EECS 213, Spring 2015
Buflab: Buffer Overflow Exploits
Assigned: May 5, Due: May 19

I ntroduction

This assignment will help you develop a detailed understanadf 32 bit x86 (I1A-32) calling conven-
tions and stack organization. It involves applying a seoiebuffer overflow attacken an executable file
bufbomb in the lab directory.

Note: In this lab, you will gain firsthand experience with one of thethods commonly used to exploit

security weaknesses in operating systems and networkrse®er purpose is to help you learn about the
runtime operation of programs and to understand the nafut@soform of security weakness so that you
can avoid it when you write system code. We do not condonegbefithis or any other form of attack to

gain unauthorized access to any system resources. Thergraneal statutes governing such activities.

L ogistics

You may work in groups of two on this lab. You need to work ondless servers (murphy and hanlon).

We generated the lab usimggce 's -m32 flag, so all code produced by the compiler follows 1A-32 rules
even though the servers are x86-64 systems. This shouldduglerio convince you that the compiler can
use any calling convention it wants, so long as it’'s constste

Hand Out Instructions
You can obtain your buffer bomb by pointing your Web browger a
http://murphy.wot.eecs.northwestern.edu:18213

The server will return aar file called buflab-handout.tar to your browser. Start by copying
buflab-handout.tar to a (protected) directory in which you plan to do your workeh give the com-
mand ‘tar xvf buflab-handout.tar ". This will create a directory callethuflab-handout
containing the following three executable files:

bufbomb: The buffer bomb program you will attack.
makecookie: Generates a “cookie” based on your userids.

hex2raw: A utility to help convert between string formats.

In the following instructions, we will assume that you haepied the three programs to a protected local
directory, and that you are executing them in that localatiney.

Userids and Cookies

Phases of this lab will require a slightly different solutirom each team. The correct solution will be
based on the team’s userids (netids).

A cookieis a string of eight hexadecimal digits that is (with highlpaibility) unique to your team'’s userids.
You can generate your cookie with theakecookie program giving your userids as the argument. For
example:

unix> ./ makecooki e abc123-zwe456
0x2409b410

In four of your five buffer attacks, your objective will be toake your cookie show up in places where it
ordinarily would not.

The BUFBOMB Program

The BUFBOMB program reads a string from standard input. It does so walfuhctiongetbuf defined
below:

1 /* Buffer size for getbuf */

2 #define NORMAL_BUFFER_SIZE 32

3

4 int getbuf()

5 {

6 char buf[NORMAL_BUFFER_SIZE];
7 Gets(buf);

8 return 1;

9}

The functionGets is similar to the standard library functiagets —it reads a string from standard input
(terminated by\n ’ or end-of-file) and stores it (along with a null terminatat)the specified destination.
In this code, you can see that the destination is an dnudyhaving sufficient space for 32 characters.

Gets (andgets) grabs a string off the input stream and stores it into itdidason address (in this case
buf). HoweverGets() has no way of determining whethleuf is large enough to store the whole input.

It simply copies the entire input string, possibly overrimgnthe bounds of the storage allocated at the
destination.

If the string typed by the user etbuf is no more than 31 characters long, it is clear ttbuf will
return 1, as shown by the following execution example:

unix> ./ bufbonmb -u abcl23-zwe456
Type string: I like pie.
Dud: getbuf returned Ox1

Typically an error occurs if we type a longer string:

unix> ./ bufbonb -u abcl23-zwe456
Type string: It is easier to love a seven course neal if you' re not the chef.
Ouch!l: You caused a segmentation fault!

As the error message indicates, overrunning the buffeciylpi causes the program state to be corrupted,
leading to a memory access error. Your task is to be morerletie the strings you feedurFBoMB so that
it does more interesting things. These are cadbgploit strings.

BurFBoOMB takes several different command line arguments:

-u useridlist Operate the bomb for the indicated userid list. You shouldhgs provide this argument for
several reasons:

e lItis required to submit your successful attacks to the giggerver.

e BUFBOMB determines the cookie you will be using based on your usesgldoes the program
MAKECOOKIE.

