
EECS 213, Spring 2015
Data Lab: Manipulating Bits

1 Introduction

The purpose of this assignment is to become more familiar with bit-level representations of integers and
floating point numbers. You’ll do this by solving a series of programming “puzzles.” Many of these puzzles
are quite artificial, but you’ll find yourself thinking much more about bits in working your way through
them.

2 Logistics

You may work in a group of up to two people in solving the problems for this assignment. All handins are
electronic. Clarifications and revisions will be posted to the course discussion group.

3 Handout Instructions

You will need the filedatalab-handout.tar, which you will find in the~cs213/HANDOUTdirectory
on the class servers,hanlon.wot.eecs.northwestern.edu, and
murphy.wot.eecs.northwestern.edu. This directory will also be visible on the Wilkinson and
TLab machines.

Please note that you will hand in your work onmurphy.

You will need a (protected) directory on a Linux machine in which to do your work. We recommend that
you simply use a class server for this. You can create a protected directory like this:

unix> mkdir mydatalab
unix> chmod 700 mydatalab
unix> cd mydatalab

Thechmod command will set things so that only the owner of the directory can read, write, or cd into it.

Next, give the command

unix> tar xvf ~cs213/HANDOUT/datalab-handout.tar

1

This will cause a number of files to be unpacked in the directory. The only file you will be modifying and
turning in isbits.c.

The bits.c file contains a skeleton for each of the 15 programming puzzles. Your assignment is to
complete each function skeleton using onlystraightline code for the integer puzzles (i.e., no loops or con-
ditionals) and a limited number of C arithmetic and logical operators. Specifically, you areonly allowed to
use the following eight operators:

! ~ & ^ | + << >>

A few of the functions further restrict this list. Also, you are not allowed to use any constants longer than 8
bits. See the comments inbits.c for detailed rules and a discussion of the desired coding style.

Please be sure to read theREADME file.

4 The Puzzles

This section describes the puzzles that you will be solving in bits.c.

4.1 Bit Manipulations

Table 1 describes a set of functions that manipulate and testsets of bits. The “Rating” field gives the
difficulty rating (the number of points) for the puzzle, and the “Max ops” field gives the maximum number
of operators you are allowed to use to implement each function. See the comments inbits.c for more
details on the desired behavior of the functions. You may also refer to the test functions intests.c. These
are used as reference functions to express the correct behavior of your functions, although they don’t satisfy
the coding rules for your functions.

Name Description Rating Max Ops
bitNor(x,y) ~(x|y) using only~ and& 1 8
bitMask(hb,lb) Generate mask with 1s between index lb and hb 3 16
logicalNeg(x) Compute!x using all legal ops but! 4 12
oddBits() Return word with odd-numbered bits set 2 8
implication(x,y) Returnx->y 2 5
greatestBitPos(x) Return mask that marks most significant bit 4 70
isPower2(x) Returns 1 ifx is a power of 2 4 20

Table 1: Bit-Level Manipulation Functions.

You may find theishow tool to be helpful.

2

4.2 Two’s Complement Arithmetic

Table 2 describes a set of functions that make use of the two’scomplement representation of integers. Again,
refer to the comments inbits.c and the reference versions intests.c for more information.

Name Description Rating Max Ops
subOK(x,y) Test if can computex-y without overflow 3 20
isPositive(x) x > 0? 3 8
tmax() Return maximum two’s complement integer 1 4
negate(x) -x without negation 2 5
sign(x) Return sign ofx 2 10

Table 2: Arithmetic Functions

You may find theishow tool to be helpful.

4.3 Floating-Point Operations

For this part of the assignment, you will implement some common single-precision floating-point opera-
tions. In this section, you are allowed to use standard control structures (conditionals, loops), and you may
use bothint andunsigned data types, including arbitrary unsigned and integer constants. You may
not use any unions, structs, or arrays. Most significantly, you may not use any floating point data types,
operations, or constants. Instead, any floating-point operand will be passed to the function as having type
unsigned, and any returned floating-point value will be of typeunsigned. Your code should perform
the bit manipulations that implement the specified floating point operations.

Table 3 describes a set of functions that operate on the bit-level representations of floating-point numbers.
Refer to the comments inbits.c and the reference versions intests.c for more information.

Name Description Rating Max Ops
float_abs(uf) Compute|f| 2 10
float_half(uf) Computef/2 4 30
float_f2i(uf) Compute(int)f 4 30

Table 3: Floating-Point Functions. Valuef is the floating-point number having the same bit representation
as the unsigned integeruf.

Functionsfloat_abs andfloat_halfmust handle the full range of possible argument values, includ-
ing not-a-number (NaN) and infinity. The IEEE standard does not specify precisely how to handle NaN’s,
and the IA32 behavior is a bit obscure. We will follow a convention that for any function returning a NaN
value, it will return the one with bit representation0x7FC00000. Note thatfloat_f2i must return
0x80000000Uwhen given a NaN or infinity as input.

