Mask Description Comments
Segment D4H SEG_RENAM 01H Segment register ES
Register E_STALLS 02H Segment register DS
Renaming s reqister FS
Stalls 04H egment register
08H Segment register FS
OFH Segment registers ES + DS +
FS + GS
Segment D5H SEG_REG_ 01H Segment register ES
Registers RENAMES 02H Segment register DS
Renamed .
04H Segment register FS
08H Segment register FS
OFH Segment registers ES + DS
+FS +GS
Segment D6H RET_SEG_ 00H Number of segment register
Registers RENAMES rename events retired.
Renamed &
Retired
Execution D8H EMON_SSE_ qoH 0: packed and scalar Number of Streaming
Cluster INST_ O1H 1 | SIMD Extensions
RETIRED - scajar retired
D9H EMON_SSE_ 00H 0: packed and scalar Number of Streaming
COMP INST) SIMD Extensions
RET — O01H 1: scalar computation
instructions retired.
Memory 07H EMON_SSE _ 00H 0: prefetchNTA Number of
Cluster PRE_ 01H 1: prefetchT0 prefetch/.weaklyj _
DISPATCHED) ordered instructions dis-
02H 2: prefetchT1, prefetchT2 patched (speculative
03H 3: weakly ordered stores prefetches are included
in counting)
4BH EMON_SSE_ ooH 0: prefetchNTA Number of
PRE_MISS 01H 1: prefetchTO prefetch/_weakly?
) ordered instructions
02H 2: prefetchT1, prefetchT2 that miss all caches.
03H 3: weakly ordered stores

B-12

Performance-Monitoring Events and Counters B

Programmi ng Notes

Please tke into corsideratn the following ndeswhen usig the
informaion providedin Table B-1:

® Severd L2 cache gerts,where nded canbe furher qualified usng
the Urit Mask (UMBK) field in the Perf EvtS el 0 andPer fE vt Sell
registas. The lower four bits of the Unit Mask field are usedin
conjuncion with L2 evens to indicake the cahe sate or c&he sates
involved The Petium Il and Pentium Il processorsdentify cache
states usig the “MESI ” protocol, and mnsegenty each Lt in the Uni
Mask field repesents one d the four sates:UMSK3 1= M(8h) state,
UMBK[2]= E (4h) stag, UMSK1]1=S (2h) stde,and
UMBKIO]= I(1h) stak UMVBK[3:0]= MESI (F h) should be used
to coll e data for al states, UMBK= 0h, for the applicable events, wil
result in nathing beng muned

* All of the external bus logic (EBL) events, exceptwhere mted, can be
further qualified using the Unt Mask (UMBK) field in the
Perf EvtSe I0 ard Perf EvtSell registers. Bit5 of thetuhsK field is
usel in corjunction with the BBL events to indicaie wheher he
processor shad cowunt trarsactons that are sdl geneated (WMSK5 |
=0) ortransadibns hat result from ary processoronthe kus
(UMBK[5]=1).

RDPMC Instruction

The RCPMC (ReadProcessa Monitor Counter) instruction is usedto read
the performancemoritoring cuners in CPL=3 if bit 8 is set in the CR4
register CR4. PCE). Thisis smilar to theRDISC (ReadTime Samp
Counter) instruction, which is enabled in CPL=3 if the Time Stamp Dsabk
bit in CR4 (CR4. TSD) is not disabed. Note that access tothe
peformancemonitoring Control andEvent Sded Register (CESR) is not
possble in CPL=3.

Instr ucti on Specif ication

Opcode 0OF 33

Description Readevent montor couriers ndicaedby ECX into
EDX: EAX

Operation EDX: EAX « Event Counter [ECX]

B-13

B Intel Architecture Optimizaton Rderence Manual

B-14

The value in ECX (either 0 or 1) specfies ame of he two 40-bit event
counters of he processareEDX is loadal with the high-order 32 bts, ard
EAX with thelow-order 32 bits.

IF CR4.PCE = 0 AND CPL<> 0 THEN # GRO)

IF ECX= 0 THENEDXEAX := PerfCntr O

IF ECX= 1 THENEDXEAX = PerfCntr 1

ELSE# GP(0)

END IF

Protected and Red Address Male Exceptions

#GP(0) if ECX does na specify a \alid countr (either 0 a 1).
#GP(0) if RDPMC is usedin CPL<>0 andCR4. PCE= 0
16-bit code

ROPMC will execute in 16-bit code ad VM modk but will give a 32bit
resut. It will use the full ECX index.

Instruction to Decoder

Specifcation

Table C-1

This appendix contains two tablespresening intstruction to decaler

speificaions for the gereral instructionsof the Pentum® 11 ard Peatium 11|

processos (Table C-1) and MM X™ techology instructions (Tabe C-2).

Pentium Il and Pentium Il Processors Instr uction to Decoder

Specifica tion

Instruct ion

AAA

AAD

AAM

AAS

ADC AL,imm8

ADC eAX,imm16/32
ADC m16/32,imm16/32
ADC m16/32,r16/32
ADC m8,imm8

ADC m8,r8

ADC r16/32,imm16/32
ADC r16/32,m16/32
ADC r16/32,rm16/32
ADC r8,imm8

ADC r8,m8

of

=
o]
e}
7]

W NN WNDN DD DMDNMDNPRE DM OWPR

Instructi on

ADC rm8,r8

ADD AL,imm8

ADD eAX,imm16/32
ADD m16/32,imm16/32
ADD m16/32,r16/32
ADD m8,imm8

ADD m8,r8

ADD r16/32,imm16/32
ADD r16/32,imm8
ADD r16/32,m16/32
ADD r16/32,rm16/32
ADD r8,imm8

ADD r8,m8

ADD r8,rm8

ADD rm16/32,r16/32

of

=
o]
e}
7]

P N R P NPRP RPDMDMNDNDNPRE RN

1
continued

C-1

Intel Architecture Optimizaton Rderence Manual

Table C-1 Pentium Il and Pentium Il Processors Instr uction to Decoder
Specification (continued)
of # of
Instruct ion pops Instructi on pops
ADC r8,rm8 2 ADD rm8,r8 1
ADC rm16/32,r16/32 2 AND AL,imm8 1
AND eAX,imm16/32 1 BTC rm16/32, r16/32 1
AND m16/32,imm16/32 4 BTR m16/32, imm8 4
AND m16/32,r16/32 4 BTR m16/32, r16/32 complex
AND m8,imm8 4 BTR rm16/32, imm8 1
AND m8,r8 4 BTR rm16/32, r16/32 1
AND r16/32,imm16/32 1 BTS m16/32, imm8 4
AND r16/32,imm8 1 BTS m16/32, r16/32 complex
AND r16/32,m16/32 2 BTS rm16/32, imm8 1
AND r16/32,rm16/32 1 BTS rm16/32, r16/32 1
AND r8,imm8 1 CALL m16/32 near complex
AND r8,m8 2 CALL m16 complex
AND r8,rm8 1 CALL ptr16 complex
AND rm16/32,r16/32 1 CALL r16/32 near complex
AND rm8,r8 1 CALL rel16/32 near 4
ARPL m16 complex CBW 1
ARPL rm16, r16 complex CLC 1
BOUND r16,m16/32&16/32 complex CLD 4
BSF r16/32,m16/32 3 cLI complex
BSF r16/32,rm16/32 2 CLTS complex
BSR r16/32,m16/32 3 CMC 1
BSR r16/32,rm16/32 2 CMOVB/NAE/C 3
r16/32,m16/32
BSWAP r32 2 CMOVB/NAE/C 2
r16/32,r16/32
BT m16/32, imm8 2 CMOVBE/NA 3
r16/32,m16/32
BT m16/32, r16/32 complex CMOVBE/NAr16/32,r16/32 2

continued

Instruction to Decoder Specification

Table C-1 Pentium Il and Pentium Il Processors Instr uction to Decoder
Specification (continued)
of # of
Instruct ion pops Instructi on pops
BT rm16/32, imm8 1 CMOVE/Z r16/32,m16/32 3
BT rm16/32, r16/32 1 CMOVE/Z r16/32,r16/32 2
BTC m16/32, imm8 4 CMOVNS r16/32,r16/32 3
BTC m16/32, r16/32 complex CMOVOr16/32,m16/32
BTC rm16/32, imm8 1 CMOVOr16/32,r16/32 2
CMOVL/NGE 3 CMOVP/PE r16/32,m16/32 3
r16/32,m16/32
CMOVL/NGE r16/32,r16/32 2 CMOVP/PE r16/32,r16/32 2
CMOVLE/NG 3 CMOVS r16/32,m16/32 3
r16/32,m16/32
CMOVLE/NG r16/32,r16/32 2 CMOVS r16/32,r16/32
CMOVNB/AE/NC 3 CMP AL, imm8
r16/32,m16/32
CMOVNB/AE/NC 2 CMP eAX,imm16/32 1
r16/32,r16/32
CMOVNBE/A 3 CMP m16/32, imm16/32 2
r16/32,m16/32
CMOVNBE/A r16/32,r16/32 2 CMP m16/32, imm8
CMOVNE/NZ 3 CMP m16/32,r16/32
r16/32,m16/32
CMOVNE/NZ r16/32,r16/32 2 CMP m8, imm8
CMOVNL/GE 3 CMP m8, imms
r16/32,m16/32
CMOVNL/GE r16/32,r16/32 2 CMP m8,r8
CMOVNLE/G 3 CMP r16/32,m16/32 2
r16/32,m16/32
CMOVNLE/G r16/32,r16/32 2 CMP r16/32,rm16/32 1
CMOVNO r16/32,m16/32 3 CMP r8,m8 2
CMOVNO r16/32,r16/32 2 CMP r8,rm8 1
CMOVNP/PO 3 CMP rm16/32,imm16/32 1
r16/32,m16/32
continued