¢ We have built features inteUFBOMB so that some of the key stack addresses you will need to
use depend on your userid cookie.

-h : Print list of possible command line arguments.
-n : Operate in “Nitro” mode, as is used in Level 4 below.

-s : Submit your solution exploit string to the grading server.

At this point, you should think about the x86 stack structut#t and figure out what entries of the stack you
will be targeting. You may also want to think abcexactlywhy the last example created a segmentation
fault, although this is less clear.

Your exploit strings will typically contain byte values tido not correspond to the ASCII values for printing
characters. The programEX2RAW can help you generate thesaw strings. It takes as input hex-
formattedstring. In this format, each byte value is represented byheodigits. For example, the string
“012345 ” could be entered in hex format a80 31 32 33 34 35 .” (Recall that the ASCII code for
decimal digitx is Ox3 x.)

The hex characters you passx2rRAw should be separated by whitespace (blanks or newlines)etden-
mend separating different parts of your exploit string wigwlines while you're working on itHEX2RAW
also supports C-style block comments, so you can mark offosescof your exploit string. For example:

bf 66 7b 32 78 / * mov $0x78327b66,%edi */

Be sure to leave space around both the starting and endintmentrstrings (/ +’, ‘*/ ") so they will be
properly ignored.

If you generate a hex-formatted exploit string in the @bploit.txt , you can apply the raw string to
BUFBOMB in several different ways:

1. You can set up a series of pipes to pass the string thregg2rAw.
unix> cat exploit.txt | ./hex2raw | ./bufbonb -u abcl123-zwe456
2. You can store the raw string in a file and use 1/O redirediiosupply it toBUFBOMB:

unix> ./ hex2raw < exploit.txt > exploit-rawtxt
unix> ./ bufbonb -u abcl123-zwe456 < exploit-raw. txt

This approach can also be used when runmugsoms from within GDB:

unix> gdb buf bonb
(gdb) run -u abcl123-zwe456 < exploit-raw. txt

Important points:

e Your exploit string must not contain byte val@0A at any intermediate position, since this is the
ASCII code for newline (n). When Gets encounters this byte, it will assume you intended to
terminate the string.

e HEX2RAW expects two-digit hex values separated by a whitespacef y®w iwant to create a byte
with a hex value of 0, you need to specify 00. To create the WaREADBEER/ou should pass DE
AD BE EF toHEX2RAW.

When you have correctly solved one of the levels, say level O:

../hex2raw < smoke-abc123-zwe456.txt | ../bufbomb -u abcl 23-zwe456
Userid: abc123-zwe456

Cookie: 0x2409b410

Type string:Smoke!: You called smoke()

VALID

NICE JOB!

then you can submit your solution to the grading server uiegs option:

4

Jhex2raw < smoke-abcl123-zwe456.txt | ./bufbomb -u abcl23 -zwe456 -s
Userid: abc123-zwe456

Cookie: 0x2409b410

Type string:Smoke!: You called smoke()

VALID

Sent exploit string to server to be validated.

NICE JOB!

The server will test your exploit string to make sure it rgallorks, and it will update the Buffer Lab
scoreboard page indicating that your userid (listed by yoakie for anonymity) has completed this level.

You can view the scoreboard by pointing your Web browser at
http://murphy.wot.eecs.northwestern.edu/"cs213/bufl ab-scoreboard.html

Unlike the Bomb Lab, there is no penalty for making mistakethis lab. Feel free to fire away BUFBOMB
with any string you like. Of course, you shouldn’t brute #tbis lab either, since it would take longer than
you have to do the assignment.

You can work on your buffer bomb on any Linux machine, but idesrto submit your solution, you will
need to be running on murphy or hanlon.

