CS213
Writing a Dynamic Storage Allocator

1 Introduction

In this lab you will be writing a dynamic storage allocator for C programs, i.e., your own version of the
mal | oc, free and r eal | oc? routines. You are encouraged to explore the design space creatively and
implement an allocator that is correct, efficient and fast.

2 Logistics

You may work in a group of up to two people. Any clarifications and revisions to the assignment will be
posted on the course Web page.

3 Hand Out Instructions

The mal | ocl ab- handout . t ar file is available in / honme/ pdi nda/ HANDOUT on the TLAB ma-
chines. The directory / honme/ pdi nda/ handout / nal | ocl ab 1 r aces contains traces.

Start by copying mal | ocl ab- handout . t ar to a protected directory in which you plan to do your
work. Then give the command: t ar xvf mal | ocl ab- handout . t ar. This will cause a number of
files to be unpacked into the directory. The only file you will be modifying and handing in is mm c. The
nmdr i ver . c program is a driver program that allows you to evaluate the performance of your solution. Use
the command make to generate the driver code and run it with the command . / ndri ver -V. (The-V
flag displays helpful summary information.)

Looking at the file mm ¢ you’ll notice a C structure t eaminto which you should insert the requested
identifying information about the one or two individuals comprising your programming team. Do this right
away so you don’t forget.

When you have completed the lab, you will hand in only one file (hnm ¢), which contains your solution.

YYour implementation of r eal | oc need only be correct. You will not be tested on its performance.

4 HowtoWork onthelLab

Your dynamic storage allocator will consist of the following four functions, which are declared in nm h
and defined in mm c.

i nt mminit(void);

void *mm nal | oc(size_t size);

void mmfree(void *ptr);

void *mmreall oc(void *ptr, size_t size);

The mm c file we have given you implements the simplest but still functionally correct malloc package that
we could think of. Using this as a starting place, modify these functions (and possibly define other private
st at i c functions), so that they obey the following semantics:

e mmi ni t: Before calling mmmal | oc mmr eal | oc or mmf r ee, the application program (i.e.,
the trace-driven driver program that you will use to evaluate your implementation) calls mmi ni t to
perform any necessary initializations, such as allocating the initial heap area. The return value should
be -1 if there was a problem in performing the initialization, O otherwise.

e mmmnal | oc: The nmmal | oc routine returns a pointer to an allocated block payload of at least
si ze bytes. The entire allocated block should lie within the heap region and should not overlap with
any other allocated chunk.

We will comparing your implementation to the version of mal | oc supplied in the standard C library
(I'i bc). Since the | i bc malloc always returns payload pointers that are aligned to 8 bytes, your
malloc implementation should do likewise and always return 8-byte aligned pointers.

e mMmfree: The nmf r ee routine frees the block pointed to by pt r. It returns nothing. This rou-
tine is only guaranteed to work when the passed pointer (pt r) was returned by an earlier call to
nmmal | oc or mmr eal | oc and has not yet been freed.

e mmr eal | oc: The nmr eal | oc routine returns a pointer to an allocated region of at least si ze
bytes with the following constraints.

— if pt r is NULL, the call is equivalent to mrmnal | oc(si ze) ;
— if si ze is equal to zero, the call is equivalent to nmf ree(ptr);

— ifpt r isnot NULL, it must have been returned by an earlier call to mmural | oc ornmr eal | oc.
The call to mmr eal | oc changes the size of the memory block pointed to by pt r (the old
block) to si ze bytes and returns the address of the new block. Notice that the address of the
new block might be the same as the old block, or it might be different, depending on your imple-
mentation, the amount of internal fragmentation in the old block, and the size of the r eal | oc
request.

The contents of the new block are the same as those of the old pt r block, up to the minimum of
the old and new sizes. Everything else is uninitialized. For example, if the old block is 8 bytes
and the new block is 12 bytes, then the first 8 bytes of the new block are identical to the first 8

bytes of the old block and the last 4 bytes are uninitialized. Similarly, if the old block is 8 bytes
and the new block is 4 bytes, then the contents of the new block are identical to the first 4 bytes
of the old block.

