
EECS 213, Spring 2015
Buflab: Buffer Overflow Exploits
Assigned: May 5, Due: May 19

Introduction

This assignment will help you develop a detailed understanding of 32 bit x86 (IA-32) calling conven-
tions and stack organization. It involves applying a seriesof buffer overflow attackson an executable file
bufbomb in the lab directory.

Note: In this lab, you will gain firsthand experience with one of themethods commonly used to exploit
security weaknesses in operating systems and network servers. Our purpose is to help you learn about the
runtime operation of programs and to understand the nature of this form of security weakness so that you
can avoid it when you write system code. We do not condone the use of this or any other form of attack to
gain unauthorized access to any system resources. There arecriminal statutes governing such activities.

Logistics

You may work in groups of two on this lab. You need to work on theclass servers (murphy and hanlon).

We generated the lab usinggcc ’s -m32 flag, so all code produced by the compiler follows IA-32 rules,
even though the servers are x86-64 systems. This should be enough to convince you that the compiler can
use any calling convention it wants, so long as it’s consistent.

Hand Out Instructions

You can obtain your buffer bomb by pointing your Web browser at:

http://murphy.wot.eecs.northwestern.edu:18213

The server will return atar file called buflab-handout.tar to your browser. Start by copying
buflab-handout.tar to a (protected) directory in which you plan to do your work. Then give the com-
mand “tar xvf buflab-handout.tar ”. This will create a directory calledbuflab-handout
containing the following three executable files:

1

bufbomb: The buffer bomb program you will attack.

makecookie: Generates a “cookie” based on your userids.

hex2raw: A utility to help convert between string formats.

In the following instructions, we will assume that you have copied the three programs to a protected local
directory, and that you are executing them in that local directory.

Userids and Cookies

Phases of this lab will require a slightly different solution from each team. The correct solution will be
based on the team’s userids (netids).

A cookieis a string of eight hexadecimal digits that is (with high probability) unique to your team’s userids.
You can generate your cookie with themakecookie program giving your userids as the argument. For
example:

unix> ./makecookie abc123-zwe456
0x2409b410

In four of your five buffer attacks, your objective will be to make your cookie show up in places where it
ordinarily would not.

The BUFBOMB Program

The BUFBOMB program reads a string from standard input. It does so with the functiongetbuf defined
below:

1 / * Buffer size for getbuf * /
2 #define NORMAL_BUFFER_SIZE 32
3

4 int getbuf()
5 {
6 char buf[NORMAL_BUFFER_SIZE];
7 Gets(buf);
8 return 1;
9 }

The functionGets is similar to the standard library functiongets —it reads a string from standard input
(terminated by ‘\n ’ or end-of-file) and stores it (along with a null terminator)at the specified destination.
In this code, you can see that the destination is an arraybuf having sufficient space for 32 characters.

Gets (andgets) grabs a string off the input stream and stores it into its destination address (in this case
buf). However,Gets() has no way of determining whetherbuf is large enough to store the whole input.

2

It simply copies the entire input string, possibly overrunning the bounds of the storage allocated at the
destination.

If the string typed by the user togetbuf is no more than 31 characters long, it is clear thatgetbuf will
return 1, as shown by the following execution example:

unix> ./bufbomb -u abc123-zwe456
Type string: I like pie.
Dud: getbuf returned 0x1

Typically an error occurs if we type a longer string:

unix> ./bufbomb -u abc123-zwe456
Type string: It is easier to love a seven course meal if you’re not the chef.
Ouch!: You caused a segmentation fault!

As the error message indicates, overrunning the buffer typically causes the program state to be corrupted,
leading to a memory access error. Your task is to be more clever with the strings you feedBUFBOMB so that
it does more interesting things. These are calledexploitstrings.

BUFBOMB takes several different command line arguments:

-u useridlist: Operate the bomb for the indicated userid list. You should always provide this argument for
several reasons:

• It is required to submit your successful attacks to the grading server.

• BUFBOMB determines the cookie you will be using based on your userids, as does the program
MAKECOOKIE.