Intel Architecture Optimizaton Rderence Manual

Table C-1 Pentium Il and Pentium Il Processors Instr uction to Decoder
Specification (continued)
of # of
Instruct ion pops Instructi on pops
CMOVNP/PO r16/32,r16/32 2 CMP rm16/32,imm8 1
CMOVNS r16/32,m16/32 3 CMP rm16/32,r16/32 1
CMP rm8,imm8 1 FADDm32real 2
CMP rm8,imm8 1 FADD m64real 2
CMP rm8,r8 1 FADDP ST(i),ST 1
CMPSB/W/D complex FBLD m80dec complex
m8/16/32,m8/16/32
CMPXCHG m16/32,r16/32 complex FBSTP m80dec complex
CMPXCHG m8,r8 complex FCHS 3
CMPXCHG rm16/32,r16/32 complex FCMOVB STi 2
CMPXCHG rm8,r8 complex FCMOVBE STi 2
CMPXCHGS8B rm64 complex FCMOVE STi 2
CPUID complex FCMOVNB STi 2
CwD/CDQ 1 FCMOVNBE STi 2
CWDE 1 FCMOVNE STi 2
DAA 1 FCMOVNU STi 2
DAS 1 FCMOVU STi 2
DECm16/32 4 FCOM STi 1
DECm8 4 FCOM m32real 2
DECr16/32 1 FCOM mé64real 2
DECrm16/32 1 FCOM2 STi 1
DECm8 4 FCOMI STi 1
DIV AL,rm8 3 FCOMIP STi 1
DIV AX,m16/32 4 FCOMP STi 1
DIV AX,m8 4 FCOMP m32real 2
DIV AX,rm16/32 4 FCOMP mé64real 2
ENTER complex FCOMP3 STi 1
continued

Instruction to Decoder Specification

Table C-1

Pentium Il and Pentium Il Processors Instr uction to Decoder
Specification (continued)

Instruct ion
F2XM1

FABS

FADD ST(i),ST
FADD ST,ST(i)
FDISI

FDIV ST(),ST
FDIV ST,ST(i)
FDIV m32real
FDIV m64real
FDIVP ST(i),ST
FDIVR ST(i),ST
FDIVR ST,ST(i)
FDIVR m32real
FDIVR m64real

FDIVRP ST(i),ST

FENI
FFREE ST())
FFREEP ST(j)
FIADD m16int
FIADD m32int
FICOM m16int
FICOM m32int
FICOMP m16int
FICOMP m32int
FIDIV m16int
FIDIV m32int
FIDIVR m16int

of
pops

complex

N B R R NN R P R NN R R B B B R

complex
complex
complex
complex
complex
complex
complex
complex

complex

Instructi on
FCOMP5 STi

FCOMPP
FCOS

FDECSTP

FINCSTP

FIST m16int
FIST m32int
FISTP m16int
FISTP m32int
FISTP m64int
FISUB m16int
FISUB m32int
FISUBR m16int
FISUBR m32int
FLD STi

FLD m32real
FLD m64real
FLD m80real
FLD1

FLDCW m2byte
FLDENV m14/28byte
FLDL2E
FLDL2T
FLDLG2
FLDLN2

FLDPI

FLDZ

of
pops
1
2

[EnY

EE N - T S T N)

complex
complex
complex

complex
1
1
1
4
2
3
complex
2
2
2
2
2

1
continued

Intel Architecture Optimizaton Rderence Manual

Table C-1

Pentium Il and Pentium Il Processors Instr uction to Decoder

Specification (continued)

Instruct ion

FIDIVR m32int

FILD m16int

FILD m32int

FILD m64int

FIMUL m16int

FIMUL m32int

FNINIT

FNOP

FNSAVE m94/108byte
FNSTCW m2byte
FNSTENV m14/28byte
FNSTSW AX
FNSTSW m2byte
FPATAN

FPREM

FPREM1

FPTAN

FRNDINT

FRSTOR m94/108byte
FSCALE

FSETPM

FSIN

FSINCOS

FSQRT

FST STi

FST m32real

FST m64real

of
pops
complex
4

4

4
complex
complex
complex
1
complex
3
complex
3

3
complex
complex
complex
complex
complex
complex
complex
1
complex
complex

1

1
2
2

Instructi on
FMUL ST(i),ST
FMUL ST,ST(i)
FMUL m32real
FMUL m64real
FMULP ST(i),ST
FNCLEX

FSUB ST,ST(i)
FSUB m32real
FSUB m64real
FSUBP ST(i),ST
FSUBR ST(i),ST
FSUBR ST,ST(i)
FSUBR m32real
FSUBR mé64real
FSUBRP ST(i),ST
FTST

FUCOM STi
FUCOMI STi
FUCOMIP STi
FUCOMP STi
FUCOMPP
FWAIT

FXAM

FXCH STi
FXCH4 STi
FXCH7 STi
FXTRACT

of
pops

1
1
2
2
1
3

B R R R NN R R R R B P NN R R P NN

complex
continued

Instruction to Decoder Specification

Table C-1 Pentium Il and Pentium Il Processors Instr uction to Decoder
Specification (continued)
of # of

Instruct ion pops Instructi on pops
FSTP STi 1 FYL2X complex
FSTP m32real 2 FYL2XP1 complex
FSTP m64real 2 HALT complex
FSTP m80real complex IDIV AL,rm8 3
FSTP1 STi 1 IDIV AX,m16/32 4
FSTP8 STi 1 IDIV AX,m8 4
FSTP9 STi 1 IDIV eAX,rm16/32 4

FSUB ST(i),ST 1 IMUL m16 4

IMUL m32 4 JBE/NA rel8 1

IMUL m8 2 JCXZIJECXZ rel8 2

IMUL r16/32,m16/32 2 JE/Z rel16/32 1

IMUL r16/32,rm16/32 1 JE/Z rel8 1

IMUL 2 JL/NGE rel16/32 1

r16/32,rm16/32,imm8/16/32
IMUL 1 JL/NGE rel8 1
r16/32,rm16/32,imm8/16/32

IMUL rm16 3 JLE/NG rel16/32 1
IMUL rm32 3 JLE/NG rel8 1
IMUL rm8 1 JMP m16 complex
IN eAX, DX complex JMP near m16/32 2
IN eAX, imm8 complex JMP near reg16/32 1
INCm16/32 4 JMP ptrl6 complex
INCm8 4 JMP rel16/32 1
INCr16/32 1 JMP rel8 1
INCrm16/32 1 JNB/AE/NC rel16/32 1
INCrm8 1 JNB/AE/NC rel8 1
INSB/W/D m8/16/32,DX complex JNBE/A rel16/32 1
continued

Intel Architecture Optimizaton Rderence Manual

Table C-1 Pentium Il and Pentium Ill Processors Instr uction to Decoder
Specifica tion (continued)
of # of

Instruct ion pops Instructi on pops
INT1 complex JNBE/A rel8 1

INT3 complex JNE/NZ rel16/32 1

INTN 3 JNE/NZ rel8 1

INTO complex JNL/GE rel16/32 1

INVD complex JINL/GE rel8 1
INVLPG m complex JINLE/G rel16/32 1

IRET complex JINLE/G rel8 1
JB/NAE/C rel16/32 1 JNO rel16/32 1
JB/NAE/C rel8 1 JNO rel8 1
JBE/NA rel16/32 1 JNP/PO rel16/32 1
JINP/PO rel8 1 LOCK ADC m16/32,r16/32 complex
JINS rel16/32 1 LOCK ADC m8,imm8 complex
JINS rel8 1 LOCK ADC m8,r8 complex
JOrel16/32 1 LOCK ADD complex

m16/32,imm16/32
JOrel8 1 LOCK ADD m16/32,r16/32 complex
JP/PE rell16/32 1 LOCK ADD m8,imm8 complex
JP/PE rel8 1 LOCK ADD m8,r8 complex
JS rell16/32 1 LOCK AND complex
m16/32,imm16/32
JS rel8 1 LOCK AND m16/32,r16/32 complex
LAHF 1 LOCK AND m8,imm8 complex
LAR m16 complex LOCK AND m8,r8 complex
LAR rm16 complex LOCK BTC m16/32, imm8 complex
LDS r16/32,m16 complex LOCK BTC m16/32, r16/32 complex
LEA r16/32,m 1 LOCK BTR m16/32, imm8 complex
LEAVE 3 LOCK BTR m16/32, r16/32 complex
continued

Instruction to Decoder Specification

Table C-1

Pentium Il and Pentium Il Processors Instr uction to Decoder

Specification (continued)

of # of
Instruct ion pops Instructi on pops
LES r16/32,m16 complex LOCK BTS m16/32, imm8 complex
LFS r16/32,m16 complex LOCK BTS m16/32, r16/32 complex
LGDT m16&32 complex LOCK CMPXCHG complex
m16/32,r16/32
LGS r16/32,m16 complex LOCK CMPXCHG m8,r8 complex
LIDT m16&32 complex LOCK CMPXCHGS8B rm64 complex
LLDT m16 complex LOCK DECm16/32 complex
LLDT rm16 complex LOCK DECm8 complex
LMSW m16 complex LOCK INCm16/32 complex
LMSW r16 complex LOCK INCm8 complex
LOCK ADC complex LOCK NEGmM16/32 complex
m16/32,imm16/32
LOCK NEGm8 complex LODSB/WID
m8/16/32,m8/16/32
LOCK NOTm16/32 complex LOOP rel8 4
LOCK NOTm8 complex LOOPE rel8 4
LOCK complex LOOPNE rel8 4
ORmM16/32,imm16/32
LOCK ORmM16/32,r16/32 complex LSL m16 complex
LOCK ORmS8,imm8 complex LSL rm16 complex
LOCK ORm8,r8 complex LSS r16/32,m16 complex
LOCK SBB complex LTR m16 complex
m16/32,imm16/32
LOCK SBB m16/32,r16/32 complex LTR rm16 complex
LOCK SBB m8,imm8 complex MOV AL,moffs8 1
LOCK SBB m8,r8 complex MOV CRO, r32 complex
continued

Intel Architecture Optimizaton Rderence Manual

Table C-1 Pentium Il and Pentium Ill Processors Instr uction to Decoder
Specifica tion (continued)
of # of
Instruct ion pops Instructi on pops
LOCK SuB complex MOV CR2, r32 complex
m16/32,imm16/32
LOCK SUB m16/32,r16/32 complex MOV CR3, r32 complex
LOCK SUB m8,imm8 complex MOV CR4, r32 complex
LOCK SUB m8,r8 complex MOV DRXx, r32 complex
LOCK XADD m16/32,r16/32 complex MOV DS,m16 4
LOCK XADD m8,r8 complex MOV DS,rm16 4
LOCK XCHG complex MOV ES,m16 4
m16/32,r16/32
LOCK XCHG m8,r8 complex MOV ES,rm16 4
LOCK XOR complex MOV FS,m16 4

m16/32,imm16/32

LOCK XOR m16/32,r16/32 complex MOV FS,rm16 4
LOCK XOR m8,imm8 complex MOV GS,m16 4
LOCK XOR m8,r8 complex MOV GS,rm16 4
MOV SS,m16 4 MOV rm16,ES 1
MOV SS,rm16 4 MOV rm16,FS 1
MOV eAX,moffs16/32 1 MOV rm16,GS 1
MOV m16,CS 3 MOV rm16,SS 1
MOV m16,DS 3 MOV rm16/32,imm16/32 1
MOV m16,ES 3 MOV rm16/32,r16/32 1
MOV m16,FS 3 MQV rm8,imm8 1
MOV m16,GS 3 MOV rm8,r8 1
MOV m16,SS 3 MOVSB/W/D complex
m8/16/32,m8/16/32
MOV m16/32,imm16/32 2 MOVSX r16,m8 1
MOV m16/32,r16/32 2 MOVSX r16,rm8 1
continued