The included programfshow helps you understand the structure of floating point numbers. To compile
fshow, switch to the handout directory and type:

3

unix> make

You can usefshow to see what an arbitrary pattern represents as a floating-point number:

unix> ./fshow 2080374784

Floating point value 2.658455992e+36
Bit Representation 0x7c000000, sign = 0, exponent = f8, fraction = 000000
Normalized. 1.0000000000 X 2^(121)

You can also givefshow hexadecimal and floating point values, and it will decipher their bit structure.

5 Evaluation

Your score will be computed out of a maximum of 76 points basedon the following distribution:

41 Correctness points.

30 Performance points.

5 Style points.

Correctness points. The 15 puzzles you must solve have been given a difficulty rating between 1 and 4, such
that their weighted sum totals to 41. We will evaluate your functions using thebtest program, which is
described in the next section. You will get full credit for a puzzle if it passes all of the tests performed by
btest, and no credit otherwise.

Performance points. Our main concern at this point in the course is that you learn enough about data
representations to be able to get the right answer for these exercises. However, we also want to instill in
you a sense of keeping things as short and simple as you can. Furthermore, some of the puzzles can be
solved by brute force, but we want you to be more clever. Thus,for each function we’ve established a
maximum number of operators that you are allowed to use for each function. This limit is very generous
and is designed only to catch egregiously inefficient solutions. You will receive two points for each correct
function that satisfies the operator limit.

Style points. Finally, we’ve reserved 5 points for a subjective evaluation of the style of your solutions and
your commenting. Your solutions should be as clean and straightforward as possible. Your comments should
be informative, but they need not be extensive.

Autograding your work

We have included some autograding tools in the handout directory — btest, dlc, anddriver.pl —
to help you check the correctness of your work.

4

• btest: This program checks the functional correctness of the functions inbits.c. To build and
use it, type the following two commands:

unix> make
unix> ./btest

Notice that you must rebuildbtest each time you modify yourbits.c file.

You’ll find it helpful to work through the functions one at a time, testing each one as you go. You can
use the-f flag to instructbtest to test only a single function:

unix> ./btest -f bitNor

You can feed it specific function arguments using the option flags-1, -2, and-3:

unix> ./btest -f bitNor -1 7 -2 0xf

Check the fileREADME for documentation on running thebtest program.

• dlc: This is a modified version of an ANSI C compiler from the MIT CILK group that you can use
to check for compliance with the coding rules for each puzzle. The typical usage is:

unix> ./dlc bits.c

The program runs silently unless it detects a problem, such as an illegal operator, too many operators,
or non-straightline code in the integer puzzles. Running with the-e switch:

unix> ./dlc -e bits.c

causesdlc to print counts of the number of operators used by each function. Type./dlc -help
for a list of command line options.

• driver.pl: This is a driver program that usesbtest anddlc to compute the correctness and
performance points for your solution. It takes no arguments:

unix> ./driver.pl

Your instructors will use driver.pl to evaluate your solution. They will do so on a class
server.

5

6 Handin Instructions

To hand in your work, you will need to be onmurphy.

To hand in your work, you should first include a comment at the beginning of yourbits.c file that
indicates your names and NetIDs. The comment should also indicate any issues you are aware of.

Next, you should create a copy of your file that includes your NetIDs, in alphabetical order, and separated
by hyphens, in the name:

unix> cp bits.c bits-netid1-netid2.c

Finally, copy this file to the class hand-in directory:

unix> cp bits-netid1-netid2.c ~cs213/HANDIN/datalab

This last command will only work correctly onmurphy.

That’s it.

We also strongly suggest you participate in the “Beat the Prof” contest (see below). This will give you
feedback about how well you are doing compared to others in the class, and against the instructors’ solution.

7 Advice

• Don’t include the<stdio.h> header file in yourbits.c file, as it confusesdlc and results in
some non-intuitive error messages. You will still be able touseprintf in your bits.c file for
debugging without including the<stdio.h> header, althoughgcc will print a warning that you
can ignore.

• Thedlc program enforces a stricter form of C declarations than is the case for C++ or that is enforced
bygcc. In particular, any declaration must appear in a block (whatyou enclose in curly braces) before
any statement that is not a declaration. For example, it willcomplain about the following code:

int foo(int x)
{
int a = x;
a *= 3; /* Statement that is not a declaration */
int b = a; /* ERROR: Declaration not allowed here */

}

8 The “Beat the Prof” Contest

For fun, we’re offering an optional “Beat the Prof” contest that allows you to compete with other students
and the instructor to develop the most efficient puzzle solutions. The goal is to solve each Data Lab puzzle

6

using the fewest number of operators. Students who match or beat the instructor’s operator count for each
puzzle are winners!

To submit your entry to the contest, type:

unix> ./driver.pl -u ‘‘Your Nickname’’

Nicknames are limited to 35 characters and can contain alphanumerics, apostrophes, commas, periods,
dashes, underscores, and ampersands. You can submit as often as you like. Your most recent submission
will appear on a real-time scoreboard, identified only by your nickname. You can view the scoreboard by
pointing your browser at

http://murphy.wot.eecs.northwestern.edu:8080

This link will only be accessible from Northwestern machines.

7