• We have built features intoBUFBOMB so that some of the key stack addresses you will need to
use depend on your userid cookie.

-h : Print list of possible command line arguments.

-n : Operate in “Nitro” mode, as is used in Level 4 below.

-s : Submit your solution exploit string to the grading server.

At this point, you should think about the x86 stack structurea bit and figure out what entries of the stack you
will be targeting. You may also want to think aboutexactlywhy the last example created a segmentation
fault, although this is less clear.

Your exploit strings will typically contain byte values that do not correspond to the ASCII values for printing
characters. The programHEX2RAW can help you generate theseraw strings. It takes as input ahex-
formattedstring. In this format, each byte value is represented by twohex digits. For example, the string
“012345 ” could be entered in hex format as “30 31 32 33 34 35 .” (Recall that the ASCII code for
decimal digitx is 0x3 x.)

3

The hex characters you passHEX2RAW should be separated by whitespace (blanks or newlines). We recom-
mend separating different parts of your exploit string withnewlines while you’re working on it.HEX2RAW

also supports C-style block comments, so you can mark off sections of your exploit string. For example:

bf 66 7b 32 78 / * mov $0x78327b66,%edi * /

Be sure to leave space around both the starting and ending comment strings (‘/ * ’, ‘ * / ’) so they will be
properly ignored.

If you generate a hex-formatted exploit string in the fileexploit.txt , you can apply the raw string to
BUFBOMB in several different ways:

1. You can set up a series of pipes to pass the string throughHEX2RAW.

unix> cat exploit.txt | ./hex2raw | ./bufbomb -u abc123-zwe456

2. You can store the raw string in a file and use I/O redirectionto supply it toBUFBOMB:

unix> ./hex2raw < exploit.txt > exploit-raw.txt
unix> ./bufbomb -u abc123-zwe456 < exploit-raw.txt

This approach can also be used when runningBUFBOMB from within GDB:

unix> gdb bufbomb
(gdb) run -u abc123-zwe456 < exploit-raw.txt

Important points:

• Your exploit string must not contain byte value0x0A at any intermediate position, since this is the
ASCII code for newline (‘\n ’). When Gets encounters this byte, it will assume you intended to
terminate the string.

• HEX2RAW expects two-digit hex values separated by a whitespace. So if you want to create a byte
with a hex value of 0, you need to specify 00. To create the word0xDEADBEEFyou should pass DE
AD BE EF toHEX2RAW.

When you have correctly solved one of the levels, say level 0:

../hex2raw < smoke-abc123-zwe456.txt | ../bufbomb -u abc1 23-zwe456
Userid: abc123-zwe456
Cookie: 0x2409b410
Type string:Smoke!: You called smoke()
VALID
NICE JOB!

then you can submit your solution to the grading server usingthe-s option:

4

./hex2raw < smoke-abc123-zwe456.txt | ./bufbomb -u abc123 -zwe456 -s
Userid: abc123-zwe456
Cookie: 0x2409b410
Type string:Smoke!: You called smoke()
VALID
Sent exploit string to server to be validated.
NICE JOB!

The server will test your exploit string to make sure it really works, and it will update the Buffer Lab
scoreboard page indicating that your userid (listed by yourcookie for anonymity) has completed this level.

You can view the scoreboard by pointing your Web browser at

http://murphy.wot.eecs.northwestern.edu/˜cs213/bufl ab-scoreboard.html

Unlike the Bomb Lab, there is no penalty for making mistakes in this lab. Feel free to fire away atBUFBOMB

with any string you like. Of course, you shouldn’t brute force this lab either, since it would take longer than
you have to do the assignment.

You can work on your buffer bomb on any Linux machine, but in order to submit your solution, you will
need to be running on murphy or hanlon.