These semantics match the the semantics of the corresponding | i bc mal | oc,real | oc,and f r ee rou-
tines. Type man mal | oc to the shell for complete documentation.

5 Heap Consistency Checker

Dynamic memory allocators are notoriously tricky beasts to program correctly and efficiently. They are
difficult to program correctly because they involve a lot of untyped pointer manipulation. You will find it
very helpful to write a heap checker that scans the heap and checks it for consistency.

Some examples of what a heap checker might check are:

Is every block in the free list marked as free?

Avre there any contiguous free blocks that somehow escaped coalescing?

Is every free block actually in the free list?

Do the pointers in the free list point to valid free blocks?

Do any allocated blocks overlap?

Do the pointers in a heap block point to valid heap addresses?

Your heap checker will consist of the functioni nt nmcheck(voi d) innmm c. It will check any invari-
ants or consistency conditions you consider prudent. It returns a nonzero value if and only if your heap is
consistent. You are not limited to the listed suggestions but you are required to check all of them.

This consistency checker is for your own debugging during development. When you submit nrm ¢, make
sure to remove any calls to nrmcheck as they will slow down your throughput. Style points will be given
for your rmcheck function. Make sure to put in comments and document what you are checking.

6 Support Routines

The memlib.c package simulates the memory system for your dynamic memory allocator. You can invoke
the following functions in men i b. c:

e void *memsbrk(int incr): Expands the heap by i ncr bytes, where i ncr is a positive
non-zero integer and returns a generic pointer to the first byte of the newly allocated heap area. The
semantics are identical to the Unix sbr k function, except that memsbr k accepts only a positive
non-zero integer argument.

e voi d *memheapd o(voi d) : Returns a generic pointer to the first byte in the heap.

e voi d *nmemheap_hi (voi d) : Returns a generic pointer to the last byte in the heap.

si ze_t memheapsi ze(voi d) : Returns the current size of the heap in bytes.

si ze_t nmempagesi ze(voi d) : Returns the system’s page size in bytes (4K on Linux systems).

7 The Trace-driven Driver Program

The driver program ndr i ver . c inthe mal | ocl ab- handout . t ar distribution tests your nm c pack-
age for correctness, space utilization, and throughput. The driver program is controlled by a set of trace files
that are included in the mal | ocl ab- handout . t ar distribution. Each trace file contains a sequence of
allocate, reallocate, and free directions that instruct the driver to call your rmumal | oc, nmr eal | oc, and
mmf r ee routines in some sequence. The driver and the trace files are the same ones we will use when we
grade your handin mm c file.

The driver mdr i ver . c accepts the following command line arguments:

e -t <tracedir>: Look for the default trace files in directory t r acedi r instead of the default
directory defined in confi g. h.

e -f <tracefil e>: Useone particular t r acef i | e for testing instead of the default set of trace-
files.

e - h: Print a summary of the command line arguments.
e -1 : Runand measure | i bc malloc in addition to the student’s malloc package.
e - Vv: Verbose output. Print a performance breakdown for each tracefile in a compact table.

e - V. More verbose output. Prints additional diagnostic information as each trace file is processed.
Useful during debugging for determining which trace file is causing your malloc package to fail.

8 Programming Rules

¢ You should not change any of the interfaces in mm c.

¢ You should not invoke any memory-management related library calls or system calls. This excludes
the use of mal | oc, cal | oc, free, real |l oc, sbrk, brk or any variants of these calls in your
code.

¢ You are not allowed to define any global or st at i ¢ compound data structures such as arrays, structs,
trees, or lists in your nm c program. However, you are allowed to declare global scalar variables such
as integers, floats, and pointers in rm c. Hint: having at least one global pointer will be necessary.

e For consistency with the | i bc mal | oc package, which returns blocks aligned on 8-byte boundaries,
your allocator must always return pointers that are aligned to 8-byte boundaries. The driver will
enforce this requirement for you.