Level 0: Candle (10 pts)

The functiongetbuf is called withinsuFBOMB by a functiontest having the following C code:

1 void test()

2 {

3 int val;

4 /* Put canary on stack to detect possible corruption */
5 volatile int local = uniqueval();

6

7 val = getbuf();

8

9 /* Check for corrupted stack */

10 if (local !'= uniqueval()) {

11 printf("Sabotaged!: the stack has been corrupted\n®);
12 }

13 else if (val == cookie) {

14 printf("Boom!: getbuf returned 0x%x\n", val);

15 validate(3);

16 } else {

17 printf("Dud: getbuf returned 0x%x\n", val);

18 }

19 }

Whengetbuf executes its return statement (line Sgetbuf), the program ordinarily resumes execution
within functiontest (atline 7 of this function). We want to change this behawtiithin the filebufbomb ,
there is a functiosmoke having the following C code:

5

void smoke()

{
printf("Smoke!: You called smoke()\n");
validate(0);
exit(0);

}

Your task is to geBUFBOMB to execute the code famoke whengetbuf executes its return statement,
rather than returning ttest . Note that your exploit string may also corrupt parts of ttaelks not directly
related to this stage, but this will not cause a problem,esimeoke causes the program to exit directly.

Some Advice:

¢ All the information you need to devise your exploit string this level can be determined by exam-
ining a disassembled version®iFBOMB. Useobjdump -d to get this dissembled version.

e Be careful about byte ordering.

e You might want to useDB to step the program through the last few instructiongatbuf to make
sure it is doing the right thing.

e The placement obuf within the stack frame fogetbuf depends on which version afcc was
used to compiléoufbomb , so you will have to read some assembly to figure out its traation.

Level 1: Sparkler (10 pts)

Within the filebufbomb there is also a functiofizz having the following C code:

void fizz(int val)

{
if (val == cookie) {
printf("Fizz!: You called fizz(0x%x)\n", val);
validate(1);
} else
printf("Misfire: You called fizz(0x%x)\n", val);
exit(0);
}

Similar to Level 0, your task is to g&UFBOMB to execute the code fdizz rather than returning to
test . In this case, however, you must make it appedizpn as if you have passed your cookie as its
argument. How can you do this?

Some Advice:

e Note that the program won't really cdizz —it will simply execute its code. This has important
implications for where on the stack you want to place youtkao

Level 2. Firecracker (15 pts)

A much more sophisticated form of buffer attack involvesm@ying a string that encodes actual machine in-
structions. The exploit string then overwrites the retusmfer with the starting address of these instructions
on the stack. When the calling function (in this camgbuf) executes itgset instruction, the program
will start executing the instructions on the stack rathantheturning. With this form of attack, you can get
the program to do almost anything. The code you place on ok & called thexploitcode. This style of
attack is tricky, though, because you must get machine cottetbe stack and set the return pointer to the
start of this code.

Within the filebufbomb there is a functiolbang having the following C code:

int global value = 0;

void bang(int val)

if (global value == cookie) {
printf("Bang!: You set global value to 0x%x\n", global va lue);
validate(2);

} else
printf("Misfire: global_value = 0x%x\n", global_value);

exit(0);

Similar to Levels 0 and 1, your task is to ggiFBOMB to execute the code fdrang rather than returning
totest . Before this, however, you must set global variadpiegbal _value to your userid cookie. Your
exploit code should seflobal_value , push the address bfang on the stack, and then executeea
instruction to cause a jump to the code fang .

Some Advice:

e You can useGDB to get the information you need to construct your exploiingtr Set a break-
point within getbuf and run to this breakpoint. Determine parameters such asdteess of
global_value and the location of the buffer.

e Determining the byte encoding of instruction sequencesanghs tedious and prone to errors. You
can let tools do all of the work by writing an assembly code ¢itmtaining the instructions and
data you want to put on the stack. Assemble this file with -m32 -c and disassemble it with
objdump -d . You should be able to get the exact byte sequence that ybtypd at the prompt.
(A brief example of how to do this is included at the end of thirgeup.)

e Keep in mind that your exploit string depends on your machyoer compiler, and even your userid
cookie. Do all of your work on one of the machines assignedday ynstructor, and make sure you
include the proper userid on the command linstxBOMB.

e Watch your use of address modes when writing assembly codee thatmovl $0x4, %eax
moves thevalue 0x00000004 into registerdeax; whereasmovl 0x4, %eax moves the value

at memory locatior0x00000004 into %eax. Since that memory location is usually undefined, the
second instruction will cause a segfault!

e Do not attempt to use eitherjmp or acall instruction to jump to the code fdrang. These
instructions uses PC-relative addressing, which is veckytrto set up correctly. Instead, push an
address on the stack and use e instruction.