C-10

Instruction to Decoder Specification

Table C-1

Pentium Il and Pentium Il Processors Instr uction to Decoder
Specification (continued)

Instruct ion

MOV m8,imm8
MOV m8,r8

MOV moffs16/32,eAX

MOV moffs8,AL

MOV r16/32,imm16/32
MOV r16/32,m16/32
MOV r16/32,rm16/32

MOV r32, CRO
MOV r32, CR2
MOV r32, CR3
MOV r32, CR4
MQV r32, DRx
MOV r8,imm8
MOV r8,m8
MOV r8,rm8
MOV rm16,CS
MOV rm16,DS
NEGmS8
NEGrm16/32
NEGrm8

NOP
NOTm16/32
NOTm8
NOTrm16/32
NOTrm8
ORAL,imm8
OReAX,imm16/32

of
pops

P R P N N NN

complex
complex
complex
complex

complex

I = T = T S N e e N N e e N =

Instructi on

MOVSX r16/32,m16

MOVSX r32,m8
MOVSX r32,rm16
MOVSX r32,rm8
MOVZX r16,m8
MOVZX r16,rm8
MOVZX r32,m16
MOVZX r32,m8
MOVZX r32,rm16
MOVZX r32,rm8
MUL AL,m8
MUL AL,rm8
MUL AX,m16
MUL AX,rm16
MUL EAX,m32
MUL EAX,rm32
NEGm16/32
POP GS

POP SS

POP eSP

POP m16/32
POP r16/32
POP r16/32
POPA/POPAD
POPF

POPFD

PUSH CS

of
pops

AW DA WD RPN R R R R R R R R R R

complex
complex
3
complex
2
2
complex
complex
complex
4
continued

Intel Architecture Optimizaton Rderence Manual

C-12

Table C-1

Pentium Il and Pentium Il Processors Instr uction to Decoder

Specification (continued)

Instruct ion
ORmM16/32,imm16/32
ORmM16/32,r16/32
ORmM8,imm8
ORmMS8,r8
ORr16/32,imm16/32
ORr16/32,imm8
ORr16/32,m16/32
ORr16/32,rm16/32
ORr8,imm8
ORr8,m8

ORr8,rm8
ORrm16/32,r16/32
ORrm8,r8

OUT DX, eAX

OUT imm8, eAX
OUTSB/W/D DX,m8/16/32
POP DS

POP ES

POP FS

RCL rm16/32,CL

RCL rm16/32,imm8

RCL rm8,1

of
pops

e i T = T = T T S = U N N

complex
complex
complex
complex
complex
complex

complex

complex

Instructi on
PUSH DS

PUSH ES

PUSH FS

PUSH GS

PUSH SS

PUSH imm16/32
PUSH imm8
PUSH m16/32
PUSH r16/32
PUSH r16/32
PUSHA/PUSHAD
PUSHF/PUSHFD
RCL m16/32,1
RCL m16/32,CL
RCL m16/32,imm8
RCL m8,1

RCL m8,CL

RCL m8,imm8
RCL rm16/32,1
REP LODSB/W/D

m8/16/32,m8/16/32

REP MOVSB/W/D

m8/16/32,m8/16/32

REP OUTSB/W/D
DX,m8/16/32

of
pops

w w A W w A AN DN N D

complex
complex
4
complex
complex
4
complex
complex
2

complex

complex

complex

continued

Instruction to Decoder Specification

Table C-1

Pentium Il and Pentium Il Processors Instr uction to Decoder

Specification (continued)

Instruct ion

RCL rm8,CL

RCL rm8,imm8

RCR m16/32,1
RCR m16/32,CL
RCR m16/32,imm8
RCR m8,1

RCR m8,CL

RCR m8,imm8
RCR rm16/32,1
RCR rm16/32,CL
RCR rm16/32,imm8
RCR rm8,1

RCR rm8,CL

RCR rm8,imm8
RDMSR

RDPMC

RDTSC

REP CMPSB/W/D
m8/16/32,m8/16/32
REP INSB/W/D
m8/16/32,DX

ROR m16/32,CL
ROR m16/32,imm8
ROR m8,1

ROR m8,CL

of
pops

complex

complex

4
complex
complex
4

complex
complex
2

complex
complex
2

complex
complex
complex
complex
complex

complex

complex

A A b~ b

Instructi on

REP SCASB/W/D
m8/16/32,m8/16/32
REP STOSB/W/D
m8/16/32,m8/16/32
RET

RET

RET near

RET near iw

ROL m16/32,1
ROL m16/32,CL
ROL m16/32,imm8
ROL m8,1

ROL m8,CL

ROL m8,imm8
ROL rm16/32,1
ROL rm16/32,CL
ROL rm16/32,imm8
ROL rm8,1

ROL rm8,CL

ROL rm8,imm8

ROR m16/32,1

SBB m16/32,r16/32

SBB m8,imm8
SBB m8,r8

SBB r16/32,imm16/32

of
pops

complex

complex

4
complex
4

complex

T N N N N N

A~ A~ b

2
continued

Intel Architecture Optimizaton Rderence Manual

C-14

Table C-1

Pentium Il and Pentium Il Processors Instr uction to Decoder

Specification (continued)

Instruct ion

ROR m8,imm8
ROR rm16/32,1
ROR rm16/32,CL
ROR rm16/32,imm8
ROR rm8,1

ROR rm8,CL

ROR rm8,imm8
RSM

SAHF

SAR m16/32,1
SAR m16/32,CL
SAR m16/32,imm8
SAR m8,1

SAR m8,CL

SAR m8,imm8
SAR rm16/32,1
SAR rm16/32,CL
SAR rm16/32,imm8
SAR rm8,1

SAR rm8,CL

SAR rm8,imm8
SBB AL,imm8

SBB eAX,imm16/32

SBB m16/32,imm16/32

SETNL/GE m8
SETNL/GE rm8

of
pops

N T = = T N

complex

P W A NN P P P P P P MMM D NP

Instructi on

SBB r16/32,m16/32
SBB r16/32,rm16/32
SBB r8,imm8

SBB r8,m8

SBB r8,rm8

SBB rm16/32,r16/32
SBB rm8,r8
SCASB/W/D
m8/16/32,m8/16/32
SETB/NAE/C m8
SETB/NAE/C rm8
SETBE/NA m8
SETBE/NA rm8
SETE/Z m8
SETE/Z rm8
SETL/NGE m8
SETL/NGE rm8
SETLE/NG m8
SETLE/NG rm8
SETNB/AE/NC m8
SETNB/AE/NC rm8
SETNBE/A m8
SETNBE/A rm8
SETNE/NZ m8
SETNE/NZ rm8
SHL/SAL rm16/32,1
SHL/SAL rm16/32,1

of
pops

w N N N W N DN W

B R W R W R W R W R, WRr W R, W, W

1

continued

Instruction to Decoder Specification

Table C-1

Pentium Il and Pentium Il Processors Instr uction to Decoder

Specification (continued)

Instruct ion
SETNLE/G m8
SETNLE/G rm8
SETNO m8

SETNO rm8
SETNP/PO m8
SETNP/PO rm8
SETNS m8

SETNS rm8
SETOmMS8

SETOrm8

SETP/PE m8
SETP/PE rm8

SETS m8

SETS rm8

SGDT m16&32
SHL/SAL m16/32,1
SHL/SAL m16/32,1
SHL/SAL m16/32,CL
SHL/SAL m16/32,CL
SHL/SAL m16/32,imm8
SHL/SAL m16/32,imm8
SHL/SAL m8,1
SHL/SAL m8,1
SHL/SAL m8,CL
SHL/SAL m8,CL
SHL/SAL m8,imm8
SHL/SAL m8,imm8

of
pops

A M M AN DN DN DN DN DN DD DN P ®WRPR®RP R PR ®PRP ® PR, W

Instructi on

SHL/SAL rm16/32,CL
SHL/SAL rm16/32,CL
SHL/SAL rm16/32,imm8
SHL/SAL rm16/32,imm8
SHL/SAL rm8,1
SHL/SAL rm8,1
SHL/SAL rm8,CL
SHL/SAL rm8,CL
SHL/SAL rm8,imm8
SHL/SAL rm8,imm8
SHLD m16/32,r16/32,CL

SHLD m16/32,r16/32,imm8

SHLD rm16/32,r16/32,CL

SHLD rm16/32,r16/32,imm8

SHR m16/32,1
SHR m16/32,CL
SHR m16/32,imm8
SHR m8,1

SHR m8,CL

SHR m8,imm8
SHR rm16/32,1
SHR rm16/32,CL
SHR rm16/32,imm8
SHR rm8,1

SHR rm8,CL

SHR rm8,imm8
SHRD m16/32,r16/32,CL

of
pops

B R R R R P D DN DN DN DD NNDADR R R R R R R R R R

4
continued

Intel Architecture Optimizaton Rderence Manual

C-16

Table C-1

Pentium Il and Pentium Il Processors Instr uction to Decoder
Specification (continued)

Instruct ion

SHRD m16/32,r16/32,imm8

SHRD rm16/32,r16/32,CL
SHRD
rm16/32,r16/32,imm8
SIDT m16&32

SLDT m16

SLDT rm16

SMSW m16

SMSW rm16

STC

STD

STI

STOSB/WID
m8/16/32,m8/16/32
STR m16

STR rm16

SUB AL,imm8

SUB eAX,imm16/32
SUB m16/32,imm16/32
SUB m16/32,r16/32
SUB m8,imm8

SUB m8,r8

SUB r16/32,imm16/32
SUB r16/32,imm8
SUB r16/32,m16/32
SUB r16/32,rm16/32
SUB r8,imm8

of
pops
4
2

2

complex
complex
4
complex
4
1
4
complex

3

complex

P P, N P P M DM DN DN R BN

Instructi on

SUB rm16/32,r16/32
SUB rm8,r8

TEST AL,imm8

TEST eAX,imm16/32
TEST m16/32,imm16/32
TEST m16/32,imm16/32
TEST m16/32,r16/32
TEST m8,imm8

