
EECS 213 Introduction to Computer Systems Dinda, Fall 2013

 Page 1 of 3

Homework 1
Integer and Floating Point Number Representations

Integer

In the Data Lab, you are using the x86 processor in 32 bit mode. Part of what this means
is that the “natural” width of an integer is 32 bits---you are employing 32 bit two’s
complement integers in your code. The same processor (as well as processors
developed by other vendors) can also run in 64 bit mode, where the natural width is 64
bits. For this section of the homework, assume such a 64 bit two’s complement format.

Problem 1
Suppose you have a 3 GHz processor and you can execute two 64 bit integer additions
(or subtractions) every cycle. How long will the following loop run?

 long long int i; /* 64 bit integer */
 for (i = 0 ; i <= 0; i--) {}

Problem 2
A Full Adder (FA) logic block takes three input bits and provides two output bits. The
input bits are summed to produce a two bit output. Write a table showing what each
combination of input bits produces at the output. Draw a picture of how you might
connect FAs together to create a (slow) 64 bit adder. If you’re interested in how a fast
adder works, do a google search for the term “carry lookahead adder”.

Problem 3
Some instruction sets, including x86, provide an integer representation in addition to
two’s complement. This representation is called Binary Coded Decimal (BCD). How
many unique numbers can be represented in a 64 bit BCD quantity? Why might one use
BCD?

Problem 4
Most instruction sets provide an “add with carry” and a “subtract with borrow”
instruction. Explain how you might use these to implement arbitrary bit length integer
representations. Are the instructions necessary to do this?

EECS 213 Introduction to Computer Systems Dinda, Fall 2013

 Page 2 of 3

Floating Point

Consider the following two small floating point formats based on the IEEE standard:

• Little Format

• Tiny Format

Except for the sizes of these formats, the rules are those of the IEEE standard.

Problem 1
For both formats, determine the following values (in decimal)

1. Largest positive finite number
2. Positive normalized number closest to zero
3. Largest positive denormalized number
4. Positive denormalized number closest to zero

Problem 2
Encode the following values in the 8 bit Little Format: ¾, -13/16, 44, and –104, show
each in binary and hexadecimal.

Problem 3
Determine the values corresponding to the following Little Format bit patterns. The
leftmost bit is the most significant

1. 10110011
2. 01111010
3. 10010001
4. 01001111
5. 11000001

Sign Bit Exponent
(bias is 7)

Significand
(Mantissa)

Sign Bit Exponent
(bias is 3)

Significand
(Mantissa)

EECS 213 Introduction to Computer Systems Dinda, Fall 2013

 Page 3 of 3

Problem 4

Convert the following 8 bit Little Format numbers into 6 bit Tiny Format numbers.
Overflow should yield +/- infinity, underflow should yield +/- 0.0, and rounding should
follow the “round-to-nearest-even” tie-breaking rule.

1. 00010000
2. 11101000
3. 00110011
4. 11001110
5. 11000101