Level 3: Dynamite (20 pts)

Our preceding attacks have all caused the program to jumpet@ade for some other function, which
then causes the program to exit. As a result, it was acceptahlse exploit strings that corrupt the stack,
overwriting saved values.

The most sophisticated form of buffer overflow attack cadlsegprogram to execute some exploit code that
changes the program'’s register/memory state, but makgsdlgeam return to the original calling function
(test in this case). The calling function is oblivious to the aktad his style of attack is tricky, though,
since you must: 1) get machine code onto the stack, 2) seethmrpointer to the start of this code, and 3)
undo any corruptions made to the stack state.

Your job for this level is to supply an exploit string that ixdausegetbuf to return your cookie back to
test , rather than the value 1. You can see in the codddst that this will cause the program to go
“Boom!.” Your exploit code should set your cookie as the return @ahestore any corrupted state, push
the correct return location on the stack, and execug ainstruction to really return ttest

Some Advice:

e You can usesDB to get the information you need to construct your exploingtr Set a breakpoint
within getbuf and run to this breakpoint. Determine parameters such asatesl return address.

e Determining the byte encoding of instruction sequencesanghs tedious and prone to errors. You
can let tools do all of the work by writing an assembly code ddataining the instructions and data
you want to put on the stack. Assemble this file withc and disassemble it witbBiDumP. You
should be able to get the exact byte sequence that you wél agphe prompt. (A brief example of
how to do this is included at the end of this writeup.)

e Keep in mind that your exploit string depends on your machyoer compiler, and even your userid
cookie. Do all of your work on the machines assigned by yosirirctor, and make sure you include
the proper userid list on the command linesioFBOMB.

Once you complete this level, pause to reflect on what you hegemplished. You caused a program to
execute machine code of your own design. You have done sadfficiently stealthy way that the program
did not realize that anything was amiss.

Level 4: Nitroglycerin (10 pts)

Please note: You'll need to use the“,” command-line flag in order to run this stage.

8

From one run to another, especially by different users, daetestack positions used by a given procedure
will vary. One reason for this variation is that the valuesabbfenvironment variables are placed near the
base of the stack when a program starts executing. Envinohwagiables are stored as strings, requiring
different amounts of storage depending on their values.s;Tthe stack space allocated for a given user
depends on the settings of his or her environment varialfi#ack positions also differ when running a

program undeGDB, SinceGDB uses stack space for some of its own state.

In the code that callgetbuf , we have incorporated features that stabilize the stadkatdhe position of
getbuf ’s stack frame will be consistent between runs. This madessible for you to write an exploit
string knowing the exact starting addressaf . If you tried to use such an exploit on a normal program,
you would find that it works some times, but it causes segrtientéaults at other times. Hence the name
“dynamite”—an explosive developed by Alfred Nobel that @ons stabilizing elements to make it less
prone to unexpected explosions.

For this level, we have gone the opposite direction, makiegstack positions even less stable than they
normally are. Hence the name “nitroglycerin”—an explogivat is notoriously unstable.

When you rurBuFBOMB with the command line flag-t ,” it will run in “Nitro” mode. Rather than calling
the functiongetbuf , the program calls a slightly different functigetbufn

/ = Buffer size for getbufn */
#define KABOOM_BUFFER_SIZE 512

int getbufn()

{
char buf[KABOOM_BUFFER_SIZE];
Gets(buf);
return 1;

}

This function is similar togetbuf , except that it has a buffer of 512 characters. You will nées &d-
ditional space to create a reliable exploit. The code thlid gatbufn first allocates a random amount
of storage on the stack, such that if you sample the valulgelbp during two successive executions of
getbufn , you would find they differ by as much as240.