TEST m8,imm8

TEST m8,r8

TEST rm16/32,imm16/32
TEST rm16/32,r16/32

TEST rm8,imm8
TEST rm8,r8

VERR m16

VERR rm16

VERW m16

VERW rm16
WBINVD

WRMSR

XADD m16/32,r16/32
XADD m8,r8

XADD rm16/32,r16/32
XADD rm8,r8

XCHG eAX,r16/32

of
pops
1
1

P R, N N N N DN NP

1

1
complex
complex
complex
complex
complex
complex
complex
complex

4

4

3
continued

Instruction to Decoder Specification

Table C-1 Pentium Il and Pentium Il Processors Instr uction to Decoder
Specifica tion (continued)
of # of

Instruct ion pops Instructi on pops

SUB r8,m8 2 XCHG m16/32,r16/32 complex

SUB r8,rm8 1 XCHG m8,r8 complex

XCHG rm16/32,r16/32 3 XOR r16/32,imm16/32

XCHG rm8,r8 3 XOR r16/32,imm8

XLAT/B 2 XOR r16/32,m16/32

XOR AL,imm8 1 XOR r16/32,rm16/32

XOR eAX,imm16/32 1 XOR r8,imm8

XOR m16/32,imm16/32 4 XOR r8,m8

XOR m16/32,r16/32 4 XOR r8,rm8

XOR m8,imm8 4 XOR rm16/32,r16/32

XOR m8,r8 4 XOR rm8,r8

MMX Technolog y Instruction to Decode r Specifica tion

Instruct ion # of pops Instruc tion # of pops

EMMS complex PADDB mm,mé4 2

MOVD m32,mm 2 PADDB mm,mm 1

MOVD mm,ireg 1 PADDD mm,m64 2

MOVD mm,m32 1 PADDD mm,mm 1

MOVQ mm,m64 1 PADDSB mm,m64 2

MOVQ mm,mm 1 PADDSB mm,mm 1

MOVQ m64,mm 2 PADDSW mm,m64 2

MOVQ mm,mm 1 PADDSW mm,mm 1

PACKSSDW mm,m64 2 PADDUSB mm,m64 2

PACKSSDW mm,mm 1 PADDUSB mm,mm 1

PACKSSWB mm,m64 2 PADDUSW mm,m64 2

PACKSSWB mm,mm 1 PADDUSW mm,mm 1
continued

C-17

Intel Architecture Optimizaton Rderence Manual

Table C-2

MMX Technolog y Instruction to Decode r Specific ation (continued)

Instruct ion

of pops

Instruc tion

of pops

PACKUSWB mm,m64
PACKUSWB mm,mm
PAND mm,m64
PAND mm,mm
PANDN mm,m64
PANDN mm,mm
PCMPEQB mm,m64
PCMPEQB mm,mm
PCMPEQD mm,m64
PCMPEQD mm,mm
PCMPEQW mm,m64
PCMPEQW mm,mm
PCMPGTB mm,m64
PCMPGTB mm,mm
PCMPGTD mm,m64
PCMPGTD mm,mm
PCMPGTW mm,m64
PCMPGTW mm,mm
PMADDWD mm,m64
PMADDWD mm,mm
PMULHW mm,m64
PMULHW mm,mm
PMULLW mm,m64
PMULLW mm,mm
POR mm,m64

POR mm,mm
PSLLD mm,m64
PSLLD mm,mm

PSLLIimmD mm,imm8

2

P P NP NP NREPNRPNMNRPEPENRNENRNENRNENRNLEPRE

PADDW mm,m64
PADDW mm,mm
PSLLQ mm,mm
PSLLW mm,m64
PSLLW mm,mm
PSRAD mm,m64
PSRAD mm,mm
PSRAImmD mm,imm8
PSRAImMmMW mm,imm8
PSRAW mm,m64
PSRAW mm,mm
PSRLD mm,m64
PSRLD mm,mm
PSRLIimmD mm,imm8
PSRLImmMQ mm,imm8
PSRLImmW mm,imm8
PSRLQ mm,m64
PSRLQ mm,mm
PSRLW mm,m64
PSRLW mm,mm
PSUBB mm,m64
PSUBB mm,mm
PSUBD mm,m64
PSUBD mm,mm
PSUBSB mm,m64
PSUBSB mm,mm
PSUBSW mm,m64
PSUBSW mm,mm
PSUBUSB mm,m64

2

N P N EFP NRPNMNEPENRPRPRNRPEPENRRPRRRERNERERDNRRERERPDNDERERNLERPR

continued

Instruction to Decoder Specification

Table C-2

MMX Technolog y Instruction to Decode r Specifica tion (continued)

Instruct ion # of pops Instruc tion # of pops
PSLLImmMQ mm,imm8 1 PSUBUSB mm,mm 1
PSLLImmW mm,imm8 1 PSUBUSW mm,m64 2
PSLLQ mm,m64 2 PSUBUSW mm,mm 1
PSUBW mm,m64 2 PUNPCKLBW mm,m32 2
PSUBW mm,mm 1 PUNPCKLBW mm,mm 1
PUNPCKHBW mm,m64 2 PUNPCKLDQ mm,m32 2
PUNPCKHBW mm,mm 1 PUNPCKLDQ mm,mm 1
PUNPCKHDQ mm,m64 2 PUNPCKLWD mm,m32 2
PUNPCKHDQ mm,mm 1 PUNPCKLWD mm,mm 1
PUNPCKHWD mm,mé64 2 PXOR mm,m64 2
PUNPCKHWD mm,mm 1 PXOR mm,mm 1

Streaming SIMD Extension
Throughput and Latency

Table D-1

This appedix presats Table D-1 which lists for egh Steamng SIMD
Extension the exection port(s), exection unit(s), the latency numberof
cycles and he througtput

Streaming SIMD Extensions Thr oughput and Latency

Instruct ion Ports Units Latency Throughp ut

ADDPS/ Port 1 PFADDER 4 cycles 1 every 2 cycles

SUBPS/

CVTSI2SS Port 1,2 PFADDER/ 4 cycles 1 every 2 cycles

PSHUF,MIU/

CVTPI2PS/ Port 1 PFADDER 3 cycles 1 every cycle

CVTPS2PI

MAXPS/MINPS Port 1 PFADDER 4 cycles 1 every 2 cycles

CMPPS Port 1 PFADDER 4 cycles 1 every 2 cycles

ADDSS/SUBSS/ Port1 PFADDER 3 cycles 1 every cycle

CVTSS2sl/ Port 1,2 PFADDER, MIU 3 cycles 1 every cycle

CVTTSS2SI

MAXSS/MINSS Port 1 PFADDER 3 cycles 1 every cycle

CMPSS Port 1 PFADDER 3 cycles 1 every cycle

COMISS/ Port 1 PFADDER 1 cycle 1 every cycle

UCOMISS

MULPS Port 0 PFMULT 5 cycles 1 every 2 cycles

DIVPS/SQRTPS Port0 PFMULT 36/58 1 every 36/58

cycles cycles

MULSS Port 0 PFMULT 4 cycles 1 every cycle

continued

D-1

Intel Architecture Optimization Réerence Manual

Streaming SIMD Extensions Thr oughput and Latency

(continued)

Instruct ion Ports Units Latency Throug hput
DIVSS/SQRTSS Port0 PFMULT 18/30 1 every 18/29
cycles cycles

RCPPS/ Port 1 PFROM 2 cycles 1 every 2 cycles

RCQRTPS

SHUPPS/ Port 1 PFSHUF 2 cycles 1 every 2 cycles

UNPCKHPS/ Port 1 PFSHUF 3 cycles 1 every 2 cycles

UNPCKLPS

MOVAPS load: 2 MIU load: 4 1 every 2 cycles
mov: 0 or 1l FWU,PFSHUF mov: 1 1 every 1 cycle
store:3and4 MIU store: 4 1 every 2 cycles

MOVUPS load: 2 MIU 4 cycles 1 every 2 cycles
store: 3 and 4 5 cycles 1 every 3 cycles

MOVHPS/ load: 2 MIU 3 cycles 1 every cycle

MOVLPS store: 3 and 4

MOVMSKPS Port 0 WIRE 1 cycle 1 every cycle

MOVSS Port 0,1 FP, PESHF 1 cycle 1 every cycle

ANDPS/ORPS/ Port 1 PFSHUFF 2 cycles 1 every 2 cycles

XORPS

PMOVMSKB Port 1 WIRE 1 cycle 1 every cycle

PSHUFW/ Port 1 PFSHUFF 1 cycle 1 every cycle

PEXTRW 2 cycles 1 every 2 cycles

PINSRW/(reg, Port 1 PFSHUFF 4 cycles 1 every cycle

mem)

PSADW Port 0,1 SIMD 5 cycles 1 every 2 cycles

PMINUB Port 0,1 SIMD 1 cycle 1 every 1/2 cycle

PMINSW

PMAXUB

PMAXSW

PMULHUW Port 0 SIMD 3 cycles 1 every cycle

MOVNTPS Port 3,4 MIU, DCU 4 cycles 1 every 2 cycles

MOVNTQ Port 3,4 MIU, DCU 3 cycles 1 every cycle

PREFETCH*/ Port 2 AGU/memory 2 cycles 1 every cycle

cluster
FXRESTOR/ MICORCODE
FXSAVE

continued

Streaming SIMD Extensions Throughput and Latency D

Table D-1 Streaming SIMD Extensions Thr oughput and Latency (continued)

Instruct ion Ports Units Latency Throug hput
LDMXCSR/ MICORCODE

STMXCSR

MASKMOVQ/ Port 0,1,3,4 AGU, MIU, FWU 4 cycles 1 every cycle
SFENCE Port 3,4 AGU, MIU 3 cycles 1 every cycle
PAVGB Port 0,1 SIMD 1 cycle 1 every 1/2 cycle
PAVGW

Stadk Alignment for
Streaming SIMD Extension:

This appadix deails onthealignmentof the sacks of dat for Streaming
SIMD Extensions

Stack Frames

This secton descibes the stick algnmen convertions or both es p-based
(normd), ard ebp-baseddelug) sackframes. A sack frame s a
contiguous bock of memay allocated b afunction for itslocal memory
needs. Itcortains s@ce for he function’s paramedrs, retirn address, dcd
variables, register spils, pamameers needng be passedo ather funcions
that astack frame may chlandpossilly others. It s typicaly deineaed in
memoryby a sack frame pinter (esp) that pants the base 6theframe
for the function andfrom which al dat arereferencedvia appreriate
offsets. The mnventionon IA-32 isto use the esp register as e sack
frame minter for normaloptimized cale, anl to useebp in place ofesp
whendehug informaion mustbe lept. Deluggers use he ebp register to
find the informaion @outthe function via the sackframe.