Level 0: Candle (10 pts)

The functiongetbuf is called withinBUFBOMB by a functiontest having the following C code:

1 void test()
2 {
3 int val;
4 / * Put canary on stack to detect possible corruption * /
5 volatile int local = uniqueval();
6

7 val = getbuf();
8

9 / * Check for corrupted stack * /
10 if (local != uniqueval()) {
11 printf("Sabotaged!: the stack has been corrupted\n");
12 }
13 else if (val == cookie) {
14 printf("Boom!: getbuf returned 0x%x\n", val);
15 validate(3);
16 } else {
17 printf("Dud: getbuf returned 0x%x\n", val);
18 }
19 }

Whengetbuf executes its return statement (line 5 ofgetbuf), the program ordinarily resumes execution
within functiontest (at line 7 of this function). We want to change this behavior.Within the filebufbomb ,
there is a functionsmoke having the following C code:

5

void smoke()
{

printf("Smoke!: You called smoke()\n");
validate(0);
exit(0);

}

Your task is to getBUFBOMB to execute the code forsmoke whengetbuf executes its return statement,
rather than returning totest . Note that your exploit string may also corrupt parts of the stack not directly
related to this stage, but this will not cause a problem, since smoke causes the program to exit directly.

Some Advice:

• All the information you need to devise your exploit string for this level can be determined by exam-
ining a disassembled version ofBUFBOMB. Useobjdump -d to get this dissembled version.

• Be careful about byte ordering.

• You might want to useGDB to step the program through the last few instructions ofgetbuf to make
sure it is doing the right thing.

• The placement ofbuf within the stack frame forgetbuf depends on which version ofGCC was
used to compilebufbomb , so you will have to read some assembly to figure out its true location.

Level 1: Sparkler (10 pts)

Within the filebufbomb there is also a functionfizz having the following C code:

void fizz(int val)
{

if (val == cookie) {
printf("Fizz!: You called fizz(0x%x)\n", val);
validate(1);

} else
printf("Misfire: You called fizz(0x%x)\n", val);

exit(0);
}

Similar to Level 0, your task is to getBUFBOMB to execute the code forfizz rather than returning to
test . In this case, however, you must make it appear tofizz as if you have passed your cookie as its
argument. How can you do this?

Some Advice:

• Note that the program won’t really callfizz —it will simply execute its code. This has important
implications for where on the stack you want to place your cookie.

6

Level 2: Firecracker (15 pts)

A much more sophisticated form of buffer attack involves supplying a string that encodes actual machine in-
structions. The exploit string then overwrites the return pointer with the starting address of these instructions
on the stack. When the calling function (in this casegetbuf) executes itsret instruction, the program
will start executing the instructions on the stack rather than returning. With this form of attack, you can get
the program to do almost anything. The code you place on the stack is called theexploitcode. This style of
attack is tricky, though, because you must get machine code onto the stack and set the return pointer to the
start of this code.

Within the filebufbomb there is a functionbang having the following C code:

int global_value = 0;

void bang(int val)
{

if (global_value == cookie) {
printf("Bang!: You set global_value to 0x%x\n", global_va lue);
validate(2);

} else
printf("Misfire: global_value = 0x%x\n", global_value);

exit(0);
}

Similar to Levels 0 and 1, your task is to getBUFBOMB to execute the code forbang rather than returning
to test . Before this, however, you must set global variableglobal_value to your userid cookie. Your
exploit code should setglobal_value , push the address ofbang on the stack, and then execute aret
instruction to cause a jump to the code forbang .

Some Advice:

• You can useGDB to get the information you need to construct your exploit string. Set a break-
point within getbuf and run to this breakpoint. Determine parameters such as theaddress of
global_value and the location of the buffer.

• Determining the byte encoding of instruction sequences by hand is tedious and prone to errors. You
can let tools do all of the work by writing an assembly code filecontaining the instructions and
data you want to put on the stack. Assemble this file withgcc -m32 -c and disassemble it with
objdump -d . You should be able to get the exact byte sequence that you will type at the prompt.
(A brief example of how to do this is included at the end of thiswriteup.)

• Keep in mind that your exploit string depends on your machine, your compiler, and even your userid
cookie. Do all of your work on one of the machines assigned by your instructor, and make sure you
include the proper userid on the command line toBUFBOMB.