9 Evaluation

You will receive zero points if you break any of the rules or your code is buggy and crashes the driver.
Otherwise, your grade will be calculated as follows:

e Correctness (20 points). You will receive full points if your solution passes the correctness tests
performed by the driver program. You will receive partial credit for each correct trace.

e Performance (35 points). Two performance metrics will be used to evaluate your solution:

— Space utilization: The peak ratio between the aggregate amount of memory used by the driver
(i.e., allocated via mmmal | oc or nmr eal | oc but not yet freed via mmf r ee) and the size
of the heap used by your allocator. The optimal ratio equals to 1. You should find good policies
to minimize fragmentation in order to make this ratio as close as possible to the optimal.

— Throughput: The average number of operations completed per second.

The driver program summarizes the performance of your allocator by computing a performance index,
P, which is a weighted sum of the space utilization and throughput

T
P =wU + (1 — w) min (1,—)
Thibe

where U is your space utilization, 7" is your throughput, and 77;.. is the estimated throughput of | i bc
malloc on your system on the default traces.? The performance index favors space utilization over
throughput, with a default of w = 0.6.

Observing that both memory and CPU cycles are expensive system resources, we adopt this formula to
encourage balanced optimization of both memory utilization and throughput. Ideally, the performance
index will reach P = w + (1 — w) = 1 or 100%. Since each metric will contribute at most w and
1 — w to the performance index, respectively, you should not go to extremes to optimize either the
memory utilization or the throughput only. To receive a good score, you must achieve a balance
between utilization and throughput.

e Style (10 points).

— Your code should be decomposed into functions and use as few global variables as possible.

— Your code should begin with a header comment that describes the structure of your free and
allocated blocks, the organization of the free list, and how your allocator manipulates the free
list. each function should be preceeded by a header comment that describes what the function
does.

2The value for T} is a constant in the driver (600 Kops/s) that your instructor established when they configured the program.

10

— Each subroutine should have a header comment that describes what it does and how it does it.
— Your heap consistency checker mm.check should be thorough and well-documented.

You will be awarded 5 points for a good heap consistency checker and 5 points for good program
structure and comments.

Handin Instructions

You will handin your nm c file via email sent to the instructor and the TA. You can do this using your
favorite email client, or you simply run make handi n

11

Hints

Use the mdr i ver - f option. During initial development, using tiny trace files will simplify debug-
ging and testing. We have included two such trace files (short 1, 2- bal . r ep) that you can use for
initial debugging.

Use the ndri ver -v and - V options. The - v option will give you a detailed summary for each
trace file. The - V will also indicate when each trace file is read, which will help you isolate errors.

Compile with gcc - g and use a debugger. A debugger will help you isolate and identify out of
bounds memory references.

Understand every line of the malloc implementation in the textbook. The textbook has a detailed
example of a simple allocator based on an implicit free list. Use this is a point of departure. Don’t
start working on your allocator until you understand everything about the simple implicit list allocator.

Encapsulate your pointer arithmetic in C preprocessor macros. Pointer arithmetic in memory man-
agers is confusing and error-prone because of all the casting that is necessary. You can reduce the
complexity significantly by writing macros for your pointer operations. See the text for examples.

Do your implementation in stages. The first 9 traces contain requests to mal | oc and free. The
last 2 traces contain requests for r eal | oc, mal | oc, and f r ee. We recommend that you start by
getting your mal | oc and f r ee routines working correctly and efficiently on the first 9 traces. At this
point, you can simply build r eal | oc on top of your existing mal | oc and f r ee implementations.
This is sufficient. However, if you’re interested, you can work on improving performance by building
a stand-alone r eal | oc.

Use a profiler. You may find the gpr of tool helpful for optimizing performance.

Start early! It is possible to write an efficient malloc package with a few pages of code. However, we
can guarantee that it will be challenging and very different from the previous labs in this course. So
start early, and good luck!