It isimportart to ensure ttat the stack frame s aligned b a 16-byte
bounday upa fundionenty to keeplocal _m128 data, parametrs, ad
xmmregister spil locations aligned throughou afunction invocaion.The
Intel C/C++ Compiler for Win32* Sysems sppotts corvenions preselted
here help to prevert memory refererces fram incurring penalties die to
misalgned dita by keepng them digned to 16-byte bourdaiies. h addtion,
this schemesuppats improvedalignmentfor __mé4 anddoubl e type
daa by enforcing that these64-bit dat items are aleasteight-byte digned
(they will now be 16byte algned.

E-1

E Intel Architecture Optimization Reference Manual

E-2

For variables alocaedin the sackframe, he compier cannotguaraneethe
base of he variable is aligned urlessit also ersures hat the stick frame
itself is 16-byte algned Previous IA-32 sdtware corvenions, as
implemenéd in most compilers, aly ensurehiat individual stak frames are
4-byte aligned Therefore, a tinction caled from aMicrosoft*-compied
function, for ekamplk, canonly assume that the frame ponter it usedis
4-byte aligned

Earlier versions of the Intel C/C++ Compiler for Win32 Systems fave
attempted to provide 8byte dignead siack frames ¥ dynamcaly adusting
the stckframe ponter in the prologueof man andpreseving 8-byte
alignment of the functions it compiles. Ths technique is limited in its
applicahlity for the following reasons:

® Theman function mustbecompied by the Intel C/C++Compler.

® There maybe ro funcions n the cal tree @mpiled by some ther
compiler (as mght be the casdor rouines rgistered a calbacks).

®* Suppatisnd providedfor propa alignmentof pammeters.

The sdution to this problem is to have the function’s entry paint assune
only 4-byte alignment If the fundion has a med br 8-byte or 16-byte
alignmen, then code canbe insered b dynamically align the staick
appropriately, resutingin one d the sack frames stwn in Figure E1.

Stack Alignment for Streaming SMD Extensians E

Figure E-1 Stack Frames Based on Alignme nt Type

ESP-based Aligned Frame EBP-based Aligned Frame
Parameters Parameters
Return Address Return Address
Parameter Parameter
Padding Pointer Padding Pointer
Register Save Area Return Address 1
Local Variables and Previous EBP
Spill Slots +— EBP
SEH/CEH Record
_F?dec.l Pasrameter Local Variables and
assing space Spill Slots
ESP
__stdcall Parameter EBP-frame Saved
Passing Space Register Area
ESP

Parameter Passing
Space

As anopimization, an aternai eriry point canbe creatdthatcan te caled
whenprope stak alignmentis provided ky the caller. Using @l graph
prdfiling of the VTune™anal/zer, calsto the namal (unaligned) ertry
point canbeoptimizedinto cdls o the (aternak) algnedenty point when
the sackcan e provento be popety aligned Furthemore, a fundion
alignmern requirementatribute canbe modfied troughou the cal graph
soas tocausethe leasthumbe of cals to unaignedenty pants. As an
exampk of this, sypposefunction Fhas oty a sack dignment requrement
of 4, but it calls function G atmary cal sites, and in aloop. If G's algnment
requrementis 16, thenby promoing F's algnmern requirementto 16, and
making all cals to G go to its digned enty point, the compler can
minimize the number of times that contol passestrough te unaigned

E-3

E Intel Architecture Optimization Reference Manual

E-4

eriry points. Exampk E-1 andExample E-2 in thefollowing secions
illustate tis technique Note the enry pointsfo o andfo o. ali gned, the
latteris the alternate aligned entry paint.

Aligned esp-Based Stack Frames

This secton discusseslaa andparamegr aignmentard the

decl spec(al ig n) extended atribute, whch can ke usedto request
alignmern in C ard C+ cock. In aeating es p-based sack framesthe
compiler adds @dding betveen hereturn adiress ad the registersave area
as slown in Examge 3-9. This frame carbe usednly when delug
informaion is notrequesed, thereis no neal for excepton handling
support, inlined assemiylis not usedand hereare nocals to al lo ca
within the funcion.

If the alove coritions are notmet analignedebp-basedrame musbe
usal. When wsing this type of frame, he sum of he skesof the retirn
address, seed registers, bcal variables, register spil slots, ard paramedr
spae mustbe amultiple of 16 bytes. This causeshe base 6 the parametr
spae b bel6-byte aligned. Inaddtion, ary space resemrd for [@ssirg
paramefers for stdc al | functions alsomust be a muiple of 16bytes. This
mears thatthe caler needto clean upsome 6the stak spae whenthe
size d the parametrs pished for acal toastdc al | funcion isnat a
multiple of 16 If the caler does notdo this, the sack ponter is nat resbred
to its pre-call value.

In Examge E-1, wehave 12 lytes onthe st&k after the point of alignment

from the cdler: the return pointer, ebx andedx. Thus, we ned b add four

moreto the sick panter to echieve algnment. Assuming.6 bytes of stack
spae are pededor local variables, the canpileradds 6 + 4 = D bytes o

esp, making esp aligned to a0 mod 16 address.

Stack Alignment for Streaming SMD Extensians E

Example E-1 Aligned esp-Based Stack Frames

void _cdecl foo (in t K)

{
in tj;
f oo: /| | See Note A
pus h e bx
mov e bx, esp
sub e sp, 0 x00000008
and esp, Oxfffffffo
add e sp, 0 x00000008
jmp Cc omnon
fo o. al ign ed:
pus h e bx
mov e bx, esp
c onmon: /| See Note B
pus h e dx
sub esp, 20
i=k
mov edx, [ebx + 8]
mov [esp + 16], edx
fo o(5) ;
mov [esp], 5
cal | f oo. al ig ned
return j;
mov eax, [esp + 16]
add esp, 20
pop e dx
mov e sp, e bx
pop e bx
ret

E-5

E Intel Architecture Optimization Reference Manual

E-6

L)

NOTE. A. Alignedertry pants assumehtat parameter block beginnings
are algned.This places the sack pdnter at a 12 mal 16bourdary, as
the return pointer has been pushedrhus, tke unaligned enty point must
force the sack pdnter to this bounday.

B. The code athe commondbel assunes the stack isatan 8 mod
16 bowndary, and alds sificientspae@ t the sadk sothat the stack
pointeris digned to a Omod B boundary.

Aligned ebp-Based Stack Frames

In ebp-based fames,padding is also nseredimmedeately before tlereturn
address. Havever, thisframe is slightly unusual in that the return address
mayacualy resick in two differentplaces m the stack. This occus
wherever padling mwstbe aldedandexcepton rendlingis in effectfor the
function. Exampk E-2 shaws the mde generaged for this type of frame. The
stacklocation of the retrn address$ aligned12 mod16. This mears that
the value of ebp dways saisfies the condition (ebp & Ox 0f) = = 0x 08.
In this case,lte sumof the size of the return addess,the previousebp, the
excepton handling reord, the local variables, andthe spil area musbe a
multiple of 16 bytes. Inaddiion, the pprameer passig s@ce musbea
multiple of 16 bytes.For a cal to ast dcall function, it is necessaryor the
caler to resere some sickspacdf the szeof the paramedr Hock being
pushed is not a multiple of 16.

Example E-2 Aligned e bp-based Stack Frames

void _std call f oo(int k)

{
in tj;
fo o:
pus h e bx
nov eb x, esp
s ub esp, 0x00000008
a nd esp, Oxff ff ff fO

continued

Stack Alignment for Streaming SMD Extensians E

Example E-2 Aligned ebp-based Stack Frames (continued)

add

jmp

e sp, 0 x00000008/ / esp is (8 mod16)

f 00. alig ned:

pus h

mov
CO mmon:

pus h

push

mo v
and st ore
mov

nov
s ub

pus h

mov

mov
fo o(5) ;
add

mov

e bp

/I af terad d

Cc omnon
e bx /| espis (8 mod16)
/I after push
e bx, esp
e bp t his slot will be

eb p, [e bx +4]

[esp + 4], ebp

/'l used for dupli cate

return pt

/'] espis (0 mod1l6)
/laf terpu sh

/[(r tn ,eb x, ebp, ebp)
/'l f etchre turn pointer

/] relati ve to ebp
/I (rtn, ebx,r tn e bp)

ebp, esp /I ebp is (0Omod16)
esp, 28 /| espis (4 mod1l6)

/ | see Note A
e dx /| espis (0 mod16)

edx, [ebx + 8]

/1 after push
/| the goal is t o m&ke

/I esp and ebp (0 mal
/I 16) he re

/' kis (0 ma 16) if
/[call er aligned
/I his stack

[e bp - 16], e dx /I Jis (0 mad 16)

esp,-4 /1 normal ca ll s equence
/Il to unaligned entry

[espl. 5

continued

E-7

E Intel Architecture Optimization Reference Manual

Example E -2 Aligned ebp-based Stack Frames (continued)

cal | f oo / | for stdcall , call ee
/Il cl eans up sta ck
fo 0. al ign ed(5);
a dd esp, -16 /| I'alignedentry, th is
/'l shoul d be a
/1 multi pl e of 16

mov [e sp], 5
cal | f oo. alig ned
add es p, 12 /] se e Note B
return j;
mov eax, [e bp-1 6]
po p edx
mov esp, ebp
pop e bp
mov esp, ebx
pop e bx
ret 4
}
E NOTE. A.Herewe alow for loca variables. Howeer, this value shold

beadjusied sothat, atter pushing the savedegisters, esp § 0 mod16.

B. Just grior to the call, esp isO mad 16. To maintain alignment,
espshoutl be adustedby 16 Whena cdlee ses he stical calling
seaqience the stack pointer is restared by be callee The final addtion of
12 compensags fa the fact thatonly 4 byeswere passed, ather than 16,
and thus te caller must account for the remaining adjusiment.