• Watch your use of address modes when writing assembly code. Note thatmovl $0x4, %eax
moves thevalue0x00000004 into register%eax; whereasmovl 0x4, %eax moves the value

7

at memory location0x00000004 into %eax. Since that memory location is usually undefined, the
second instruction will cause a segfault!

• Do not attempt to use either ajmp or a call instruction to jump to the code forbang . These
instructions uses PC-relative addressing, which is very tricky to set up correctly. Instead, push an
address on the stack and use theret instruction.

Level 3: Dynamite (20 pts)

Our preceding attacks have all caused the program to jump to the code for some other function, which
then causes the program to exit. As a result, it was acceptable to use exploit strings that corrupt the stack,
overwriting saved values.

The most sophisticated form of buffer overflow attack causesthe program to execute some exploit code that
changes the program’s register/memory state, but makes theprogram return to the original calling function
(test in this case). The calling function is oblivious to the attack. This style of attack is tricky, though,
since you must: 1) get machine code onto the stack, 2) set the return pointer to the start of this code, and 3)
undo any corruptions made to the stack state.

Your job for this level is to supply an exploit string that will causegetbuf to return your cookie back to
test , rather than the value 1. You can see in the code fortest that this will cause the program to go
“Boom! .” Your exploit code should set your cookie as the return value, restore any corrupted state, push
the correct return location on the stack, and execute aret instruction to really return totest .

Some Advice:

• You can useGDB to get the information you need to construct your exploit string. Set a breakpoint
within getbuf and run to this breakpoint. Determine parameters such as thesaved return address.

• Determining the byte encoding of instruction sequences by hand is tedious and prone to errors. You
can let tools do all of the work by writing an assembly code filecontaining the instructions and data
you want to put on the stack. Assemble this file withGCC and disassemble it withOBJDUMP. You
should be able to get the exact byte sequence that you will type at the prompt. (A brief example of
how to do this is included at the end of this writeup.)

• Keep in mind that your exploit string depends on your machine, your compiler, and even your userid
cookie. Do all of your work on the machines assigned by your instructor, and make sure you include
the proper userid list on the command line toBUFBOMB.

Once you complete this level, pause to reflect on what you haveaccomplished. You caused a program to
execute machine code of your own design. You have done so in a sufficiently stealthy way that the program
did not realize that anything was amiss.

Level 4: Nitroglycerin (10 pts)

Please note: You’ll need to use the “-n ,” command-line flag in order to run this stage.

8

From one run to another, especially by different users, the exact stack positions used by a given procedure
will vary. One reason for this variation is that the values ofall environment variables are placed near the
base of the stack when a program starts executing. Environment variables are stored as strings, requiring
different amounts of storage depending on their values. Thus, the stack space allocated for a given user
depends on the settings of his or her environment variables.Stack positions also differ when running a
program underGDB, sinceGDB uses stack space for some of its own state.

In the code that callsgetbuf , we have incorporated features that stabilize the stack, sothat the position of
getbuf ’s stack frame will be consistent between runs. This made it possible for you to write an exploit
string knowing the exact starting address ofbuf . If you tried to use such an exploit on a normal program,
you would find that it works some times, but it causes segmentation faults at other times. Hence the name
“dynamite”—an explosive developed by Alfred Nobel that contains stabilizing elements to make it less
prone to unexpected explosions.

For this level, we have gone the opposite direction, making the stack positions even less stable than they
normally are. Hence the name “nitroglycerin”—an explosivethat is notoriously unstable.

When you runBUFBOMB with the command line flag “-n ,” it will run in “Nitro” mode. Rather than calling
the functiongetbuf , the program calls a slightly different functiongetbufn :

/ * Buffer size for getbufn * /
#define KABOOM_BUFFER_SIZE 512

int getbufn()
{

char buf[KABOOM_BUFFER_SIZE];
Gets(buf);
return 1;

}

This function is similar togetbuf , except that it has a buffer of 512 characters. You will need this ad-
ditional space to create a reliable exploit. The code that calls getbufn first allocates a random amount
of storage on the stack, such that if you sample the value of%ebp during two successive executions of
getbufn , you would find they differ by as much as±240.

