EECS 213, Spring 2015
Data Lab: Manipulating Bits

1 Introduction

The purpose of this assignment is to become more familidr wiitlevel representations of integers and
floating point numbers. You'll do this by solving a series adgramming “puzzles.” Many of these puzzles
are quite artificial, but you'll find yourself thinking muchare about bits in working your way through
them.

2 Logistics

You may work in a group of up to two people in solving the profefor this assignment. All handins are
electronic. Clarifications and revisions will be postedhe tourse discussion group.

3 Handout Instructions

You will need the filedat al ab- handout . t ar , which you will find in the~cs213/ HANDOUT directory
on the class serverBanl on. wot . eecs. nort hwest er n. edu, and

mur phy. wot . eecs. nort hwest er n. edu. This directory will also be visible on the Wilkinson and
TLab machines.

Please note that you will hand in your work onmur phy.

You will need a (protected) directory on a Linux machine iniethto do your work. We recommend that
you simply use a class server for this. You can create a pieatatirectory like this:

uni x> nkdi r nydat al ab
uni x> chnod 700 nydat al ab
uni x> cd mydat al ab

Thechnod command will set things so that only the owner of the dirgctamn read, write, or cd into it.

Next, give the command

uni x> tar xvf ~cs213/ HANDOUT/ dat al ab- handout . t ar

This will cause a number of files to be unpacked in the dirgctdhe only file you will be modifying and
turning inisbi ts. c.

The bi t s. ¢ file contains a skeleton for each of the 15 programming pgzzMour assignment is to
complete each function skeleton using odiaightline code for the integer puzzles (i.e., no loops or con-
ditionals) and a limited number of C arithmetic and logicpkmmtors. Specifically, you ammly allowed to
use the following eight operators:

I ~ &N | + << >>

A few of the functions further restrict this list. Also, yoveanot allowed to use any constants longer than 8
bits. See the comments|n t s. ¢ for detailed rules and a discussion of the desired codirlg.sty

Please be sure to read tREADIVE file.

4 The Puzzles

This section describes the puzzles that you will be solvingjiit s. c.

4.1 Bit Manipulations

Table 1 describes a set of functions that manipulate andsastof bits. The “Rating” field gives the
difficulty rating (the number of points) for the puzzle, ahé tMax ops” field gives the maximum number
of operators you are allowed to use to implement each fumct®ee the comments i t s. ¢ for more
details on the desired behavior of the functions. You may ifer to the test functions inest s. c. These
are used as reference functions to express the correctibebéyour functions, although they don’t satisfy
the coding rules for your functions.

Name Description Rating | Max Ops
bi t Nor (x, y) ~(x| y) using only~ and& 1 8
bi t Mask(hb, | b) Generate mask with 1s between index Ib and hb 3 16
| ogi cal Neg(x) Compute! x using all legal ops but 4 12
oddBi t s() Return word with odd-numbered bits set 2 8
i mplication(x,y) Returnx- >y 2 5
gr eat est Bi t Pos(x) | Return mask that marks most significant bit 4 70
i sPower 2(x) Returns 1 ifx is a power of 2 4 20

Table 1: Bit-Level Manipulation Functions.

You may find tha showtool to be helpful.

4.2 Two’s Complement Arithmetic

Table 2 describes a set of functions that make use of the t@aplement representation of integers. Again,
refer to the comments ini t s. ¢ and the reference versionstiest s. ¢ for more information.

Name Description Rating | Max Ops
subCK(x, y) Test if can compute - y without overflow 3 20
i sPositive(x) | x > 0? 3 8
t max() Return maximum two’s complement integer 1 4
negat e(x) - X without negation 2 5
si gn(x) Return sign of 2 10

Table 2: Arithmetic Functions

You may find the showtool to be helpful.

4.3 Floating-Point Operations

For this part of the assignment, you will implement some cammingle-precision floating-point opera-
tions. In this section, you are allowed to use standard obstructures (conditionals, loops), and you may
use bothi nt andunsi gned data types, including arbitrary unsigned and integer @mst You may
not use any unions, structs, or arrays. Most significanthy) snay not use any floating point data types,
operations, or constants. Instead, any floating-pointaomewill be passed to the function as having type
unsi gned, and any returned floating-point value will be of typesi gned. Your code should perform
the bit manipulations that implement the specified floatiomppoperations.

Table 3 describes a set of functions that operate on thevs-tepresentations of floating-point numbers.
Refer to the comments imi t s. ¢ and the reference versionstiest s. ¢ for more information.

Name Description Rating | Max Ops
fl oat _abs(uf) Computg| f | 2 10
fl oat _hal f (uf) | Computef / 2 4 30
float _f2i(uf) Compute(int)f 4 30

Table 3: Floating-Point Functions. Valfieis the floating-point number having the same bit representat
as the unsigned integef .

Functionsf | oat _abs andf | oat _hal f must handle the full range of possible argument valuesydicl
ing not-a-number (NaN) and infinity. The IEEE standard daatsspecify precisely how to handle NaN's,
and the I1A32 behavior is a bit obscure. We will follow a contiam that for any function returning a NaN
value, it will return the one with bit representati@x7FC00000. Note thatf | oat _f 2i must return
0x80000000Uwhen given a NaN or infinity as input.