E-8

Stack Alignment for Streaming SMD Extensians E

Stack Frame Optimizations

The Intel C/C++ Compil er providescertain optimizations that may improve
the way aligned frames arsetup ard used These ofimizaions are as
follows:

* [If aprocedre isddinedto leave the sackframel6-hbyte-alignedand t
cdls anaher procedire hatrequres 16-byte dignment, then he
cdlee’ algnedenty pointis caled, bypassing all of the unrecessar
aligning code.

* |f a satic funcion requires 16-byte alignment ard it can beproven b
becaled only by other funcions hat require 16-byte alignment then
that fundionwill not have ary alignmentcade n it. Thatis, the
compiler will notuseebx to point to the agumentblock and t will nat
have alternate enry points, becaise his funcion will never be enered
with an waligned frame.

Inlined Assembly and ebx

When sing aignedframes, the ebx register geneally should nd be
modfied ninlined assmbly blockssince ebx is used b keep tack d the
argumert block. Programmers maynodify ebx only if they do rot needto
access e agumerts ard providedthey save ebx andrestare it before the
end of the function (sinceesp is restored relative to ebx in the function's
epdlog).

For additionalinformaion an the useof ebx in inlineassembf cade and
othe related issues, see le Intel application note AP-833, Data Alignment
and Programmirg Issues with the Intel C/C++ Compiler, order number
243872 andAP-589 Sotware Conventons br the Sreaming SMD
Extensions, order number 24373.

@ CAUTION. Do nat usetheebx registe in inline assenbly functions

thatusedynamic seackalignmentfor double, __m64, ard _ m128 locd
variables unkss pu sare ard restore ebx each timeyou use it. The Intel
C/C++ Comapiler uses he ebx register to contol alignmentof variables
of thesetypes, so he use ofebx, without presering it, will cause
unexpeted program exeation.

E-9

The Mathematics
of Prefetdy Sheduling
Distance

This appedix discusse haw far away to inset prefetch instructions. k
presats a mahematcal modelallowing yau to deducea simgified
equaion which you can use ér deermining the prefetch schedling
distance(PSD)for your apgdicaion.

For your corvenience, he first secton preserts ths smplified equaton;the
secand setion provides the baclground for this equaion: the mahematical
mockl of the catulation.

Simplif ied Equation

A simplified eqiaion to compute PP is asfollows:

_ |Nlookup + Nxfer [{N,, o+ Ngy)

psd
CPI ENi'nst

where

psd is prefetch shedding distarce.

Nl ookup is the numberof clocks for lookup latency. This
paamete is system-dgendat. The type d memory
usal andthe chpsetimplemenétion affect its value.

Nxfe r is the number of cbcks transfer a cahe-ine. This
paamete isimplemengtion-degndert.

Nper andNg; are he numbes of cacheines tobe pefetched aml
stored.

F-1

I Intel Architecture Optimization Rderence Manual

F-2

CR isthe number of cbcks per hstruction. This paramegr
isimplementtion-depement

Nipst is the number of nstructions n the scpe d one bop
iteration.

Consider the following example d aheuristic equation assuming that
paametes have thevalues asndicaid:

60+ 25N

pref

1.5IN;

inst

Ny

psd:‘

where 60corresponds to N/ ookup, 25 © Nxfer, andl.5 b CAH.

The values of he parametrs n the eqiaion canbe deived from the
documenétion for memory coponens ard chipses as wellas from endor
daastheets.

CAUTION. The valuesin this example ae for illu stration only and do
not represeant the actial values br these arameers. The exkampk is
provided as a “sérting point approximation” of calculating the prefetch
schedding distance usigthe abare formula. Experimentng with the
instruction around te “starting point approximation” may be equired
to achieve the bestpossilde performance

Mathematical Model for PSD

The prametes used n the matremaics disaussed aras folows:

psd prefeth schedling distarce (measurin numler of
iterations)

il iteration latercy

T. computation latency per terationwith prefeth cache

T memoryleadof latency including cachemiss btency,

chip set laéncy, bus arbitation, etc.

The Mathematics of Prefetch Sheduling Distance I

Ty daatrarsfer latency which is equalto number of lines
pe iteraton * line hurst latency

Note that the potential effects d popreordeling ae notfacored nto the
estmations discussed.

Examine Exampk F-1 that usestie pr ef et chnt a instruction with a
prefetch schedling distance of3, thatis, psd =3. Thedat prefetched n
iteration i, will actually be usel in iteration i+ 3. T, refresent the g/cles
needed toexecukto p_lo op - assurmmg al the memoryaccessesitiL1
while il (iteration latency) represents the cycles needed to exeaute this loop
with acualy run-ime memory fodprint. T, can le deerminedby
compuing the ciiticd path latency of the cale dgpendacy graph This
work is quite aduous wthouthelp from specal peformarce
characerizaion tools or comgers. A simjte heuristic for estmaing the T,
value is b court the nunber ofinstructions n the critical path and mutiply
the rumber wih an atificial CPI. A reasoable CPI vaelue would be
somevher bdéweenl.0 and 15 demnding on he qualty of coce
scheduling.

Example F-1 Calculating Inse rtion for Scheduling Di stance of 3

to p_lo op:
pr ef etc hnta [edx+esi +32* 3]
pr ef etc hnta [edx*4 +esi +32* 3]

movaps xmml, [e dx+esi]
movaps xmm2 [e dx* 4+esi]

movaps xmm3 [e dx+esit+ 16]
movaps xmm4, [e dx* 4+esi+ 16]

add esi, 32

cmp esi, ecx
jl t op_lo op

F-3

I Intel Architecture Optimization Rderence Manual

Memory access phays a jpvotd role in prefeth schduling. For more
undersanding of a memorysubsystm, @nsder a $reaming SIMD
Extensions memoy pipeline deictedin FigureF-1.

Figure F-1 Pentium ® I and Pentium Ill Processors Memory Pipeline Sketch

T, T,

. H [
L A2l14
T E | 4

_ . L2 lookup mss lateny
]

. Memory page aces leadoff latengy

. 2 . 4 Latency for 4 dwunksreturned pe line

Assume thathreecacheines ae accesseger iteraton andfour chunks of

daaare retirned per iteraton far each ache ine. Also assme tese 3

acesses areipdinedin memory sbsysem. Based mthese asunptions,
Tp,=3*4 =12 FSB cycles.

F-4

The Mathematics of Prefetch Sheduling Distance I

T, varies dynamicaly andis dsosysten hardvare-denden. The stéic
variantsinclude the cae-to-front-side-kus rdio, memey mandadurer and
memorycontoller (chipse). The dyramicvariant includethe memory
page oenimiss @casons,memory acesses se@nce, dferent memory
types, andso on.

To deermine the proper pefetd schedling distance foll ow these steps
ard formule:
* Optimize T, as meh as pssilde

® Use hefollowingsetof formulae b calkulate the proper pefetch
scheduling distance

T.-2Ti+Ts paid =1 il=T
Ti+ T
hh+Tfw=1-=1T: el = " - | il=T-
T:

® Schedde the prefeth instructions acording b the compugd prefeth
scheduling distance

* For optimized memoy performane, appy techniques descitbedin

Thefollowing sectonsexplain andillustrate the archiecural corsiderations
involvedin the prefeth stedding distance formube alove.

No Preloading or Pr efetch

The traditiond programming approat does nopeiform dat preloading or
prefech. It is segienia in naure ard will experiencestals becaise he
memoryis unabk © provide the dadimmedately whenthe execuion
pipdine requires it Examine Figure 2.

F5

I Intel Architecture Optimization Rderence Manual

F-6

Execution Pipeline, No Preloading or Prefetch

Exeaution cycles

\

Execuion wits idle T,

of

4 .. >< ... >

ith iteration (i+1)t iteration

As you cansee fom Hgure F-2, the execuion dpelineis stlled while
waiting for data tobe returned from meamory. Onthe aher hand, the front
side lus is dle during the conputation pation d the loop. Thememory
acess #tencies coud be hdden bénind execuion if data could be fetched
earlier during the kus ide time.

Further anayzing Figure 6-10,

® assune executon cainotcontinue fll last chunkreturned and

e &findicakes fow dat degpendengy that stdls the exeaution pipelines
With these two things in mind the iteration latency (il) is computed as
follows:

il 0T+ T, + T,
The iteration latency is gpproximatly equal to the compuitation latency plus

the memoy leadof latency (includes cachemiss bBtency, chipsetlatency,
bus arbitration, ard so a.) plus he dai transkr latency where

transer latency= numbe of lines periteration * line burst latercy.

The Mathematics of Prefetch Sheduling Distance I

This meanstiat the decowpled memoryand eecution are neffective o
explore he parallelism becase of fow dependengy. That is the @ase where
prefetch can ke usefil by removing the bubbles n either the execution
pipdine o the memory fpeline

With an dealplacenentof the daa prefetching, the iteration latercy should
beeither bounl by execuion latency or memory &tency, thatis

il = maximum(T,, Tp).

Compute Bound (Case:Tc >=T |+ Tp)

Figure F-3

Figure F-3represend the casevhen he comput latency is greaer thanor
equal to the memonyleadoff latency plus he data transfer laercy. In this
case, the prefeth schedling distarce s exacly 1, i.e. pefetdh dat one
iteration aheads goodenowgh. The data for loopiterationi canbe
prefetched duing loop teration i-1, thedf symbd between frontside tus
ard execuion pipeline indicaes he ddaflow depemendgy.

Comput e Bound Execution P ipeline

Exeaution cycles

Iteration i Iteration i+1

> o >
> € >

A

5f

The following formuda shows the rebtionshp amang the paramegrs:

[ﬂ+ﬂ1
il = ———
K

| =T

F-7

I Intel Architecture Optimization Rderence Manual

F-8

It canbeseen fom this relationship thatthe iteration latercy is equalto the
computation latency, which meanshe memory acesses arexeated in
background ard their latencies ae canpletely hidden.

Compute Bound (Case: T |+ Ty > T¢ > Tp)

Now consier the rext caseby first examining Figure F4.

Figure F-4 Comput e Bound Execution P ipeline

Execution cycles
Front-Side Bus

For this paricular example the prefeth sdiedding dstane is greaér than
1. Databeng pefetched for iteration i will be cansumedn iteratoni+2.
Figure 6-12 represens the cae whertheleadof latency plus dita trarsfer
latency is greater than the mmpute latency, which is greater thanthe data
transfer &tency. The following relationship canbe usedo comptethe
prefeth schedling distarce.