In addition, when run in Nitro modeBUFBOMB requires you to supply your string 5 times, and it will
executegetbufn 5 times, each with a different stack offset. Your exploitrgirmust make it return your
cookie each of these times.

Your task is identical to the task for the Dynamite level. ®m@gain, your job for this level is to supply an
exploit string that will causgetbufn to return your cookie back to test, rather than the value 11 ¢4n
see in the code for test that this will cause the program tokg®BOOM! Your exploit code should set
your cookie as the return value, restore any corrupted, gtateh the correct return location on the stack,
and execute eet instruction to really return ttestn

Some Advice:

e You can use the programex2rRAw to send multiple copies of your exploit string. If you have a
single copy in the filexploit.txt , then you can use the following command:

9

unix> cat exploit.txt | ./hex2raw -n | ./bufbonb -n -u abcl23-zwe456

You must use the same string for all 5 executiongetbufn . Otherwise it will fail the testing code
used by our grading server.

e The trick is to make use of theop instruction. It is encoded with a single byte (cd@0). It may
be useful to read about "nop sleds” on page 262 of the CS:ARR8mOkK.

L ogistical Notes

Handin occurs to the grading server whenever you corredllyesa leveland use the-s option. Upon
receiving your solution, the server will validate your striand update the Buffer Lab scoreboard Web page,
which you can view by pointing your Web browser at

http://murphy.wot.eecs.northwestern.edu/"cs213/bufl ab-scoreboard.html

You should be sure to check this page after your submissiorat@ sure your string has been validated. (If
you really solved the level, your strirghouldbe valid.)

Note that each level is graded individually. You do not needd them in the specified order, but you will
get credit only for the levels for which the server receiveglid message. You can check the Buffer Lab
scoreboard to see how far you've gotten.

The grading server creates the scoreboard by using the lasests it has for each phase.
Good luck and have fun!

Generating Byte Codes

UsingGccas an assembler amJDUMP as a disassembler makes it convenient to generate the lds co
for instruction sequences. For example, suppose we writke @&fample.S containing the following
assembly code:

Example of hand-generated assembly code

push $0xabcdef # Push value onto stack

add $17,%eax # Add 17 to %eax

.align 4 # Following will be aligned on multiple of 4
long Oxfedcba98 # A 4-byte constant

The code can contain a mixture of instructions and data. Wingtto the right of a#' character is a
comment.

We can now assemble and disassemble this file:

10

unix> gcc -nB2 -c exanple.S
unix> obj dunp -d exanple.o > exanple.d

The generated filexample.d contains the following lines

0: 68 ef cd ab 00 push $0xabcdef

5: 83 c0 11 add $0x11,%eax
8: 98 cwitl

9: ba .byte Oxba

a: dc fe fdivr %st,%st(6)

Each line shows a single instruction. The number on theneftates the starting address (starting with 0),
while the hex digits after the * character indicate the byte codes for the instruction. sTkee can see that
the instructiorpush $0XABCDEF has hex-formatted byte co@8 ef cd ab 00

Starting at address 8, the disassembler gets confuseiésltdrinterpret the bytes in the fégxample.o as
instructions, but these bytes actually correspond to dddée, however, that if we read off the 4 bytes start-
ing at address 8 we ge®8 ba dc fe . This is a byte-reversed version of the data wox6eEDCBA98
This byte reversal represents the proper way to supply theskas a string, since a little endian machine
lists the least significant byte first.

Finally, we can read off the byte sequence for our code as:

68 ef cd ab 00 83 cO 11 98 ba dc fe

This string can then be passed throwEx2RAW to generate a proper input string we can giveW&EBOMB.
Alternatively, we can edit example.d to look like this:

68 ef cd ab 00 / * push $Oxabcdef =*/
83 cO0 11 / » add $0x11,%eax =/

98

ba dc fe

which is also a valid input we can pass througgx 2RAW before sending tBUFBOMB.

11