The included progranfishow helps you understand the structure of floating point numb&scompile
f show, switch to the handout directory and type:

3

uni x> nmake
You can usd showto see what an arbitrary pattern represents as a floating-pomber:
uni x> . /fshow 2080374784

Fl oati ng point val ue 2.658455992e+36
Bit Representation 0x7c000000, sign = 0, exponent = f8, fraction = 000000
Normal i zed. 1.0000000000 X 27(121)

You can also givé showhexadecimal and floating point values, and it will deciphirtbit structure.

5 Evaluation

Your score will be computed out of a maximum of 76 points basethe following distribution:

41 Correctness points.
30 Performance points.

5 Style points.

Correctness points. The 15 puzzles you must solve have been given a difficultpgdietween 1 and 4, such
that their weighted sum totals to 41. We will evaluate yourctions using thét est program, which is
described in the next section. You will get full credit for azale if it passes all of the tests performed by
bt est , and no credit otherwise.

Performance points. Our main concern at this point in the course is that you leamough about data
representations to be able to get the right answer for thesreises. However, we also want to instill in
you a sense of keeping things as short and simple as you catheRuore, some of the puzzles can be
solved by brute force, but we want you to be more clever. Thuseach function we've established a
maximum number of operators that you are allowed to use fon &anction. This limit is very generous
and is designed only to catch egregiously inefficient sohgi You will receive two points for each correct
function that satisfies the operator limit.

Syle points. Finally, we've reserved 5 points for a subjective evaluatih the style of your solutions and
your commenting. Your solutions should be as clean andy$itfairward as possible. Your comments should
be informative, but they need not be extensive.

Autograding your work

We have included some autograding tools in the handouttdimee— bt est , dl ¢, anddri ver. pl —
to help you check the correctness of your work.

e bt est: This program checks the functional correctness of the fonstinbi t s. c¢. To build and
use it, type the following two commands:

uni x> nmake
uni x> ./ bt est

Notice that you must rebuildt est each time you modify youi t s. c file.

You'll find it helpful to work through the functions one at ante, testing each one as you go. You can
use the f flag to instructbt est to test only a single function:

uni x> ./btest -f bitNor
You can feed it specific function arguments using the optiagsfl 1, - 2, and- 3:
uni x> ./btest -f bitNor -1 7 -2 Oxf

Check the fileEREADMVE for documentation on running theest program.

e dl c: This is a modified version of an ANSI C compiler from the MIT ®&llgroup that you can use
to check for compliance with the coding rules for each puZihe typical usage is:

uni x> ./dlc bits.c

The program runs silently unless it detects a problem, sgeméllegal operator, too many operators,
or non-straightline code in the integer puzzles. Runnirity thie- e switch:

uni x> ./dlc -e bits.c

causegl| c to print counts of the number of operators used by each famciiype. / dl ¢ - hel p
for a list of command line options.

e driver. pl: This is a driver program that usé4$ est anddl ¢ to compute the correctness and
performance points for your solution. It takes no arguments

uni x> ./driver.pl

Your instructors will use dri ver. pl to evaluate your solution. They will do so on a class
server.

6 Handin Instructions

To hand in your work, you will need to be onrur phy.

To hand in your work, you should first include a comment at thgitning of yourbi t s. ¢ file that
indicates your names and NetlDs. The comment should al$ceitedany issues you are aware of.

Next, you should create a copy of your file that includes yoatls, in alphabetical order, and separated
by hyphens, in the name:

uni x> cp bits.c bits-netidl-netid2.c
Finally, copy this file to the class hand-in directory:
uni x> cp bits-netidl-netid2.c ~cs213/ HANDI N/ dat al ab

This last command will only work correctly amur phy.
That's it.

We also strongly suggest you participate in the “Beat thd”Rrontest (see below). This will give you
feedback about how well you are doing compared to othersicldss, and against the instructors’ solution.

7 Advice

e Don't include the<st di 0. h> header file in youbi t s. c file, as it confusesll ¢ and results in
some non-intuitive error messages. You will still be ableisepri ntf in yourbi ts. c file for
debugging without including thest di 0. h> header, althouglgcc will print a warning that you
can ignore.

e Thedl ¢ program enforces a stricter form of C declarations thands#se for C++ or that is enforced
bygcc. In particular, any declaration must appear in a block (whatenclose in curly braces) before
any statement that is not a declaration. For example, itagithplain about the following code:

int foo(int x)

{ .
int a = x;
a *= 3; [+ Statenent that is not a declaration */
int b =a; [/* ERROR Declaration not all owed here */
}

8 The “Beat the Prof” Contest

For fun, we're offering an optional “Beat the Prof” contelsat allows you to compete with other students
and the instructor to develop the most efficient puzzle swigt The goal is to solve each Data Lab puzzle

6

using the fewest number of operators. Students who matchairtbe instructor’'s operator count for each
puzzle are winners!

To submit your entry to the contest, type:

uni x> ./driver.pl -u ‘*‘Your N cknane'’
Nicknames are limited to 35 characters and can contain alpharics, apostrophes, commas, periods,
dashes, underscores, and ampersands. You can submitras®ffeu like. Your most recent submission

will appear on a real-time scoreboard, identified only byryaigkname. You can view the scoreboard by
pointing your browser at

htt p:// mur phy. wot . eecs. nort hwest ern. edu: 8080

This link will only be accessible from Northwestern mactine