The Mathematics of Prefetch Sheduling Distance I

p.-.'d:[r;ﬂizal il=T

In consegience the iteraton latency is also eqial to the canputation
latency, thatis, compue boundprogram.

Memory Thr oughput Bou nd (Case: Ty, >=Tg)

When te applicaion or lbopis memory hrouchputbound the memory
latency is no way to be hidden. Undyx suchcircumstarces, he kurst latency
is always greagr thanthe compte latercy. Examine Fgure F-5

Figur e F-5 Memory Throughput Bound P ipeline

Exeaution cycles

T
—

T

\

Executim pipeline

o gy

i+pid i+pid+1 i+pid+2 i+pid+3

The following relationshp calculatesthe prefetch scleduling dstance(or
prefechiteration distancg for the case Wwen memoryhrougtputlatency is
greder than the canpute latency.

F-9

I Intel Architecture Optimization Rderence Manual

F-10

Example

i+ T T
s = ~‘= 1+ [—} =1 =1
T T

Apparenty, theiteraion latency is dominant by the memory tiroughpu and
you cannotdo much aoutit. Typically, datacopy from ane spacdo andher
spae, for @ampk, graphcs diver moving data from writeback memoy to
you cannotdo mwch aoutit. Typicaly, data copy from ane spaceo andher
spae, for @ampk, graphts diver mwing data from writeback memoy to
write-canbining memory belongs o this caegory, whereperformance
advantage from prefeth instructions wil bemagind.

As anexample of the previous casgconsder the following condtions fr
computation latency andthe memonthroughput latercies. Assuméd| = 18
and Ty, = 8 (n front sde bus cycles).

i REES:
il o226 = psd =| -‘=I

. I5+n
26T =8=2% pad =[= l:'i

b
i T. El“i:b,r:n.';.l':l.;"l_ =4
w1

Now for the caseT| =18, T, =8 (2cachdines ae neead pe iteraion)
examine te following graf. Consiler the grajn of acceses per ieraton in
exampk 1, Figure F6.

The Mathematics of Prefetch Sheduling Distance I

Figure F- 6 Accesses per lteration, Ex ample 1
2 eache lines accessed per iteration
CreTeT, N7 Ti+To=T.=Th "T.=7,
— 120
o .-.._.- i
E N - 5
E 5‘__ e - .I"." £l i .
; ._’ —.!- _; 41 :
§) b ol o ol o B el .‘ E-'
i 20 "
= . ::'ﬂl': PTG coampiite houmd)Kwnpum b ';I.I
R A e e e Tl
Te lin FS8 elocks)

The prefetch schedling distance is a sepfunction of T, the canputation
latency. The stady sate iteration latercy (il) is either memory-bound or
comput-bound dgendng on T, if prefethes arescheduded effectvely.

The gaph in exampk 2 of access per teration in Figure F7 shavs the
resuts for prefetching multiple cache lines per iteration. The cases stown
arefor 2, 4,and 6cacte lines per teration, resuting in differing burst
latencies. (T,=18, T,, =8, 16 24).

F-11

I Intel Architecture Optimization Rderence Manual

Figure F-7 Accesses per lteration, Example 2

psd br differert number ofcacte linesprefetched per iteration

—e—2lines|
m 4lines

A 6 lines

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45

Tc (in FSB clocks)

In redlity, the front-side kus (FSB) pipelining degh is limited, thatis, only
four transactons areallowed 4 a ime in the Pentium® |1l processorHene
a ransation bubble a gap, Ty, (gapdueto idle bus ofimperfectfront side
bus pipdining) will be observed on FSB activities. ThHs leads to
consiceraton of the ransation gapin compiting the prefeth schedding
distance.The ransacton gap, Tg, mustbefacbred nto the turst g/cles, Ty,
for the calculation of prefeth scheduingdistarce.

The following relationshp slows compuitation of the ransadbn gap.

Ty=maxiTi—ec={n—-110)

whereT, is the memory¢addf latency, ¢ is the rumber of chaks pe ceche
line andn is the FSB pipeli ning depth.

F-12

Index

3D transormaion algorithms, A-7
4-1-1 order, 1-5

A

absolute difference, A-15
of signed rumbers, 4-15
of unsigned rumbers, 4-14

absolute value, 4-17
acesses g iterdion, F-11, F-12
addessalignmert, 2-2
addess ckulations, 2-19
advandng memory loads, A-19
aligned ebp-based frame, E-4, E-6
aligned espbasd stadk frames E-4
alignment, 2-11

coe 2-11

da, 2-12

rules, 2-11
AoS forma, 3-21, A-8
A0S. See aray of structures
apgicaion performance tools, 7-1
arithmetic logic unt, 1-9
arrayof gtructures, A-8
assenbly coach 7-13
assenbly coachtechniques,7-13

assenbly codefor SoA transformetion, A-13

automatic masked exception handing, 5-38
auomaic processr dispatch sipport, 7-15

automatic vectorization, 3413, 3-14

B

blerding of cade, 2-10
brarchmispredction raio, 2-8
Branch Prediction, 1-5, 2-1, 2-2
brarch target buffer, 1-5

BTB misss, 710

BTB. Seebrarch target buffer

C

cade bbcking techiques,6-18
cade herarchy, 7-6
cade kevel, 6-2

cache managemert
simple memory copy, 6-28
video decoder, 6-27
video ercoder, 6-27

cade misss, 2-2
cace peformance, 75
cacheability control instrictions, 6-9

calculating insetion for scheduling distance, F-3

call graph profiling, 7-7

Index-1

Index

Call Graph view, 7-7
call information, 7-9
changing the rounding mode, 2-26
checking for MMX technology sypport, 3-2
checking for Streaming SIMD Extersions
support, 3-3
child function, 7-9
classs (C/C+4), 3-12
clearing registers 2-19
clipping to anarbitrary signedrange 4-17
clipping to anarbitrary unsigned range, 4-19
coce coach 7-11, 7-13
code optimizaton advice, 7-11, 7-13
code optimization options, 7-14
coding methodologies, 3-8
coding techniques 3-7
abglute differene of signed numbers,4-15
abglute difference of unsigned numbea's,
4-14
absolute value, 4-17
clipping to anarbitrary signedrange 4-17
clipping to an arbitrary unsigned range, 4-19
generating congants, 4-20
interleaved pack with sguration, 4-9
interleaved pack without saturation, 4-11
non-interleaved urpack, 4-12
signed wnpack, 4-8
simplified dipping to an arbitrary signed
range, 4-19
unsigned urpack, 4-8
coherent requests, 6-8
conmard-line qotions, 7-14
aubmaic processr dispach syppart, 7-15
floating-point arithmetic precision, 7-17
inline expandon of library functions, 7-17
loopurrolling, 7-17
prefetching, 7-16
rounding control, 7-17
targeting a pocessor, 7-15
vectorizer switch, 7-16
comparing register values 2-19

compiler intrinsics
_mm_load, 6-26
_mm_prefeth, 6-26
_mm_steam, 6-26

compiler plug-in, 7-14
compiler-supported aignment 3-18
complex FIR filter, A-21

complex FIR filter agorithm
reducing non-value-added ingructions, A-21
unrolling the loop, A-21
using a SMD data structure, A-21

complex instructions 14, 2-17
compuation latency, F-8
computaion-intensive cale, 3-7
compue bownd, F-7, F-8

conditiond branches, 1-7, 2-5
conditiond moves enulation, 5-31
converting coce to MMX tecmalogy, 3-4
counters, 7-6

CPUID instruction, 3-2

CPUID usage, 4-2, 5-5

D

data dignment, 3-15,5-5
data arrangemen, 5-6
daacacte unt, 2-12

data copy, F-10

data deswizzling, 5-13, 5-15
data swizzling, 5-10
dataswizzling wsing intrinsics, 5-11
DCU. See data cade urit
debug symbds, 7-9
decoder, 2-15

decoder spedfications, C-1
decoders, 14

decoupled memory, F-7
deperdercy chains A-9

Index-2

Intel Architecture Optimization Rderence Manual

Index-3

divide instructions, 2-20

dynarmic assenbly aralysis, 7-10
dynamic branch pediction, 2-2, 2-3
dynanic predction, 1-6

E

EBS. See event-based sanpling
eight-bit operands, 2-18

eliminating branches, 2-5 2-7, 2-8
eliminating umecassay micro-ops, A-20
EMMS instruction, 4-3, 4-5, 4-6, 5-4
EMMS schedule, 5-27

eplog seqierces 2-20

event-based sampling, 74

executing instructions aut-of-order, 5-28
execution unit, D-1

extract word instruction, 4-22

F

FIR filter algorithm, A-17
advandng memory loads, A-19
minimizing cache pdlution on write, A-20
minimizing pointer arithmetic, A-20
paralel multiplications, A-17
prefetch hints, A-20
reducing dat dependency, A-17
reducing register pressure, A-17
scheduling for the reoder buffer, A-18
serating memory accesses from
operations, A-19
unrolling the loop, A-19
wrapping the loop around, A-18
fistinstruction, 2-25
fldcw instrudion, 2-26
floaing-point gpplicatons, 2-20
floating-point arithmetic precision options, 7-17

floating-point code
improving pamllelism, 2-21
loop unralling, 2-28
memory access stdl information, 2-24
operations with integer operands, 2-30
optimizing, 2-21
transcendental functions, 2-31
floating-point execution urit, 1-9
floating-point operations with integer operands,
2-30
floating-point stlls, 2-29
flow dependercy, 6-4, F-7
flush to zero, 5-42
forwarding from soresto loads 5-31
front-end pipeline, 1-4
fstsw instruction, 2-31
FXCH instriction, 2-23

G

genera optimization techniques, 2-1
branch prediction, 2-2
dynamic brarch prediction, 2-2
eliminate bianches, 2-6
eliminating branches, 2-5
stdtic prediction, 2-3

generting corstants, 4-20

H

hiding ore-clock latency, 2-29
horizontd computations, 5-18
hatspats, 3-6, 7-10, 7-11

incorporating prefethinto code, 6-23
increasing bandwidth of memory fills, 4-32
increasing bandwidth of video fills, 4-32

Index

indirect brand, 2-5

inline assembly, 4-5

inline expansion of library functions option, 7-17
inlined assenbly blocks, E-9
inlined-asm, 3-10

in-order iss front erd, 1-2

in-order retirement, 1-3

insert word instruction, 4-22

instruction fetch unit, 1-5

instruction prefetch, 2-3

instruction prefetcher, 1-4

instriction scheduling, 4-34

instriction sdection, 2-16

integer and floaing-point multiply, 2-30
integer divide, 2-20

integer-intensive application, 4-1, 4-2
Intel Rerformarce Library Suite, 7-1
interaction with x87 numetic excegions, 541
interleaved pack with sguration, 4-9
interleaved pack without saturation, 4-11
interprocedural optimization, 7-17

IPO. Se interprocedural optimization

L

large load stalls, 2-25

latency, 1-3, 2-29, 6-1

latency number of cycles D-1

lea nstruction, 2-17

loadng ard sbring to andfrom the sane DRAM
page, 4-32

loopblocking, 3-25

loop urrolling, 2-28

loopurrolling option, 7-17

loop unrolling. See unrolling the loop.