In addition, when run in Nitro mode,BUFBOMB requires you to supply your string 5 times, and it will
executegetbufn 5 times, each with a different stack offset. Your exploit string must make it return your
cookie each of these times.

Your task is identical to the task for the Dynamite level. Once again, your job for this level is to supply an
exploit string that will causegetbufn to return your cookie back to test, rather than the value 1. You can
see in the code for test that this will cause the program to go “KABOOM!.” Your exploit code should set
your cookie as the return value, restore any corrupted state, push the correct return location on the stack,
and execute aret instruction to really return totestn .

Some Advice:

• You can use the programHEX2RAW to send multiple copies of your exploit string. If you have a
single copy in the fileexploit.txt , then you can use the following command:

9

unix> cat exploit.txt | ./hex2raw -n | ./bufbomb -n -u abc123-zwe456

You must use the same string for all 5 executions ofgetbufn . Otherwise it will fail the testing code
used by our grading server.

• The trick is to make use of thenop instruction. It is encoded with a single byte (code0x90). It may
be useful to read about ”nop sleds” on page 262 of the CS:APP2etextbook.

Logistical Notes

Handin occurs to the grading server whenever you correctly solve a leveland use the-s option. Upon
receiving your solution, the server will validate your string and update the Buffer Lab scoreboard Web page,
which you can view by pointing your Web browser at

http://murphy.wot.eecs.northwestern.edu/˜cs213/bufl ab-scoreboard.html

You should be sure to check this page after your submission tomake sure your string has been validated. (If
you really solved the level, your stringshouldbe valid.)

Note that each level is graded individually. You do not need to do them in the specified order, but you will
get credit only for the levels for which the server receives avalid message. You can check the Buffer Lab
scoreboard to see how far you’ve gotten.

The grading server creates the scoreboard by using the latest results it has for each phase.

Good luck and have fun!

Generating Byte Codes

UsingGCC as an assembler andOBJDUMPas a disassembler makes it convenient to generate the byte codes
for instruction sequences. For example, suppose we write a file example.S containing the following
assembly code:

Example of hand-generated assembly code

push $0xabcdef # Push value onto stack
add $17,%eax # Add 17 to %eax
.align 4 # Following will be aligned on multiple of 4
.long 0xfedcba98 # A 4-byte constant

The code can contain a mixture of instructions and data. Anything to the right of a ‘#’ character is a
comment.

We can now assemble and disassemble this file:

10

unix> gcc -m32 -c example.S
unix> objdump -d example.o > example.d

The generated fileexample.d contains the following lines

0: 68 ef cd ab 00 push $0xabcdef
5: 83 c0 11 add $0x11,%eax
8: 98 cwtl
9: ba .byte 0xba
a: dc fe fdivr %st,%st(6)

Each line shows a single instruction. The number on the left indicates the starting address (starting with 0),
while the hex digits after the ‘: ’ character indicate the byte codes for the instruction. Thus, we can see that
the instructionpush $0xABCDEF has hex-formatted byte code68 ef cd ab 00 .

Starting at address 8, the disassembler gets confused. It tries to interpret the bytes in the fileexample.o as
instructions, but these bytes actually correspond to data.Note, however, that if we read off the 4 bytes start-
ing at address 8 we get:98 ba dc fe . This is a byte-reversed version of the data word0xFEDCBA98.
This byte reversal represents the proper way to supply the bytes as a string, since a little endian machine
lists the least significant byte first.

Finally, we can read off the byte sequence for our code as:

68 ef cd ab 00 83 c0 11 98 ba dc fe

This string can then be passed throughHEX2RAW to generate a proper input string we can give toBUFBOMB.
Alternatively, we can edit example.d to look like this:

68 ef cd ab 00 / * push $0xabcdef * /
83 c0 11 / * add $0x11,%eax * /
98
ba dc fe

which is also a valid input we can pass throughHEX2RAW before sending toBUFBOMB.

11