M

macro-instruction, 2-14
memory access std information, 2-24
memory bank conflicts, 6-25
memory O=optimization U=using P=prefetch,
6-10
memory optimization, 4-27
memory optimizations
loading and stoiing to and from the same
DRAM page, 4-32
patial menory accesss, 4-28
using aigned sores, 4-33
menory performance, 3-20
menory refererce instructions, 2-19
menory throughput bound, F-9
micro-ops 1-2
minimize cacte pdlution onwrite, A-20
minimizing cache pdlution, 6-5
minimizing pointer arithmetic, A-20
minimizing prefetchesnumber, 6-15
misalgned accesss event, 2-13
misaligned data, 2-12
misaligned data access, 3-15
misdignment in the FIR filter, 3-16
mispredicted branches, 1-6
missedcacle acess,7-10
mixing MM X techhology cade aml
floating-point code, 5-3
mixing SIMD-integer and SIMD-fp instructions
46
modulo 16 brarch, 1-4
modulo scheduling, 5-25
motion estimation dgorithm, A-14
motion-errar calculation, A-15
move byte mask to integer, 4-24
movntps instretion, A-20
MOVQ Instruction, 4-32
multiply instruction, 2-17

Index-4

Intel Architecture Optimization Rderence Manual

Index-5

N

new SIMD-integer instructions, 4-21
extract word, 4-22
insert word, 4-22
move byte mask to integer, 4-24
packed average byte or word), 4-27
packed muitiply high unsigned, 4-25
packed shufle word, 4-25
packed signed integer word maximum, 4-23
packed signed integer word minimum, 4-23
packed sumof absdute differences, 4-26
packed unsigned integer byte maximum,
4-23
packed unsignedinteger byte mnimum, 4-24
Newton-Raphson
approximation, A-9
formula, A-2
iterations 5-2, A-2
Newton-Raphsan method, A-2, A-3
inverse regprocal agoroximation, A-5
reciprocal instructions, A-2
reciprocal saquare raot operation, A-3
non-coherent requess, 6-8
non-interleaved urpack, 4-12
non-temporal soreinstructions, 6-5
non-temporal stores, 6-25
numelic excegions, 5-36
automatic masked exception handing, 5-38
conditions, 5-%
flush to zero, 5-42
interaction with x87, 541
priority, 5-37
unmaskedexceptions, 5-39

@)

optimization of upsampling algorithm, A-16
optimized adgorithms, A-1

3D Trarsformation, A-7

FIR filter, A-17

motion estimation, A-14

Newton-Raphson methodwith thereciprocal
instructions, A-2

upsamping signals, A-15
optimizing cache utilization

cathe management, 6-26

exanples 66

non-temporal storeinstructions, 6-5

prefetch ard load, 6-4

prefetch Instructions, 6-3

prefetching, 6-3

SFENCE instration, 6-6

streaming, non-temporal stores, 6-6
optimizing floaing-point applicaions

benefits from SIMD-fp instructions, 5-3

conditiond moves, 5-3

copying, shuffling, 5-17

CPUID usge, 55

data dignment, 5-5

data arangemert, 5-6

data deswizzling, 5-13

data swizzling, 5-10

data swizzling wsing intrinsics, 5-11

EMMS instruction, 5-4

horizortal ADD, 5-18

modulo scheduling, 5-25

overlapping iterations, 5-Z7

plaming corsiderations, 52

port balancing, 5-33

rules ard swggestons 5-1

scalar code, 5-3

schedule with the triple/quadruple rule, 5-24

scheduling avoid RAT salls, 5-31

scheduling instructions, 5-22

scheduling instructions out-of-order, 5-28

vertical versus forizortal computaton, 5-6
optimizing floating-point code, 2-21
out-of-order core, 1-2, 1-3
overlapping iterations, 5-Z7

P

pack instrudion, 4-11

Index

pad instructions, 49
padked average byte or word), 4-27
packed multiply high unsigned, 4-25
packed shuffle word, 4-25
packed signed integer word maximum, 4-23
paded signed integer word minimum, 4-23
packed sum of absolute differerces, 4-26
padked ursigned nteger byte maximum, 4-23
padked unsigned nteger byte minimum, 4-24
pairing, 7-9
parallel multiplications, A-17
parallelism, 1-7, 3-7, 7
parameter dignment, E-4
parent function, 7-9
partial memory accesses, 4-28
partial registe stdls, 2-1, 2-8
PAVGB instruction, 4-27
PAVGW instruction, 4-27
pendties, 7-9
perfamarce canter events, 7-4
Performarce Likrary Suite, 7-18
archtecture, 7-19
Image Pracessing Library, 7-19
Image Praessing Primitives,7-19
Math Kernel Library, 7-19
optimizations 7-20
Recognition Primitives Library, 7-18
Signal Procesing Library, 7-18
performarce-manitoring counters, B-1
performarce-manitoring everts, B-2
PEXTRW instuction, 4-2
PGO. See profile-guided optimizaion
PINSRW instriction, 4-2
PLS. See Rrformance Library Siite
PMINSW instrudion, 4-23
PMINUB instruction, 4-24
PMOVMSKB instriction, 4-24
PMULHUW instruction 4-25

port balancing, 5-31, 5-33

predctable memory access paterns, 6-4

prefech, 1-4

prefech ard caheaility Instructions, 6-2

prefetch ard loadInstuctions, 6-4

prefetch concateretion, 6-13, 6-14

prefach hints, A-20

prefetch instruction, 6-1, A-8, A-15

prefetch instruction cansideratons, 6-12
cade bbcking tecmiques,6-18
concatergtion, 6-13
memory bank conflicts, 6-25
minimizing prefetchesnumber, 6-15
no preloading or prefetch, F-5
prefetch scleduling dstance, F-5
scheduling distarce, 6-12
single-pass execttion, 6-23
single-pass vs. multi-pass 6-24
spread pefetch with compuatin

instructions, 6-16

strip-mining, 6-21

prefetch instructions, 6-4

prefetch scheduling distarce, 6-12, F-5, F-7, -9

prefach use
flow deperdency, 64
predctable memory access paterns, 6-4
time-consuming innemostloops, 6-4

prefetching, 7416, A-9, A-15
prefetching corcep, 6-2
prefetchnta ingruction, 620
prefixed opades,2-2, 2-16
profile-guidedoptimization, 7-18
prolog sejuences, 2-20
PSADBW instruction, 4-26
psacbw ingtruction, A-14
PSHUF instruction, 4-25

R

reciprocalinstructions 5-2

Index-6

Intel Architecture Optimization Rderence Manual

Index-7

reducing dat dependency, A-17
reducing nonvalue-added instructions, A-21
reducing register pressure, A-17
register viewing tol, 7-2, 7-21
register daa, 7-21
retun stack buffer, 1-6
rounding control option, 7-17
RVT. Seeregister viewing tool

S

sanpling, 7-2
eventbased 74
time-based, 7-3

scheduling for the reorder buffer, A-18
scheduling for the resenation statio, A-18
scheduling instructions, 5-22
scheduling to avoid RAT stalls, 5-31
scheduling with the triple-quadruple rule, 5-24
seprating memory acceses fromoperations,

A-19
SFENCE Irstruction, 6-6
short opcodes, 2-17
signed wnpack, 4-8
SIMD instruction pat assignmerts, 4-7
SIMD integer code 4-1
SIMD. See singe-instruction, multiple data.
SIMD-floaing-point coce, 5-1
simple instiuctions, 1-4
simple memory copy, 6-28
simplified 3D geomery pipdine, 6-10
simplified clipping to an arbitrary signed range,

4-19
single-instrwction, multiple-data, 3-1
single-pass versus multi- passexecution, 6-23
smoathed upsample dgorithm, A-15
SoA format, 3-21, A-8
SoA. Seestraucture of arrays.

software pipdining, A-18
software wrie-combining, 6-25
spread pefetch, 6-17

Spreacsheet, 7-7

stackalignment, 3-16

stack frame, E-2

stack frame ogimizaton, E-9

stdl condition, B-1

static asserbly amalyzer, 7-10
staic branch prediction dgorithm, 2-4
static cock amalysis, 7-9

staic prediction, 1-6, 2-3

staic prediction dgorithm, 2-3
streaning nan-temporal stores, 6-6

streaming sbres, 6-28
approach A, 6-7
approach B, 6-7
coherert requests, 68
non-coherent requess, 6-8

strip-mining, 3-23, 3-25, 6-21, 6-22
structure d arrays, A-8

sumof absdute differences, A-15
swizzling dab. See daaswizzling.

T

targeting a processor option, 7-15
TBS. See ime-basd samling
throughput, 1-3, D-1

time-based sanpling, 7-2 7-3
time-consuming innemostloops, 6-4
TLB. See transection lookadsde huffer
transaction lodkaside buffer, 6-28
transcendental functions, 2-31
transfer latency, F-7, F-8

transpsed format, 3-21

transpsng, 3-21

Index

triple-quadruple rule, 5-24 vectorized cade, 3-13
tuning gpplication, 7-2 vectorizer switch options, 7-16
vertical versus haizortal computation, 5-6

U View by Cal Sites, 7-7, 7-9
_ VTune analyzer, 2-10, 3-6, 7-1
unconditiond branch, 2-5 VTune Rerformance Analyzer, 3-6
unmaskedexceptions, 5-39
unpa instructions, 4-12 W
unrolling the loop, A-19, A-21 —_
unsigned umpack, 4-8 wrapping the looparound, A-18
upsamping, A-15 write-combining buffer, 6-26
using aigned sbores, 4-33 write-combining menory, 6-26
using MM X codefor copyor shufling functions,

5-17

Vv

vector class libary, 3-12
vectorization, 3-7

Index-8

